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ABSTRACT

We introduce FILEX, a self-reinforcing stochastic process which models finite
lexicons in emergent language experiments. The central property of FILEX is that
it is a self-reinforcing process, parallel to the intuition that the more a word is
used in a language, the more its use will continue. As a theoretical model, FILEX
serves as a way to both explain and predict the behavior of the emergent language
system. We empirically test FILEX’s ability to capture the relationship between
the emergent language’s hyperparameters and the lexicon’s Shannon entropy.

1 INTRODUCTION

The methods of emergent language provide a uniquely powerful way to study the foundational
questions of how language arises and develops. While many papers have used emergent language to
empirically study such properties, there has been a relative lack of theoretical models accounting for
the empirical data. Such models are important insofar as they can both explain and make predictions
about the behavior of the actual system.

To this end, we introduce FILEX, a self-reinforcing stochastic process based on the Chinese restaurant
process, as a model of the Shannon entropy of an emergent language’s lexicon. This simple process
models a comparatively complex emergent language system1 (ELS), comprising environment dynam-
ics, neural networks, gradient descent, and reinforcement learning. While the complex system cannot
be reasoned about directly, FILEX is simple enough for this. In Section 2, we explain the emergent
language system which we are modeling. Section 3 introduces FILEX and how it corresponds to
presented ELS. Finally, we empirically test FILEX’s ability to capture the relationship between the
emergent language’s hyperparameters and the lexicon’s Shannon entropy in Section 4.2

Related Work For a survey of deep learning-based emergent language work, please see Lazaridou &
Baroni (2020). The environment of this paper is most analogous to the near-continuous color-naming
environment of Chaabouni et al. (2021) because both environments deal with the discretization of
a (near) continuous signal into a smaller number of atomic, discrete symbols. Insofar as this paper
studies the entropy of emergent language, it works in a similar space to Kharitonov et al. (2020);
Chaabouni et al. (2021). Mordatch & Abbeel (2018) use the Chinese restaurant process as an auxiliary
reward to inductively bias the emergent language learning process. Although this partly inspired the
model presented in this work, the methodological roles of an auxiliary reward and theoretical model
are distinct.

On a methodological level, this paper is similar to Resnick et al. (2020) which also develops
a theoretical model for an emergent language phenomenon. Namely, their model predicts the
compositionality of an emergent communication protocol dependent on the capacity of the neural-
network agents. Analogously, out model predicts the entropy of the emergent communication protocol
dependent on learning rate, replay buffer size, bottleneck size, or training steps.

1Emergent language system or ELS refers to the combination of agents (neural networks), the environment,
and the training procedure used as part of an emergent language experiment.

2Code is available at
https://github.com/brendon-boldt/simple-emergent-navigation
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2 EMERGENT LANGUAGE SYSTEM

Environment In this paper we use a simple 2-dimensional, obstacle-free navigation environment.
A sender agent observes the position of a receiver agent, sends a message to the receiver, and the
receiver takes a step. For a given episode, the receiver is initialized uniformly at random within
a circle and must navigate towards a smaller circular goal region at the center. An illustration is
provided in Appendix A. The receiver’s location and action are continuous variables.

Agent Architecture Our architecture comprises two agents, conceptually speaking, but in practice,
they are a single neural network. The sender is a disembodied agent which observes the location of
the receiver and passes a message in order to guide it towards the goal. The receiver is an agent which
receives the message as its only input and takes a step solely based on that message. The sender and
receiver are randomly initialized at the start of training, trained together, and tested together.

The observation of the sender is a pair of floating-point values representing the receiver’s location.
The sender itself is a 2-layer perceptron with tanh activations. The output of the second layer is
passed to a Gumbel-Softmax bottleneck layer (Maddison et al., 2017; Jang et al., 2017) which
enables learning a discrete, one-hot representation.3 The activations of this layer can be thought of as
the words forming the lexicon of the emergent language. At evaluation time, the bottleneck layer
functions deterministically as an argmax layer, emitting one-hot vectors. The receiver is a 1-layer
perceptron which takes the output of the Gumbel-Softmax layer as input. The output is a pair of
floating-point values which determine the step direction and magnitude of the receiver. An illustration
and precise specification are provided in Appendices A and B.

Optimization Since our environment involves multi-step rewards, we use proximal policy opti-
mization (PPO) (Schulman et al., 2017) paired with Adam to optimize the neural networks; we
use PPO specifically because it is more stable than a vanilla policy gradient method. We the PPO
implementation of Stable Baselines 3 built on PyTorch (Raffin et al., 2019; Paszke et al., 2019).

Rewards We make use of two different rewards in our configuration, a base reward and an shaped
reward. The base reward is simply a positive reward of 1 given if the receiver reaches to the goal
region before the episode ends and no reward otherwise. The shaped reward, given at every timestep,
is the decrease in distance to the goal, that is |s| · cos θ, where |s| is the size of the step, and θ is the
bearing to the goal; for example, taking the maximum step size directly towards/away from the goal
yields a reward of 1/−1.

3 FILEX STOCHASTIC PROCESS

FILEX4 is a mathematical model based on the Chinese restaurant process (CRP) (Blei, 2007; Aldous,
1985), an iterative stochastic process which yields a probability distribution over the positive integers.
The basic idea of the CRP is that in a hypothetical restaurant, each table corresponds to a positive
integer; as each customer walks in, they sit at a random table with a probability proportional to the
number of people already at that table. The key property here is that the process is self-reinforcing;
tables with many people are likely to get even more. By analogy to language, the more a word is
used the more likely it is to continue to be used. For example, speakers may develop a cognitive
preference for it, or it gets passed along to subsequent generations as a higher rate (Francis et al.,
2021). Furthermore, self-reinforcing processes based on the CRP have been used to model the
power-law distributions found in natural language (Goldwater et al., 2011).

Formulation The pseudocode describing FILEX is given in Figure 1a. The process starts with an
array of weights, length S, initialized to α/S. α is a positive, real-valued hyperparameter controlling
the uniformity of the final result (high α, high uniformity). At each iteration, we select β samples
(i.e., indices) with replacement from a categorical distribution parameterized by the weights. For

3Using a Gumbel-Softmax bottleneck layer allows for end-to-end backpropagation, making optimization
faster and more consistent than using a backpropagation-free method like REINFORCE (Kharitonov et al., 2020;
Williams, 1992).

4Short for “finite lexicon stochastic process”
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1 alpha: float > 0
2 beta: int > 0
3 N: int >= 0
4 S: int > 0
5
6 weights = array(size = S)
7 weights.fill(alpha / S)
8 for _ in range(N):
9 w_copy = weights.copy()

10 for _ in range(beta):
11 i = sample_categorical(w_copy)
12 weights[i] += 1 / beta
13 return weights / sum(weights)

(a) FILEX written in Python pseudocode.

Ind. var. ELS FILEX

1/α −0.86 −0.87
β +0.84 +0.95
N −0.61 −0.53
S +0.65 +0.77

(b) Kendall rank correlation coefficient
for each hyperparameter in both the
ELS and FILEX. All values have p <
0.005

Figure 1

each, index, we increment the weight at the index by 1/β so the total update for every iteration is
always 1. This proceeds N times after which the weights are normalized to 1 and returned.

The two key differences between FILEX and the CRP are the hyperparameters S and β. FILEX only
has finitely many parameters so as to match the fact that the agents in the ELS have a fixed-size
bottleneck layer, that is, a fixed, finite lexicon. Secondly, β is introduced to account for the fact that
certain RL algorithms like PPO accumulate a buffer of steps from the environment with the same
parameters before performing gradient descent.

Analogy Identifying the correspondence between the emergent language system and FILEX is key
to its explanatory value. Firstly, the weights of FILEX correspond the learned likelihood with which
a given bottleneck unit is used in the ELS; in turn, both of these correspond to the frequency with
which a word is used in a language. Each iteration of FILEX is analogous to a whole cycle in the ELS
of simulating episodes in the environment, receiving the rewards, and performing gradient descent
with respect to the rewards. In light of this, we can specifically draw connections between the four
hyperparameters of FILEX. As mentioned before β corresponds directly to the number of steps in
the environment the agent takes before performing an update of the parameters. S corresponds the
size of the bottleneck layer in the ELS. N corresponds the number of steps taken in the environment
throughout the course of training the ELS.

α controls the initialization of weights of FILEX, and it corresponds, in part, to the inverse of the
size of the parameter updates in the ELS, that is, the learning rate. We can see this by looking at the
sum of the weights in FILEX: the sum is equal to α + n after the nth iteration. Since the both the
categorical distribution and the final result normalize the weights, they are invariant to scaling by a
positive number. Hence, we could scale by 1/α and say that the initial weights sum to 1 with the sum
being 1 + n/α after n iterations. Thus, varying α is equivalent to scaling the parameter updates by
1/α.

Role of the Model The key feature of a theoretical model is that it allows us to reason directly about
how the phenomena in question work in order to direct subsequent empirical research. To achieve
this, the model must make simplifications from the full system while still accurately describing
some aspect of that system; in FILEX’s case, we remove the environment and reward dynamics from
consideration while specifically aiming to explain trends in lexicon frequency. On the other hand,
the full, simulated system is necessary to verify that the behavior described by the model is, in fact,
accurate. Wherever the model is inaccurate, it must either be revised or have its scope limited so as to
remain in accord with the real system. In this way, the theoretical model and the ELS work in tandem
to better the understanding of various phenomena in emergent language.
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Figure 2: Plots for entropy vs. various hyperparameters. FILEX is plotted in orange and the ELS in
blue.

4 EMPIRICAL EVALUATION

Our evaluations use the Shannon entropy (Shannon, 1948) of the lexicon as the dependent variable.
For the ELS, the entropy is calculated from how frequently each of the bottleneck units are used
across 3000 episodes; for FILEX, the entropy is calculated directly over the returned weights.
Hyperparameter details are given in Appendix B. The quantitative evaluation is performed by
comparing the Kendall rank correlation coefficient between each hyperparameter and entropy for
both FILEX and the ELS, shown in Figure 1b. We see that FILEX both produces the correct rank
correlation as well as approximating the degree of correlation.

Beyond measuring the correlation, we present the plots of entropy vs. the hyperparameters for both
FILEX and the ELS in Figure 4 for qualitative evaluation. With the exception of the experiments
varying S, S = 26 = 64, meaning that the maximum entropy is 6 bits. Although there is a conceptual
correspondence between the hyperparameters of FILEX and ELS, the simplifications of the theoretical
model mean that the numerical values of the hyperparameters are not in one-to-one correspondence
with the ELS. In light of this, we choose hyperparameters for which FILEX best matches the behavior
of the ELS; as a result, the x-axes of the plots are not identical.

α and Learning Rate FILEX’s primary prediction regarding α is that as α increases, the entropy
of the final distribution increases because for a high α, the updates do not move the distribution far
from uniformity whereas with a low α, the updates make more a difference and can concentrate
the distribution, leading to a lower entropy. This correlation (with 1/α) is borne out in the ELS
experiment varying learning rate; additionally, both plots how a decreasing sigmoid pattern starting
from the maximum entropy and going to a non-minimal entropy. Although the adaptive nature of the
Adam optimizer weakens the analogy between these two hyperparameter, their correspondence is
still evident empirically.

β and Rollout Buffer FILEX’s primary prediction regarding β is that as β increases, the entropy of
the distribution increases because the updates to the weights at each iteration are “smoother,” lessening
the accumulation on particular weights. With one exception, this trend is matched by ELS, including
the asymptotic shape as β/buffer size increases. The ELS plot, though, has a minimum entropy of 2
bits instead of 0 bits because the navigation requires 3 or more “words” (each corresponding to one
direction) to span a 2-dimensional space5, whereas no such restriction exists in FILEX.

S and Bottleneck Size Note that in this experiment, α is increased in proportion to S so that each
individual weight has the same initialization for every S, otherwise, a constant α would be “spread

52 bits of entropy corresponds to 4 actions; we do not currently have explanation for why the ELS never
settles on 3, the theoretical minimum.
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thin.” FILEX’s primary prediction regarding S is that entropy will simply increase in proportion to S
which is matched by ELS experiment.

N and Training Steps FILEX’s primary prediction regarding N is that for low values, the entropy
is maximized as the weights are close to their uniform initialization, but, as N increases, the entropy
decreases asymptotically to some non-minimal value. These predictions are generally matched by the
ELS experiment.

5 CONCLUSION

In this paper we have introduced FILEX, based on the Chinese restaurant process, as a way to explain
and predict the behavior of lexicon entropy in a simple emergent language system. FILEX is a
model simple enough to reason about yet nuanced enough to capture the behavior the more complex
system as borne out by experimentation. Building such theoretical models, generally speaking, is
an important step in emergent language research as it moves the field toward developing general
scientific accounts of the phenomena observed through empirical investigation. These scientific
accounts are what will prove most useful in applying emergent language to linguistics and beyond.
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A ENVIRONMENT AND AGENT ARCHITECTURE

Goal

(a) The receiver (pictured) is rewarded for
moving towards the goal region at the center.

S-agent
(perceptron)

R-agent
(perceptron)

(x, y)
action

(x, y)
location

Gumbel-Softmax

(b) The agent architecture is a single neural
network although conceptually two separate
agents: the sender and the receiver.

Figure 3
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B HYPERPARAMETERS FOR EXPERIMENTS

B.1 ELS EXPERIMENT CONFIGURATIONS

Environment The environment is a circle 9 units wide with a circular goal region at the center
which has a radius of 1 unit. The receiver can move up to 1 unit per step. The episode terminates
after the 27th if the agent has not reached the goal.

Agent Architecture

• Bottleneck size: 64
• Architecture; sender is 1-3 and receiver is 5; bottleneck size is N

1. Linear w/ bias: 2 in, 32 out
2. Tanh activation
3. Linear w/ bias: 32 in, N out
4. Gumbel-Softmax: N in, N out
5. Linear w/ bias: N in, 2 out (action) and 1 out (value for PPO)

• Bottleneck (Gumbel-Softmax) temperature: 1.5

• Weight initialization: U
(
−
√

1
n ,

√
1
n

)
, where n is the input size of the layer (PyTorch 1.10

default)

Optimization Unless otherwise noted, we use the default hyperparameters for PPO as spec-
ified at https://stable-baselines3.readthedocs.io/en/v1.0/modules/ppo.
html. Hyperparameters in Table 1 were changed from their default.

Hyperparameter Value

Total training steps 5× 104

Evaluation episodes 3× 103

Learning rate 3× 10−3

Rollout buffer size 256
Batch size 64
Temporal discount factor (γ) 0.9

Table 1: Optimization hyperparameters changed from their default value.

Learning rate corresponds applies to the whole end-to-end network.

Experiments Each experiment uses a logarithmic sweep across hyperparameters; the sweep is
defined by Equation 1, where x and y are the inclusive upper and lower bounds respectively and n
is the number steps to divide the interval into. The floor function is applied if the elements must be
integers.

LS(x, y, n) =
{
x ·

(y
x

) i
n−1

∣∣∣∣ i ∈ {0, 1, . . . , n− 1}
}

(1)

Table 2 provides the varied hyperparameters for the ELS experiments.

ELS Low High Steps

learning rate 10−4 10−1 200
buffer size 23 215 600
bottleneck size 23 28 400
training steps 102 106 400

Table 2: Logarithmic sweeps for each of the ELS hyperparameters. All other hyperparameters keep
their default values.
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B.2 FILEX EXPERIMENT CONFIGURATIONS

The hyperparameters for the FILEX experiments are provided in Table 3.

α β S N

LS(10−4, 10−1, 200) 10 64 103

10−3 LS(23, 215, 600) 64 104

5× 10−3 · S† 10 LS(23, 28, 400) 103

1 5 64 LS(102, 106, 400)

Table 3: Hyperparameters for the empirical evaluation of FILEX. Each row corresponds to one
experiment (which has one varying hyperparameter, specified by LS(·, ·, ·) from Equation 1). †α is
multiplied by the hyperparameter S so that the individual weights are initialized to 5× 10−3.

C FURTHER EXPERIMENTAL RESULTS
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Figure 4: Plots for average steps to complete episodes (lower is better) vs. various hyperparameters
for the ELS. All data points have a 100% success rate.
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