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Abstract

Word alignment has proven to benefit many-to-
many neural machine translation (NMT). How-
ever, high-quality ground-truth bilingual dic-
tionaries were used for pre-editing in previ-
ous methods, which are unavailable for most
language pairs. Meanwhile, the contrastive
objective can implicitly utilize automatically
learned word alignment, which has not been
explored in many-to-many NMT. This work
proposes a word-level contrastive objective to
leverage word alignments for many-to-many
NMT. Empirical results show that this leads
to 0.8 BLEU gains for several language pairs.
Analyses reveal that in many-to-many NMT,
the encoder’s sentence retrieval performance
highly correlates with the translation quality,
which explains when the proposed method im-
pacts translation. This motivates future explo-
ration for many-to-many NMT to improve the
encoder’s sentence retrieval performance.

1 Introduction

Many-to-many neural machine translation
(NMT) (Firat et al., 2016; Johnson et al., 2017;
Aharoni et al., 2019; Sen et al., 2019; Arivazhagan
et al., 2019b; Lin et al., 2020; Pan et al., 2021b)
jointly trains a translation system for multiple
language pairs and obtain significant gains
consistently across many translation directions.
Previous work (Lin et al., 2020) shows that word
alignment information helps improve pre-training
for many-to-many NMT. However, manually
cleaned high-quality ground-truth bilingual dictio-
naries are used to pre-edit the source sentences,
which are unavailable for most language pairs.

Recently, contrastive objectives (Clark et al.,
2020; Gunel et al., 2021; Giorgi et al., 2021; Wei
et al., 2021; Mao et al., 2021) have been shown
to be superior at leveraging alignment knowledge
in various NLP tasks by contrasting the represen-
tations of positive and negative samples in a dis-
criminative manner. This objective, which should

be able to utilize word alignment learned by any
toolkit, which in turn will remove the constraints
of using manually constructed dictionaries, has not
been explored in the context of leveraging word
alignment for many-to-many NMT.

An existing contrastive method (Pan et al.,
2021b) for many-to-many NMT relies on sentence-
level alignments. Given that the incorporation of
word alignments has led to improvements in previ-
ous work, we believe that fine-grained contrastive
objectives focusing on word alignments should
help improve translation. Therefore, this paper
proposes word-level contrastive learning for many-
to-many NMT using the word alignment extracted
by automatic aligners. We conduct experiments on
three many-to-many NMT systems covering gen-
eral and spoken language domains. Results show
that our proposed method achieves significant gains
of 0.8 BLEU in the general domain compared to
previous word alignment based methods and the
sentence-level contrastive method.

We then analyze how the word-level contrastive
objective affects NMT training. Inspired by pre-
vious work (Artetxe and Schwenk, 2019) that
train sentence retrieval models using many-to-many
NMT, we speculate that our contrastive objectives
affect the sentence retrieval performance and sub-
sequently impact the translation quality. Further
investigation reveals that in many-to-many NMT,
the sentence retrieval precision of the multilingual
encoder for a language pair strongly correlates with
its translation quality (BLEU), which provides in-
sight about when contrastive alignment improves
translation. This revelation emphasizes the impor-
tance of improving the retrieval performance of the
encoder for many-to-many NMT.

2 Word-level Contrastive Learning for
Many-to-many NMT

Inspired by the contrastive learning frame-
work (Chen et al., 2020) and the sentence-level con-



trastive learning objective (Pan et al., 2021b), we
propose a word-level contrastive learning objective
to explicitly guide the training of the multilingual
encoder to obtain well-aligned cross-lingual repre-
sentations. Specifically, we use word alignments,
obtained using automatic word aligners, to super-
vise the training of the multilingual encoder by a
contrastive objective alongside the NMT objective.
Alignment Extraction Two main approaches for
automatically extracting aligned words from a sen-
tence pair are: using a bilingual dictionary and
using unsupervised word aligners. The former ex-
tracts fewer but precise alignments, whereas the lat-
ter extracts more but noisy alignments. We extract
word-level alignments by both methods and explore
how they impact NMT training. For the former ap-
proach, we use word2word (Choe et al., 2020) to
construct bilingual lexicons and then extract word
pairs from parallel sentences. The extracted word
pairs are combined to form a phrase if words are
consecutive in the source and target sentence. For
the latter approach, we use FastAlign (Dyer et al.,
2013) and use only 1-to-1 mappings for training.
Word-level Contrastive Learning With the ex-
tracted alignments, we propose a word-level con-
trastive learning objective for the multilingual en-
coder by the motivation that the aligned words
within a sentence pair should have a similar con-
textual representation. We expect the supervision
of the contrastive objective on the corresponding
contextual word representation leads to a robust
multilingual encoder. Assume that the tokenized
source and target parallel sentences in the i − th
batch areDi = {srcij , tgtij}Bj=1, and the extracted
alignments from all the sentence pairs in each batch
areAi = {sik, tik}Nk=1, where B and N denote the
batch-size and the number of alignments, respec-
tively. Note that sik and tik may contain several
tokens after the word combination for word2word
or subword tokenization for NMT. Then the word-
level contrastive loss in a batch is:

L(i)align = −
N∑
k=1

(log
exp (sim(sik, tik)/T )∑N

m=1 exp (sim(sik, tim)/T )

+ log
exp (sim(sik, tik)/T )∑N

m=1 exp (sim(sim, tik)/T )
)

(1)
where T denotes a similarity scaling temperature.
The similarity between two words is measured by:

sim(wordx, wordy) = cos(g(x̄), g(ȳ)) (2)

La. pair Source Size N (w2w) N (FA)
en-et WMT18 1.9M 5,762,977 38,454,477
en-it IWSLT17 231k 603,032 3,000,011
en-ja IWSLT17 223k 684,583 2,797,882
en-kk WMT19 124k 124,511 279,429
en-my ALT 18k 75,383 377,392
en-nl IWSLT17 237k 564,697 2,836,873
en-ro WMT16 612k 3,271,848 13,092,240
en-tr WMT17 207k 770,873 2,885,102
en-vi IWSLT15 133k 354,167 2,120,755

Table 1: Data Source and number of the extracted
word pairs. La. pair, N (w2w) and N (FA) denote the
language pair, the number of the word pairs extracted
by word2word and FastAlign, respectively. Refer to
Appendix B for details of the dataset splits.

where g(x) = W2σ(W1x) and x̄ denotes the av-
erage of contextual hidden states of the correspond-
ing subword positions on top of the multilingual
encoder. Following (Chen et al., 2020), we use an
MLP between contrastive loss and the contextual
representation for NMT loss. ReLU activation is
used for σ, W1 is d× d and W2 is d× d′, where
d is the encoder’s hidden dimension and d′ < d .

Finally, to jointly train with the NMT loss, we
use the following equation to combine our pro-
posed word-level contrastive loss for a batch:

L(i) = 1

B
(L(i)NMT + w

NT

2N
L(i)align) (3)

where NT is the number of the tokens within a
batch, NT

2N is a multiplier that scales the contrastive
loss to be consistent with NMT loss, and w is a
weight to balance the joint training.

3 Experimental Settings

Datasets and Preprocessing We selected ten lan-
guages, including English (en), Estonian (et), Ital-
ian (it), Japanese (ja), Kazakh (kk), Burmese (my),
Dutch (nl), Romanian (ro), Turkish (tr), Viet-
namese (vi) from different language families to
train the NMT systems. We used the parallel
datasets from different domains for the selected
nine language pairs, including IWSLT, WMT, and
ALT. We followed mBART (Liu et al., 2020) for
tokenization. Details are given in Appendix A.
For each parallel dataset, we implemented two ap-
proaches as stated in Section 2 to extract word
pairs for the contrastive training objective. Data
source and the number of the extracted word pairs
are shown in Table 1. To ensure high alignment



Methods
en-tr en-ro en-et en-kk en-my
→ ← → ← → ← → ← → ←

MLSC 9.3 12.6 25.0 26.2 10.8 15.1 0.5 5.3 15.1 15.6
+align 9.0 12.4 24.6 26.5 10.7 14.6 0.4 5.4 15.0 15.3
+w2w (ours) 9.4 12.6 24.8 26.8 10.8 15.1 0.5 5.8 15.2 15.9
+FA (ours) 9.1 12.2 24.8 26.7 10.7 14.8 0.3 5.6 15.0 15.6

mBART FT 17.7 22.2 33.8 37.1 14.5 24.3 1.8 14.1 17.8 23.1
+align 17.5 21.9 33.8 36.7 15.2 24.3 1.8 14.0 16.9 22.1
+w2w (ours) 17.6 22.2 34.2 37.5 15.0 25.0 1.2 14.1 18.3 23.8
+FA (ours) 17.5 22.2 34.3 37.5 14.9 25.1 1.3 14.4 17.9 23.6

Table 2: BLEU scores of 626_en-tr-ro-et-my-kk system. Significantly better scores (Koehn, 2004) are in cyan,
and marginal improvements are in lightcyan.

Methods 222_en-ja 626_I 626_II

MLSC 13.90 23.76 13.55
+align 13.90 23.67 13.39
+w2w (ours) 13.85 23.44 13.69
+FA (ours) 13.30 23.68 13.48

mBART FT 18.90 29.11 20.64
+align 18.55 28.87 20.42
+w2w (ours) 18.80 29.08 20.89
+FA (ours) 18.65 29.01 20.87

Table 3: Overall average BLEU of all the sys-
tems. 626_I and 626_II denote 626_en-it-ja-nl-tr-vi
and 626_en-tr-ro-et-my-kk, respectively. Results better
than MLSC or mBART FT are marked bold. Refer to
Appendix D for the detailed scores of all the systems.

quality, we used large-scale out-of-domain (see Ap-
pendix B) parallel corpora with FastAlign.
Many-to-many NMT systems We established
three many-to-many NMT systems as follows:

222_en-ja: Bidirectional en-ja NMT model us-
ing en-ja parallel corpus.

626_en-it-ja-nl-tr-vi: 6-to-6 multilingual NMT
model using spoken language domain corpora for
en-it, en-ja, en-nl, en-tr and en-vi.

626_en-tr-ro-et-my-kk: 6-to-6 multilingual
NMT model using general domain corpora for en-tr,
en-ro, en-et, en-my and en-kk.
Baselines and Ours For each language group
setting above, we conducted NMT experiments
on both the multilingual training from scratch
(MLSC) (Johnson et al., 2017; Aharoni et al., 2019)
and the mBART multilingual fine-tuning (mBART
FT) (Tang et al., 2020) as baselines. We applied our
proposed word-level contrastive learning in both
MLSC and mBART FT, and compared with an-
other strong baseline, word alignment based joint
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Figure 1: NMT loss, sentence retrieval P@1 of the
encoder in MLSC and mBART FT. The average of the
contextual embeddings on top of the encoder is used as
the sentence embedding. We report the average in-batch
retrieval precision of both directions of each language
pair.

NMT training (+align) (Garg et al., 2019). For
applying our method, we investigated the perfor-
mance of joint training with word pairs extracted by
both word2word (+w2w) and FastAlign (+FA). We
omitted Lin et al. (2020) as a baseline because their
method can not be applied to mBART fine-tuning,
and they used high-quality ground-truth dictionar-
ies, which are unavailable for most languages pairs.
Implementation We used mBART-large
(mBART-25) for mBART FT and
transformer-base (Vaswani et al., 2017) for
MLSC. See Appendix C for details.

4 Results and Analyses

BLEU Results We report case-sensitive tokenized
BLEU (Papineni et al., 2002) results in Table 3
and 2. In Table 3, we observe that with our pro-
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Figure 2: Sentence retrieval P@1 on the validation set for each language pair. Left and middle are the results on
626_en-tr-ro-et-my-kk MLSC and mBART FT, respectively. “626” in right subfigure denote 626_en-it-ja-nl-tr-vi.
Refer to Appendix E for setup and results in details.

posed training objectives, BLEU scores are compa-
rable in 222_en-ja and 626_en-it-ja-nl-tr-vi while
they are slightly improved in 626_en-tr-ro-et-my-
kk. However, “+align” performs comparable or
even worse compared with the baseline. Refer-
ring to Table 2 for specific BLEUs on each lan-
guage pair, we find that with our methods, trans-
lation performances are significantly improved for
mBART FT while nontrivial improvements can
merely be observed on en-ro and en-kk direction
for MLSC. This indicates that NMT fine-tuning
on monolingual pre-trained models (mBART) may
benefit more from our proposed methods. Note
that the BLEU improvements for MLSC are not
significant, and we explain why this happens in the
“Word Retrieval P@1 is improved” part.
Latent Encoder Alignment Property We now
inspect which aspect of alignment-based meth-
ods impacts the translation performance. Previous
work (Artetxe and Schwenk, 2019) showed that the
encoder of a strong multilingual NMT system is an
ideal model for the bilingual sentence retrieval task.
In addition, Arivazhagan et al. (2019a) introduced
the correlation between the encoder-side sentence
representation1 and the translation quality. Inspired
by these, we speculate that alignment-based objec-
tives affect sentence retrieval performance, which
further impacts the translation quality. We train
MLSC and mBART FT and report the sentence
retrieval precision and NMT loss during the train-
ing. Results are reported in Figure 1. We observe
that the validation retrieval precision show simi-
lar trends as the NMT loss. This indicates that
during many-to-many NMT training from scratch,
encoder-side sentence-level retrieval precision is
optimized along with the NMT loss.
Sentence Retrieval P@1 Correlates with BLEU
According to the investigation of the encoder align-
ment property above, we verify the relationship

1Usually a pooled encoder output.

222-MLSC 222-mBART 626-MLSC-1 626-mBART-1 626-MLSC-2 626-mBART-2
0.0

20.0

40.0

60.0

80.0

baseline
 +align
 +w2w
 +FA

Figure 3: Average Word retrieval P@1 on the val-
idation set for each language pair. “626-*-1” and
“626-*-2” indicate 626_en-it-ja-nl-tr-vi and 626_en-tr-
ro-et-my-kk, respectively. Refer to Appendix F for setup
and results in details.

between BLEU score and sentence retrieval preci-
sion on the validation set for each language pair.
Results are shown in Figure 2. Cross-referencing
the BLEU score in Table 2, we found that BLEU
scores are improved when the encoder achieves
gains on the sentence retrieval precision.2 For ex-
ample, we see increases of the retrieval P@1 on en-
ro, en-et, and en-my on mBART FT (the middle of
Figure 2) while BLEU scores are significantly im-
proved on these three language pairs (Table 2). We
further calculate the Pearson correlation coefficient
between the BLEU changes and sentence retrieval
P@1 changes for mBART+align, mBART+w2w,
and mBART+FA in the 626_en-tr-ro-et-my-kk set-
ting. Results are 0.79, 0.93, 0.90, respectively,
demonstrating a strong correlation between transla-
tion quality and sentence retrieval precision.
Word Retrieval P@1 is Improved We probe the
trained contextualized word representations on top
of the encoder. As shown in Figure 3, we observe
that the word retrieval precision is improved in all

2222_en-ja MLSC setting can hardly learn a well-aligned
encoder while our methods improve the encoder sentence-
level alignment quality without sacrificing BLEU scores.



the settings. This demonstrates that the encoder
parameters of the NMT system trained with our
proposed objective are of a rather different distri-
bution. By just changing the random seed, we
can expect similar BLEU results, but we cannot
obtain a better aligned encoder. However, the im-
provement of the word retrieval precision does not
directly contribute to the translation quality, which
we explain next.
Word-level Contrastive Objective and Sentence
Retrieval P@1 With the word-level contrastive
objective, we observed significant BLEU score im-
provements on language pairs such as en-ro, en-et
and en-my for mBART FT as presented in Table 2.
However, noisy word pairs (Pan et al., 2021a) ex-
tracted via word alignment toolkits leads to poor
supervision signals for improving sentence retrieval
P@1, which in turn prevents some language pairs
such as en-kk from exhibiting BLEU improve-
ments. We found that for en-kk, the numbers of
extracted word pairs per sentence by word2word
and FastAlign are 1.0 and 2.2, respectively. In con-
trast, these numbers are 4.2 and 20.7 for improved
language pairs, calculated from Table 1. Although
better extracted word alignments for the word-level
contrastive objective leads to BLEU improvements,
its contribution towards improvements varies for
MLSC and mBART FT, as shown in Table 2. We
expect these findings to provide new perspectives
for improving many-to-many NMT.
Sentence-level Contrastive Objective We con-
ducted the experiments for the sentence-level con-
trastive objective (Pan et al., 2021b) on all two
six-to-six settings and compared it against our
proposed approach. The average BLEUs of our
methods significantly outperform those of sentence-
level contrastive objectives (see Table 8 and 9),
clearly showing the sentence-level objective’s limi-
tation. Moreover, we checked the sentence retrieval
P@1 for Pan et al. (2021b) (Table 10 and 11) and
found that it correlates with BLEU changes, in-
dicating that sentence-level contrastive objective
is suboptimal for language pairs with decreased
retrieval precision.3

5 Conclusion

We proposed a word-level contrastive learning ob-
jective for many-to-many NMT. Experimental re-

3Note that the sentence-level contrastive objective incor-
porates sentences in multiple languages for contrastive loss. It
does not necessarily improve the pair-wise retrieval precision.

sults showed that our proposed method leads to
significantly better translation for several language
pairs, which is then explained by analyses showing
the relationship between BLEU scores and sen-
tence retrieval performance of the NMT encoder.
Future work can focus on: (1) further improving the
encoder’s retrieval performance in many-to-many
NMT; (2) contrastive objective’s feasibility in a
massively multilingual scenario.

Ethical Considerations

All the corpora we used in this paper are publicly
available resources without the issue of the copy-
right. The technique this paper proposed is for
NMT models, so it can not circumvent the issues
that NMT models have. Since our automatically
dictionaries are extracted from potentially biased
data, the translations may also contain biases. How-
ever, we expect that these issues may be resolved
by using unbiased data or the addition of debiasing
objectives.
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La. pair Train Valid Test OD Size
en-et WMT18 WMT18 WMT18 10.7M
en-it IWSLT17 IWSLT15 IWSLT16 13.6M
en-ja IWSLT17 IWSLT15 IWSLT16 10.7M
en-kk WMT19 WMT19 WMT19 851k
en-my ALT ALT ALT 446k
en-nl IWSLT17 IWSLT15 IWSLT16 12.7M
en-ro WMT16 WWT16 WMT16 11.0M
en-tr WMT17 WWT16 WMT16 11.1M
en-vi IWSLT15 IWSLT13 IWSLT14 11.9M

Table 4: Dataset statistics for each language pair. “La.
pair” means language pair and “OD Size” denotes the
number of the out-of-domain sentence pairs used for
training FastAlign.

Methods en-ja ja-en

MLSC 15.9 11.9
+align 16.3 11.5
+w2w (ours) 16.0 11.7
+FA (ours) 15.6 11.0

mBART FT 19.8 18.0
+align 19.6 17.5
+w2w (ours) 19.4 18.2
+FA (ours) 19.5 17.8

Table 5: BLEU scores of 222_en-ja system. Signifi-
cantly better scores are in cyan, and marginal improve-
ments are in lightcyan. The significance test is done
with Koehn (2004).

A Tokenization Settings

For Japanese, we use Jumanpp (Morita et al., 2015;
Tolmachev et al., 2018) for segmentation, and we
follow the same settings as in mBART (Liu et al.,
2020) for other languages: myseg.py (Ding et al.,
2020) is used for Burmese, Moses tokenization and
special normalization is used for Romanian follow-
ing (Sennrich et al., 2016),4 and Moses tokeniza-
tion for other languages.5 Following mBART, we
apply SentencePiece (Kudo and Richardson, 2018)
to further segment sentences into subwords.6

B Datasets and Alignment Extraction

The datasets used for NMT training, validation
and test are shown in Table 4. For the word align-

4https://github.com/rsennrich/
wmt16-scripts

5https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

6https://github.com/google/
sentencepiece

Methods en-ja

MLSC 3.3
+align 3.5
+w2w (ours) 73.5
+FA (ours) 69.6

mBART FT 88.9
+align 87.4
+w2w (ours) 85.2
+FA (ours) 84.8

Table 6: Sentence retrieval P@1 on the validation set
for 222_en-ja.

Methods en-ja

MLSC 20.1
+align 22.5
+w2w (ours) 68.3
+FA (ours) 67.6

mBART FT 65.2
+align 64.3
+w2w (ours) 71.5
+FA (ours) 70.7

Table 7: Word retrieval P@1 on the validation set for
222_en-ja.

ment extraction using FastAlign, we also use out-
of-domain parallel corpora to train the FastAlign
jointly, aiming to obtain word alignments with
less noise. The out-of-domain corpora for all the
language pairs contain Tatoeba, Europarl, Glob-
alVoices, NewsCommentary, OpenSubtitles, TED,
WikiMatrix, QED, GNOME, bible-uedin, and AS-
PEC (Nakazawa et al., 2016). We collect them
from the OPUS project (Christodoulopoulos and
Steedman, 2015) and WAT.7 The number of the
out-of-domain parallel sentences for each language
pair is shown in Table 4.

C Implementation Details

Following Tang et al. (2020), we set the oversam-
pling temperature of 1.5 for all the settings. For
MLSC, we set the dropout of 0.3 to avoid overfit-
ting on small-scale training data. We used the batch
size of 1,024 tokens for all the settings. For our
word-level contrastive learning, we set the weight
of 0.1, the temperature of 0.2, d′ of 128, and a

7https://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2021/index.html
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Methods
en-ja en-vi en-it en-nl en-tr

Avg.→ ← → ← → ← → ← → ←
MLSC 15.4 11.8 29.6 28.6 27.5 32.7 29.1 36.4 11.6 14.9 23.76

+align 15.1 11.4 29.4 28.3 27.7 33.0 28.9 36.0 11.8 15.1 23.67
+w2w (ours) 15.3 11.6 29.7 28.2 27.6 32.4 28.6 35.8 10.8 14.4 23.44
+FA (ours) 15.5 11.6 29.6 28.0 27.8 33.2 29.1 35.9 11.2 14.9 23.68
+sent 15.1 11.6 29.6 28.3 27.3 32.7 28.1 36.6 11.3 14.7 23.53

mBART FT 17.8 17.0 34.1 35.7 32.5 38.0 32.6 41.6 18.7 23.1 29.11
+align 17.6 16.7 33.7 35.6 32.0 37.7 32.5 41.3 18.7 22.9 28.87
+w2w (ours) 17.6 17.2 34.2 35.7 32.5 38.2 32.1 41.7 18.7 22.9 29.08
+FA (ours) 17.5 17.7 34.0 35.2 32.4 37.9 32.3 41.4 18.6 23.1 29.01
+sent 17.8 16.5 33.7 35.6 32.2 38.1 32.5 41.2 18.1 22.9 28.86

Table 8: BLEU scores of 626_en-it-ja-nl-tr-vi system. Significantly better scores are in cyan, and marginal
improvements are in lightcyan. The significance test is done with Koehn (2004).

Methods
en-tr en-ro en-et en-kk en-my Avg.
→ ← → ← → ← → ← → ←

MLSC 9.3 12.6 25.0 26.2 10.8 15.1 0.5 5.3 15.1 15.6 13.55
+align 9.0 12.4 24.6 26.5 10.7 14.6 0.4 5.4 15.0 15.3 13.39
+w2w (ours) 9.4 12.6 24.8 26.8 10.8 15.1 0.5 5.8 15.2 15.9 13.69
+FA (ours) 9.1 12.2 24.8 26.7 10.7 14.8 0.3 5.6 15.0 15.6 13.48
+sent 8.7 12.1 24.5 26.0 10.4 14.5 0.4 5.3 13.8 14.6 13.03

mBART FT 17.7 22.2 33.8 37.1 14.5 24.3 1.8 14.1 17.8 23.1 20.64
+align 17.5 21.9 33.8 36.7 15.2 24.3 1.8 14.0 16.9 22.1 20.42
+w2w (ours) 17.6 22.2 34.2 37.5 15.0 25.0 1.2 14.1 18.3 23.8 20.89
+FA (ours) 17.5 22.2 34.3 37.5 14.9 25.1 1.3 14.4 17.9 23.6 20.87
+sent 17.2 22.1 34.2 37.0 14.2 24.1 1.6 14.0 17.7 23.4 20.55

Table 9: BLEU scores of 626_en-tr-ro-et-my-kk system. Significantly better scores are in cyan, and marginal
improvements are in lightcyan. The significance test is done with Koehn (2004).

Methods en-ja en-vi en-it en-nl en-tr Avg.

MLSC 52.7 84.6 91.0 85.7 89.7 80.9
+align 53.5 82.8 91.2 86.4 88.9 80.6
+w2w (ours) 73.4 85.7 91.4 84.7 83.1 83.7
+FA (ours) 71.3 84.9 91.3 83.8 82.0 82.7
+sent 87.2 84.7 91.1 87.7 86.6 87.5

mBART FT 87.1 96.2 97.3 94.6 98.5 94.7
+align 85.1 95.8 97.3 94.2 98.5 94.2
+w2w (ours) 81.6 91.4 94.7 90.8 89.6 89.6
+FA (ours) 82.6 92.3 95.0 91.7 90.4 90.4
+sent 76.2 88.3 93.6 88.7 89.8 87.3

Table 10: Sentence retrieval P@1 on the validation
set for 626_en-it-ja-nl-tr-vi.

smaller dropout of 0.2 because our proposed objec-
tive serves as a regularization part. We followed
the hyperparameter setting of Garg et al. (2019)
for word alignment-based joint NMT training. We

Methods en-tr en-ro en-et en-kk en-my Avg.

MLSC 86.2 84.0 85.4 64.4 72.4 78.5
+align 85.9 82.4 84.0 61.3 61.8 75.1
+w2w (ours) 79.6 88.1 76.8 77.4 83.7 81.1
+FA (ours) 77.0 86.1 69.8 75.7 73.4 76.4
+sent 76.3 77.6 55.2 63.8 71.4 68.9

mBART FT 98.0 92.7 96.0 92.9 94.7 94.9
+align 97.4 92.5 97.0 92.1 93.7 94.5
+w2w (ours) 94.3 95.6 96.8 86.0 96.2 93.8
+FA (ours) 94.3 96.3 97.3 87.9 96.2 94.4
+sent 94.6 97.3 95.4 93.1 95.7 95.2

Table 11: Sentence retrieval P@1 on the validation
set for 626_en-tr-ro-et-my-kk.

used 8 NVIDIA A100 for mBART FT and 8 TI-
TAN Xp for MLSC model training. The model is
validated every 1000 steps for 222_en-ja and 2000
steps for both two 626 settings. We do the early



Methods en-ja en-vi en-it en-nl en-tr Avg.

MLSC 61.8 54.6 42.8 42.1 42.7 48.8
+align 61.9 54.1 43.7 42.0 42.3 48.8
+w2w (ours) 64.0 64.7 55.8 57.7 52.8 59.0
+FA (ours) 58.2 65.2 59.2 60.1 48.1 58.2

mBART FT 64.5 57.2 47.4 45.9 47.2 52.4
+align 64.0 56.8 47.3 45.7 46.8 52.1
+w2w (ours) 71.3 70.1 60.6 62.9 57.8 64.5
+FA (ours) 68.6 69.4 63.2 64.7 57.4 64.7

Table 12: Word retrieval P@1 on the validation set
for 626_en-it-ja-nl-tr-vi.

Methods en-tr en-ro en-et en-kk en-my Avg.

MLSC 41.9 63.2 64.4 63.4 65.8 59.7
+align 40.9 63.2 63.9 63.4 66.2 59.5
+w2w (ours) 50.1 66.5 67.6 68.8 71.3 64.9
+FA (ours) 47.2 66.7 65.7 65.4 66.3 62.3

mBART FT 46.8 66.1 68.0 68.7 71.7 64.3
+align 46.4 65.9 67.8 68.5 71.1 63.9
+w2w (ours) 55.6 70.3 72.8 74.7 74.4 69.6
+FA (ours) 55.3 70.1 73.0 74.0 74.0 69.3

Table 13: Word retrieval P@1 on the validation set
for 626_en-tr-ro-et-my-kk.

stopping if no improvement of the validation loss
is observed for 8 checkpoints. The model with the
best validation loss was used for evaluation.

D BLEU Scores

We report all the BLEU results of 222_en-ja,
626_en-it-ja-nl-tr-vi, and 626_en-tr-ro-et-my-kk in
Table 5, 8 and 9, respectively.

E Sentence Retrieval Precision

We report the sentence retrieval precision for all
the systems in Tables 6, 10 and 11. The sentence
retrieval previsions are evaluated by using the val-
idation dataset of each language pair. The mean
pooled encoder output is used as the sentence em-
bedding. We use cosine similarity to conduct the
retrieval task, and report the average retrieval pre-
cision of both directions of each language pair.

F Word Retrieval Precision

We report the word retrieval precision for all the
systems in Tables 7, 12, and 13. The word re-
trieval precision are computed by using the valida-
tion dataset and the word2word alignments on it.
The mean pooled encoder output on corresponding
positions is used as the contextualized word em-
bedding. We use cosine similarity to implement
the retrieval for word pairs in a batch, and present

the average in-batch retrieval precision of both di-
rections of each language pair. Batch size is set as
512 tokens.


