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Abstract

The growing scale of language models entails growing resource requirements and
envrionmental impacts. For these systems to have a positive impact on society, it is
necessary to thoughtfully weigh the societal and environmental benefits and costs,
within the context of a complex model life cycle and many potential measures of
impact. In this position paper, we argue the need for holistic life cycle assessment
of language models across the development and deployment pipeline to properly
account for required resources and downstream impact.

1 Introduction

Researchers motivated by empirical scaling laws [62, 39, 31] and beholden to Sutton’s “bitter lesson"
of AI [71] have achieved breakthroughs in science and technology by leveraging increases in scale
of computation across data, model architecture, and hardware platforms [56, 10, 32, 68, 14, 57].
The associated computation has commensurate resource requirements, with multiple projections
estimating that data centers will require more than 10% of the total U.S. energy demand by 2030
[26, 7, 67]. Modern models are so large that an individual training run can require 5 million GPU-
hours of computation and emit over 1,300 tons of CO2 equivalent emissions (CO2e),1 2 with even
more resources required for experimentation and demand during deployment [52].

The growing complexity of language model development yields significant environmental impact
and entails relevant implications for energy security, natural resources, public health, and utility
infrastructure [29, 43, 37]. However, the methodologies we use to evaluate machine learning efficiency
and its socio-economic impacts have not evolved in kind.

Fortunately, techniques for analyzing the resource requirements and downstream impacts over the
lifetime of manufactured products are well established in the field of industrial ecology; namely, with
the method of life cycle assessment (ISO 14040, ISO 14044 [33, 34]). Life cycle assessment (LCA)
quantifies the impact of a product by decomposing its life cycle across the stages of: manufacture, use,
and disposal; and across types of resources (e.g. energy, carbon emissions, human health impacts).

Life cycle assessment has been used in semiconductor manufacturing and computing hardware
research to quantify the embodied and operational carbon cost of fabrication, recycling, and use
of physical hardware[27, 79, 66, 36, 28]. However, systematic methods for application of LCA to
machine learning models is nascent. In this position paper, we enunciate the need for life cycle
assessment to evaluate the efficiency and environmental impact of language models through
development and deployment.

1https://github.com/meta-llama/llama-models/blob/main/models/llama4/MODEL_CARD.md
2Equivalent to the annual CO2 emissions sequestered by 1,304 acres of forests. Source: USA EPA greehouse

gas equivalencies calculator

Socially Responsible Language Modelling Research (SoLaR) Workshop at NeurIPS 2025.

https://github.com/meta-llama/llama-models/blob/main/models/llama4/ MODEL_CARD.md
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Figure 1: ML model development and deployment life cycles have grown in complexity with increasing
numbers of stages. The pre- and post-training pipelines of modern LLMs (e.g. OLMo with the Tulu post training
recipe OLMo et al. [55], Lambert et al. [41]) have significantly more stages than classical train-test settings; and
a larger variety of methods that can be used for conducting inference [78].

2 Life Cycle Assessment for Language Models
Machine learning model development and deployment pipelines have greatly increased in complexity
from classical notions of train and test evaluations. As illustrated in Figure 1, state-of-the-art large
language models require multiple stages of pre- and post-training, rely on an assortment of inference-
time algorithms, and are deployed across variable software platforms and hardware architectures.
Each stage of the growing model pipeline introduces further complexity to decision-making – as well
as additional challenges and demands for proper accounting of models’ resource consumption and
environmental impact.

Previous efforts to account for resource usage and environmental impacts of machine learning models
have mainly focused on the singular energy or water use of large-scale model training [69, 59], or
the marginal costs of single-example or single-batch inference [69, 48]. Recent investigations have
considered the total lifetime energy costs of models during both training and inference [23, 46, 52, 79];
or the costs embodied in their computing hardware [44, 45]. However, there exists variability and
uncertainty in the models of interest, training workloads, inference use cases, and deployment settings
across these studies; which makes comparisons across works challenging and prone to obsolescence.

Life cycle assessment (LCA; ISO 14040:2006 [33], ISO 14044:2006 [34], Curran [16]) provides a
methodological basis for determining the environmental and social impacts of a product by accounting
for the required resources and environmental impacts of a manufactured product or service through
resource extraction, material processing, manufacture, use, and disposal (i.e. from cradle to grave).
At the core of LCA is the concept of a functional unit which defines a quantitative reference for the
value provided by a process, which can be compared across potential systems. Functional units for
machine learning models can be defined as appropriate to the focus of study. In turn, a system can be
defined that produces the functional unit of interest in relation to resources and emissions.

In this section, we demonstrate how life cycle assessment can be used enable more holistic accounting
of machine learning models’ total resource consumption and environmental impacts for producing a
functional unit. We examine the four stages of LCA as defined in ISO standards: Goal Definition and
Scoping, Life Cycle Inventory, Life Cycle Impact Assessment, and Interpretation.

2.1 Goal Definition and Scoping

The initial stage of life cycle assessment consists of goal definition and scoping in which functional
units are defined and system boundaries drawn; which determines the processes which will be
examined and accounted for when calculating the total cost of production for the functional unit.

Life cycle assessment can be used by institutional organizations, machine learning researchers, policy
makers, and downstream users to analyze the components of the machine learning model life cycle.
Accordingly, the functional unit and the process of interest may vary. For example, institutional
developers of large foundation models may be interested in the environmental impact and cost
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associated with the development of families of models, and the functional unit could be defined as a
“set of trained foundation models for a language task.” Downstream users may be concerned with the
costs associated with using machine learning models, where a functional unit can be defined as a
“processed batch of queries to a machine learning model.”

Although prior work has performed direct measures of the operational costs of conducting model
training and inference, reported values are not comparable when they are not grounded in standardized
functional units. As the functional unit is defined according to its use and performance, it is necessary
to ground its specification in the setting in which a model will be used— such as by specifying latency
constraints, or required task performance on a benchmark [15, 63, 49, 75, 77, 30]. LCA analyses
without well-specified reference flows and functional units may yield misleading conclusions if the
analysis fails to account for the operational or embodied costs of model training, or attempts to
compare systems with respect to different functional units.

Furthermore, LCA provides two primary approaches for analysis: attributional and consequential;
which provide insight into the total existing environmental impacts of an activity and how environ-
mental impacts will change because of decisions made, respectively [53]. Once the scope of an LCA
study is determined with the selection of a functional unit and approach, system boundaries can be
identified in order to exclude certain stages that are identical across different product systems, and
LCA models for the product life cycle can be developed.

Throughout the remainder of this section, we consider an example LCA with a functional unit
corresponding to a batch of processed examples by a pretrained large language model.

2.2 Life Cycle Inventory

The life cycle inventory stage describes the environmental flows associated with the functional unit
[53]. Examples of inventoried flows include electricity use, consumed water, material flows, and other
measures. To estimate the environmental outputs of producing the selected functional unit, reference
flow diagrams are used to model product systems defined over the machine learning model life cycle
stages of: material extraction, manufacture, use and maintenance, and disposal. Input resources and
output emissions and waste byproducts are associated with each stage. For example, the resources
required by client-side resources may be discounted in an LCA comparing different ML models if it
can be reasonably assumed that they would be constant regardless of the model.

2.2.1 Reference Flows for Modern Language Model Life Cycles.

In addition to analyzing the manufacture and disposal of the underlying compute hardware, an LCA
analysis of a language model’s life cycle requires aggregation and inventory of resource utilization
across stages of model development. Historically, the process of developing and deploying models
followed a simple process of training and validation on small sets of in-domain i.i.d. datasets.

By contrast, our example functional unit corresponding to modern LLM training and serving requires
aggregation of resource flows across more complex training and inference stages; Seen in Figure 1.
Modern ML researchers develop models using pipelines with complex experimentation processes and
multiple stages of training, such as: automated machine learning and experimentation, pretraining and
post-training, continuous retraining and updating of models during deployment [73, 65]. Likewise,
the variety of methods for model inference has grown, as new paradigms have emerged which
shift computation from training to inference to attain higher performance, e.g. via chain-of-thought
reasoning, self-refinement, tool use, retrieval-augmented generation, and in-context learning [78].

The life cycle inventory accounts and attributes resource consumption across constituent stages of
model development and deployment. For our example, computing the cost to produce the functional
unit CFU requires consideration of not only the marginal cost of inference computation but also the
amortized costs of upstream training and hardware manufacturing associated with the inference:

CFU = CPer Inference +
Hardware Utilization Time × CEmbodied

Hardware Lifespan
+

CExperimentation + CTraining

Total Lifetime Inferences
(1)

Systematic quantification of the resource use in each constituent stage informs comparisons of the
relative magnitudes across components of the full model lifecycle. For example, in Figure 2b, we see
that the total per-inference cost is extremely sensitive to the total “lifespan” of the model until it is
used at least tens of billions of times.
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(a) Aggregate costs: Total environmental impact
of models incorporates factors from all stages of
model life cycle.3Utilizing efficient serving opti-
mizations increases the number of functional units
produced under a fixed resource budget.
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Figure 2: The CO2e emissions of OLMo2 7b training and inference [52, 55]. Increasing inference
efficiency via offline batching reduces the unit cost, as does amortization of embodied costs over
more model uses. Decomposition of the resource use across life cycle stages enables identification of
the significant issues (i.e. the life cycle stage which maximally contributes to total costs).

2.2.2 Accounting for Resource Inputs and Output Emissions.

Estimates for the quantity of input raw materials and output by-products and waste consumed at each
stage of the model life cycle are needed to quantify the total environmental impact of the machine
learning system. With increasing scale of compute resources required for state-of-the-art machine
learning models, the energy and resource intensity has increased across all stages of the model life
cycle, across hardware fabrication and disposal, and model development and deployment.

The same LCA methodologies can be applied across resource types to account for the costs of a
variety of resources and outputs, including raw materials and toxic waste (e.g. PFAS, CFCs) incurred
during hardware fabrication, transportation, and disposal [21, 22, 42]. Likewise, LCA estimations can
account for the varied operational environmental flows of energy use, water use, and carbon emissions
arising from data centers during model experimentation, training, and inference [79, 52, 29].

2.2.3 Comparison of Design Choices and Product Systems

In addition to providing baselines for the resources required by a machine learning model, LCA
can be used to evaluate and provide comparisons across multiple systems that produce the same
functional unit, and the relative impact of efficiency improvements to stages of the model life cycle.

For modern LLM serving, there exists a variety of design choices that affect the total efficiency and
resource consumption, including: parallelization strategies, machine learning software frameworks,
cluster scheduling algorithms, and choices in the underlying hardware accelerators. Life cycle
assessment enables comparisons of the cost per functional unit when varying such configurations
in the context of the full model life time. For instance, shown in Figure 2b, simply increasing the
efficiency of LLM serving with increased batching and hardware utilization enables more requests to
be served under fixed carbon emissions budgets.

Furthermore, life cycle assessment enables the study of efficiency optimizations that affect multiple
stages of the model life cycle. The advent of multi-stage training and inference-time computing
yield complex interactions across stages of model development and use which allow for tradeoff
of resources between constituent stages. For instance, “reasoning” models (such as DeepSeek-R1,
OpenAI GPT-4o, and Gemini) can utilize substantially more resources during inference to attain
higher performance on difficult tasks that would otherwise require additional domain-specific training.
Alternatively, continual or domain-specific pretraining may extend a model’s utility, delaying the
need for full model retraining and/or further offsetting the initial training cost. LCA can enable
analysis of the trade-offs of these methods, relative efficiencies, and resource-optimal settings.

3Following Morrison et al. [52], we ground our inference efficiency estimates in ShareGPT data, and we use
the same assumptions as Luccioni et al. [46] to estimate embodied emissions.
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2.3 Life Cycle Impact Assessment

Using the quantified costs determined through the life cycle inventory, the total environmental impact
of ML models can be determined by translating the inventoried resources into associated impact
categories, such as the contribution to global warming from increased emissions; ozone depletion
from CFCs; or human health impacts resulting from water depletion, noise, or air quality pollution.

Although LLM developers have begun to report on energy requirements and carbon dioxide emission
equivalents (CO2e), the downstream environmental impact remains largely unreported [20, 55].
Fortunately, life cycle impact assessment provides standard conversions and characterization factors
for converting inventoried resources into their associated net environmental impact, such as the
U.S. Environmental Protection Agency’s Tool for the Reduction and Assessment of Chemical and
other environmental Impacts (TRACI) [9, 8]. Identifying and quantifying these broader social and
environmental impacts is an active area of research in relevant fields of policy, public health, and the
study of science, technology and society (STS).

2.4 Interpretation

For researchers, practitioners, and policy makers to utilize the results of an LCA, it is necessary to
contextualize and via interpretation the results of the investigation, by: (1) identifying significant
issues with the inventory and assessment; (2) evaluating the completeness, sensitivity, and consistency
of data; and (3) providing conclusions and recommendations based on the impact assessment.

Identification of the significant issues (i.e. the components of the life cycle that have the greatest
impact on the total result) enables location of resource bottlenecks in machine learning models,
whether it be the costs associated with hardware fabrication, the upfront costs associated with model
training, or the marginal costs of individual inferences. Once the inventory and impact assessment
have been validated, the LCA’s results can be used to elect for design choices which reduce the
lifetime environmental impact of models — such as to identify which model design choices yield the
most efficient system for providing the specified functional unit (e.g., watts per batched inference).

3 Enabling Life Cycle Assessment for Machine Learning

We must provide the necessary specification in our evaluation, transparency in our reporting to meet
the requirements of the LCA analysis standards.

User-Centric Evaluations and Metrics Variability in the evaluation settings used to characterize
efficiency and performance in ML models hinders fair comparison between studies and models.
Moreover, while standard efficiency metrics may be relatively measurable and reproducible (e.g.
model parameter count, FLOPs), they often fail to map directly to practical user-side requirements
such as latency constraints, financial cost, or energy budget [17, 24, 25]. For functional units to
correspond to user needs, efficiency benchmarks should not only measure the hardware utilization or
speed but be grounded in the performance measured demanded by the use case.

Transparency in Reporting from Model Developers and Users. As observed in our example in
Figure 2b, the cost of a functional unit of inference is directly dependent on: the serving configurations,
hardware selection, and ML system design decisions. Likewise, cost of inference is dependent on
the total number of inferences served, a necessary datapoint needed for appropriate attribution of
resulting implications to the amortizable training and embodied costs.

While it is increasingly common practice for developers to release information on total energy use and
estimated carbon emission equivalents for model pretraining, such measurements are often limited to
the final training run and fail to account for development costs, the operational impacts of hardware,
or the cost and frequency of inference. For downstream users and regulators to accurately assess the
cost of ML models, it is necessary for hardware manufacturers and large-scale model developers to
release information on the embodied resources and emissions associated with hardware fabrication;
as well as the scale, frequency, and settings for model inference.

Fortunately, there is precedent for transparency by large-scale industry institutions with the advent of
the Foundation Model Transparency Index and model cards [11, 51]. We advocate for a voluntary
inclusion of these crucial ingredients for model LCA in model cards whenever possible. Notably,
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as full inference details are typically indeterminable before model deployment, we call for users
deploying models to periodically release updated information about their models’ downstream usage.

4 Implications and Benefits of LCA for LMs and ML

LCA Empowers Decision Making and Effective Resource Allocation. With the growing scale
of model training and frequency of inference, further growth in machine learning is becoming
constrained by fundamental limitations in the availability of computing hardware and the energy nec-
essary to power them. Life cycle assessment provides insight into the relative resource consumption
and intensity of model training and deployment. By identifying significant issues (see §2.4), LCA
can draw attention to research questions and directions addressing elements of the model life cycle
that present the largest bottlenecks to efficiency and opportunities for improvement.

Additionally, LCA enables industry stakeholders to provision and allocate resources so that machine
learning systems meet target efficiency and environmental goals — not just in terms of the marginal
cost of training or inference, but contextualized within the whole machine learning life cycle. Under-
standing the relative scales of demand for different life cycle stages enables infrastructure developers
to project and accommodate the resources requirements of different workloads (e.g. adapting compute
and electrical infrastructure to handle synchronous training or online inference).

LCA Improves Accuracy and Completeness in Resource Estimation and Projections. While
the speed and computing requirements of machine learning research have grown with time, the
methods required to evaluate the efficiency and resource consumption of the work have not kept up.
It is necessary to develop a methodological foundation for grounded assessments of cost.

As shown in Figure 2b, LCA can be used to allocate resource usage to components, and to estimate
the relative importance of the constituent stages of hardware fabrication, model training and inference.
Additionally, by applying LCA across different types of resources, researchers can account for
machine learning’s environmental burden along with other key impacts commonly associated with
costs of computing such as raw material extraction [12], water usage[43], public health [29], and per-
or polyfluoroalkyl substances (PFAS) [42, 21].

Furthermore, LCA enables researchers to estimate future machine learning systems and provides
a tool to understand their potential environmental impact, longterm trends, and rebound effects
across a range of scenarios [47]. Evaluating hypothetical systems with differing assumptions enables
projection of the impact of: further scaling of ML systems [31, 62], automation of the development
process with autoML [73], or alternative hardware platforms such as in edge or mobile settings [61].

LCA Informs Environmental Impact Accounting for Policy Makers and the General Public.
As the use of AI has grown and energy, water, and other impacts have materialized in many commu-
nities, policy makers at federal and local levels are increasingly interested in assessing and mitigating
impacts. The energy, carbon, water, air pollutant, noise, and other impacts of AI data centers has
driven interest from policy makers and communities for solutions. Lawmakers have introduced bills
to evaluate the environmental impacts of AI and establish standardized reporting systems e.g. [3].
Yet the environmental impacts, and potential benefits, of AI extend beyond the direct impact of
computing and data centers, and also how AI and ML use affect applications in infrastructure, as well
as extend to broader societal systems [38]. Both attributional and consequential LCA provide useful
methods for policy makers and communities to estimate and interpret the broad contours of how AI
and ML affect the environment and society and set guidelines for improved outcomes.

Although there is no standardized method to conduct an LCA, transparently defining scope and
functional units can enable guidelines for voluntary or regulated impacts reporting from industry
stakeholders, and inform policy maker decisions. For example, the U.S. Inflation Reduction Act [1]
specifies the use of LCA and a model developed by Argonne National Laboratory as the method
required to estimate the life cycle greenhouse emissions of hydrogen production to determine
eligibility for federal incentives. As policymakers consider both incentives and regulations to
minimize the environmental impacts of AI and ML, LCA can enable model comparison and account
for both impact and performance. These incentives and regulations can also inform industry decision-
making regarding model development to account for resource requirements and external impact.

6



References
[1] Inflation reduction act of 2022. Public Law 117-167, 117th Congress, 2022.

[2] HotCarbon ’23: Proceedings of the 2nd Workshop on Sustainable Computer Systems, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400702426.

[3] Artificial intelligence environmental impacts act of 2024. S.3732, 118th Congress, 2024.

[4] Fourth Workshop on Efficient Natural Language and Speech Processing, Vancouver, Canada,
2024.

[5] Workshop on Efficient Systems for Foundation Models II, Vienna, Austria, 2024.

[6] First Workshop on Green Foundation Models, Milan, Italy, 2024.

[7] J. Aljbour, T. Wilson, and P. Patel. Powering intelligence: Analyzing artificial intelligence and
data center energy consumption. EPRI White Paper no. 3002028905, 2024.

[8] J. Bare. Traci 2.0: the tool for the reduction and assessment of chemical and other environmental
impacts 2.0. Clean Technologies and Environmental Policy, 13:687–696, 2011.

[9] J. C. Bare. Traci: The tool for the reduction and assessment of chemical and other environmental
impacts. Journal of industrial ecology, 6(3-4):49–78, 2002.

[10] M. Bobrowsky. Meta spending to soar on ai, massive data center. Wall Street Journal, 2025.

[11] R. Bommasani, K. Klyman, S. Longpre, S. Kapoor, N. Maslej, B. Xiong, D. Zhang, and P. Liang.
The foundation model transparency index. arXiv preprint arXiv:2310.12941, 2023.

[12] S. B. Boyd. Life-cycle assessment of semiconductors. Springer Science & Business Media,
2011.

[13] H. J. Byun, U. Gupta, and J.-S. Seo. Energy-/carbon-aware evaluation and optimization of 3d ic
architecture with digital compute-in-memory designs. IEEE Journal on Exploratory Solid-State
Computational Devices and Circuits, 2024.

[14] K. Cai and D. M. Sophia. Alphabet plans massive capex hike, reports cloud revenue growth
slowed. Reuters, 2025.

[15] J. Cui, Z. Li, L. Xing, and X. Liao. Safeguard-by-development: A privacy-enhanced devel-
opment paradigm for multi-agent collaboration systems. arXiv preprint arXiv:2505.04799,
2025.

[16] M. A. Curran. Life-cycle assessment: principles and practice. National Risk Management
Research Laboratory, Office of Research and Development, U.S. Environmental Protection
Agency, 2006.

[17] M. Dehghani, Y. Tay, A. Arnab, L. Beyer, and A. Vaswani. The efficiency misnomer. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=iulEMLYh1uR.

[18] M. Dehghani, Y. Tay, A. Arnab, L. Beyer, and A. Vaswani. The efficiency misnomer. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=iulEMLYh1uR.

[19] Y. Ding and T. Shi. Sustainable llm serving: Environmental implications, challenges, and
opportunities. In 2024 IEEE 15th International Green and Sustainable Computing Conference
(IGSC), pages 37–38. IEEE Computer Society, 2024.

[20] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

7

https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=iulEMLYh1uR


[21] M. Elgamal, D. Carmean, E. Ansari, O. Zed, R. Peri, S. Manne, U. Gupta, G.-Y. Wei, D. Brooks,
G. Hills, et al. Cordoba: Carbon-efficient optimization framework for computing systems. In
2025 IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 1289–1303. IEEE, 2025.

[22] M. Elgamal, A. Mahmoud, G.-Y. Wei, D. Brooks, and G. Hills. Modeling pfas in semiconductor
manufacturing to quantify trade-offs in energy efficiency and environmental impact of computing
systems. arXiv preprint arXiv:2505.06727, 2025.

[23] A. Faiz, S. Kaneda, R. Wang, R. Osi, P. Sharma, F. Chen, and L. Jiang. LLMCarbon: Modeling
the end-to-end Carbon Footprint of Large Language Models, Jan. 2024. URL http://arxiv.
org/abs/2309.14393. arXiv:2309.14393 [cs].

[24] J. Fernandez, J. Kahn, C. Na, Y. Bisk, and E. Strubell. The framework tax: Disparities between
inference efficiency in nlp research and deployment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages 1588–1600, 2023.

[25] J. Fernandez, C. Na, V. Tiwari, Y. Bisk, S. Luccioni, and E. Strubell. Energy considerations of
large language model inference and efficiency optimizations. In Submitted to Association for
Computational Linguistics Rolling Review, 2025.

[26] A. Green, H. Tai, J. Noffsinger, and P. Sachdeva. How data centers and the energy sector can
sate ai’s hunger for power. McKinsey and Company, 2024.

[27] U. Gupta, Y. G. Kim, S. Lee, J. Tse, H.-H. S. Lee, G.-Y. Wei, D. Brooks, and C.-J. Wu.
Chasing carbon: The elusive environmental footprint of computing. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 854–867. IEEE, 2021.

[28] U. Gupta, M. Elgamal, G. Hills, G.-Y. Wei, H.-H. S. Lee, D. Brooks, and C.-J. Wu. Act: Design-
ing sustainable computer systems with an architectural carbon modeling tool. In Proceedings of
the 49th Annual International Symposium on Computer Architecture, pages 784–799, 2022.

[29] Y. Han, Z. Wu, P. Li, A. Wierman, and S. Ren. The unpaid toll: Quantifying the public health
impact of ai. arXiv preprint arXiv:2412.06288, 2024.

[30] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding. Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

[31] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas,
L. A. Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models. In
Proceedings of the 36th International Conference on Neural Information Processing Systems,
pages 30016–30030, 2022.

[32] M. Isaac. Meta to increase spending to $65 billion this year in a.i. push. New York Times, 2025.

[33] ISO 14040:2006. Environmental management – Life cycle assessment – Principles and frame-
work, 2006.

[34] ISO 14044:2006. Environmental management – Life cycle assessment – Requirements and
guidelines, 2006.

[35] W. S. Jevons. The coal question. In The Economics of Population, pages 193–204. Routledge,
1866.

[36] S. Ji, Z. Yang, X. Chen, S. Cahoon, J. Hu, Y. Shi, A. K. Jones, and P. Zhou. Scarif: Towards
carbon modeling of cloud servers with accelerators. In 2024 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pages 496–501. IEEE, 2024.

[37] Joint Legislative Audit and Review Commission. Data Centers in Virginia. Technical Report
598, Commonwealth of Virginia, 2024.

[38] L. H. Kaack, P. L. Donti, E. Strubell, G. Kamiya, F. Creutzig, and D. Rolnick. Aligning artificial
intelligence with climate change mitigation. Nature Climate Change, 12(6):518–527, 2022.

8

http://arxiv.org/abs/2309.14393
http://arxiv.org/abs/2309.14393


[39] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[40] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M. Ya-
sunaga, R. L. Phillips, I. Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. In
International conference on machine learning, pages 5637–5664. PMLR, 2021.

[41] N. Lambert, J. Morrison, V. Pyatkin, S. Huang, H. Ivison, F. Brahman, L. J. V. Miranda, A. Liu,
N. Dziri, S. Lyu, Y. Gu, S. Malik, V. Graf, J. D. Hwang, J. Yang, R. L. Bras, O. Tafjord,
C. Wilhelm, L. Soldaini, N. A. Smith, Y. Wang, P. Dasigi, and H. Hajishirzi. Tulu 3: Pushing
frontiers in open language model post-training, 2025. URL https://arxiv.org/abs/2411.
15124.

[42] J. C. Lee, S. Smaoui, J. Duffill, B. Marandi, and T. Varzakas. Forever chemicals pfas global
impact and activities, cascading consequences of colossal systems failure: Long-term health
effects, food-systems, eco-systems. 2025.

[43] P. Li, J. Yang, M. A. Islam, and S. Ren. Making AI Less "Thirsty": Uncovering and Addressing
the Secret Water Footprint of AI Models, Jan. 2025. URL http://arxiv.org/abs/2304.
03271. arXiv:2304.03271 [cs].

[44] Y. Li, Z. Hu, E. Choukse, R. Fonseca, G. E. Suh, and U. Gupta. Ecoserve: Designing carbon-
aware ai inference systems. arXiv preprint arXiv:2502.05043, 2025.

[45] Y. L. Li, O. Graif, and U. Gupta. Towards carbon-efficient llm life cycle. In Proceedings of the
3rd Workshop on Sustainable Computer Systems (HotCarbon), 2024.

[46] A. S. Luccioni, S. Viguier, and A.-L. Ligozat. Estimating the carbon footprint of bloom, a 176b
parameter language model. Journal of Machine Learning Research, 24(253):1–15, 2023.

[47] A. S. Luccioni, E. Strubell, and K. Crawford. From Efficiency Gains to Rebound Effects:
The Problem of Jevons’ Paradox in AI’s Polarized Environmental Debate, Jan. 2025. URL
http://arxiv.org/abs/2501.16548. arXiv:2501.16548 [cs].

[48] S. Luccioni, Y. Jernite, and E. Strubell. Power hungry processing: Watts driving the cost of
ai deployment? In Proceedings of the 2024 ACM conference on fairness, accountability, and
transparency, pages 85–99, 2024.

[49] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Patterson, H. Tang, G.-Y.
Wei, P. Bailis, V. Bittorf, et al. Mlperf training benchmark. Proceedings of Machine Learning
and Systems, 2:336–349, 2020.

[50] G. Menghani. Efficient deep learning: A survey on making deep learning models smaller, faster,
and better. ACM Comput. Surv., 55(12), Mar. 2023. ISSN 0360-0300. doi: 10.1145/3578938.
URL https://doi.org/10.1145/3578938.

[51] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji,
and T. Gebru. Model cards for model reporting. In Proceedings of the conference on fairness,
accountability, and transparency, pages 220–229, 2019.

[52] J. Morrison, C. Na, J. Fernandez, T. Dettmers, E. Strubell, and J. Dodge. Holistically evalu-
ating the environmental impact of creating language models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=04qx93Viwj.

[53] National Academies of Sciences, Engineering, and Medicine and others. Current Methods for
Life-Cycle Analyses of Low-Carbon Transportation Fuels in the United States. 2022.

[54] S. Nguyen, B. Zhou, Y. Ding, and S. Liu. Towards sustainable large language model serving.
ACM SIGENERGY Energy Informatics Review, 4(5):134–140, 2024.

[55] T. OLMo, P. Walsh, L. Soldaini, D. Groeneveld, K. Lo, S. Arora, A. Bhagia, Y. Gu, S. Huang,
M. Jordan, et al. 2 olmo 2 furious. arXiv preprint arXiv:2501.00656, 2024.

9

https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
http://arxiv.org/abs/2304.03271
http://arxiv.org/abs/2304.03271
http://arxiv.org/abs/2501.16548
https://doi.org/10.1145/3578938
https://openreview.net/forum?id=04qx93Viwj
https://openreview.net/forum?id=04qx93Viwj


[56] OpenAI. Announcing the stargate project, 2025.

[57] M. Parashar, T. DeBlanc-Knowles, E. Gianchandani, and L. E. Parker. Strengthening and
democratizing artificial intelligence research and development. Computer, 56(11):85–90, 2023.

[58] P. Patel, E. Choukse, C. Zhang, Í. Goiri, B. Warrier, N. Mahalingam, and R. Bianchini. Charac-
terizing power management opportunities for llms in the cloud. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 3, pages 207–222, 2024.

[59] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So, M. Texier, and
J. Dean. Carbon emissions and large neural network training. arXiv preprint arXiv:2104.10350,
2021.

[60] D. Patterson, J. Gonzalez, U. Hölzle, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. R. So,
M. Texier, and J. Dean. The carbon footprint of machine learning training will plateau, then
shrink. Computer, 55(7):18–28, 2022. URL https://arxiv.org/abs/2204.05149.

[61] D. Patterson, J. M. Gilbert, M. Gruteser, E. Robles, K. Sekar, Y. Wei, and T. Zhu. Energy and
emissions of machine learning on smartphones vs. the cloud. Communications of the ACM, 67
(2):86–97, 2024.

[62] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S. Henderson,
R. Ring, S. Young, et al. Scaling language models: Methods, analysis & insights from training
gopher. arXiv preprint arXiv:2112.11446, 2021.

[63] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Anderson,
M. Breughe, M. Charlebois, W. Chou, et al. Mlperf inference benchmark. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA), pages 446–459. IEEE,
2020.

[64] N. Sadat Moosavi, I. Gurevych, Y. Hou, G. Kim, Y. J. Kim, T. Schuster, and A. Agrawal, editors.
Proceedings of the Fourth Workshop on Simple and Efficient Natural Language Processing
(SustaiNLP), Toronto, Canada (Hybrid), July 2023. Association for Computational Linguistics.
URL https://aclanthology.org/2023.sustainlp-1.0/.

[65] V. Sangarya, R. Bradford, and J.-E. Kim. Estimating environmental cost throughout model’s
adaptive life cycle. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society,
volume 7, pages 1281–1291, 2024.

[66] I. Schneider, H. Xu, S. Benecke, D. Patterson, K. Huang, P. Ranganathan, and C. Elsworth.
Life-cycle emissions of ai hardware: A cradle-to-grave approach and generational trends. arXiv
preprint arXiv:2502.01671, 2025.

[67] A. Shehabi, A. Hubbard, A. Newkirk, N. Lei, M. A. B. Siddik, B. Holecek, J. Koomey,
E. Masanet, D. Sartor, et al. 2024 united states data center energy usage report, 2024.

[68] B. Smith. The golden opportunity for american ai, 2025.

[69] E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for modern deep
learning research. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 13693–13696, 2020.

[70] Y. Sui, Y.-N. Chuang, G. Wang, J. Zhang, T. Zhang, J. Yuan, H. Liu, A. Wen, S. Zhong, H. Chen,
and X. Hu. Stop overthinking: A survey on efficient reasoning for large language models, 2025.
URL https://arxiv.org/abs/2503.16419.

[71] R. Sutton. The bitter lesson, 2019.

[72] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient transformers: A survey. ACM
Comput. Surv., 55(6), Dec. 2022. ISSN 0360-0300. doi: 10.1145/3530811. URL https:
//doi.org/10.1145/3530811.

10

https://arxiv.org/abs/2204.05149
https://aclanthology.org/2023.sustainlp-1.0/
https://arxiv.org/abs/2503.16419
https://doi.org/10.1145/3530811
https://doi.org/10.1145/3530811


[73] T. Tornede, A. Tornede, J. Hanselle, F. Mohr, M. Wever, and E. Hüllermeier. Towards green
automated machine learning: Status quo and future directions. Journal of Artificial Intelligence
Research, 77:427–457, 2023.

[74] M. Treviso, J.-U. Lee, T. Ji, B. van Aken, Q. Cao, M. R. Ciosici, M. Hassid, K. Heafield,
S. Hooker, C. Raffel, P. H. Martins, A. F. T. Martins, J. Z. Forde, P. Milder, E. Simpson,
N. Slonim, J. Dodge, E. Strubell, N. Balasubramanian, L. Derczynski, I. Gurevych, and
R. Schwartz. Efficient methods for natural language processing: A survey. Transactions of
the Association for Computational Linguistics, 11:826–860, 2023. doi: 10.1162/tacl_a_00577.
URL https://aclanthology.org/2023.tacl-1.48/.

[75] A. Tschand, A. T. R. Rajan, S. Idgunji, A. Ghosh, J. Holleman, C. Kiraly, P. Ambalkar,
R. Borkar, R. Chukka, T. Cockrell, et al. Mlperf power: Benchmarking the energy efficiency
of machine learning systems from microwatts to megawatts for sustainable ai. arXiv preprint
arXiv:2410.12032, 2024.

[76] Z. Wan, X. Wang, C. Liu, S. Alam, Y. Zheng, et al. Efficient large language models: A survey.
arXiv preprint arXiv:2312.03863, 1, 2023.

[77] Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren, A. Arulraj, X. He, Z. Jiang,
et al. Mmlu-pro: A more robust and challenging multi-task language understanding bench-
mark. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024.

[78] S. Welleck, A. Bertsch, M. Finlayson, H. Schoelkopf, A. Xie, G. Neubig, I. Kulikov, and
Z. Harchaoui. From decoding to meta-generation: Inference-time algorithms for large language
models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=eskQMcIbMS. Survey Certification.

[79] C.-J. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng, G. Chang, F. Aga,
J. Huang, C. Bai, et al. Sustainable ai: Environmental implications, challenges and opportunities.
Proceedings of Machine Learning and Systems, 4:795–813, 2022.

[80] Y. Wu, I. Hua, and Y. Ding. Unveiling environmental impacts of large language model serving:
A functional unit view. arXiv preprint arXiv:2502.11256, 2025.

[81] H. Yao, C. Choi, B. Cao, Y. Lee, P. W. W. Koh, and C. Finn. Wild-time: A benchmark of
in-the-wild distribution shift over time. Advances in Neural Information Processing Systems,
35:10309–10324, 2022.

[82] J. Zheng, X. Cai, Q. Li, D. Zhang, Z. Li, Y. Zhang, L. Song, and Q. Ma. Lifelongagentbench:
Evaluating llm agents as lifelong learners. arXiv preprint arXiv:2505.11942, 2025.

A Broader Impacts & Limitations

Throughout our work, we utilize different large language model development and deployment flows
which we note are examples of current machine learning workloads but are not representative of
all development and deployment pipelines. Complexity of pipelines will evolve over time, model
“manufacture” and “use” stages will differ across architectures. Other considerations beyond energy
and carbon are associated; we direct the machine learning research community towards LCA as a
generalizable methodology which can be applied across different forms of resources.

Furthermore, it is necessary to make reductive assumptions as to the nature of the resources consumed
during any assessment – which may neglect other components in the ML model life cycle; such as
how the power demands may affect the power providing infrastructure and the electrical grid.
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B Status Quo of Machine Learning Efficiency and its Limitations

In response to recent growth in ML’s computational demands and concerns around its corresponding
resource consumption, there has been a significant increase in scientific inquiry towards efficient
ML methods in recent years; as reflected in a myriad of research surveys [50, 74, 72, 76, 70] and
publication venues dedicated to the topic [2, 4, 5, 6, 64]. The status quo of quantifying ML efficiency
is well established, and represents alternative views to the position that we posit in this paper. We
describe this status quo, and its limitations, in more detail in the following section.

B.1 Challenges in Measuring Model Efficiency

Growing Complexity and Variability of the Model Life Cycle. With the growing scale and
associated computational demands of foundation models, recent efforts have sought to characterize
stages of model development training [60, 69], and deployment inference [58, 80, 19, 54]. Such efforts
have led institutional model developers to release estimates of the associated energy costs of model
development (e.g. Meta Llama-3 and the AI2’s OLMo models [20, 52]). However, focus on individual
stages of the model life cycle is insufficient to measure the total resources and environmental impact
associated with the choice to build a new machine learning model or AI system.

Recent works have estimated the power utilization across the model life cycle stages of both training
and inference [79, 46]. Unfortunately, a lack of standardization of the accounted stages makes com-
parison across studies difficult. Furthermore, complexity of the model development and deployment
use cases has grown beyond classical settings of train-test evaluations; with models now requiring
multiple stages of pretraining and post-training, as well as variability in inference-time compute with
the advent of “reasoning models”. A standardized framework is needed with explicit definitions of
the stages of deployment and use in order to enable accurate reporting.

Insufficient Proxy Measures of Machine Learning Efficiency. A wide array of efficiency metrics
have motivated research in the design of efficient machine learning algorithms, model architectures,
and computer systems. For example, service-level objectives (SLOs) have been used to optimize cloud
serving settings where models are deployed to support latency-sensitive APIs. Whereas the hardware
limitations of mobile and edge settings have yielded model compression methods which reduce the
memory overheads of models. At the same time, theoretical investigations, which are often based on
proxy metrics for efficiency such as FLOPs, have yielded parameter-, data-, and sample-efficient ML
architectures and training algorithms. Although such research demonstrates improvements towards
targeted objectives, proxy measures of efficiency are often not highly correlated with more tangible
measures such as latency and energy [18, 24].

Furthermore, existing models are often developed to optimize performance on static benchmarks. In
reality, models are deployed in continuously changing environments which require repeated retraining
or continual updating. However, existing efficiency evaluations of robustness to distribution shift fail
to account for the efficiency and resources needed to continuously update models [81, 40, 82].

B.2 Distinction Between Model and Hardware Life Cycles.

Life cycle assessment of the computing hardware utilized in machine learning [27, 66] provides
valuable information on the embodied emissions and operational carbon of the hardware platforms.
Minimization of carbon emissions has been used to optimize the design of efficient computing
hardware and architectures [28, 21, 13]. Analysis of the environmental costs associated with hardware
provides insight into the efficiency of the underlying computing platform and informs decision-making
around hardware provisioning and infrastructure design decisions.

Although the design of energy-efficient and carbon-efficient computing architectures reduces the
lifetime environmental impact of computing hardware, hardware-based accounting alone does not
provide insight into the resource requirements and associated emissions of the machine learning
model which is often developed and deployed across multiple heterogeneous hardware platforms over
the course of its lifetime.
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B.3 Disconnects Between Individual Computational Workloads and Sector-Wide Projections.

Sector-Level Estimates are Too Coarse-Grained for Estimating the Impact of Individual Model
Life Cycles. Concerns around the rising power demands of AI data centers have led to the rise
of various studies that estimate and project growth in data center energy use [67, 26, 7]. To obtain
projections on energy use, such studies rely on estimates of future chip shipments and energy
efficiency to forecast the total demands of computing hardware. Sector-level analysis is critical for
providing information to developers of electrical grid infrastructure. With infrastructure lead times of
multiple years, accurate sector projections enables grid infrastructure to be built out to support the
increased capacity demands of data centers, often in excess.

However, these studies rely on assumptions about hardware utilization and energy efficiency at a level
of abstraction that obfuscates individual workloads. These assumptions make it impossible to assess
for the impact of models developed and deployed by machine learning researchers and practitioners;
or to evaluate the impact of model efficiency improvements or design choices.

Efficiency Improvements Will Not Keep Energy Use Increases in Check. Although algorithmic
efficiency and per-accelerator energy efficiency (i.e. FLOPS per watt) have increased over time, so
has the embodied carbon of the GPU accelerators [60, 44]. Furthermore, the increased performance
and efficiency of AI systems in real-world use cases yields rebound effects such as Jevons’ paradox
[35] in which there is increased uptake, leading to increased total resource consumption despite
higher utilization and efficiency and reductions in resources consumed per-unit of resource [47].

With the large number of factors governing the efficiency of systems, ranging from hardware to
software to algorithmic efficiency, improvements in efficiency with respect to a single one of these
components alone cannot be relied upon to mitigate the total costs of machine learning. Under the
assumption of Jevons’ paradox and increased capability and profitability,4 ML demand will expand
to consume all resources that can be allocated to it; under this setting, managing ML’s resource
consumption becomes less a question of reducing resource use, than in resource allocation: Given a
limited set of resources (e.g. datacenter energy, land), what is the most effective allocation of those
resources in order to maximize output? There is a need for methodologies and data enabling analysis
of such resource allocations, e.g. between training and inference workloads, across different model
types (task-specific, general-purpose), tasks, deployment scenarios, and hardware.

4As of May 2025 Google cites a 50x increase in use of their AI platform year-over-year since 2024 (9.7T to
over 480T tokens processed monthly), and Microsoft’s CEO recently referenced Jevons’ paradox to reassure
stakeholders that ML efficiency improvements will lead to “skyrocket[ing]” demand for AI, not to mention
significant investments in energy infrastructure, such as Microsoft’s bid to re-commission the nuclear reactor at
Three Mile Island in order to power an AI data center.
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