
An Optimal Algorithm for Strongly Convex Min-Min Optimization

Dmitry Kovalev1,2 Alexander Gasnikov3,4,5 Grigory Malinovsky6

1Yandex Research
2Ivannikov Institute for System Programming

3AI Research Center, Innopolis University
4Skolkovo Institute of Science and Technology (Skoltech)

5Moscow Institute of Physics and Technology (MIPT)
6King Abdullah University of Science and Technology (KAUST)

Abstract

We consider the problem of minimizing a function
f(x, y), where f is a smooth and strongly convex
function with respect to both variables, being µx-
strongly convex in x and µy-strongly convex in y.
The optimal accelerated gradient method of Yurii
Nesterov achieves a convergence rate that requires
approximately O((min(µx, µy))

−1/2) evaluations
of the partial gradients ∇xf and ∇yf . In this pa-
per, we propose a novel optimization algorithm that
improves upon this complexity by requiring only
O(µ

−1/2
x) computations of ∇xf and O(µ

−1/2
y)

computations of ∇yf . This improvement is par-
ticularly advantageous in scenarios where there
is a significant disparity between the strong con-
vexity parameters, specifically when µx ≫ µy.
Furthermore, in practical applications where the
computation of ∇yf is considerably more efficient
than that of ∇xf , the proposed method leads to a
substantial reduction in the overall wall-clock time
required for optimization. As a key application, we
consider Partially Local Federated Learning, a set-
ting in which the model is partitioned into a local
component and a global component. We demon-
strate how our proposed method can be effectively
applied in this framework, highlighting its practical
advantages in improving computational efficiency.

1 INTRODUCTION

The development of optimal ("black-box") algorithms for
fundamental classes of convex optimization problems dates
back several decades [Nemirovski and Yudin, 1983]. Con-
temporary research, however, often exploits the additional
structural properties of optimization problems, effectively
“looking inside the black box” [Nesterov, 2018]. Many no-
table results in this direction focus on problems with a com-

posite structure2, formulated as

min
x

F (x) := f(x) + g(x), (1)

where the complexity of the problem can be "split" into two
components: approximately

√
Lf/µ evaluations of ∇f and√

Lg/µ evaluations of ∇g [Lan, 2016, Ivanova et al., 2022,
Kovalev et al., 2022].

However, there remains a significant gap in the literature
regarding "optimal results" for the so-called min-min prob-
lem:

min
x,y

f(x, y), (2)

where the smoothness constants, strong convexity parame-
ters, and computational complexities of ∇xf and ∇yf can
vary significantly between the variables x and y, as well as
in their respective dimensionalities.

Such problems frequently arise in various applications, in-
cluding transportation modeling, where they play a crucial
role in combined trip distribution and assignment [De Cea
et al., 2005, Gasnikov et al., 2014], as well as in soft cluster-
ing [Nesterov, 2020]. A particularly relevant application
in Machine Learning can be seen in the Yahoo! Click-
Prediction model proposed by [Dvurechensky et al., 2022]:

min
x∈Rd

f(x) :=
1

m

m∑
k=1

log
(
1 + exp

(
−ηk⟨ξk, x⟩

))
+ λS

∑
i∈IS

x2
i + λD

∑
i∈ID

x2
i ,

where IS∪ID = {1, ..., d}, IS∩ID = ∅, with |ID| ≫ |IS |
and λS ≫ λD.

In this context, it is natural to define x := {xi}i∈IS
and

y := {xi}i∈ID
in the formulation of (2), highlighting the

distinct structural differences in optimization complexities
between these two variable groups.

2The function F is µ-strongly convex, while both f and g
have Lipschitz-continuous gradients with constants Lf and Lg ,
respectively.

1.1 PROBLEM SETUP AND OVERVIEW OF MAIN
RESULT

In this paper, we consider the following class of optimization
problems:

min
x∈Rdx ,y∈Rdy

f(x, y), (3)

where f(x, y) : Rdx×Rdy → R is a convex function satisfy-
ing the assumptions outlined below. We impose the follow-
ing standard smoothness and strong convexity conditions
on f(x, y):

Assumption 1.1. The function f(x, y) is (Lx, Ly)-smooth
with constants Lx, Ly > 0. That is, for all x1, x2 ∈ Rdx

and y1, y2 ∈ Rdy , the following inequality holds:

f(x2, y2) ≤ f(x1, y1) + ⟨∇xf(x1, y1), x2 − x1⟩
+ ⟨∇yf(x1, y1), y2 − y1⟩

+
Lx

2
∥x2 − x1∥2 +

Ly

2
∥y2 − y1∥2.

(4)

This condition implies that the gradients ∇xf and ∇yf are
Lipschitz continuous with constants Lx and Ly , respectively,
up to a factor of 2.

Assumption 1.2. The function f(x, y) is (µx, µy)-strongly
convex with constants µx, µy > 0. That is, for all x1, x2 ∈
Rdx and y1, y2 ∈ Rdy , the function satisfies:

f(x2, y2) ≥ f(x1, y1) + ⟨∇xf(x1, y1), x2 − x1⟩
+ ⟨∇yf(x1, y1), y2 − y1⟩

+
µx

2
∥x2 − x1∥2 +

µy

2
∥y2 − y1∥2.

(5)

This assumption ensures that f(x, y) exhibits strong con-
vexity in both x and y, which is crucial for achieving fast
convergence rates using accelerated methods.

The main contribution of this paper is the introduction of the
Block Accelerated Method (BAM) (see Section 2), which
efficiently solves problem (3) to a relative precision ϵ with
the following computational complexity:

O
(√

Ly

µy
log 1

ϵ

)
evaluations of ∇yf .

and

O
(√

Lx

µx
log 1

ϵ

)
evaluations of ∇xf

These complexity bounds match the known lower bounds
for strongly convex smooth optimization, as established
in classical results by Nemirovski and Yudin [1983] and
Nesterov [2018]. Therefore, our method is optimal in terms
of the number of gradient evaluations required for solving
(3).

Moreover, when f(x, y) is convex but not strongly convex
in one or both blocks, we can apply a regularization tech-
nique (see, e.g., Gasnikov et al. [2016]) to transform the
problem into a strongly convex one. Specifically, by intro-
ducing a small regularization term, we can ensure strong
convexity with a parameter of approximately µ◦ ∼ ϵ/R2,
where R is the Euclidean distance between the initial point
and the closest optimal solution. This allows us to extend
the applicability of our method to a broader class of convex
problems.

1.2 RELATED WORKS

The problem formulation we consider in this paper is
closely related to those studied in the context of acceler-
ated coordinate-descent methods [Nesterov, 2012, Richtárik
and Takáč, 2014, Nesterov and Stich, 2017, Ivanova et al.,
2021]. However, while the formulation is similar, our results
differ significantly.

In particular, prior work on accelerated coordinate-descent
methods has established that, with probability at least 1− δ,
the complexity bounds for solving our problem (3) using
randomized coordinate-wise acceleration are:

O
(√

Lx

min{µx,µy} log
1
ϵ log

1
δ

)
evaluations of ∇xf

and
O
(√

Ly

min{µx,µy} log
1
ϵ log

1
δ

)
evaluations of ∇yf ,

where Lx and Ly are the Lipschitz constants of ∇xf(x, y)
with respect to x and ∇yf(x, y) with respect to y, respec-
tively.

The first accelerated coordinate-descent methods [Nesterov,
2012, Richtárik and Takáč, 2014] did not yield these re-
sults directly. The breakthrough came with [Nesterov, May
14, 2015], which introduced a specialized coordinate-wise
randomization scheme with probabilities px ∼

√
Lx and

py ∼
√

Ly. This approach was further developed in sub-
sequent works, leading to various algorithmic refinements
[Gasnikov et al., 2015, Allen-Zhu et al., 2016, Nesterov and
Stich, 2017].

Similar complexity bounds, albeit with slightly worse
smoothness constants, have also been derived for **acceler-
ated alternating methods** [Beck, 2017, Diakonikolas and
Orecchia, 2018, Guminov et al., 2021, Tupitsa et al., 2021].

An alternative way to analyze the complexity of solving
(3) is through a variable re-scaling approach. Specifically,
by introducing a re-scaled variable y′ :=

√
µy/µxy, we

can equalize the strong convexity constants such that µx =
µy′ . Applying the accelerated coordinate-descent method
from [Nesterov and Stich, 2017] to the re-scaled problem,
we obtain the following complexity bounds in the original
variables:

Algorithm 1 Block Accelerated Method (BAM)

Parameters: ηx, ηy > 0, θx, θy > 0, α ∈ (0, 1)
Input: x0 = x0 ∈ Rdx , y0 = y0

for k = 0, 1, . . . ,K − 1 do
xk = αxk + (1− α)xk

yk = αyk + (1− α)yk

find yk+1 such that
∥∇yf(x

k, yk+1) + (ηyα)
−1(yk+1 − yk)∥ ≤ (ηyα)

−1∥yk+1 − yk∥. (6)

xk+1 = xk − ηxα∇xf(x
k, yk+1)

xk+1 = xk + α(xk − xk+1)− ηx∇xf(x
k, yk+1)

yk+1 = yk + α(yk+1 − yk+1)− ηy∇yf(x
k, yk+1)

end for

O
(√

Lx

µx
log 1

ϵ log
1
δ

)
evaluations of ∇xf

and
O
(√

Ly

µy
log 1

ϵ log
1
δ

)
evaluations of ∇yf .

These results are closely related to our findings, but our ap-
proach provides an important advantage: our method is fully
deterministic, which eliminates the additional logarithmic
dependence on δ present in randomized methods. Moreover,
our derivation is based on fundamentally different theoret-
ical principles, further distinguishing our work from prior
research.

An alternative line of research approaches problem (3) us-
ing a nested optimization framework, where the outer op-
timization is performed over x, and the inner problem in
y is solved approximately to provide an inexact gradient
oracle. This methodology has been explored in a series of
works [Bolte et al., 2020, Gladin et al., 2021a,b, Ostroukhov,
2022], where the objective function is reformulated as:

min
x

F (x) : = min
y

f(x, y),

∇F (x) = ∇xf(x, y(x))

=
∂f

∂x
(x, y)

∣∣∣
y=y(x)

,

where y(x) is defined as the solution to the inner minimiza-
tion problem miny f(x, y).

The most practical results in this framework have been ob-
tained for problems where x belongs to a low-dimensional
set Q ⊂ Rdx , where dx is relatively small. In this case, the
established complexity bounds are:

Õ
(
dx log

1
ϵ

)
evaluations of ∇xf
and

Õ
(
dx

√
Ly

min{µx,µy} log
2 1

ϵ

)
evaluations of ∇yf .

Interestingly, the known lower bounds for this setting sug-
gest:

O
(
dx log

1
ϵ

)
evaluations of ∇xf
and

O
(√

Ly

min{µx,µy} log
1
ϵ

)
evaluations of ∇yf .

However, it remains unclear whether this lower bound is
tight, leaving room for potential improvements in future
research.

This nested optimization framework has also been extended
to scenarios involving various types of inner problem ora-
cles: Gradient-free approaches [Gladin et al., 2021b], Ran-
domized variance-reduced methods [Gladin et al., 2021a],
Higher-order tensor methods [Ostroukhov, 2022]

Despite these advances, the performance of these methods
deteriorates significantly when dx is large. In this case, the
outer method must be accelerated, leading to complexity
bounds of:

O
(√

Lx

µx
log 1

ϵ

)
evaluations of ∇xf

and
O
(√

LxLy

µxµy
log2 1

ϵ

)
evaluations of ∇yf .

This bound is significantly worse in terms of the number of
∇yf evaluations compared to our method.

To summarize, prior to our work, no known deterministic
optimization algorithm could achieve an independent com-
plexity bound for each block without sacrificing theoretical
guarantees. Our method provides the first fully determin-
istic approach that effectively decouples the complexities
into separate terms for x and y, achieving an optimal rate
without requiring coordinate-wise randomization or nested
optimization frameworks.

The removal of the logarithmic factor in our analysis con-
stitutes a substantial theoretical contribution. Eliminating
stochasticity—and thus the associated logarithmic over-
head—not only simplifies the analysis but also enhances
the stability of the method by removing the need to average
over multiple runs to estimate convergence behavior, a com-

mon requirement in stochastic settings. Our proof technique
diverges significantly from standard analyses of acceler-
ated coordinate methods that rely on coordinate sampling,
thereby advancing the theoretical foundations for such meth-
ods. Historically, the elimination of logarithmic factors has
marked several key breakthroughs in optimization. For in-
stance, Accelerated Gradient Descent [1], while often seen
as a novel application of momentum, can also be interpreted
as eliminating logarithmic terms from the complexity of the
conjugate gradient method [2]. Katyusha [3], a milestone in
stochastic optimization, achieved direct acceleration with
variance reduction, essentially refining the log-dependent
Catalyst framework [4]. Similar log-factor removals under-
pinned major advances in online learning [5–7] and resolved
a long-standing problem in the multi-armed bandit setting
[8]. These precedents underscore the theoretical depth and
practical value of eliminating such terms, highlighting the
significance of our contribution.

2 MAIN ALGORITHM

The development of the Block Accelerated Method (BAM)
was influenced by a series of recent advancements in op-
timization, particularly those presented by Kovalev et al.
[2022], Kovalev and Gasnikov [2022a,b] (see also [Ivanova
et al., 2021, Gasnikov et al., 2021, Carmon et al., 2022]).
These works leverage inner-loop acceleration techniques,
akin to catalyst-type methods, to derive optimal acceler-
ated algorithms for saddle-point problems and high-order
optimization methods.

However, it is important to emphasize that BAM represents a
fundamentally different approach. While previous methods
primarily focus on achieving optimal acceleration through
nested iterations or high-order techniques, BAM is explic-
itly designed to decouple the complexities associated with
different variable blocks. This distinction is crucial because
splitting the computational burden into independent com-
plexity bounds for each block is nontrivial and requires a
novel algorithmic framework. Unlike existing methods that
rely on uniform acceleration across all variables, BAM intro-
duces a tailored acceleration mechanism that optimally bal-
ances the computational effort required for different blocks,
ensuring efficiency without resorting to coordinate-wise ran-
domization or nested optimization schemes.

Let us provide a detailed description of the BAM method.
The first step involves computing convex combinations for
both coordinate blocks. This operation can be interpreted as
a form of momentum, which plays a central role in achieving
acceleration:

xk = αxk + (1− α)x̄k, yk = αyk + (1− α)ȳk.

Next, we solve a subproblem to ensure the following condi-

tion is satisfied:∥∥∥∇yf
(
xk, ȳk+1

)
+ (ηyα)

−1 (
ȳk+1 − yk

)∥∥∥
≤ (ηyα)

−1 ∥∥ȳk+1 − yk
∥∥ .

This step is crucial for separating the complexity of different
components and for enabling acceleration; it is also essen-
tial for the theoretical analysis. Subsequently, the method
performs a gradient step on the server block:

x̄k+1 = xk − ηxα∇xf
(
xk, ȳk+1

)
.

Finally, the algorithm updates both coordinate blocks us-
ing gradient steps that incorporate the difference between
iterations. This mechanism is another key component con-
tributing to acceleration:

xk+1 = xk + α
(
xk − xk+1

)
− ηx∇xf

(
xk, ȳk+1

)
,

yk+1 = yk + α
(
ȳk+1 − yk+1

)
− ηy∇yf

(
xk, ȳk+1

)
.

The theoretical guarantees and complexity bounds estab-
lished in this work are fundamentally dependent on a key
technical result, which we formalize in the core lemma be-
low.

Lemma 2.1. Let ηx satisfy ηx ≤ (αLx)
−1. Then, the fol-

lowing inequality holds:

−f(xk, yk+1) ≤ −f(xk+1, yk+1) (7)

− ηxα

2
∥∇xf(x

k, yk+1)∥2.

We now formally present our main theoretical result in the
theorem stated below. This theorem encapsulates the core
contribution of our work, providing a rigorous statement
of the achieved complexity bounds and demonstrating the
effectiveness of the proposed algorithm.

Theorem 2.2. Let Rk
x = ∥xk − x∗∥2, Rk

y = ∥yk − y∗∥2.
Let Ψk be the following Lyapunov function:

Ψk = (1 + α)
(
η−1
x Rk

x + η−1
y Rk

y

)
(8)

+
2

α

(
f(xk, yk)− f(x∗, y∗)

)
.

Let parameters ηx, ηy, α be defined as follows:

α =

√
µx

Lx
, ηx =

1√
µxLx

, ηy =
1

µy

√
µx

Lx
. (9)

Then, iterations of Algorithm 1 satisfy the following inequal-
ity:

Ψk+1 ≤ (1 + α)−1Ψk. (10)

Algorithm 2 Optimized Gradient Method (OGM-G)

Parameters: stepsize γ, matrix θ̃i:

θ̃i =

1+

√
1+8θ̃2

i+1

2 , i = 0,

1+
√

1+4θ̃2
i+1

2 , i = 1, . . . , N − 1,

1, i = N,

Input: x0 = y0 ∈ Rd

for i = 0, 1, . . . , N − 1 do
yi+1 = xi − γ∇f (xi)

xi+1 = yi+1 +
(θ̃i−1)(2θ̃i+1−1)

θ̃i(2θ̃i−1)
(yi+1 − yi) +

2θ̃i+1−1

2θ̃i−1
(yi+1 − xi)

end for

3 INNER ALGORITHM

We define the auxiliary function Ak(y) : Rdy → R as fol-
lows:

Ak(y) = f(xk, y) +
1

2ηyα
∥y − yk∥2. (11)

Then, the condition in (6) from Algorithm 1 can be equiva-
lently written as:

∥∇Ak(yk+1)∥ ≤ (ηyα)
−1∥yk+1 − yk∥. (12)

To find yk+1 that satisfies this condition, we apply an opti-
mal algorithm for gradient norm reduction [Diakonikolas
and Wang, 2022, Kim and Fessler, 2021] to the minimiza-
tion problem:

min
y∈Rdy

Ak(y). (13)

The following theorem, taken from Remark 1 of [Nesterov
et al., 2021], applies to this setup.

Theorem 3.1. There exists an algorithm that, when ap-
plied to problem (13) with starting point yk, produces yk+1

satisfying:

∥∇Ak(yk+1)∥ ≤
Cmax{Ly, (ηyα)

−1}∥yk − y∗∥
T 2

, (14)

where T is the number of calls to ∇Ak(y), y∗ =

argminy∈Rdy Ak(y), and C > 0 is a universal constant.

Corollary 3.2. To output yk+1 that satisfies condition (12),
the inner algorithm requires the following number of itera-
tions:

T =
√
2Cmax

{
1,
√
ηyαLy

}
. (15)

A simple approach to achieve the optimal rate O
(

1
T 2

)
for

gradient norm reduction under the initial distance condition
involves running Nesterov Accelerated Gradient for the first
N/2 iterations and then applying the OGM-G algorithm
(Algorithm 2) for the remaining N/2 iterations.

The OGM-G algorithm utilizes a triangular matrix θ̃i, which
determines coefficients for the iterations. The first step of
the algorithm is a gradient step, while the second step is an
acceleration step using previous points and the coefficients
θ̃i.

4 TOTAL COMPLEXITY

Let us now formulate and summarize the key results, fol-
lowed by an analysis of the total computational complexity.

From Theorem 2.2, we can conclude that to find an ϵ-
accurate solution to problem (3), Algorithm 1 requires the
following number of calls to ∇xf(x, y):

K = O

(√
Lx

µx
log

1

ϵ

)
. (16)

Additionally, Corollary 3.2, in conjunction with the param-
eter choices in Algorithm 1 as derived from Theorem 2.2,
implies that the number of inner iterations is:

T = O
(
max{1,

√
ηyαLy}

)
= O

(
max

{
1,

√
Lyµx

Lxµy

})
.

(17)

Thus, the total number of calls to ∇yf(x, y) is:

K × T = O

(√
Lx

µx
log

1

ϵ

)
×O

(
max

{
1,

√
Lyµx

Lxµy

})

= O

(
max

{√
Lx

µx
,

√
Ly

µy

}
log

1

ϵ

)

This expression provides a concise description of the total
complexity required for solving the problem to ϵ-accuracy,
considering the number of gradient evaluations in both
blocks.

5 FEDERATED LEARNING
APPLICATION

5.1 COLLABORATIVE LEARNING

Federated learning is a robust machine learning paradigm
in which multiple clients (or workers) collaborate to train a
shared model in a distributed environment, while ensuring
that the clients’ local data remains private [McMahan et al.,
2017]. This privacy is critical, as it allows for training on
sensitive or proprietary data without the need to share it
across participants. Typically, the data is distributed across
numerous clients, and communication occurs only with a
central server in the centralized regime [Konečnỳ et al.,
2016]. In contrast, in the decentralized regime [Koloskova
et al., 2020], clients interact based on a predefined com-
munication graph, without relying on a central coordinator
or server, enabling more flexible communication architec-
tures. A key example of federated learning is in developing
machine learning models for applications such as text pre-
diction in mobile keyboards, where sensitive user data (such
as typed text) is never shared between clients or with the
server, maintaining privacy.

Federated learning is deployed in a variety of settings, in-
cluding both cross-device and cross-silo environments. In
cross-device settings, such as mobile devices or IoT de-
vices, data is typically distributed across a large number
of individual devices, and federated learning allows for
the creation of global models without transferring sensi-
tive data [Hard et al., 2018]. In cross-silo settings, such as
corporate or institutional collaborations, data is distributed
across a smaller number of entities (e.g., hospitals or banks),
where federated learning facilitates model training across
organizations while ensuring privacy and compliance with
regulations [Rieke et al., 2020].

In standard federated learning approaches, a single global
model is trained using local updates from clients. One of the
most commonly used algorithms is FedAvg [Khaled et al.,
2020, Woodworth et al., 2020], which reduces communica-
tion costs—typically the major bottleneck in federated learn-
ing—by allowing clients to perform several local gradient
steps before sending their updates to the central server for
aggregation. While this approach helps reduce communica-
tion frequency, it suffers from poor convergence guarantees
in the presence of data heterogeneity, especially when no
additional assumptions about data similarity are made. To
overcome these limitations, several enhanced methods have
been proposed [Karimireddy et al., 2020, Mitra et al., 2021,
Gorbunov et al., 2021], which achieve linear convergence
rates in deterministic settings. However, despite these im-
provements, the communication complexity of these meth-
ods still does not outperform vanilla gradient descent (GD)
because of the small step sizes required in the analysis.

In a more recent advancement [Mishchenko et al., 2022], it

was shown that incorporating local steps into the training
process can indeed accelerate communication, offering a
promising approach for improving the efficiency of feder-
ated learning. This has been further developed in subsequent
works that extend this mechanism to various problem set-
tings [Malinovsky et al., 2022, Grudzień et al., 2022, Condat
et al., 2022]. These studies provide valuable insights into
how local optimization strategies can complement global
model aggregation, thereby enhancing the overall communi-
cation efficiency without sacrificing convergence speed.

However, global model training can be prohibited in some
settings even without sharing data due to privacy constraints.
For example, using client-specific embeddings can reveal
user identity, which is not allowed by a privacy policy. In
order to fix this issue, a concept of partial federated learn-
ing was introduced [Singhal et al., 2021]. In this approach,
models have two blocks of parameters: global block x and
local blocks yi, which never leave the clients. This tech-
nique enables to have interpolation between distributed and
non-distributed learning. Partial federated learning is closely
connected to personalizing and meta-learning algorithms.
The most popular meta-learning algorithm is MAML [Finn
et al., 2017], and connection to federated learning was es-
tablished in several works [Nichol et al., 2018, Chen et al.,
2018, Fallah et al., 2020].

5.2 FEDERATED RECONSTRUCTION

Let us describe the baseline of partial federated learning
known as Federated Reconstruction [Singhal et al., 2021].
In this framework, there are two blocks of coordinates: user-
specific parameters yi and non-user-specific parameters x.
During each communication round, the server sends the
global part of the parameters xt to all clients. Each client
then reconstructs its local parameters yit using the current
global model xt. This reconstruction process generally re-
quires several steps. Once the local model is restored, each
client updates its copy of the global parameters and sends
only the updated copies back to the server. The server then
aggregates these updates and generates the next iterate xt+1.

The newly proposed BAM algorithm can be extended to min-
imize f(x, y1, . . . , yM) in a distributed setting and can be
applied to Federated Reconstruction [Singhal et al., 2021].
Since the communication complexity depends on the num-
ber of calls to ∇xf(x, y1, . . . , yM), the communication

complexity of this method is O
(√

Lx

µx
log 1

ε

)
. This bottle-

neck in communication can be alleviated when the condition
number of the local parameters is small. Furthermore, this
communication complexity is optimal.

We now elaborate on how to apply the Block Alternating
Minimization (BAM) method in a distributed setting under
the Federated Reconstruction framework. We consider a
federated system with n clients and the following objective

0 25 50 75 100 125 150 175 200
of oracle calls

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100
f(x

k)
f(x

)
BAM_x
NAG
LinCoupling_x
ACDM_x

0 25 50 75 100 125 150 175 200
of oracle calls

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

f(x
k)

f(x
)

BAM_x
NAG
LinCoupling_x
ACDM_x

0 50 100 150 200
of oracle calls

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

f(x
k)

f(x
)

BAM_x
NAG
LinCoupling_x
ACDM_x

0 100 200 300 400 500
of oracle calls

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

f(x
k)

f(x
)

BAM_y
NAG
LinCoupling_y
ACDM_y

0 250 500 750 1000 1250 1500 1750 2000
of oracle calls

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

f(x
k)

f(x
)

BAM_y
NAG
LinCoupling_y
ACDM_y

0 500 1000 1500 2000 2500
of oracle calls

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

f(x
k)

f(x
)

BAM_y
NAG
LinCoupling_y
ACDM_y

Figure 1: Comparison of Block Accelerated Method (BAM), Nesterov Accelerated Method (NAG), Accelerated Coordinate
Descent Method (ACDM), and Linear Coupling method (LinCoupling) on logistic regression loss functions with two
different l2 regularizers. The first line represents the rate in terms of the ∇xf(x, y) oracle calls, and the second one
represents the rate in terms of the ∇yf(x, y) oracle calls. We set µy = 0.002 (left column), µy = 0.0001 (middle column)
and µy = 0.00005 (right column).

function:

f(x, y1, . . . , yn) =
1

n

n∑
i=1

fi(x, yi),

where x denotes the global (server-specific) model block,
and yi represents the local block associated with client i.
Each local loss function fi depends only on the global vari-
able x and the corresponding local variable yi.

We now describe the Federated BAM algorithm. At the be-
ginning of each communication round, the server computes
the extrapolated global model:

xk = αxk + (1− α)x̄k.

The server then broadcasts xk to all clients. Upon receiv-
ing this model, each client computes the extrapolated local
model:

yk
i
= αyki + (1− α)ȳki .

Each client then solves a local subproblem of the form (6)
to find ȳk+1

i such that

∥∥∥∇yf
(
xk, ȳk+1

i

)
+ (ηyα)

−1
(
ȳk+1
i − yk

i

)∥∥∥
≤ (ηyα)

−1
∥∥∥ȳk+1

i − yk
i

∥∥∥ .
After solving this subproblem, the client updates its local
variable as follows:

yk+1
i = yki + α

(
ȳk+1
i − yki

)
− ηy∇yf

(
xk, ȳk+1

i

)
.

Each client also computes the gradient with respect to the
global variable: ∇xfi

(
xk, ȳk+1

i

)
, and sends it to the server.

The server aggregates these gradients to compute the full
global gradient:

∇xf
(
xk, ȳk+1

1 , . . . , ȳk+1
n

)
=

1

n

n∑
i=1

∇xfi
(
xk, ȳk+1

i

)
.

Using the aggregated gradient, the server updates the global
model as follows:

x̄k+1 = xk − ηxα∇xf
(
xk, ȳk+1

)
,

xk+1 = xk + α
(
xk − xk

)
− ηx∇xf

(
xk, ȳk+1

)
.

The process repeats until convergence, with local parameters
yi staying on clients and only the global parameter x shared
with the server.

Experimental results for partial federated learning can be
found in Singhal et al. [2021], Mishchenko et al. [2023]. A
detailed study of the practical application of BAM to Partial
Personalized Federated Learning with deep learning models
is left for future work.

6 EXPERIMENTS

In all of our experiments, we compare the proposed Block
Accelerated Method (BAM) with several well-established

0 50 100 150 200 250 300
of oracle calls

10 6

10 4

10 2

100

102

104
f(x

k)
f(x

)

BAM_x
NAG
LinCoupling_x
ACDM_x

0 50 100 150 200 250 300 350
of oracle calls

10 6

10 4

10 2

100

102

104

f(x
k)

f(x
)

BAM_x
NAG
LinCoupling_x
ACDM_x

0 50 100 150 200 250 300
of oracle calls

10 6

10 4

10 2

100

102

104

f(x
k)

f(x
)

BAM_x
NAG
LinCoupling_x
ACDM_x

0 200 400 600 800 1000 1200
of oracle calls

10 9

10 7

10 5

10 3

10 1

101

103

f(x
k)

f(x
)

BAM_y
NAG
LinCoupling_y
ACDM_y

0 500 1000 1500 2000 2500 3000 3500 4000
of oracle calls

10 9

10 7

10 5

10 3

10 1

101

103

f(x
k)

f(x
)

BAM_y
NAG
LinCoupling_y
ACDM_y

0 2000 4000 6000 8000 10000
of oracle calls

10 9

10 7

10 5

10 3

10 1

101

103

f(x
k)

f(x
)

BAM_y
NAG
LinCoupling_y
ACDM_y

Figure 2: Comparison of Block Accelerated Method (BAM), Nesterov Accelerated Method (NAG), Accelerated Coordinate
Descent Method (ACDM) and Linear Coupling method (LinCoupling) on quadratic functions. First line represents rate
in terms of the ∇xf(x, y) oracle calls and the second one represents rate in terms of the ∇yf(x, y) oracle calls. We set
Ly = 500 (left column), Ly = 5000 (middle column) and Ly = 50000 (right column).

optimization methods to assess its performance and effec-
tiveness. These methods include the Nesterov Accelerated
Method (NAG) [Nesterov, 1983], which is a classical ap-
proach for smooth convex optimization, the Accelerated
Coordinate Descent Method (ACDM) [Nesterov and Stich,
2017], known for its efficiency in coordinate-wise optimiza-
tion, and the Linear Coupling Method (LinCoupling) [Allen-
Zhu et al., 2016, Gasnikov et al., 2015], which provides a
framework for optimizing coupled problems.

6.1 QUADRATIC OBJECTIVES

In our experiments, we begin by considering quadratic func-
tions of the form:

f(z) = z⊤Az + b⊤z,

where z = (x, y)⊤ represents a joint vector consisting of
two blocks: x and y. The matrix spectrum is uniformly
generated for each block, with eigenvalues for the block
x ranging from µx to Lx, and eigenvalues for the block y
ranging from µy to Ly. For this setup, we set µx = µy =
0.1, and Ly = 50. The dimensions of the blocks are set to
dx = 100 for x and dy = 10 for y.

To analyze the impact of varying condition numbers, we
adjust the parameter Ly to generate different values of the
condition number κy . Throughout the experiments, we focus
on comparing the number of oracle calls for ∇xf(x, y) and
∇yf(x, y) across several optimization methods. This allows
us to evaluate the efficiency of each method under controlled
settings.

6.2 LOGISTIC REGRESSION

In our experiments, we also investigate the logistic re-
gression loss function with two l2 regularizers for a click-
prediction model, defined as:

f(x, y) :=
1

n

n∑
k=1

log
(
1 + exp

(
−ηk⟨ξk, (x, y)⟩

))
+ λx∥x∥2 + λy∥y∥2.

For this experiment, we used the "a1a" dataset from the
LIBSVM collection [Chang and Lin, 2011]. The datasets
analyzed in this study are available in the LIBSVM reposi-
tory. The smoothness constant for this dataset is estimated
as L = 1.567. We set dx = 100, dy = 19, and µx = 0.01.
To explore condition numbers, we vary the parameter µy.
Also, we consider the number of oracle calls to ∇xf(x, y)
and ∇yf(x, y) for comparison across different methods.

6.3 RESULTS

In our experiments, as illustrated in the plots, the new Block
Accelerated Method (BAM) demonstrates superior perfor-
mance in terms of the number of ∇xf(x, y) oracle calls for
both objective functions across all tested condition num-
bers. This indicates that the new method is more efficient
in terms of computational resources for these oracle calls.
Additionally, all accelerated coordinate methods outperform
the Nesterov Gradient Method (NAG) by a significant mar-

gin, which serves to validate the theoretical bounds estab-
lished for these methods.

When considering ∇yf(x, y) oracle calls, the performance
of BAM is approximately the same as that of other acceler-
ated coordinate methods and the Nesterov Gradient Method.
This shows that BAM does not incur a performance penalty
when evaluating ∇yf(x, y). In scenarios where oracle calls
to ∇xf(x, y) are particularly costly, BAM can be particu-
larly advantageous due to its reduced communication com-
plexity. Furthermore, the method’s ability to be generalized
to distributed and federated settings further enhances its
practical utility, suggesting that BAM has significant poten-
tial for practical applications.

7 DISCUSSION

In this paper, we address a convex optimization problem
with a min-min structure:

min
x,y

f(x, y).

Under the assumption that f is L-smooth and µx-strongly
convex in x, and µy-strongly convex in y, we propose a

new algorithm, BAM, which requires O
(√

L/µx log
1
ϵ

)
calculations of ∇xf and O

(√
L/µy log

1
ϵ

)
calculations

of ∇yf to achieve an ϵ-accurate solution. Furthermore, we
demonstrate the applicability of BAM to Federated Learn-
ing, showing its potential to reduce communication costs
while maintaining high efficiency in decentralized settings.

The approach proposed in this paper offers several possi-
bilities for further generalizations. For instance, it can be
adapted to mixed oracles, as introduced in [Gladin et al.,
2021b], where instead of computing ∇yf , only the function
value f(x, y) is available. Another possible extension is in-
creasing the number of blocks in the optimization problem
(currently, we consider only two blocks, x and y) for more
complex scenarios. Additionally, BAM can be combined
with other techniques, such as composite sliding methods
[Lan, 2016, Kovalev et al., 2022], which were mentioned
at the outset of the introduction. These possible extensions
present promising directions for future research and could
lead to further improvements in efficiency and applicability
across various domains. Furthermore, the proposed method
opens up new avenues for exploring optimization in large-
scale distributed systems, where the challenges of data het-
erogeneity and communication constraints are critical.

Acknowledgements

This work of A. Gasnikov was supported by the Ministry of
Economic Development of the RF (code 25-139-66879-1-
0003).

References

Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik, and Yang
Yuan. Even faster accelerated coordinate descent using
non-uniform sampling. In International Conference on
Machine Learning, pages 1110–1119. PMLR, 2016.

Amir Beck. First-order methods in optimization. SIAM,
2017.

Jérôme Bolte, Lilian Glaudin, Edouard Pauwels, and Math-
ieu Serrurier. Ah\" olderian backtracking method
for min-max and min-min problems. arXiv preprint
arXiv:2007.08810, 2020.

Yair Carmon, Arun Jambulapati, Yujia Jin, and Aaron Sid-
ford. Recapp: Crafting a more efficient catalyst for convex
optimization. In International Conference on Machine
Learning, pages 2658–2685. PMLR, 2022.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library
for support vector machines. ACM Transactions on In-
telligent Systems and Technology, 2:27:1–27:27, 2011.
Software available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm.

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xi-
uqiang He. Federated meta-learning with fast con-
vergence and efficient communication. arXiv preprint
arXiv:1802.07876, 2018.

Laurent Condat, Ivan Agarsky, and Peter Richtárik. Prov-
ably doubly accelerated federated learning: The first
theoretically successful combination of local train-
ing and compressed communication. arXiv preprint
arXiv:2210.13277, 2022.

Joaquin De Cea, J Enrique Fernández, Valerie Dekock, and
Alexandra Soto. Solving network equilibrium problems
on multimodal urban transportation networks with mul-
tiple user classes. Transport Reviews, 25(3):293–317,
2005.

Jelena Diakonikolas and Lorenzo Orecchia. Alternating ran-
domized block coordinate descent. In International Con-
ference on Machine Learning, pages 1224–1232. PMLR,
2018.

Jelena Diakonikolas and Puqian Wang. Potential function-
based framework for minimizing gradients in convex and
min-max optimization. SIAM Journal on Optimization,
32(3):1668–1697, 2022.

Pavel Dvurechensky, Dmitry Kamzolov, Aleksandr Luka-
shevich, Soomin Lee, Erik Ordentlich, César A Uribe,
and Alexander Gasnikov. Hyperfast second-order lo-
cal solvers for efficient statistically preconditioned dis-
tributed optimization. EURO Journal on Computational
Optimization, 10:100045, 2022.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Per-
sonalized federated learning: A meta-learning approach.
arXiv preprint arXiv:2002.07948, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In International conference on machine learning,
pages 1126–1135. PMLR, 2017.

Alexander Gasnikov, Pavel Dvurechensky, and Ilnura Us-
manova. About accelerated randomized methods. arXiv
preprint arXiv:1508.02182, 2015.

Alexander Vladimirovich Gasnikov, Yutii Vladimirovich
Dorn, Yurii Evgen’evich Nesterov, and Sergei Valer’evich
Shpirko. On the three-stage version of stable dynamic
model. Matematicheskoe modelirovanie, 26(6):34–70,
2014.

Alexander Vladimirovich Gasnikov, EB Gasnikova, Yu E
Nesterov, and AV Chernov. Efficient numerical meth-
ods for entropy-linear programming problems. Compu-
tational Mathematics and Mathematical Physics, 56(4):
514–524, 2016.

Alexander Vladimirovich Gasnikov, Darina Mikhailovna
Dvinskikh, PE Dvurechensky, DI Kamzolov, Vladislav V
Matyukhin, Dmitry A Pasechnyuk, Nazarii Konstanti-
novich Tupitsa, and Aleksey Vladimirovich Chernov. Ac-
celerated meta-algorithm for convex optimization prob-
lems. Computational Mathematics and Mathematical
Physics, 61(1):17–28, 2021.

Egor Gladin, M Alkousa, and A Gasnikov. Solving convex
min-min problems with smoothness and strong convex-
ity in one group of variables and low dimension in the
other. Automation and Remote Control, 82(10):1679–
1691, 2021a.

Egor Gladin, Abdurakhmon Sadiev, Alexander Gasnikov,
Pavel Dvurechensky, Aleksandr Beznosikov, and Moham-
mad Alkousa. Solving smooth min-min and min-max
problems by mixed oracle algorithms. In International
Conference on Mathematical Optimization Theory and
Operations Research, pages 19–40. Springer, 2021b.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Lo-
cal sgd: Unified theory and new efficient methods. In
International Conference on Artificial Intelligence and
Statistics, pages 3556–3564. PMLR, 2021.

Michał Grudzień, Grigory Malinovsky, and Peter Richtárik.
Can 5th generation local training methods support client
sampling? yes! arXiv preprint arXiv:2212.14370, 2022.

Sergey Guminov, Pavel Dvurechensky, Nazarii Tupitsa, and
Alexander Gasnikov. On a combination of alternating
minimization and nesterov’s momentum. In Interna-
tional Conference on Machine Learning, pages 3886–
3898. PMLR, 2021.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ra-
maswamy, Françoise Beaufays, Sean Augenstein, Hubert
Eichner, Chloé Kiddon, and Daniel Ramage. Federated
learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018.

Anastasiya Ivanova, Dmitry Pasechnyuk, Dmitry Gr-
ishchenko, Egor Shulgin, Alexander Gasnikov, and
Vladislav Matyukhin. Adaptive catalyst for smooth con-
vex optimization. In International Conference on Opti-
mization and Applications, pages 20–37. Springer, 2021.

Anastasiya Ivanova, Pavel Dvurechensky, Evgeniya
Vorontsova, Dmitry Pasechnyuk, Alexander Gasnikov,
Darina Dvinskikh, and Alexander Tyurin. Oracle com-
plexity separation in convex optimization. Journal of
Optimization Theory and Applications, 193(1):462–490,
2022.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank Reddi, Sebastian Stich, and Ananda Theertha
Suresh. Scaffold: Stochastic controlled averaging for fed-
erated learning. In International Conference on Machine
Learning, pages 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter
Richtárik. Tighter theory for local sgd on identical and
heterogeneous data. In International Conference on Artifi-
cial Intelligence and Statistics, pages 4519–4529. PMLR,
2020.

Donghwan Kim and Jeffrey A Fessler. Optimizing the effi-
ciency of first-order methods for decreasing the gradient
of smooth convex functions. Journal of optimization
theory and applications, 188(1):192–219, 2021.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin
Jaggi, and Sebastian Stich. A unified theory of decentral-
ized sgd with changing topology and local updates. In
International Conference on Machine Learning, pages
5381–5393. PMLR, 2020.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter
Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communica-
tion efficiency. arXiv preprint arXiv:1610.05492, 2016.

Dmitry Kovalev and Alexander Gasnikov. The first opti-
mal algorithm for smooth and strongly-convex-strongly-
concave minimax optimization. In Advances in Neural
Information Processing Systems, 2022a.

Dmitry Kovalev and Alexander Gasnikov. The first optimal
acceleration of high-order methods in smooth convex opti-
mization. In Advances in Neural Information Processing
Systems, 2022b.

Dmitry Kovalev, Aleksandr Beznosikov, Ekate-
rina Dmitrievna Borodich, Alexander Gasnikov,

and Gesualdo Scutari. Optimal gradient sliding and its
application to optimal distributed optimization under
similarity. In Advances in Neural Information Processing
Systems, 2022.

Guanghui Lan. Gradient sliding for composite optimization.
Mathematical Programming, 159(1):201–235, 2016.

Grigory Malinovsky, Kai Yi, and Peter Richtárik. Variance
reduced proxskip: Algorithm, theory and application to
federated learning. arXiv preprint arXiv:2207.04338,
2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized
data. In Artificial intelligence and statistics, pages 1273–
1282. PMLR, 2017.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian
Stich, and Peter Richtárik. Proxskip: Yes! local gradient
steps provably lead to communication acceleration! fi-
nally! In International Conference on Machine Learning,
pages 15750–15769. PMLR, 2022.

Konstantin Mishchenko, Rustem Islamov, Eduard Gorbunov,
and Samuel Horváth. Partially personalized federated
learning: Breaking the curse of data heterogeneity. arXiv
preprint arXiv:2305.18285, 2023.

Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed
Hassani. Linear convergence in federated learning: Tack-
ling client heterogeneity and sparse gradients. Advances
in Neural Information Processing Systems, 34:14606–
14619, 2021.

A Nemirovski and D Yudin. Problem complexity and
method efficiency in Optimization. J. Wiley & Sons, 1983.

Yu Nesterov. Efficiency of coordinate descent methods
on huge-scale optimization problems. SIAM Journal on
Optimization, 22(2):341–362, 2012.

Yurii Nesterov. Lectures on convex optimization, volume
137. Springer, 2018.

Yurii Nesterov. Soft clustering by convex electoral model.
Soft Computing, 24(23):17609–17620, 2020.

Yurii Nesterov. Structural optimization: New perspectives
for increasing efficiency of numerical schemes. nter-
national conference "Optimization and Applications in
Control and Data Science" on the occasion of Boris
Polyak’s 80th birthday, May 14, 2015. URL https:
//www.mathnet.ru/php/presentation.
phtml?option_lang=rus&presentid=11909.

Yurii Nesterov and Sebastian U Stich. Efficiency of the
accelerated coordinate descent method on structured op-
timization problems. SIAM Journal on Optimization, 27
(1):110–123, 2017.

Yurii Nesterov, Alexander Gasnikov, Sergey Guminov, and
Pavel Dvurechensky. Primal–dual accelerated gradient
methods with small-dimensional relaxation oracle. Opti-
mization Methods and Software, 36(4):773–810, 2021.

Yurii Evgen’evich Nesterov. A method of solving a convex
programming problem with convergence rate O(1/k2).
In Doklady Akademii Nauk, volume 269, pages 543–547.
Russian Academy of Sciences, 1983.

Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Petr A Ostroukhov. Tensor methods inside mixed oracle for
min-min problems. Computer Research and Modeling,
14(2):377–398, 2022.

Peter Richtárik and Martin Takáč. Iteration complexity of
randomized block-coordinate descent methods for min-
imizing a composite function. Mathematical Program-
ming, 144(1):1–38, 2014.

Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari,
Holger R Roth, Shadi Albarqouni, Spyridon Bakas, Math-
ieu N Galtier, Bennett A Landman, Klaus Maier-Hein,
et al. The future of digital health with federated learning.
NPJ digital medicine, 3(1):119, 2020.

Karan Singhal, Hakim Sidahmed, Zachary Garrett, Shan-
shan Wu, John Rush, and Sushant Prakash. Federated
reconstruction: Partially local federated learning. Ad-
vances in Neural Information Processing Systems, 34:
11220–11232, 2021.

Nazarii Tupitsa, Pavel Dvurechensky, Alexander Gasnikov,
and Sergey Guminov. Alternating minimization methods
for strongly convex optimization. Journal of Inverse and
Ill-posed Problems, 29(5):721–739, 2021.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich,
Zhen Dai, Brian Bullins, Brendan Mcmahan, Ohad
Shamir, and Nathan Srebro. Is local sgd better than
minibatch sgd? In International Conference on Machine
Learning, pages 10334–10343. PMLR, 2020.

https://www.mathnet.ru/php/presentation.phtml?option_lang=rus&presentid=11909
https://www.mathnet.ru/php/presentation.phtml?option_lang=rus&presentid=11909
https://www.mathnet.ru/php/presentation.phtml?option_lang=rus&presentid=11909

An Optimal Algorithm for Strongly Convex Min-Min Optimization
(Supplementary Material)

Dmitry Kovalev1,2 Alexander Gasnikov3,4,5 Grigory Malinovsky6

1Yandex Research
2Ivannikov Institute for System Programming

3AI Research Center, Innopolis University
4Skolkovo Institute of Science and Technology (Skoltech)

5Moscow Institute of Physics and Technology (MIPT)
6King Abdullah University of Science and Technology (KAUST)

A PROOFS

Proof of Lemma 2.1. Using Assumption 1.1, we get

f(xk+1, yk+1) ≤ f(xk, yk+1) + ⟨∇xf(x
k, yk+1), xk+1 − xk⟩+ Lx

2
∥xk+1 − xk∥2

= f(xk, yk+1) + ηxα

(
ηxαLx

2
− 1

)
∥∇xf(x

k, yk+1)∥2

≤ f(xk, yk+1) + ηxα

(
1

2
− 1

)
∥∇xf(x

k, yk+1)∥2

≤ f(xk, yk+1)− ηxα

2
∥∇xf(x

k, yk+1)∥2

Proof of Theorem 2.2. We start our derivation of upper bound from considering the following term: η−1
x Rk+1

x + η−1
y Rk+1

y .
Using definition of Rk+1

x and Rk+1
y in Theorem 2.2 we have

η−1
x Rk+1

x + η−1
y Rk+1

y = η−1
x ∥xk+1 − x∗∥2 + η−1

y ∥yk+1 − y∗∥2.

Let us consider the squared norm of difference ∥xk+1 − x∗∥2 :

∥xk+1 − x⋆∥2 = ∥xk+1 − xk + xk − x⋆∥2

= ∥xk+1 − xk∥2 + 2 < xk+1 − xk, xk − x⋆ > +∥xk − x⋆∥2

= ∥xk+1 − xk∥2 + 2 < xk+1 − xk, xk − xk+1 + xk+1 − x⋆ > +∥xk − x⋆∥2

= ∥xk+1 − xk∥2 − 2 < xk+1 − xk, xk+1 − xk > +2 < xk+1 − xk, xk+1 − x⋆ > +∥xk − x⋆∥2

= −∥xk+1 − xk∥2 + 2 < xk+1 − xk, xk+1 − x⋆ > +∥xk − x⋆∥2.

Similarly, we have

∥yk+1 − y⋆∥2 = −∥yk+1 − yk∥2 + 2 < yk+1 − yk, yk+1 − y⋆ > +∥yk − y⋆∥2.

Combining these equations together we obtain

η−1
x Rk+1

x + η−1
y Rk+1

y = η−1
x Rk

x + η−1
y Rk

y − η−1
x

∥∥xk+1 − xk
∥∥2 − η−1

y

∥∥yk+1 − yk
∥∥2

+ 2η−1
x

〈
xk+1 − xk, xk+1 − x∗〉+ 2η−1

y

〈
yk+1 − yk, yk+1 − y∗

〉
.

Next, we recall that the update rules for new iterates are the following:

xk+1 = xk + α
(
xk − xk+1

)
− ηx∇xf

(
xk, ȳk+1

)
yk+1 = yk + α

(
ȳk+1 − yk+1

)
− ηy∇yf

(
xk, ȳk+1

)
.

We can extract the difference between iterates:

xk+1 − xk = α
(
xk − xk+1

)
− ηx∇xf

(
xk, ȳk+1

)
yk+1 − yk = α

(
ȳk+1 − yk+1

)
− ηy∇yf

(
xk, ȳk+1

)
.

Now we can plug these identities into previous our main equation and obtain

η−1
x Rk+1

x + η−1
y Rk+1

y = η−1
x Rk

x + η−1
y Rk

y − η−1
x

∥∥xk+1 − xk
∥∥2 − η−1

y

∥∥yk+1 − yk
∥∥2

+ 2η−1
x α

〈
xk − xk+1, xk+1 − x∗〉+ 2η−1

y

〈
ȳk+1 − yk+1, yk+1 − y∗

〉
− 2

〈
∇xf

(
xk, ȳk+1

)
, xk+1 − x∗〉− 2

〈
∇yf

(
xk, ȳk+1

)
, yk+1 − y∗

〉
.

Next, we need to use standard algebraic trick:

2 < (a− b), (b− c) >= ∥a− c∥2 − ∥b− c∥2 − ∥b− a∥2.

We can quickly proof this statement:

∥a− c∥2 − ∥b− c∥2 − ∥b− a∥2 = ∥a∥2 − 2 < a, c > +∥c∥2

−
(
∥b∥2 − 2 < b, c > +∥c∥2

)
−
(
∥b∥2 − 2 < a, b > +∥a∥2

)
= −2 < a, c > +2 < b, c > +2 < a, b > −2 < b, b >

= −2 < a− b, c > +2 < a− b, b >= 2 < a− b, b− c >

.

We apply this identity to our main equation for 2η−1
x α

〈
xk − xk+1, xk+1 − x∗〉 + 2η−1

y

〈
ȳk+1 − yk+1, yk+1 − y∗

〉
and

obtain the following:

η−1
x Rk+1

x + η−1
y Rk+1

y = η−1
x Rk

x + η−1
y Rk

y − η−1
x

∥∥xk+1 − xk
∥∥2 − η−1

y

∥∥yk+1 − yk
∥∥2

+ η−1
x α

(∥∥xk − x∗∥∥2 − ∥∥xk+1 − x∗∥∥2 − ∥∥xk+1 − xk
∥∥2)

+ η−1
y α

(∥∥ȳk+1 − y∗
∥∥2 − ∥∥yk+1 − y∗

∥∥2 − ∥∥yk+1 − ȳk+1
∥∥2)

− 2
〈
∇xf

(
xk, ȳk+1

)
, xk+1 − x∗〉− 2

〈
∇yf

(
xk, ȳk+1

)
, yk+1 − y∗

〉
.

Since the norm of vector is nonnegative, then we have A − ∥b∥ ≤ A, so we can get rid of −
∥∥xk+1 − xk

∥∥2 and
−
∥∥yk+1 − ȳk+1

∥∥2:

η−1
x Rk+1

x + η−1
y Rk+1

y ≤ η−1
x Rk

x + η−1
y Rk

y − η−1
x

∥∥xk+1 − xk
∥∥2 − η−1

y

∥∥yk+1 − yk
∥∥2

+ η−1
x α

(∥∥xk − x∗∥∥2 − ∥∥xk+1 − x∗∥∥2)
+ η−1

y α
(∥∥ȳk+1 − y∗

∥∥2 − ∥∥yk+1 − y∗
∥∥2)

− 2
〈
∇xf

(
xk, ȳk+1

)
, xk+1 − x∗〉− 2

〈
∇yf

(
xk, ȳk+1

)
, yk+1 − y∗

〉
.

Starting from previous bound on η−1
x Rk+1

x + η−1
y Rk+1

y and let us open the brackets:

η−1
x Rk+1

x + η−1
y Rk+1

y ≤ η−1
x Rk

x + η−1
y Rk

y − η−1
x

∥∥xk+1 − xk
∥∥2 − η−1

y

∥∥yk+1 − yk
∥∥2

+ η−1
x α

∥∥xk − x∗∥∥2 − η−1
x α

∥∥xk+1 − x∗∥∥2
+ η−1

y α
∥∥ȳk+1 − y∗

∥∥2 − η−1
y α

∥∥yk+1 − y∗
∥∥2

− 2
〈
∇xf

(
xk, ȳk+1

)
, xk+1 − x∗〉− 2

〈
∇yf

(
xk, ȳk+1

)
, yk+1 − y∗

〉
.

Next, we put −η−1
x α

∥∥xk+1 − x∗
∥∥2 and −η−1

y α
∥∥yk+1 − y∗

∥∥2 to the left side, and this leads to

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y − η−1

x

∥∥xk+1 − xk
∥∥2 − η−1

y

∥∥yk+1 − yk
∥∥2

+ η−1
x α

∥∥xk − x∗∥∥2 + η−1
y α

∥∥ȳk+1 − y∗
∥∥2

− 2
〈
∇xf

(
xk, ȳk+1

)
, xk+1 − x∗〉− 2

〈
∇yf

(
xk, ȳk+1

)
, yk+1 − y∗

〉
.

Next we add and subtract vectors xk and yk in inner products and use the following identity: −2 < a, b − c > −2 <
a, c− d >= 2 < a, b− d >, so we have

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y − η−1

x

∥∥xk+1 − xk
∥∥2 − η−1

y

∥∥yk+1 − yk
∥∥2

+ η−1
x α

∥∥xk − x∗∥∥2 + η−1
y α

∥∥ȳk+1 − y∗
∥∥2

− 2
〈
∇xf

(
xk, ȳk+1

)
, xk+1 − xk

〉
− 2

〈
∇xf

(
xk, ȳk+1

)
, xk − x∗〉

− 2
〈
∇yf

(
xk, ȳk+1

)
, yk+1 − yk

〉
− 2

〈
∇yf

(
xk, ȳk+1

)
, yk − y∗

〉
.

Next, we need to apply Young’s inequality for inner products (also known as the Peter–Paul inequality):

< a, b >≤ ∥a∥2

2c1
+

∥b∥2c1
2

.

If we use a′ = −a, then we also have

− < a, b >≤ ∥a∥2

2c1
+

∥b∥2c1
2

.

We apply this inequality and obtain

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y − η−1

x

∥∥xk+1 − xk
∥∥2 − η−1

y

∥∥yk+1 − yk
∥∥2

+ η−1
x α

∥∥xk − x∗∥∥2 + η−1
y α

∥∥ȳk+1 − y∗
∥∥2

+ η−1
x

∥∥xk+1 − xk
∥∥2 + ηx

∥∥∇xf
(
xk, ȳk+1

)∥∥2 − 2
〈
∇xf

(
xk, ȳk+1

)
, xk − x∗〉

+ η−1
y

∥∥yk+1 − yk
∥∥2 + ηy

∥∥∇yf
(
xk, ȳk+1

)∥∥2 − 2
〈
∇yf

(
xk, ȳk+1

)
, yk − y∗

〉
.

Note that η−1
x

∥∥xk+1 − xk
∥∥2 and η−1

y

∥∥yk+1 − yk
∥∥2 cancel out, since we also have the terms −η−1

x

∥∥xk+1 − xk
∥∥2 and

−η−1
y

∥∥yk+1 − yk
∥∥2, so we have

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + η−1

x α
∥∥xk − x∗∥∥2 + η−1

y α
∥∥ȳk+1 − y∗

∥∥2
+ ηx

∥∥∇xf
(
xk, ȳk+1

)∥∥2 + ηy
∥∥∇yf

(
xk, ȳk+1

)∥∥2
− 2

〈
∇xf

(
xk, ȳk+1

)
, xk − x∗〉− 2

〈
∇yf

(
xk, ȳk+1

)
, yk − y∗

〉
.

Next, we need to add and subtract vectors xk and ȳk+1 in inner products, so we have

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + η−1

x α
∥∥xk − x∗∥∥2 + η−1

y α
∥∥ȳk+1 − y∗

∥∥2
+ ηx

∥∥∇xf
(
xk, ȳk+1

)∥∥2 + ηy
∥∥∇yf

(
xk, ȳk+1

)∥∥2
− 2

〈
∇xf

(
xk, ȳk+1

)
, xk − x∗〉− 2

〈
∇yf

(
xk, ȳk+1

)
, ȳk+1 − y∗

〉
− 2

〈
∇xf

(
xk, ȳk+1

)
, xk − xk

〉
− 2

〈
∇yf

(
xk, ȳk+1

)
, yk − ȳk+1

〉
.

Now we are ready to apply strong convexity Assumption 1.2 specifically for terms −2
〈
∇xf

(
xk, ȳk+1

)
, xk − x∗〉 −

2
〈
∇yf

(
xk, ȳk+1

)
, ȳk+1 − y∗

〉
. This allows us to obtain the following inequality:

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + η−1

x α
∥∥xk − x∗∥∥2 + η−1

y α
∥∥ȳk+1 − y∗

∥∥2
+ ηx

∥∥∇xf
(
xk, ȳk+1

)∥∥2 + ηy
∥∥∇yf

(
xk, ȳk+1

)∥∥2
+ 2

(
f (x,y∗)− f

(
xk, ȳk+1

))
− µx

∥∥xk − x∗∥∥2 − µy

∥∥ȳk+1 − y∗
∥∥2

− 2
〈
∇xf

(
xk, ȳk+1

)
, xk − xk

〉
− 2

〈
∇yf

(
xk, ȳk+1

)
, yk − ȳk+1

〉
.

After rearranging terms we obtain

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y +

(
η−1
x α− µx

) ∥∥xk − x∗∥∥2 + (η−1
y α− µy

) ∥∥ȳk+1 − y∗
∥∥2

+ ηx
∥∥∇xf

(
xk, ȳk+1

)∥∥2 + ηy
∥∥∇yf

(
xk, ȳk+1

)∥∥2 + 2
(
f (x∗, y∗)− f

(
xk, ȳk+1

))
− 2

〈
∇xf

(
xk, ȳk+1

)
, xk − xk

〉
− 2

〈
∇yf

(
xk, ȳk+1

)
, yk − ȳk+1

〉
.

Next, we use the update rules: xk = αxk + (1 − α)xk and yk = αyk + (1 − α)yk. From these lines we derive

xk = xk−(1−α)x̄k

α and yk =
yk−(1−α)ȳk

α and obtain

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + (η−1

x α− µx)∥xk − x∗∥2 + (η−1
y α− µy)∥yk+1 − y∗∥2

+ ηx∥∇xf(x
k, yk+1)∥2 + ηy∥∇yf(x

k, yk+1)∥2 + 2
(
f(x∗, y∗)− f(xk, yk+1)

)
+

2(1− α)

α
⟨∇xf(x

k, yk+1), xk − xk⟩

− ⟨∇yf(x
k, yk+1),

2

α
(yk − (1− α)yk)− 2yk+1⟩

= η−1
x Rk

x + η−1
y Rk

y + (η−1
x α− µx)∥xk − x∗∥2 + (η−1

y α− µy)∥yk+1 − y∗∥2

+ ηx∥∇xf(x
k, yk+1)∥2 + ηy∥∇yf(x

k, yk+1)∥2 + 2
(
f(x∗, y∗)− f(xk, yk+1)

)
+

2(1− α)

α
⟨∇xf(x

k, yk+1), xk − xk⟩

+
2

α
⟨∇yf(x

k, yk+1), yk+1 − yk + (1− α)yk − (1− α)yk+1⟩

= η−1
x Rk

x + η−1
y Rk

y + (η−1
x α− µx)∥xk − x∗∥2 + (η−1

y α− µy)∥yk+1 − y∗∥2

+ ηx∥∇xf(x
k, yk+1)∥2 + ηy∥∇yf(x

k, yk+1)∥2 + 2
(
f(x∗, y∗)− f(xk, yk+1)

)
+

2(1− α)

α

(
⟨∇xf(x

k, yk+1), xk − xk⟩+ ⟨∇yf(x
k, yk+1), yk − yk+1⟩

)
+

2

α
⟨∇yf(x

k, yk+1), yk+1 − yk⟩.

Next, we use convexity of f(x, y) and apply for the term
(
⟨∇xf(x

k, yk+1), xk − xk⟩+ ⟨∇yf(x
k, yk+1), yk − yk+1⟩

)
:

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + (η−1

x α− µx)∥xk − x∗∥2 + (η−1
y α− µy)∥yk+1 − y∗∥2

+ ηx∥∇xf(x
k, yk+1)∥2 + ηy∥∇yf(x

k, yk+1)∥2 + 2
(
f(x∗, y∗)− f(xk, yk+1)

)
+

2(1− α)

α

(
f(xk, yk)− f(xk, yk+1)

)
+

2

α
⟨∇yf(x

k, yk+1), yk+1 − yk⟩.

After reshuffling of terms we obtain

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + (η−1

x α− µx)∥xk − x∗∥2 + (η−1
y α− µy)∥yk+1 − y∗∥2

+ ηx∥∇xf(x
k, yk+1)∥2 + ηy∥∇yf(x

k, yk+1)∥2

+ 2f(x∗, y∗) +
2(1− α)

α
f(xk, yk)− 2

α
f(xk, yk+1)

+
2

α
⟨∇yf(x

k, yk+1), yk+1 − yk⟩.

Using Lemma 2.1, we obtain

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + (η−1

x α− µx)∥xk − x∗∥2 + (η−1
y α− µy)∥yk+1 − y∗∥2

+ ηx∥∇xf(x
k, yk+1)∥2 + ηy∥∇yf(x

k, yk+1)∥2

+ 2f(x∗, y∗) +
2(1− α)

α
f(xk, yk)

− 2

α

(
f(xk+1, yk+1) +

ηxα

2
∥∇xf(x

k, yk+1)∥2
)

+
2

α
⟨∇yf(x

k, yk+1), yk+1 − yk⟩.

Since 2f(x∗, y∗) = 2
αf(x

∗, y∗)− 2(1−α)
α f(x∗, y∗) we have

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + (η−1

x α− µx)∥xk − x∗∥2 + (η−1
y α− µy)∥yk+1 − y∗∥2

+
2(1− α)

α

(
f(xk, yk)− f(x∗, y∗)

)
− 2

α

(
f(xk+1, yk+1)− f(x∗, y∗)

)
+ ηy∥∇yf(x

k, yk+1)∥2 + 2

α
⟨∇yf(x

k, yk+1), yk+1 − yk⟩.

Next, we use ηy

ηy
= 1 and obtain

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + (η−1

x α− µx)∥xk − x∗∥2 + (η−1
y α− µy)∥yk+1 − y∗∥2

+
2(1− α)

α

(
f(xk, yk)− f(x∗, y∗)

)
− 2

α

(
f(xk+1, yk+1)− f(x∗, y∗)

)
+ ηy∥∇yf(x

k, yk+1)∥2 + 2ηy⟨∇yf(x
k, yk+1), (ηyα)

−1(yk+1 − yk)⟩.

Using the fact that 2 ⟨a, b⟩ = ∥a+ b∥2 − ∥a∥2 − ∥b∥2 we get

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + (η−1

x α− µx)∥xk − x∗∥2 + (η−1
y α− µy)∥yk+1 − y∗∥2

+
2(1− α)

α

(
f(xk, yk)− f(x∗, y∗)

)
− 2

α

(
f(xk+1, yk+1)− f(x∗, y∗)

)
+ ηy∥∇yf(x

k, yk+1)∥2 + ηy∥∇yf(x
k, yk+1) + (ηyα)

−1(yk+1 − yk)∥2

− ηy∥∇yf(x
k, yk+1)∥2 − η−1

y α−2∥yk+1 − yk∥2.

After rearranging terms we get

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + (η−1

x α− µx)∥xk − x∗∥2 + (η−1
y α− µy)∥yk+1 − y∗∥2

+
2(1− α)

α

(
f(xk, yk)− f(x∗, y∗)

)
− 2

α

(
f(xk+1, yk+1)− f(x∗, y∗)

)
+ ηy

(
∥∇yf(x

k, yk+1) + (ηyα)
−1(yk+1 − yk)∥2 − (ηyα)

−2∥yk+1 − yk∥2
)
.

Using inequality (6), we get

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y + (η−1

x α− µx)∥xk − x∗∥2 + (η−1
y α− µy)∥yk+1 − y∗∥2

+
2(1− α)

α

(
f(xk, yk)− f(x∗, y∗)

)
− 2

α

(
f(xk+1, yk+1)− f(x∗, y∗)

)
.

Using the choice of parameters ηx, ηy, α, we get

(1 + α)
(
η−1
x Rk+1

x + η−1
y Rk+1

y

)
≤ η−1

x Rk
x + η−1

y Rk
y +

2(1− α)

α

(
f(xk, yk)− f(x∗, y∗)

)
− 2

α

(
f(xk+1, yk+1)− f(x∗, y∗)

)
.

After rearranging, we get

Ψk+1 ≤ η−1
x Rk

x + η−1
y Rk

y +
2(1− α)

α

(
f(xk, yk)− f(x∗, y∗)

)
≤ η−1

x Rk
x + η−1

y Rk
y +

2(1 + α)−1

α

(
f(xk, yk)− f(x∗, y∗)

)
= (1 + α)−1Ψk.

Proof of Corollary 3.2. Using inequality (14) and (15), we get

∥∇Ak(yk+1)∥ ≤ (ηyα)
−1

2
∥yk − argmin

y∈Rdy

Ak(y)∥

≤ (ηyα)
−1

2
∥yk+1 − yk∥+ (ηyα)

−1

2
∥yk+1 − argmin

y∈Rdy

Ak(y)∥.

Function Ak(y) is (ηyα)−1-strongly convex which implies

(ηyα)
−1∥yk+1 − argmin

y∈Rdy

Ak(y)∥ ≤ ∥∇Ak(yk+1)−∇Ak(argmin
y∈Rdy

Ak(y))∥ = ∥∇Ak(yk+1)∥. (18)

Hence,

∥∇Ak(yk+1)∥ ≤ (ηyα)
−1

2
∥yk+1 − yk∥+ 1

2
∥∇Ak(yk+1)∥.

Rearranging concludes the proof.

	Introduction
	Problem Setup and Overview of Main Result
	Related works

	Main Algorithm
	Inner Algorithm
	Total Complexity
	Federated Learning application
	Collaborative learning
	Federated Reconstruction

	Experiments
	Quadratic objectives
	Logistic regression
	Results

	Discussion
	Proofs

