
Under review as a conference paper at ICLR 2024

SEQUENTIAL DATA GENERATION WITH GROUPWISE
DIFFUSION PROCESS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present the Groupwise Diffusion Model (GDM), which divides data into mul-
tiple groups and diffuses one group at one time interval in the forward diffusion
process. GDM generates data sequentially from one group at one time interval,
leading to several interesting properties. First, as an extension of diffusion models,
GDM generalizes certain forms of autoregressive models and cascaded diffusion
models. As a unified framework, GDM allows us to investigate design choices
that have been overlooked in previous works, such as data-grouping strategy and
order of generation. Furthermore, since one group of the initial noise affects only
a certain group of the generated data, latent space now possesses group-wise in-
terpretable meaning. We can further extend GDM to the frequency domain where
the forward process sequentially diffuses each group of frequency components.
Dividing the frequency bands of the data as groups allows the latent variables
to become a hierarchical representation where individual groups encode data at
different levels of abstraction. We demonstrate several applications of such rep-
resentation including disentanglement of semantic attributes, image editing, and
generating variations.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song & Ermon, 2019; Song et al., 2020; Sohl-Dickstein et al.,
2015; Dhariwal & Nichol, 2021) are recently popularized generative models that have shown im-
pressive capabilities in modeling complex datasets. Diffusion models generate data by inverting the
noise-adding forward process, which is one of the most critical design choices as the reverse gen-
erative process is merely its time-reversed counterpart. As such, extensive research has explored
alternatives to the standard noise-adding forward process, demonstrating that other forms of degra-
dation—such as blurring, masking, downsampling, snowification, or pre-trained neural encoding
—can also be used for the forward process of diffusion models (Rissanen et al., 2022; Lee et al.,
2022; Hoogeboom & Salimans, 2022; Daras et al., 2022; Gu et al., 2022; Bansal et al., 2022).

In this paper, we present the Groupwise Diffusion Model (GDM), which uses a new type of forward
process that divides data into multiple groups and diffuses one group at once. As a time reversal of
the group-wise noising process, the generative process of GDM synthesizes data sequentially from
one group at one time interval, leading to several interesting properties.

Unified framework Currently, diffusion models are state-of-the-art in generating continuous sig-
nals including images (Dhariwal & Nichol, 2021; Rombach et al., 2022; Saharia et al., 2022) and
videos (Ho et al., 2022b), while the autoregressive (AR) models excel at generating sequence of dis-
crete data such as languages (OpenAI, 2023). One advantage of AR models is that they can leverage
prior knowledge when data have a natural ordering. However, the computational costs of AR models
scale linearly to the length of the sequence, while diffusion models can decouple the dimensionality
of data and the number of sampling steps. The unified framework for the two models has yet to be
explored.

We show that GDM serves as a bridge between diffusion models and certain forms of AR and
cascaded diffusion models (Ho et al., 2022a). As a unified framework, GDM allows us to investigate
design choices for generative models that have been overlooked in previous work, such as data-
grouping strategy and order of generation.
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Interpretable latent space Diffusion models are trained by learning the drift of an ODE that
yields the same marginal distributions as a given forward diffusion process. In such a viewpoint,
diffusion models learn a one-to-one mapping between data x ∈ Rd and noise z ∈ Rd defined via
ODE, assigning a unique latent variable z to each data point as in other invertible models.

One notable characteristic of GDM is that changing one group of z affects only certain elements of
x, and the relationship between the groups of latent variables and the data elements they affect is set
in advance. As a result, latent space now possesses group-wise interpretable meaning (i.e. we know
which elements of initial noise affect which parts of data).

Hierarchical representation We can further extend GDM to the frequency domain –dubbed
GDM-F– where the forward process sequentially diffuses each group of frequency components.
Each group of latent variables (or latent group) thus selectively influences specific frequency bands
of data, providing a hierarchical representation where individual groups encode data at different
levels of abstraction. We demonstrate several applications of such representation on image datasets,
including disentanglement of semantic attributes, image editing, and generating variations.

2 BACKGROUND ON DIFFUSION MODELS

Diffusion models are generative models that synthesize data by simulating a reverse-time SDE of
a given diffusion process, which is often converted to the marginal-preserving ODE for efficient
sampling. From a rectified flow (Liu et al., 2022; Liu, 2022) (or similarly, stochastic interpolant (Al-
bergo et al., 2023; Albergo & Vanden-Eijnden, 2022)) perspective, the forward diffusion process for
variance-preserving diffusion models (Song et al., 2020) can be viewed as a nonlinear interpolation
between data x ∼ p(x) and noise z ∼ p(z):

xt(x, z) = α(t)x+
√
1− α(t)2z, (1)

where α(t) is a nonlinear function of t with α(0) = 1 and α(1) ≈ 0, and p(z) = N (0, I). Some
recent works (Lipman et al., 2022; Liu et al., 2022) instead use the linear interpolation

xt(x, z) = (1− t)x+ tz, (2)

for a constant velocity (given x and z) that has better sampling-time efficiency.

Diffusion models are trained by minimizing a time-conditioned denoising autoencoder loss (Vincent,
2011)

min
θ

Et∼U(0,1)Ex,z[λ(t)||x− xθ(xt(x, z), t)||22], (3)

where λ(t) is a weighting function, and xθ(·) is a neural network parameterized by θ. Instead of
predicting x, Liu et al. (2022) directly train a vector field vθ(xt, t) to match the time derivative ∂xt

∂t
of Eq. (2) by optimizing

min
θ

Et∼U(0,1)Ex,z[||(z − x)− vθ(xt(x, z), t)||22]. (4)

Inference and sampling are done by solving the following ODE (Liu et al., 2022) forward and back-
ward in time, respectively:

dzt = vθ(zt, t)dt, (5)

where dt is an infinitesimal timestep.

3 GROUPED LATENT FOR INTERPRETABLE REPRESENTATION

In Section 3.1, we introduce the concept of groupwise diffusion, where data is segmented into multi-
ple groups, and each group is diffused within the dedicated time interval. Following this, Section 3.2
demonstrates how our Groupwise Diffusion Model (GDM) serves as a generalization of certain in-
stances of autoregressive models and cascaded diffusion models Ho et al. (2022a). We then show the
group-wise interpretability of GDM’s latent space in Sec. 3.3 and its implication in the frequency
domain in Sec. 3.4 . Related work is deferred to Appendix D.
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Figure 1: Generative process of GDM on (a) 2D Gaussian mixture and (b) AFHQ 64 × 64 datasets.
While the previous method with scalar noise schedule denoises all elements simultaneously, our
model generates (a) each element or (b) a group of pixels sequentially. (c) Varying each latent group
only affects the corresponding group of pixels (indicated by red boxes) while others remain un-
changed.

3.1 PER-GROUP NOISE SCHEDULING

Unlike previous diffusion models where all elements of data have the same noise schedule, we divide
data x ∈ Rd into k ∈ {1, ..., d} disjoint groups and assign different noise schedules for each group.
Specifically, we divide the indices {1, ..., d} into a partition {Sj}kj=1 where

∑
j |Sj | = d. Sj is used

for determining membership of xi to j-th group by testing i ∈ Sj . Then, we let the forward process
diffuse elements of each partition within the assigned time interval.

To define separate noise schedules for each group, it is necessary to extend the previous scalar-
valued noise schedule to a more general form. Lee et al. (2022) introduces several generalizations
of previous diffusion models, including the utilization of a matrix-valued function A(t) instead of a
scalar-valued function α(t) for the coefficient of the interpolation between data and noise. Applying
this to the rectified flow, we extend Eq. (2) to

xt(x, z) = A(t)x+ (I−A(t))z, (6)

where A(t) is a diagonal matrix satisfying A(0) = I and A(1) ≈ 0. We build upon Eq. (2)
for convenience, and other interpolations such as Eq. (1) are equally applicable. Now, the training
objective becomes

min
θ

E[||A′(t)(x− z)︸ ︷︷ ︸
=

∂xt
∂t

−vθ(xt(x, z),A(t))||22], (7)

where A′(t) = ∂A(t)
∂t . Note that now vθ(·) receives A(t) instead of t, which is concatenated

to noised data zt in our implementation. This allows us to train a single model compatible with
multiple noise schedules. However, directly predicting A′(t)(x − z) might be challenging for
a neural network since it has to infer A′(t) from A(t). Instead, we find it beneficial to define
uθ(·) ≜ A′(t)−1vθ(·) and optimize the unweighted variant of Eq. (7) as in Lee et al. (2022):

min
θ

E[||(x− z)− uθ(xt(x, z),A(t))||22]. (8)

We draw samples by solving
dzt = A′(t)uθ(zt,A(t))︸ ︷︷ ︸

=vθ(zt,A(t))

dt. (9)

This formulation allows us to define a different noise schedule for each element of data, therefore
providing more flexibility in designing diffusion models. For i ∈ Sj , the i-th diagonal entry of A(t)
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is defined as follows:

A(t)ii =


1, (0 ≤ t ≤ tstartj )

1
tstartj−tendj

t− 1
tstartj−tendj

tendj , (tstartj < t ≤ tendj )

0, (t > tendj )

(10)

Here, the elements of j-th group are diffused into noise during the interval [tstartj , tendj ]. Note that
when k = 1, A(t) = (1 − t)I, and Eq. 6 becomes Eq. (2). Each tstartj and tendj are predefined
such that the time intervals of each group do not overlap with each other. That is, only one group of
elements is diffused (and therefore generated) within a certain time interval. For example, we can
make diffusion models generate data from one element at once (Fig. 1 (a)) or from one grid at once
(Fig. 1 (b)) using this per-group noise scheduling.

3.2 GDM GENERALIZES AUTOREGRESSIVE MODELS AND CASCADED DIFFUSION MODELS

We find that two popular generative models, autoregressive (AR) generative models and cascaded
diffusion models (CDM) (Ho et al., 2022a), are special cases of our GDM with certain grouping
strategies. We only provide the main results here, and a detailed explanation is deferred to Ap-
pendix C.

Proposition 3.1. Define autoregressive models as pθ(x) =
∏d

i=1 pθ(xi|x<i) where pθ(xi|x<i) =
N (fθ(x<i), σ

2I) with a neural network fθ(·) and a constant σ. This is a special case of GDM
where the number of groups k is equal to the data dimension d, and the number of steps Nj for each
group j is set to 1.

One superiority GDM possesses over AR models is the flexibility of choosing the number of groups
k and the number of steps of each group Nj . For example, some groups of pixels can be generated in
parallel without harming quality using sampling steps of more than one but substantially fewer than
the total number of pixels in that group. For example, in Block-wise grouping in Fig. 1, each group
has 21 × 21 pixels but less than 20 steps are used for each group. An extreme case is the vanilla
diffusion model, where all pixels are generated simultaneously using a large number of sampling
steps.
Proposition 3.2. GDM generalizes cascaded diffusion models without low-pass filtering.

CDMs learn the generative process in low-to-high resolution strategy where low-resolution data
are subsampling of high-resolution data. Here, we assume that no low-pass filtering is used before
subsampling. Since each group of pixels is generated sequentially in CDMs, this exact behavior can
be also modeled by our method.

The advantage of GDM over AR models and CDMs is that our method is not restricted to their
grouping strategy and order of generation. Therefore, we can explore alternative choices of group-
ing strategies rather than per-element generation (AR) and progressive scale generation (CDM) to
maximize sample quality. Due to the computational complexity, we explore only CDMs.

3.3 GROUP-WISE INTERPRETABLE LATENT SPACE

Since each latent group contributes to only a certain phase of the generative process, the role of each
group is explicitly predetermined by setting Sj , tstartj , and tendj .

Proposition 3.3. Let xθ∗(xt, t) be the optimal denoiser. For j with tendj < t, ∂
∂(xt)i

xθ∗(xt, t) = 0

for all i ∈ Sj .

Proof. Let P1 = {(xt)i}i∈Sj and P2 = {(xt)i}i̸∈Sj . Based on the definition of A(t) in Eq. (10),
P1 is independently sampled noise as tendj < t, so xθ∗(xt, t) = E[x|xt] = E[x|P1,P2] =

E[x|P2]. Therefore, ∂
∂(xt)i

xθ∗(xt, t) = 0 if (xt)i ∈ P1.

Proposition (3.3) implies that during sampling, the optimal denoiser ignores the elements that have
not started to be generated yet. The fact that a latent group only contributes certain elements of data
provides an interpretable meaning to each group. For instance, varying each latent group only affects
a specific region of the generated images, as shown in Fig. 1 (c).
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3.4 EXTENSION TO FREQUENCY DOMAIN

Our generative process can be extended to the frequency domain, where the components of each
frequency band are sequentially generated. This is enabled by another generalization proposed in
Lee et al. (2022), the choice of coordinate systems where diffusion is performed. Using this, Eq. (6)
is further generalized to

x̄t(x̄, z̄) = A(t)x̄+ (I−A(t))z̄, (11)

where x̄ = UTx and z̄ = UTz for an orthogonal matrix U. Depending on the choice of basis U,
GDM can be extended to the frequency domain, which we hereafter denote as GDM-F (F means
frequency).
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Figure 2: Visualization of generative pro-
cesses of previous diffusion model with
scalar noise schedule and GDM-F.

While the domain is changed, the training loss and
generative ODE remain the same as GDM. How-
ever, we find that sample quality degrades severely
if the input and output of a model are from the fre-
quency domain. This is expected since convolutional
networks are not intended for such inputs and out-
puts. We instead parameterize our network such that
its inputs and outputs are in pixel space and the fre-
quency transformation is performed outside the net-
work. See Appendix A.1 for more details. We set
tstartj and tendj such that images are generated se-
quentially from low frequencies to high frequencies.
See Fig. 2 for visualization of generative processes. In contrast to a vanilla diffusion model where
some details like eyes and mouth are visible in the earlier phase, GDM-F generates an image in a
strictly hierarchical manner from low to high frequency.

By extending our method to the frequency domain, we can now divide an image into k frequency
bands and assign each latent group to each band. Therefore, we obtain representation organized into
k-level hierarchy from low frequency to high frequency, where each group corresponds to a certain
level of abstraction.

4 EXPERIMENTS

4.1 DESIGN CHOICES FOR MAXIMIZING SAMPLE QUALITY

Bottom→Top Right→Left CDM CDM-inv

12.63 13.14 14.03 13.70

Table 1: FID10K of each grouping strategy mea-
sured in cifar-10 dataset. We use Euler’s solver
with 128 sampling steps and k = 2 for all strate-
gies.

Grouping strategy As a generalization of
AR models and CDMs, our GDM opens
up other choices for grouping strategies.
Tab. 1 compares generative performances of the
following grouping strategies: Bottom→Top,
Right→Left, CDM and CDM-inv. CDM de-
notes the grouping strategy of the cascaded
diffusion models. CDM-inv follows the same
grouping strategy but in the inverse order. The
best Frechet Inception Distance (FID, Heusel et al. (2017)) is achieved when using Bottom→Top
grouping strategy.

Order of generation We further investigate the effect of the order of generation under the same
Block-wise grouping strategy. As shown in Fig. 3, FID largely varies depending on the order in
which each block is generated.

We note that the combinations of grouping strategy and order of generation considered here merely
represent a fraction of numerous possible options, so it could not be claimed that a particular setting
is optimal. Nonetheless, these results demonstrate that the way data is partitioned and the sequence
in which it is generated – a technique commonly employed when generating high-dimensional data
– largely affect generative performance.
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Best (FID=28.53)

Worst (FID=32.53)

(a) FID of each generation order (b) The best and the worst orders

Figure 3: (a) FID 5K (averaged over three runs) of 100 random orders of generation measured in
cifar-10 dataset. Error bars denote standard deviation. Block-wise grouping with k = 9 is used. (b)
Generative processes of the best and the worst orderings are displayed. We use the identical model
for all orders of generation.

(a) Variance (b) Reconstruction

Ground Truth

[0, 30] [0, 100] [0, 500] [0, 65536]

0.045% 0.15% 0.76%

Frequency band

% of latent fixed

Figure 4: (a) Variance of images generated by fixing latent variables in a specific band, and (b)
reconstruction results using a subset of latent variables. The indices are sorted in ascending order
starting from the lowest frequency band.

4.2 FINDING SEMANTIC BAND FOR GDM-F

GDM-F allows us to obtain a representation where each latent group corresponds to specific fre-
quency bands. In order to endow with a useful hierarchy, we need to figure out which frequency
band contains abstract (or semantic) information of data. In Fig. 4 (a), we fix the low-frequency
components of the latent variables (the rest components are randomly sampled) and measure the
perceptual variance of generated images E[||ϕ(x) − E[ϕ(x)]||2], where ϕ(·) is VGG-19 feature ex-
tractor. As we increase the number of the fixed components, generated samples become semantically
similar to each other. We find that fixing roughly 400 to 700 components (indicated by a red ellipse)
among 4096 is sufficient to synthesize semantically consistent images.

In Fig. 4 (b), we encode real images and reconstruct them using a subset of the encoded latent
variables. We can see that the latent variables in [0, 500] band, which accounts for only 0.76% of
the total number of elements, suffice to faithfully reconstruct the ground truth images.

4.3 THE ROLE OF EACH LATENT GROUP OF GDM-F

Based on the above observations, it is reasonable to divide latent variables into at least two groups
to obtain a useful hierarchy, one for semantics and another for details. Here, we further divide la-
tent variables into more than two groups and see if it allows for more fine-grained controllability.
Specifically, we divide a latent vector into 4 groups (i.e., k = 4) in the frequency domain. For the
dataset of 256 × 256 resolution, we set S1 = {0, ..., 29}, S2 = {30, ..., 99}, S3 = {100, ..., 499},
and S4 = {500, ..., 256× 256− 1}.
Fig. 5 shows the images synthesized by interpolating the elements of latent vectors corresponding
to each frequency band on AFHQ 256 × 256 and CelebA-HQ 256 × 256 datasets. When interpo-
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Figure 5: Generated images by interpolating the latent group for each frequency band while others
fixed.

lating the coarsest frequency band [0, 29], high-level attributes such as gender, azimuth, or animal
class are transformed smoothly. Conversely, interpolating the elements of [100, 499] band results in
variation in fine attributes like facial expression. We can see that the elements in [500, 65536] do
not change the content of images in a meaningful way, indicating that these elements control only
minor attributes in images.

4.4 FACTORS OF VARIATION

Currently, most of the state-of-the-art disentanglement methods are based on VAEs(Kim & Mnih,
2018; Higgins et al., 2016; Chen et al., 2018). Recent studies focus on minimizing Total Corre-
lation (TC) while maximizing reconstruction quality to force the marginal distribution of features
independent. However, as TC is generally intractable, it needs to be approximated via minibatch
statistics (Chen et al., 2018) or mini-max optimization (Kim & Mnih, 2018; Yeats et al., 2022).

It is noteworthy that since p(z̄) = N (0, I), the inference distribution (the marginal of features
obtained by solving Eq. 5) of GDM-F has zero TC in the optima.

Remark 4.1. In optima of Eq. (4), Eq. (5) maps between p(x) and p(z). See Theorem 3.3 in Liu et al.
(2022) for the proof. As a consequence, the inference distribution has zero Total Correlation in the
optima if we define p(z) such that p(z) =

∏
i p(zi). This also holds for more general interpolations

including the ones used in GDM.

Moreover, unlike standard diffusion models, only a few elements in the semantic band of z̄ capture
the most information of data as we have seen in Sec. 4.2. We find that such a statistically independent
semantic feature effectively captures high-level attributes like azimuth, hair length, gender, etc. at
each element. Fig. 6 shows that manipulating a single element in the latent vector of the lowest
frequency band results in a change in a single high-level attribute of images.
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Figure 6: Synthesis results of GDM-F, traversing a single latent variable corresponding to the lowest
frequency band over [−3, 3] range. The numbers in parentheses denote the indices of the element
traversed.
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(a) CelebA-HQ (b) CelebA-HQ +AFHQ
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Reference

[0, 29] [100, 499] [0, 29] [100, 499] [0, 29]

Figure 7: Synthesis results of GDM-F by mixing the latent code of two images. We replace a group
of the latent code from Original with that of Reference in each column. The images can be either
from (a) the same dataset or (b) different datasets. The parentheses indicate the frequency bands
replaced.

4.5 IMAGE EDITING

Since the inference of GDM-F is invertible, our method can be applied to editing real images. This
leads us to applications such as image mixing, attribute manipulation, and image variation.

Image mixing Fig.7 demonstrates mixing the style of two images by swapping their latent code
of specific frequency bands. In (a), swapping the coarse latent group [0, 29] transfers high-level
attributes, while swapping the fine latent group [100, 499] alters facial expressions. (b) illustrates
mixing images from different datasets similarly to DDIB(Su et al., 2022). We train our model on
both datasets, encode images from each, and swap latent codes in the [0, 29] range. Unlike DDIB,
our organized latent variables allow us to selectively transfer the attributes of a certain level of
abstraction, whereas DDIB’s unstructured latent variables lack this capability.

Attribute manipulation Fig. 8 illustrates that we can control a single attribute of input images by
manipulating one element of the obtained representation. Specifically, we first obtain a feature of an
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Input Expression Azimuth Gender Hair Skin color

Figure 8: Real image editing results of GDM-F. We manipulate only a single element of the coarsest
latent group.

[0
,5
00
]

[0
,1
00
]

Figure 9: Image variation results. The numbers in parentheses denote the indices of the latent ele-
ments fixed, i.e., shared within the generated images at the same rows.

image by solving the forward ODE, edit one element of the feature, and reconstruct the image by
solving the reverse ODE.

Image variation Moreover, thanks to a hierarchical structure of latent variables, we can generate
diverse variations of an input image, as shown in Fig. 9. The hierarchical representation of GDM
allows us to control the degree of variation by selecting which latent groups are fixed. When variables
within the range of [0, 100] are fixed, there are considerable differences in the overall appearances.
However, fixing variables within the range of [0, 500] results in only slight variations in the finer
details.

5 LIMITATIONS AND CONCLUSION

Our proposed diffusion model with group-wise noising/denoising scheme connects diffusion with
autoregressive and cascaded models, revealing new design choices of the models such as grouping
strategy and order of generation. GDM can be extended to the frequency domain, leading to applica-
tions in hierarchical representation learning, identifying independent factors of variation, and image
editing.

One limitation of GDM is that as the number of groups k increases, sampling efficiency declines.
In an extreme case where k equals data dimension d, it requires at least d sampling steps as in
autoregressive models. This shows the effectiveness of diffusion models over autoregressive models
on data types like images, where the information is highly redundant, thus some elements can be
easily generated in parallel.
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Pixel space Frequency space

Figure 10: Synthesis results of GDM-F when training and sampling are done in pixel space (left)
and frequency domain (right).

A APPENDIX

A.1 TRAINING AND SAMPLING OF GDM-F

The training objective of GDM-F is the same as GDM but defined in the frequency domain:

min
θ

E[||(x̄− z̄)− ūθ(xt(x̄, z̄),A(t))||22] (12)

Similarly, the generative ODE is

dz̄t = A′(t)ūθ(z̄t, t)dt. (13)

The final samples are obtained by z0 := Uz̄0. However, commonly used neural network archi-
tectures like convolutional networks are not designed to handle the frequency domain inputs and
outputs. Therefore, we perform training and sampling in the pixel space for better sample quality.
With uθ(xt(x, z) = Uūθ(xt(x̄, z̄),A(t)), we have

min
θ

E[||(x̄− z̄)− ūθ(xt(x̄, z̄),A(t))||22] (14)

=E[||(UT (x− z − uθ(xt(x, z),A(t)))||22] (15)

=E[||(x− z)− uθ(xt(x, z),A(t))||22]. (16)

We integrate the following generative ODE backward:

dzt = UA′(t)UTuθ(zt, t)dt (17)

As shown in Fig. 10, better sample quality is indeed achieved when training and sampling are done
in pixel space rather than in the frequency domain.

A.2 THE NUMBER OF GROUPS

Fig. 11 shows the FID curves with respect to the number of score function evaluations. We use the
right→ left noise schedule, varying the number of groups k from 1 to 29. We conclude that as the
number of groups grows, we can obtain more controllability as shown in Sec. 4.3, but at the cost of
the sampling efficiency.

A.3 OPTIMAL TIME INTERVAL FOR SYNTHESIS QUALITY

For latent groups S1 = {0, ..., 29}, S2 = {30, ..., 99}, S3 = {100, ..., 499}, and S4 = {500, ..., r2−
1}, we have to assign time intervals to each group for training and sampling, respectively. As shown

12
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Figure 11: Effect of the number of groups k in FID score. FID is assessed using 5000 samples on
the cifar10 dataset.

Table 2: FID10K results for each time interval on FFHQ 64× 64 dataset. Note that the time intervals
need to be chosen separately for training and generation time. For instance, the top left cells indicate
the FID result when tend4 , tend3 , and tend2 are 0.1, 0.2, 0.5 during training and 0.1, 0.8, 0.9 during
sampling, respectively.

Training / Generation 0.1, 0.8, 0.9 0.3, 0.8, 0.9 0.7, 0.8, 0.9 0.1, 0.2, 0.9 0.1, 0.5, 0.9 0.1, 0.2, 0.3 0.1, 0.2, 0.5

0.1, 0.2, 0.5 25.39 29.47 34.77 25.58 24.97 25.98 25.74
0.3, 0.4, 0.7 21.38 29.39 34.54 21.16 20.63 21.42 21.23
0.5, 0.6, 0.9 21.48 31.68 36.16 20.74 20.40 20.66 20.62
0.6, 0.8, 0.9 19.69 27.75 32.83 17.60 17.76 17.41 17.55
0.7, 0.8, 0.9 22.59 34.21 39.61 20.72 20.83 20.31 20.42

in Tab. 2, the best result is obtained when the high-frequencies are emphasized in training time
and the low frequencies are emphasized in generation time. This is an interesting observation that
contrasts with previous work, where the best results are obtained when coarse aspects are given
more weight during training (Ho et al., 2020; Choi et al., 2022), and fine details are emphasized in
sampling time (Dhariwal & Nichol, 2021).

A.4 FREQUENCY BASES

So far, we have not specified the choice of the orthogonal matrix U for GDM-F. Fig. 12 shows ex-
amples of Gaussian blur basis (Lee et al., 2022) used in our experiments. Specifically, Gaussian blur
basis Ũ satisfies W = ŨDŨT where W is a Gaussian blurring matrix. Note that other frequency
bases like discrete cosine basis used in Hoogeboom & Salimans (2022); Rissanen et al. (2022) are
equally applicable.

B IMPLEMENTATION DETAILS

Throughout our experiments, we use DDPM++ architecture (Song et al., 2020) from the code of
Karras et al. (2022)1. We use their script for computing FID, and most of the training and model
configurations are also adapted from Karras et al. (2022). The random seed is fixed to 0 in all ex-
periments except those that require multiple runs. We linearly anneal the learning rate as in previous
work (Karras et al., 2022; Song et al., 2020).
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Blur DC

Figure 12: Examples of blur and discrete cosine (DC) bases.

To be generatedFirst pixel group Second pixel group

Figure 13: Generation process of the cascaded diffusion models with 2× scale factor.

C RELATIONSHIP WITH OTHER MODELS

C.1 GDM GENERALIZES AUTOREGRESSIVE MODEL

For x ∈ Rd, AR models define a generative model pθ(x) =
∏d

i=1 pθ(xi|x<i). While a mixture
of logistic distributions is often used to model pθ(xi|x<i), we define it as Gaussian distribution
pθ(xi|x<i) = N (fθ(x<i), σ

2I), where fθ(·) is a neural network, and σ is a constant. AR models
are trained by maximizing

max
θ

ExEi∼U{1,d}[− log pθ(xi|x<i)] (18)

or equivalently, minimizing

min
θ

ExEi∼U{1,d}[
1

σ2
||xi − fθ(x<i)||2]. (19)

With a slight abuse of notation, for i ∈ {1, ..., d}, we denote i-th element of x as xi. We will show
that we can construct an instance of GDM such that the training objective and sampling procedure
are equivalent to the AR model defined above.

Consider GDM where the number of latent groups k is equal to d, and the number of steps Nj for
each group j is equal to 1. Since Nj = 1, we do not need to sample t from the continuous time
interval during training. Instead, we uniformly sample an integer l from {1, ..., d} and set t = l

d . Let
us assign the time intervals uniformly to each group, i.e., tstartj = (j − 1)/d, and tendj = j/d. Using
the definition of A(t) in Eq.(10), we have

A(
l

d
)jj =

{
0, (j ≤ l)

1, (j > l)
(20)

A′(
l

d
)jj =

{
−d, (j = l)

0, (j ̸= l)
(21)

. Since (∂xt

∂t )j = 0 for j ̸= l, Eq. (7) becomes

min
θ

Ex,zEl∼U{1,d}[||(zl − xl)d− gθ(xt, l)||22], (22)

1https://github.com/NVlabs/edm
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with a scalar-valued function gθ(xt, l) ≜ vθ(xt,A(t))l.

As xt = A(t)x + (1 − A(t))z, (xt)≤l = z≤l, and (xt)>l = x>l. Define xθ(xt, l) such that
gθ(xt, l) = ((xt)l − xθ(xt, l))d. Then we have

min
θ

Ex,zEl∼U{1,d}[||(zl − xl)d− ((xt)l − xθ(xt, l))d||22] (23)

= Ex,zEl∼U{1,d}[||(zl − xl)d− (zl − xθ(xt, l))d||22] (24)

= Ex,zEl∼U{1,d}[d
2||xl − xθ(xt, l)||22] (25)

= ExEl∼U{1,d}[d
2||xl − xθ(x>l, l)||22] (26)

The last equality holds because (xt)≤l = z≤l is an independent noise and therefore not needed to
predict xl, and (xt)>l = x>l. We can see that Eq. (26) is equivalent to Eq. (19).

Since the l-th element of vθ(xt,A(t)) is gθ(xt, l) = ((xt)l−xθ(x>l, l))d and 0 otherwise and the
step size is 1/d, Eq. (9) leads to the following sampling procedure:

• Initialize x ∈ Rd with noise from N (0, I).
• For l in d, ..., 1,
• Update xl ← xθ(x>l, l)

Note that the initialization does not affect the final samples as xθ(x>l, l) is a function of previously
generated elements x>l. At a high level, this instantiation of GDM is trained to predict one element
of data from given elements at each step. In sampling time, it generates data from one element at
each time using one sampling step, as in AR models. So far, we have not specified how each i is
assigned to each j, which determines the order of generation. This formulation encompasses all
possible orders that need to be specified by practitioners as in AR models.

C.2 GDM GENERALIZES CASCADED DIFFUSION MODELS

Cascaded diffusion models generate high-dimensional data more effectively by splitting them into
multiple groups and synthesizing them in a step-by-step manner. Here, we only consider CDMs with
2× scale factor and two training stages for simplicity. We also assume that no low-pass filtering is
used before subsampling in the first training stage of CDMs.

Fig. 13 depicts the generation process of CDMs on image data. In the first stage, CDMs generate
the first pixel group indicated by red color. In the second stage, the generated images are upsampled,
and the second group of pixels is generated without changing the value of the first pixel group. This
is a consequence of not using low-pass filtering during the first training stage. Since two groups of
pixels are generated sequentially, this exact behavior can be also modeled by our method (in this
case, k = 2).

It is noteworthy that the results of GDM with CDM grouping strategy cannot be directly compared
to standard CDMs in an apple-to-apple manner because of several differences in implementation.
First, low-pass filtering is in fact applied before downsampling images in many cases.2 Moreover,
ad-hoc data augmentation techniques are often used in CDMs to reduce the train/test mismatch.
Finally, CDMs have separate models for each stage while we only use a single model.

D RELATED WORK

Order-agnostic autoregressive models Once GDM is trained on multiple orderings and grouping
strategies, it can generate data in any given ordering and grouping strategy it is trained on. Since
GDM is a generalization of AR models, it has a connection between order-agnostic autoregressive
models (Germain et al., 2015; Uria et al., 2014). GDM also shares a similarity with Autoregressive
Diffusion Models (ARDM) Hoogeboom et al. (2021), especially when k = d and Nj > 1. The
difference is that 1) GDM operates on continuous data while ARDM handles discrete data using
discrete diffusion (Austin et al., 2021), and 2) GDM is not necessarily restricted to generating one
element at once in contrast to ARDM.

2This is the default behavior of many libraries including torchvision.
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Image editing There are several studies that utilize diffusion models for image editing. Kwon et al.
(2022) and Tumanyan et al. (2023) manipulate the intermediate feature maps of the U-Net for image
editing. While they try to discover the semantically meaningful directions in the feature space of the
pre-trained diffusion models, GDM allows us to assign an interpretable meaning to each group of
the initial noise in advance by specifying the group-wise noise schedule.
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