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ABSTRACT

Robustness to adversarial perturbations often comes at the cost of a drop in accuracy
on unperturbed or clean instances. Most existing defense mechanisms attempt to
defend the learner from attack on all possible instances, which often degrades the
accuracy on clean instances significantly. However, in practice, an attacker might
only select a small subset of instances to attack, e.g., in facial recognition systems
an adversary might aim to target specific faces. Moreover, the subset selection
strategy of the attacker is seldom known to the defense mechanism a priori, making
it challenging to attune the mechanism beforehand. This motivates designing
defense mechanisms which can (i) defend against attacks on subsets instead of all
instances to prevent degradation of clean accuracy and, (ii) ensure good overall
performance for attacks on any selected subset. In this work, we take a step towards
solving this problem. We cast the training problem as a min-max game involving
worst-case subset selection along with optimization of model parameters, rendering
the problem NP-hard. To tackle this, we first show that, for a given learner’s model,
the objective can be expressed as a difference between a γ-weakly submodular
and a modular function. We use this property to propose ROGET, an iterative
algorithm, which admits approximation guarantees for a class of loss functions.
Our experiments show that ROGET obtains better overall accuracy compared to
several state-of-the-art defense methods for different adversarial subset selection
techniques.

1 INTRODUCTION

Recent years have witnessed a dramatic improvement in the predictive power of the machine learning
models across several applications such as computer vision, natural language processing, speech
processing, etc. This has led to their widespread usage in several safety critical systems like au-
tonomous car driving (Janai et al., 2020; Alvarez et al., 2010; Sallab et al., 2017), face recognition (Hu
et al., 2015; Kemelmacher-Shlizerman et al., 2016; Wang & Deng, 2021), voice recognition (Myers,
2000; Yuan et al., 2018), etc., which in turn requires the underlying models to be security complaint.
However, most existing machine learning models suffer from significant vulnerability in the face of
adversarial attacks (Szegedy et al., 2014; Carlini & Wagner, 2017; Goodfellow et al., 2015; Baluja
& Fischer, 2018; Xiao et al., 2018; Kurakin et al., 2017; Xie & Yuille, 2019; Kannan et al., 2018;
Croce & Hein, 2020; Yuan et al., 2019; Tramèr et al., 2018), where instances are contaminated with
small and often indiscernible perturbations to delude the model at the test time. This may result in
catastrophic consequences when the underlying ML model is deployed in practice.

Driven by this motivation, a flurry of recent works (Madry et al., 2017; Zhang et al., 2019b; 2021b;
Athalye et al., 2018; Andriushchenko & Flammarion, 2020; Shafahi et al., 2019; Rice et al., 2020)
have focused on designing adversarial training methods, whose goal is to maintain the accuracy of
ML models in presence of adversarial attacks. In principle, they are closely connected to robust
machine learning methods that seek to minimize the worst-case performance of the ML models with
adversarial perturbations. In general, these approaches assume equal likelihood of adversarial attack
across each instance. However, in several applications, an adversary might selectively wish to attack
a specific subset of instances, which may be unknown to the learner. For example, an adversary can
only be interested in perturbing images of specific persons to evade facial recognition systems (Xiao
et al., 2021; Vakhshiteh et al., 2021; Zhang et al., 2021b; Sarkar et al., 2021; Venkatesh et al., 2021);
in traffic signs classification, the adversary may like to perturb only the stop signs, which can have
more adverse impact during deployment. Therefore, the existing adversarial training methods can be
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overly pessimistic in terms of their predictive power, since they consider adversarial perturbation for
each instance. We discuss the related works in more detail in Appendix B.

1.1 OUR CONTRIBUTIONS

Responding to the above limitations, we propose a novel robust learning framework, which is able
to defend adversarial attacks targeted at any chosen subset of examples. Specifically, we make the
following contributions.

Learning in presence of perturbation on adversarially selected subset. We consider an attack
model, where the adversary selectively perturbs a subset of instances, rather than drawing them
uniformly at random. However, the exact choice of the subset or its property remains unknown to the
learner during training and validation. Consequently, a learner cannot adapt to such specific attack
well in advance through training or cross-validation. To defend these attacks, we introduce a novel
adversarial training method, where the learner aims at minimizing the worst-case loss across all the
data subsets. Our defense strategy is agnostic to any specific selectivity of the attacked subset. Its key
goal is to maintain high accuracy during attacks on any selected subset, rather than providing optimal
accuracy for any specific subset.

To this end, we posit our adversarial training task as an instance of min-max optimization problem,
where the inner optimization problem seeks the data subset that maximizes the training loss and, the
outer optimization problem then minimizes this loss with respect to the model parameters. While
training the model, the outer problem also penalizes the loss on the unperturbed instances. This
allows us to optimize for the overall accuracy across both perturbed and unperturbed instances.

Theoretical characterization of our defense objective. Existing adversarial training meth-
ods (Madry et al., 2017; Zhang et al., 2019b; Robey et al., 2021) involve only continuous optimization
variables— the model parameters and the amount of perturbation. In contrast, the inner maximization
problem in our proposal searches over the worst-case data subset. This translates our optimization
task into a parameter estimation problem in conjunction with a subset selection problem, which
renders it NP-hard. We provide a useful characterization of the underlying training objective that
would help us design approximation algorithm to solve the problem. Given a fixed ML model, we
show that the training objective can be expressed as the difference between a monotone γ-weakly
submodular function and a modular function (Theorem 2). This allows us to leverage distorted greedy
algorithm (Harshaw et al., 2019) to optimize the underlying objective.

Approximation algorithms. We provide ROGET (RObust aGainst adversarial subsETs), a family of
algorithms to solve our optimization problem, by building upon the proposal of (Adibi et al., 2021),
that admits approximation guarantees. In each iteration, ROGET first applies gradient descent (GD)
or stochastic gradient descent step to update the estimate of the model parameters and then applies
distorted greedy algorithm to update the estimate of attacked subset of instances. We show that
ROGET admits approximation guarantees for convex and non-convex training objective (Thoerem 5),
where in the latter case we require that the objective satisfies Polyak-Lojasiewicz (PL) condition
(Theorem 4). Our analysis can be applied in any min-max optimization setup where the inner
optimization problem seeks to maximize the difference between a monotone γ-weakly submodular
and a modular function and therefore, is of independent interest.

Finally, we provide a comprehensive experimental evaluation of ROGET, by comparing them against
seven state-of-the-art defense methods. Here, in addition to hyperparameter set by the baselines in
their papers, we also use a new hyperparameter selection method, which is more suited in our setup.
Unlike our proposal, the baselines are not trained to optimize for the worst case accuracy. To reduce
this gap between the baselines and our method, we tune the hyperparameters of the baselines, which
would maximize the minimum accuracy across a large number of subsets chosen for attack. We
observe that, ROGET is able to outperform the state-of-the-art defense methods in terms of the overall
accuracy across different hyperparameter selection and different subset selection strategies.

2 PROBLEM FORMULATION

Instances, learner’s model and the loss function. We consider a classification setup where x ∈
X = Rd are the features, y ∈ Y are the discrete labels. We denote {(xi, yi)}i∈D to be the training
instances where D denotes the training dataset. We use hθ ∈ H to indicate the learner’s model,
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whereH is the hypothesis class and θ ∈ Θ is the parameter vector of the model. We use the cross
entropy loss `(hθ(x), y) in the paper.

Adversarial perturbation on selected subset. We assume that the adversary’s goal is to selectively
attack a specific subset of instances Slatent— instead of every possible instances in the data or drawing
instances uniformly at random. The adversary then uses an adversarial perturbation method to
generate xadv

i using xi for all for i ∈ Slatent such that xadv
i is close to xi, but the model misclassifies

xadv
i . Now, it is important to note that neither the strategy behind selecting Slatent nor the adversarial

perturbation method is known to the learner. Hence, during training, we use aφ : X → X as the
learner’s belief about the adversarial network or the perturbation method with parameter vector
φ ∈ Φ similar to (Baluja & Fischer, 2018; Xiao et al., 2018; Mopuri et al., 2018), where Φ is domain
of φ. Many popular attacks like FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2017) are
un-parameterized and they induce perturbation of one point independently of others. Still, we assume
a parameterized adversary model (Baluja & Fischer, 2018; Xiao et al., 2018; Mopuri et al., 2018) to
make the formulation more generalized as one can always overparameterize such a model to induce
enough capacity and mimic pointwise attacks.

Proposed adversarial training problem. Let us assume, for instance, that the subset selection
strategy of the adversary is revealed to the learner. Following this strategy, the learner can easily
compute the underlying subset S ⊂ D to mimic the adversary and minimize the sum of the loss on
the perturbed instances i ∈ S and the unperturbed instances j ∈ D\S. However, in practice, the
learner may not have any knowledge about the underlying subset selection strategy. In such a case,
the goal of a defense algorithm should be to ensure high overall accuracy in the face of attacks on
all possible subsets. To this end, we design an adversarial training framework, which attempts to
minimize the worst case loss across all subsets, as described below.

Given a set of training instances {(xi, yi)}i∈D, we defend the attacks on selected subset of instances
by training a new model hθ which minimizes the highest possible loss on the perturbed instances
aφ(xi) with i ∈ S across subsets S ⊂ D of size at most b, while ensuring that the new predictions
hθ(xj) and the labels yj remain close on the unperturbed instances j 6∈ S. Given the the learner’s
belief about the adversarial network aφ, we define the learner’s loss function as follows:

F (hθ, S | aφ) =
1

|D|

[∑
i∈S

`(hθ(aφ(xi)), yi) +
∑

j∈D\S

ρ `(hθ(xj), yj)

]
. (1)

The parameter ρ is a regularization parameter which gives additional flexibility to control the trade-off
between accuracy on clean examples and perturbed examples. Then, we formulate our adversarial
training problem as the following bi-level discrete-continuous optimization task.

minimize
θ∈Θ

maximize
S:|S|≤b

F (hθ, S | aφ∗(θ,S)) (2)

where, φ∗(θ, S) = argmax
φ∈Φ

∑
i∈S

[`(hθ(aφ(xi)), yi)− µC(aφ(xi),xi)]. (3)

The optimization problem (2) is a min-max game where the inner optimization problem aims to find
the subset S of size which provides the highest loss and the outer minimization problem aims to find
the model hθ that minimizes this loss.

The optimization problem (3) is the learner’s belief about the adversary’s strategy. It need not be true
in practice. In Section 4, we perform experiments when the true adversary’s models differ from aφ
during test. Eq. (3) provides the learner’s estimate about the parameters of the adversarial network.
Here, C(aφ(xi),xi) is cost of perturbing xi to aφ(xi) often measured using different notions of
distances, e.g., normed differences or their squares, etc. In such a case, this optimization problem (3)
can also be seen as the dual of the constrained optimization problem (Madry et al., 2017; Robey
et al., 2021) given by maxφ

∑
i∈S `(hθ(aφ(xi)), yi) such that C(aφ(xi),xi) ≤ ξ(µ) where ξ is

dependent on µ.

Note that, the adversary can select the subset S in both deterministic or probabilistic manner. For
example, it can attack images of specific persons in facial recognition systems, perturb the instances
with stop-signs in traffic signs classification system, etc. On the other hand, it can select instances with
probability proportional to the uncertainty of a classifier. Similar to the optimization problems (2)–
(3), one can derive a continuous min-max optimization problem when S is drawn from a probability
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distribution. We show the connection between this continuous optimization problem and our discrete
continuous optimization problem in Appendix C.

Hardness analysis. The inner optimization problem in Eq. (2) involves combinatorial search over S
for a fixed θ. However, while doing so, it requires to compute φ∗(θ, S). This makes our adversarial
training problem NP-Hard (see Apppendix C for a proof).

3 PROPOSED APPROACH

In this section, we provide algorithms to solve the optimization problem (2). We first characterize it
as a difference between a γ-weakly submodular function and a modular function. Next, we design
ROGET, a family of algorithms to solve our adversarial training problem (2).

3.1 SET FUNCTION THEORETIC CHARACTERIZATION OF F

Here, we provide a characterization of the objective function F (hθ, S | aφ) using the notions of
monotonicity and γ-weak submodularity, which would lead us to design an approximation algorithm
to solve our training problem (2). To do so, we first formally state the definitions of these notions.
Definition 1. Given a set function Q : 2D → R, we define the marginal gain of Q as Q(k |S) :=
Q(S ∪ {k})−Q(S). The function Q is monotone (non-decreasing) if Q(k |S) ≥ 0 for all k ∈ D\S.
The function Q is called γ-weakly submodular if for some γ ∈ (0, 1], we have

∑
k∈T\S Q(k |S) ≥

γ[Q(T ∪ S) −Q(S)] whenever S ⊂ T ⊆ D. Here, γ is called the submodularity ratio of Q. The
function Q is modular if Q(k |S) = Q(k |T ) for all S ⊂ T ⊂ D and k ∈ D\T .

Alternative representation of F (hθ, S | aφ∗(θ,S)). Given a regularization function R(θ) and a
regularization parameter λ > 0, we define two set functions G(θ, S) and m(θ, S) as follows:

Gλ(θ, S) =
1

|D|

[∑
i∈S

[λR(θ) + `(hθ(aφ(xi)), yi)] +
∑
j∈D

ρ `(hθ(xj), yj)

]
(4)

mλ(θ, S) =
1

|D|
∑
i∈S

[λR(θ) + ρ `(hθ(xj), yj)] . (5)

Then, we represent F (hθ, S | aφ∗(θ,S)) as the difference between the above functions, i.e.,

F (hθ, S | aφ∗(θ,S)) = Gλ(θ, S)−mλ(θ, S). (6)
Here, mλ is a modular function. Note that the above equality holds for any value of λ > 0. However,
as we shall see next, the submodularity ratio of Gλ depends on λ which affects the performance of
the approximation algorithm designed in Section 3.2. Next, we present some assumptions which
would be used to characterize the above representation of F .
Assumptions 1. (1) Lipschitz continuity: (a) The loss function `(h(x), y) is Lh-Lipschitz with
respect to h, (b) hθ(x) is Lx-Lipschitz with respect to x, (c) the adversarial network aφ(.) is Lφ-
Lipschitz with respect to φ. (2) Stability of φ∗(θ, S): The learner’s estimate about the parameter for
the adversarial network is stable (Bousquet & Elisseeff, 2002; Charles & Papailiopoulos, 2018; Hardt
et al., 2016), i.e., the solution φ∗(θ, S) of the optimization (3) satisfies ‖φ∗(θ, S∪k)−φ∗(θ, S)‖ ≤
β/|S| for some β > 0 and all θ. Stability holds for a wide variety of loss functions including
convex losses Bousquet & Elisseeff (2002), a class of neural models called Polyak-Lojasiewicz (PL)
losses Charles & Papailiopoulos (2018), etc.. (3) Metric property of the cost of perturbation C:
The cost of perturbation C used in Eq. (3) is a distance metric. Specifically, it follows the triangle
inequality, i.e., C(x′,x) ≤ C(x′,x′′) + C(x′′,x). (4) Norm-boundedness of C: The cost of
perturbation C is a bounded by an `2 norm, i.e., C(x′,x) ≤ q||x′ − x||. In the context of several
prior works (Goodfellow et al., 2015; Madry et al., 2017) use `∞ distance which is bounded by `2
norm. (5) Boundeness of Θ and Φ: We assume that the parameter space of both the learning model
and adversarial network are bounded, i.e., ||θ||2 ≤ θmax and ||φ||2 ≤ φmax.

Monotonicity and γ-weakly submodularity of Gλ. We now present our results on monotonicity
and γ-weak submodularity of Gλ (see Appendix E.1 for a proof).
Theorem 2. Given Assumptions 1 let there be a value of minimum non-zero constant λmin > 0 such
that `∗ = minx∈X ,y∈Y minθ[λminR(θ) + `(hθ(x), y)− 2qµβLφ] > 0 where q and β are given in
Assumptions 1. Then, for λ > λmin, we have the following statements:
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(1) Gλ(S) is monotone in S.

(2) Gλ(S) γ-weakly submodular with γ > γ∗ = `∗[`∗ + 2LhLxLφφmax + 3qµβLφ]−1.

3.2 ROGET: PROPOSED ALGORITHM TO SOLVE THE ADVERSARIAL TRAINING PROBLEM (2)

In this section, we develop ROGET to solve our optimization problem (2) by building upon the
proposal of Adibi et al. (2021). However, they design algorithms to solve the min-max problem on
those functions that are submodular in S and convex in θ. In contrast, ROGET applies to the proposed
objective F (hθ, S | aφ∗(θ,S)) (1) which is the difference between a γ-weakly submodular function

Algorithm 1 ROGET Algorithm
Require: Training set D, regularization parameter λ,

budget b, # of iterations T , learning rate η.
1: INIT(hθ), Ŝ0 ← ∅
2: for t = 0 to T − 1 do
3: θ̂t+1 ← TRAIN(θ̂t, Ŝt, ηt)

4: Ŝt+1 ← SDG (Gλ,mλ, θ̂t+1, b).
5: θ̂ = θT
6: return θ̂, ŜT
1: procedure SDG (Gλ,mλ, θ̂, b)
2: S ← ∅
3: for s ∈ [b] do
4: γ′ ← (1− γ/b)b−s−1

5: Randomly draw a subset B from D
6: M ← [γ′Gλ(θ, e |S)−mλ(θ, {e})]e∈B
7: e∗ = argmax

e∈B
M [e]

8: if γ′Gλ(θ, e∗ |S)−mλ(θ, {e∗})≥0 then
9: S ← S ∪ {e}

10: return S
1: procedure TRAIN(θ̂, S, η)
2: //SGD for k steps
3: for i ∈ [k] do
4: Draw i ∼ D uniformly at random
5: if i ∈ S then
6: θ̂ ← θ̂ − η ∂`(hθ(aφ(xi)),yi)

∂θ

∣∣
θ=θ̂

7: else
8: θ̂ ← θ̂ − η ρ ∂`(hθ(xi),yi)

∂θ

∣∣
θ=θ̂

9: return θ̂

and a modular function, and may also be non-
convex in θ. In the following, we describe them
in details beginning with an outline of the pro-
posed algorithm.

Development of ROGET. Our key goal is to
optimize minθ maxS F (hθ, S | aφ∗(θ,S)). Now,
we aim to develop an algorithm which would it-
erate over the inner and outer optimization prob-
lem and gradually refine S and θ.

Iterative method for the inner optimization on
S: Now, given a fixed θ, the inner maximiza-
tion problem becomes a set function optimiza-
tion problem. If F were a monotone sub-
modular function, then we could have applied
the well known greedy algorithm (Nemhauser
et al., 1978). At each step, such a greedy
algorithm would seek for an element e that
would maximize the marginal gain F (hθ, S ∪
e | aφ∗(θ,S∪e))−F (hθ, S | aφ∗(θ,S)) and update
S → S ∪ {e}.
However, in our context, the function F may
neither be monotone nor submodular and thus,
we cannot apply the greedy algorithm for it-
erating over the inner optimization loop Nev-
ertheless, we note that it can be expressed as
difference between the γ-weakly submodular
function Gλ(θ, S) and the modular function
mλ(θ, S), as suggested by Eq. (6). As a result,
we can adopt the stochastic distorted greedy al-
gorithm (Harshaw et al., 2019) which, instead
of maximizing exact marginal gain, maximizes a distorted marginal gain (1− γ)b−s−1Gλ(θ, e |S)−
mλ(θ, {e}) for all e 6∈ S at each step (procedure SDG in Algorithm 1). If this distorted marginal
gain is positive, we update S → S ∪ {e}. This method gives an approximation guarantee for the
inner optimization problem (due to Harshaw et al. (2019)).
Theorem 3 (Harshaw et al. (2019)). Given a fixed θ and that the size of the set B is |B| =
(|D|/b) log(1/δ) in line 5 of the procedure SDG. If the procedure SDG returns S as the output, then
we have

E[Gλ(θ, S)−mλ(θ, S)] ≥ [1− exp(−γ)]Gλ(θ, OPT )−mλ(θ, OPT ). (7)
where OPT is the optimal solution of the inner optimization problem. Here, expectation is carried
out over the randomness of selection of B.

Iterative routine for outer optimization on θ: Having updated S using the distorted greedy algorithm
described above, we minimize the F (hθ, S | aφ∗(θ,S)) with respect to θ using few steps of gradient
descent (called as k-SGD) per each round of update.

Outline of ROGET: We sketch the pseudocode of ROGET in Algorithm 1. It updates θ and S in an
iterative manner. During iteration t, ROGET updates θ̂t → θ̂t+1 by running few steps of gradient
descent (line 3)— where we fix S at Ŝt and attempt to reduce the loss F (hθ, Ŝt | aφ∗(θ,Ŝt)) with
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respect to θ. In the next step, we fix θ̂t and update Ŝt → Ŝt+1 using stochastic distorted greedy
algorithm (SDG, line 4). Note that during each time t, we compute St for a fixed θ̂ sequentially in b
steps. Having obtained S at s < b, we update it such that it has highest positive distorted marginal
gain (1− γ)b−s−1Gλ(θ, e |S)−mλ(θ | {e}) and then, it is included into the set S to have S ∪ {e}.
Approximation guarantees. In general, F is a highly non-convex function of θ and therefore,
obtaining an approximation guarantee for any general F is extremely challenging. Hence, we derive
approximation guarantee for a restrictive class of loss functions, called Polyak-Lojasiewicz (PL)
loss functions. A function f is Polyak-Lojasiewicz if ||∇θf(θ)|| ≥ σ[f(θ) − minθ′ f(θ′)] In
Appendix E.2, we also present our results when F is convex in θ. Next, we initiate our discussion
with a few more assumptions in addition to Assumptions 1.
Assumptions 2. (1) L-smoothness of F . For all θ ∈ Θ and for all S ∈ 2V , we have
||∇θF (hθ, S | aφ∗(θ,S)) − ∇θ′F (hθ′ , S | aφ∗(θ′,S))|| ≤ L||θ − θ′||. (2) Boundedness of gradi-
ents of F . We have ||∇θF (hθ, S | aφ∗(θ,S))|| ≤ ∇max for all θ ∈ Θ and for all S ∈ 2V . (3)
Boundedness of loss ` and model hθ. For all θ ∈ Θ, |`(hθ(xi), yi)| < `max and ||hθ|| < hmax. (4)
Size ofB in SDG procedure. The size of the set Bk is |Bk| = (|D|/b) log(1/δ) (line 5 in procedure
SDG used in Algorithm 1). (5) Adversarial network always perturbs a feature. The cost of
perturbation C(aφ∗(θ,S)(xi),xi) > Cmin > 0. Moreover, Cmin > λθ2

max(e−γ
∗

+δ)/(1−e−γ∗−δ)
where γ∗ is the submodularity ratio (Theorem 2).

We provide justification for all the assumptions in Appendix D. Now we state the approximation
guarantee of Algorithm 1 for Polyak-Lojasiewicz (PL) loss (see Appendix E.2 for proof).
Theorem 4. Given the conditions of Theorem 2 and Assumptions 2, let F (hθ, S | aφ∗(θ,S))
be a PL function in θ for all S, i.e., ||∇θF (hθ, S | aφ∗(θ,S))|| ≥ σ[F (hθ, S | aφ∗(θ,S)) −
minθ′ F (hθ′ , S | aφ∗(θ′,S))] for some constant σ. If we set the learning rate η = 1/kT in Algorithm 1,
then for T = O(1/kε) iterations, δ < (1−e−γ∗) and ρ < [Cmin((e−γ

∗
+ δ)−1−1)−λθ2

max]/`max,
we have the following approximation guarantee for Algorithm 1:

min
t

E[F (hθ̂t , ŜT | aφ∗(θ̂t,ŜT ))] ≤ max
S

min
t

E[F (hθ̂t , S | aφ∗(θ̂t,S))]

≤
[
1− (e−γ

∗
+ δ)/κ

]−1(
OPT + 2L2hmax/σ + ε

)
(8)

where θt is the iterate in Line 3 in Algorithm 1, OPT is the value at the optimum solution of our
adversarial training problem (2), κ = Cmin/(λθ

2
max + ρ`max + Cmin). Here θmax is defined in

Assumption 1 and `max, Cmin are defined in Assumptions 2.

Note that, due to non-convexity, we do not provide guarantee on final θ̂ = θT , but on the iterates
θ̂t; and, the approximation factor suffers from an additional offset 2L2hmax/σ, even as ε→ 0. In
Appendix E.2, we present our results when F is convex, where this bound becomes stronger.

4 EXPERIMENTS

In this section, we conduct experiments with real world datasets which show that ROGET achieves a
better overall accuracy than the state-of-the-art methods for both white-box and black-box attacks.
Appendix H contains additional results.

4.1 EXPERIMENTAL SETUP

Datasets and state-of-the art competitors. We experiment with CIFAR10 (Krizhevsky et al., 2014)
and Fashion MNIST (Xiao et al., 2017) (FMNIST) in this section. In Appendix H, we also report
results on CIFAR100. We consider seven state-of-the-art methods to compare our method– they
are: GAT (Sriramanan et al., 2020), FBF (Wong et al., 2019), TRADES (Zhang et al., 2019b),
Nu-AT (Sriramanan et al., 2021), MART (Wang et al., 2019), PGD-AT (Madry et al., 2017) and
RFGSM-AT (Tramèr et al., 2018). Appendix G contains more details about the baselines.

Evaluation protocol. We split the datasets into training (DTr), validation (DVal), and test set (DTest)
in the ratio of 4:1:1 and 5:1:1 for CIFAR10 and FMNIST respectively. We use the validation
set for hyperparameter selection (mentioned later), early stopping (See Appendix G for details),
etc. We report three types of accuracies, viz., (i) accuracy on clean examples Aclean= P(y =
ŷ |x is not chosen for attack), (ii) robustness to adversarial perturbations measured using the accuracy
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on the perturbed examples Arobust= P(y = ŷ |x is chosen for attack) and (iii) overall accuracy
A= P(y = ŷ).

Models for the learner. We consider two candidates for aφ, which model the learner’s belief
about the adversary during training. Specifically, we set either aφ = PGD (Madry et al., 2017)
or aφ = AdvGAN (Xiao et al., 2018). This gives rise to two variants of our model, viz., ROGET
(aφ = PGD) and ROGET (aφ = AdvGAN). We use ResNet-18 (He et al., 2016) and LeNet-5 (LeCun
et al., 2015) architectures for CIFAR10 and FMNIST datasets respectively.

Model for the adversarial perturbation. We consider two white-box attacks, viz., PGD (Madry
et al., 2017) and Auto Attack (AA) (Croce & Hein, 2020) as well as three black-box attacks,
viz., Square (Andriushchenko et al., 2020) and black-box MI-FGSM (Dong et al., 2018) and Ad-
vGAN (Xiao et al., 2018) to perturb test samples. The exact details of the attacks are given in
Appendix G.

The subset selection strategy of the adversary. In addition to the adversarial perturbation mech-
anism, the adversary also has a strategy to select a subset Slatent of test instances to attack on. We
experiment with two latent subset selection mechanisms. (1) Uncertainty based subset selection:
Here, the adversary selects the top-10% instances in terms of the prediction uncertainty of a classifier
trained on clean examples from DTr. Here, the prediction uncertainty for an instance x is computed
as u(x) = 1−maxy h(x)[y]. (2) Label based subset selection: Here, the adversary selects instances
who have a specific label y ∈ Y to perform attack, e.g., Slatent = {i | yi = aeroplane}. Note that,
the underlying subset selection strategy is realized only during test— it is not revealed to the learner
during training and validation, in practice. Appendix H also presents other strategies.

Hyperparameter selection. Suppose, for instance, that the adversary’s latent strategy of selecting
a subset to perform attack is known during validation stage. Then one could easily simulate such
strategy to create the perturbed instances in the validation set and use the resulting validation set to
cross validate the underlying hyperparameters. However, the subset selection strategy is never revealed
to the learner during both training and validation stage. Thus, the selection of hyperparameters
becomes challenging and it completely depends on the underlying assumption about the adversary. In
such a situation, we experiment with two methods for hyperparameter selection. (1) Default selection:
Here, we use the hyperparameters of the baselines directly used in their original papers and codes
(details in Appendix G). (2) Worst case selection: The key goal of ROGET is to learn a model which
minimizes the worst case loss across all data subsets. In a similar spirit, here we aim to select the
hyperparameters which would maximize the minimum accuracy across a large number of subsets
that underwent attacks. Formally, if we denote A(β, S) to be the overall accuracy of the trained
model on the subset S, with hyperparameters β, we aim to estimate β∗ = argmaxβ minS A(β, S).
To this aim, we draw R = 10000 subsets {Sj}Rj=1 uniformly at random from DVal having size
|Sj | = 0.05|DVal| and search over the hyperparameters β that maximizes the minimum accuracy
across these R subets. In our case as well, we tune ρ in similar manner to obtain ρ∗. Hence, the goal
of this type of hyperparameter selection is same as the key goal of ROGET. Thus, it will provide a
fair comparison between all the methods.

4.2 RESULTS

Uncertainty based subset selection with default hyperparameters. Here we compare our method
against all the state-of-the-art defense methods under the default hyperparameter selection on CI-
FAR10 and FMNIST, where all the hyperparameters of the baselines are set as what is reported in
their respective work and for our method, we experiment with different values of ρ. Moreover, the
adversary adopts uncertainty based subset selection, where it selects top 10% of the test set based
on the uncertainty of a classifier trained on all clean examples. We report the results in Table 1 and
make the following observations. (1) ROGET (aφ = PGD) and ROGET (aφ = AdvGAN) achieve
better overall accuracy A than the existing methods for all attacks on both the datasets (except for
Square attack on CIFAR10). Among the two variants of ROGET, ROGET (aφ = AdvGAN) is the
predominant winner. (2) On CIFAR10, ROGET outperforms the baselines (except RFGSM-AT)
in terms of the clean accuracy Aclean. This is because, ROGET is trained to defend much better
when the adversary plans to attack a subset of instances rather than every instance. In contrast, the
baselines are often trained in a pessimistic manner— they assume attack on every possible instance
and consequently show sub-optimal accuracy on the clean examples. (3) There is no consistent
winner among the baselines in terms of the robustness Arobust. Robust accuracy of ROGET is often
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CIFAR10 PGD AA Square MIFGSM AdvGAN
Aclean Arobust A Arobust A Arobust A Arobust A Arobust A

GAT 78.76 59.65 76.85 46.80 75.56 59.47 76.83 49.82 75.86 82.04 79.08
FBF 74.92 72.04 74.64 31.10 70.54 31.59 70.59 36.09 71.04 37.22 71.15
TRADES 80.25 64.68 78.69 53.37 77.56 63.06 78.53 54.82 77.70 83.82 80.60
Nu-AT 83.12 57.15 80.53 47.44 79.56 61.78 80.99 50.14 79.83 86.82 83.49
MART 81.30 65.04 79.68 52.21 78.39 63.78 79.55 54.15 78.59 84.75 81.65
PGD-AT 83.36 57.33 80.76 48.50 79.88 62.71 81.30 50.00 80.03 87.13 83.74
RFGSM-AT 89.10 33.25 83.51 26.37 82.83 57.68 85.96 23.21 82.51 89.42 86.20
ROGET (PGD, ρ = 1.0) 85.27 55.79 82.32 47.72 81.49 63.18 83.06 47.90 81.53 88.96 85.64
ROGET (AdvGAN, ρ = 1.0) 87.86 47.97 83.87 39.97 83.07 62.21 85.29 40.27 83.10 91.53 88.22
ROGET (AdvGAN, ρ = 1.5) 88.23 44.24 83.83 36.48 83.05 61.01 85.51 37.42 83.15 91.96 88.60

FMNIST PGD AA Square MIFGSM AdvGAN
Aclean Arobust A Arobust A Arobust A Arobust A Arobust A

GAT 91.47 3.18 82.64 0.00 82.32 0.01 82.32 8.32 83.15 29.09 85.24
FBF 80.47 14.29 73.85 66.74 79.10 68.43 79.27 84.81 80.90 85.94 81.02
TRADES 85.97 65.95 83.97 54.58 82.83 57.88 83.16 81.47 85.52 70.15 84.39
Nu-AT 90.41 5.13 81.88 0.00 81.37 0.06 81.38 18.24 83.19 15.72 82.94
MART 78.94 77.72 78.82 59.73 77.02 61.46 77.19 79.81 79.03 70.10 78.06
PGD-AT 83.77 79.62 83.36 53.62 80.76 57.05 81.10 83.73 83.77 72.88 82.69
RFGSM-AT 89.11 14.51 81.65 0.00 80.20 0.04 80.20 33.26 83.52 21.13 82.31
ROGET (PGD, ρ = 1.0) 86.98 63.45 84.63 49.67 83.25 54.24 83.71 80.99 86.38 69.17 85.20
ROGET (AdvGAN, ρ = 1.0) 87.85 35.95 82.66 37.08 82.78 43.25 83.39 81.17 87.19 71.46 86.22
ROGET (AdvGAN, ρ = 0.01) 86.23 72.61 84.87 54.86 83.10 58.19 83.43 83.97 86.01 74.30 85.04

Table 1: Performance comparison under default hyperparameter setting for two white box attacks
(PGD and AA) and three black box attacks (Square, MIFGSM, and AdvGAN). Here, the hyperpa-
rameters are set as what the baselines mentioned in their papers. We report (percentage) (i) accuracy
on the clean examples Aclean, (ii) robustness to the adversarial perturbations Arobust and (iii) overall
accuracy A. Here, the adversary adopts uncertainty based subset selection to perform attack— the
true subset chosen for attack Slatent consists of top 10% test instances in terms of the uncertainty of a
classifier trained on all the clean examples. (Yellow) Green indicate the (second) best performers.

CIFAR10 PGD AA Square MIFGSM AdvGAN
Aclean Arobust A Arobust A Arobust A Arobust A Arobust A

GAT 77.55 63.26 76.12 49.73 74.77 60.07 75.80 52.91 75.09 81.07 77.91
FBF 74.92 72.04 74.64 31.10 70.54 31.59 70.59 36.09 71.04 37.22 71.15
TRADES 83.63 51.43 80.41 42.55 79.52 58.60 81.13 48.00 80.07 87.37 84.02
Nu-AT 84.66 54.64 81.66 45.79 80.77 61.34 82.33 47.41 80.93 88.18 85.01
MART 80.49 61.30 78.57 49.32 77.37 61.26 78.57 51.13 77.56 84.25 80.87
PGD-AT 83.36 57.33 80.76 48.50 79.88 62.71 81.30 50.00 80.03 87.13 83.74
RFGSM-AT 85.84 45.94 81.85 37.49 81.00 60.25 83.28 37.91 81.04 89.42 86.20
ROGET (PGD) 86.63 51.16 83.09 43.06 82.28 62.33 84.20 42.20 82.19 90.15 86.99
ROGET (AdvGAN) 87.86 47.97 83.87 39.97 83.07 62.21 85.29 40.27 83.10 91.53 88.22

Table 2: Performance comparison under worst case hyperparameter setting on CIFAR10. Numbers
in green (yellow) indicate the best (second best) performers.

competitive, e.g., in CIFAR10, ROGET (aφ = AdvGAN) is the best performer for AdvGAN attack
and ROGET (aφ = PGD) is the second best performer for Square attack. In FMNIST, ROGET
(aφ = AdvGAN) is the second best performer for MIFGSM and AdvGAN attack.

Uncertainty based subset selection with worst case hyperparameter setup. Next, we tune the
hyperparameters of all the methods using the worst case hyperparameter tuning, where we select the
hyperparameters that would maximize the minimum accuracy across a large number of subsets of
the validation set. For ROGET, we tune ρ in the same manner to obtain ρ∗. We present the results in
Table 2 for CIFAR100 and make the following observations. (1) ROGET (aφ = PGD, ρ = ρ∗) and
ROGET (aφ = AdvGAN, ρ = ρ∗) outperform all the baselines in terms of the overall accuracyA. (2)
In most of the cases, the overall accuracy A of ROGET with the worst case hyperparameter ρ = ρ∗

is better than A with the default hyperparameter ρ = 1. In contrast, the worst case hyperparameter
selection improves A only for Nu-AT and TRADES among the baselines, from its performance with
the default hyperparameter setup (Table 1 vs. Table 2).

Evaluation on label based subset selection strategy. We now consider label based subset selection
strategy of the adversary. We report the results for AA attack in Table 3, where we also consider
class focused online learning (CFOL) (Anonymous, 2022) as an additional baseline which provides
guarantee on worst class loss in presence of adversarial attack. We observe that ROGET (aφ =
AdvGAN) performs the best followed by ROGET (aφ = PGD) for all classes. Additional results can
be found in Appendix H.

Impact of revealing the true subset selection strategy during validation. In practice, the learner
does not know the adversary’s true (uncertainty based) subset selection strategy during training and
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validation. Here, we leak this information to the learner during validation. Then, we mimic the
adversary’s true strategy to select the subsets from the validation set and perform attack on them.

Airplane Dog Truck
GAT 75.19 75.06 75.28
FBF 72.39 71.77 67.11
TRADES 80.17 79.52 80.44
Nu-AT 81.32 80.54 81.68
MART 77.69 77.34 78.02
PGD-AT 80.38 79.60 80.45
RFGSM-AT 81.80 80.84 81.46
CFOL 70.10 69.61 70.63
ROGET (PGD) 82.97 84.19 83.68
ROGET (AdvGAN) 84.24 85.63 84.03

Table 3: A for label based subset selection with
AA attack on CIFAR10. Green (Yellow) indicates
the (second) best method.

Default Worst Oracle
GAT 76.85 76.12 81.13
FBF 74.64 74.64 74.64
TRADES 78.69 80.41 81.33
Nu-AT 80.53 81.66 83.85
MART 79.68 78.57 79.94
PGD-AT 80.76 80.76 80.76
RFGSM-AT 83.51 81.85 81.85
ROGET (PGD) 82.32 83.09 83.65
ROGET (AdvGAN) 83.87 83.87 83.83

Table 4: Revealing the oracle subset selection strat-
egy (uncertainty) on A for PGD attack on CI-
FAR10.

Next, we select the hyperparameters resulting in highest overall validation accuracy. Table 4 com-
pares this strategy ("oracle") with previous hyperparameter selection strategies (default and worse).
We make the following observations. (1) ROGET shows very stable performance across different
hyperparameter selection methods. (2) GAT, TRADES, Nu-AT and MART significantly improve the
performance and Nu-AT outperforms ROGET by a small margin. (3) ROGET’s focus is to maintain
good accuracy across all subsets. Hence, the performance of ROGET, in absence of any knowledge
about the adversary’s selected subset, becomes very close to or even better than the baselines having
full knowledge of oracle selection.
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Figure 5: A vs. |S latent|

Variation of A vs |Slatent|. The learner’s estimate about |Slatent|,
the number of instances chosen for perturbation, can indeed be
heavily inaccurate. In this context, we train both the variants of
ROGET using b = 0.1|DTr| and evaluate using different number
of instances |Slatent| perturbed during test. In Figure 5, we observe
that the performances of all the models deteriorate; and our model
performs better than the baselines for |Slatent|/|Dtest| ≤ 30%.

Comparing robustness subject to a minimum overall accuracy. In Tables 1- 3, we reported
robust and overall accuracy for fixed set of hyperparameters. By tuning these hyperparame-
ters, one can improve robust accuracy by sacrificing overall accuracy. Therefore, here we aim
to compare the robust accuracy, subject to the condition that the overall accuracy for all meth-
ods crosses some threshold. Specifically, we first tune the hyperparameters of all the methods

CIFAR10 PGD Square
Arobust A Arobust A

GAT 35.68 81.13 62.05 81.56
TRADES 53.78 81.01 61.13 81.74
Nu-AT 54.64 81.66 61.34 82.33
PGD-AT 35.35 81.64 55.84 81.88
RFGSM-AT 45.94 81.85 60.25 83.28
ROGET (PGD) 59.42 81.40 64.73 82.60
ROGET (AdvGAN) 55.73 82.85 63.93 83.67

Table 6: Comparison of Arobust, subject to
Aclean> 0.81.

to ensure that the overall accuracy of all methods
reaches a given threshold and then compare their robust-
ness. If P indicates the hyperparameters, then we find
maxP Arobust(P ) such that A(P ) ≥ a for some given
a. Results on CIFAR10 for a = 0.81 are shown in Ta-
ble 6. We observe that ROGET (PGD) is the best per-
former in terms of robust accuracy and ROGET (AdvGAN)
is the best performer in terms of overall accuracy. RO-
GET (AdvGAN) is the second-best performer in terms of
robust accuracy. More related results are in Appendix H.

5 CONCLUSION

In this paper we motivated a novel setting in adversarial attacks—where an attacker aims to perturb
only a subset of the dataset instead of the entire dataset. We presented a defense strategy, ROGET
which trains a robust model as a min-max game involving worst-case subset selection along with
optimization of model parameters. To solve the optimization problem we designed a framework of
efficient algorithms, which admits approximation guarantees for convex and Polyak-Lojasiewicz loss
functions. Finally, our experiments showed that ROGET achieves better overall accuracy as compared
to several state-of-the-art defense methods across several subset selection strategies. Our work opens
several avenues of future research. We can extend our work to a slightly different setting where each
instance has some importance score assigned to it. Another extension is to design a differentiable
method for computing the worst-case attacked set, instead of using a greedy selection algorithm.
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6 ETHICS STATEMENT

Our work tries to help ML models in achieving a better trade-off between robustness against ad-
versarial attacks and performance on unperturbed/clean instances. Due to the vulnerability of ML
models against adversarial perturbations, they have not been widely used in high-stake real world
scenarios. Furthermore, the defense methods proposed so far to achieve robustness against attacks,
face a considerable drop in accuracy on clean (unperturbed) instances. Here, our framework takes a
step towards improving the performance on clean instances, while being robust against attacks on any
subset of the dataset.

On the flip side, our method discusses a different type of adversarial attack, where the attacks are
made on a subset of instances. If one uses such attacks in practice, the attacked ML systems can
become vulnerable. However, these systems can use the defense method proposed in this paper,
which can provide notable defense irrespective of the subset selection strategy of the adversary. The
capability of our method to achieve good performance without being aware of adversary’s strategy
makes it suitable to be applied in a wide range of applications.

7 REPRODUCIBILITY STATEMENT

We have provided our code in supplementary material and provide the implementation details in
Appendix G.
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Robust Training through Adversarially Selected Data Subsets
(Appendix)

A FUTURE WORK

Our method selects a worst-case subset and trains the model parameters in an end-to-end manner
to output a robust defense model. However, it might be more interesting to take into account an
importance score for each instance to decide which instances need more protection against attacks.
Additionally, it will be interesting to design a completely differentiable training method for computing
the worst-case subset of attacked instances, instead of using a greedy selection algorithm along with
gradient descent.

B RELATED WORK

Adversarial attacks. The attack methods (Szegedy et al., 2014; Kurakin et al., 2018; Madry et al.,
2017; Goodfellow et al., 2015; Kurakin et al., 2017; Carlini & Wagner, 2017) discussed in the
main paper can be broadly classified in three different settings i) white-box attacks, ii) black-box
attacks, and iii) transfer-based attacks. In white-box attacks, the attacker assumes full knowledge
about the defense model, and hence can access the gradients of the defense model. This led to the
design of several gradient-based attacks (Szegedy et al., 2014; Madry et al., 2017; Goodfellow et al.,
2015). Specifically, Szegedy et al. (2014) use constrained optimization, Carlini & Wagner (2017)
use special regularization in the optimization. However, in black-box setting the attacker can only
query the defense model being attacked (Ilyas et al., 2018). This led to the design of score-based
attacks (Chen et al., 2017) which use the scores output by the defense model to approximate gradients,
and craft adversarial perturbations. Additionally, to tackle this setting, researchers came up with
transfer-based attacks (Papernot et al., 2017; 2016; Liu et al., 2017) where the attacker computes
adversarial examples on a completely different model, in order to attack the defense model.

Defense methods. Apart from Adversarial training methods (Wang et al., 2019; Zhang et al., 2019b;
Robey et al., 2021; Shafahi et al., 2019; Zhang et al., 2019a; Kim et al., 2021; Andriushchenko
& Flammarion, 2020) already discussed in the main paper, there are several other approaches to
designing robust defense models. One of them leverages randomness to defend against adversarial
examples (Xie et al., 2018; Cohen et al., 2019; Liu et al., 2018). These works introduce randomness
either in the inputs or in the model parameters which makes the model robust against crafted-instances.
Yet another line of work (Ilyas et al., 2017; Meng & Chen, 2017; Samangouei et al., 2018) tries to use
generative models to first project the input using an encoder, and then use the output of the encoder
for classification. The projection step is claimed to reduce the impact of adversarial perturbations.
Another popular approach (Gong et al., 2017; Metzen et al., 2017; Li & Li, 2017; Zheng & Hong,
2018) is to detect the presence of adversarial perturbations, before attempting to classify the input. The
idea is motivated by the assumption that adversarial perturbed instances follow a different distribution
as compared to natural (unperturbed) instances. Recent works have considered assigning different
weights to different classes based on the underlying loss to ensure robustness against adversarial
perturbation (Anonymous, 2022; Tian et al., 2021; Wang et al., 2021; Leavitt & Morcos, 2020). Tian
et al. (2021) pointed out that accuracy across different classes significantly vary during adversarial
training. Leavitt & Morcos (2020) showed that increasing class selectivity improves worst case
perturbation while decreasing class selectivity improves average case perturbation. Wang et al. (2021)
proposed Separable Reweighted Adversarial Training (SRAT) assign weights to different instances to
learn separable features for imbalanced dataset. Recent work (Anonymous, 2022) develop adversarial
training approaches that attempt to control the worst possible loss across different classes.

Data subset selection. There is a rich literature of work proposed for data subset selection in
conjunction with model training (Campbell & Broderick, 2018; Lucic et al., 2017; Durga et al., 2021;
Killamsetty et al., 2021; De et al., 2020; 2021). As mentioned in the main paper, these existing works
focus more towards efficient learning (Durga et al., 2021; Mirzasoleiman et al., 2020), human-centric
learning (De et al., 2020; 2021) and active learning (Wei et al., 2015; Kaushal et al., 2019). As
a results these works operate in a completely different setting, and consequently require different
solution techniques. For example, De et al. (2020) employ data subset selection in order to distribute
instances between human and machine to generate semi-automated ML models. Also, the works
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in (Durga et al., 2021; Mirzasoleiman et al., 2020) uses subset selection to reduce training time of
ML models by reducing the size of the effective training dataset.

C ILLUSTRATION OF OUR ADVERSARIAL TRAINING SETUP AND THE
HARDNESS ANALYSIS

Probabilistic generation of S. Let us assume that the adversary follows a probabilistic strategy, i.e.,
π(xi, yi) = P (i ∈ S). Thus π(xi, yi) indicates the probability that the instance xi is chosen for
attack. Here, one may wish to minimize the following loss:

min
θ

max
{π(xi,yi) | i∈D}

∑
i∈D

[
π(xi, yi)`(hθ(aφ(xi)), yi) + (1− π(xi, yi))ρ `(hθ(xi), yi)

]
. (9)

such that,
∑
i∈D

π(xi, yi) ≤ b, π(xi, yi) ∈ [0, 1]. (10)

The inner optimization problem is a linear optimization problem in each π(xi, yi), so π(xi, yi) ∈
{0, 1} . Then, if we define S = {i |π(xi, yi) = 1},

min
θ

max
S:|S|≤b

[∑
i∈S

`(hθ(aφ(xi)), yi) +
∑

j∈D\S

ρ `(hθ(xj), yj)

]
(11)

Hardness analysis. Let us consider a specific instance of the problem where y ∈ {0,+1,−1} and
hθ is a fixed function independent of θ given as

hθ(x) =

{
Λe(1−y·θT0 x)2 if, y ∈ {+1,−1}
1−

∑
y∈{−1,+1} Λe(1−y·θT0 x)2 if, y = 0

(12)

where, Λ << 1, θ0 is a constant vector, x is bounded such that 1−
∑
y∈{−1,+1} Λe(1−y·θT0 x)2 > 0.

Similar (not exact) distributions were also used for instantiating anecdotal examples in (Zhang et al.,
2021a). Let us further assume that the training set D consists of only instances with y ∈ {+1,−1}
and no instance with y = 0. Additionally, let aφ(x) = φ � x, where � denotes element-wise
multiplication operation. Here, φ is restricted to a set, such that 1−

∑
y∈{−1,+1} Λe(1−y·θT0 aφ(x))2 >

0. Also, consider that ρ = 0 and C = 0 in this specific setting. Since hθ is independent of θ, the
optimization problem (2) in this setting reduces to

max
φ,S:|S|≤b

∑
i∈S

`(hθ(aφ(xi)), yi) (13)

= max
φ,S:|S|≤b

∑
i∈S
− log(Λe(1−yi·θT0 aφ(xi))

2

) (14)

= − min
φ,S:|S|≤b

∑
i∈S

log(Λ) + (1− yi · θT0 aφ(xi))
2︸ ︷︷ ︸

≤0

(15)

= − min
φ,S:|S|=b

∑
i∈S

log(Λ) + (1− yi · θT0 aφ(xi))
2 (16)

= − min
φ,S:|S|=b

b log(Λ) +
∑
i∈S

(1− yi · θT0 aφ(xi))
2 (17)

Thus, the solution of above optimization (17) is equal to the following optimization problem:

min
φ,S:|S|=b

∑
i∈S

(1− yi · θT0 aφ(xi))
2 (18)

which is equivalent to the following optimization problem:

min
φ,S:|S|=b

∑
i∈S

(1− yi · φT (θ0 � xi))2 (19)

The next steps follow directly from ((De et al., 2021), Proof of Theorem 1). We describe the steps
below to make the proof self-contained. Assume that X = [(θ0 � x1)T ; . . . ; (θ0 � x|D|)T ] has
full row rank |D|. Now, let y = [y1, . . . , yi, . . . , y|D|], r ∈ R|D| be an arbitrary vector of real
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numbers and X−1
R be the right inverse of X (exists because X has full row rank). By definition,

(X−1
R )T (θ0 � xi) = eTi , where ei is a column vector with entry 1 at position i, and 0 elsewhere.

Further, let φ′ = φ−X−1
R (y − r). We rewrite the objective of the optimization (19) in terms of φ′

to obtain ∑
i∈S

(1− yi · (φ′ +X−1
R (y − r))T (θ0 � xi))2 (20)

=
∑
i∈S

(1− yi · φ′T (θ0 � xi)− yi · (y − r)T · ei)2 (21)

=
∑
i∈S

(1− yi · φ′T (θ0 � xi)− y2
i︸︷︷︸

=1

+yi · ri)2 (22)

=
∑
i∈S

(ri − φ′T (θ0 � xi))2 (23)

Hence, our optimization problem reduces to the following optimization problem:

min
φ′,S:|S|=b

∑
i∈S

(ri − φ′T (θ0 � xi))2 (24)

Since the above optimization (24) is known to be NP-hard (Bhatia et al., 2017), we have successfully
proven that our optimization problem 2 is also NP-hard.
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D EXPLANATION OF THE ASSUMPTIONS

In this section, we justify the assumptions mentioned in Sections 3.1 and 3.2.

ASSUMPTIONS 1

(1, 5) Lipschitz continuity and boundedness of the parameters: We think that Lipschitz continuity
of loss and models are very prevalent. In most practical and well behaved ML algorithms, these
assumptions hold. For any differentiable networks that have bounded parameters and no singularity,
we usually have these conditions. If we do not have such conditions, gradients may blow up during
training.

(2) Stability: Algorithmic stability is also a desirable property in ML. It ensures that if we make
changes in one instance, the parameters do not change. L2 Regularization, drop-out and even SGD
algorithm itself encourages stability.

(3, 4) Metric property and norm boundedness of cost of perturbation: Most existing works
have used L∞ distance as the cost of perturbation. Our method considers a general set of metrics
which is not limited to L• distances. L• space norms are bounded by each other by a factor, i.e.,
k1Lc < La < k2Lb. We bounded our metric norm by the L2 norm for standardization of analysis.
We do not foresee the deviation of such a condition in a practical scenario.

ASSUMPTIONS 2

(1) L-smoothness of F: This just ensures that gradients of F are Lipschitz too. Indeed this is a bit
stronger condition than Lipschitzness of F itself. A wide variety of smooth activation functions like
Linear, Sigmoid are L-smooth. Even the discontinuous functions like ReLU are often L-smooth
almost everywhere.

(2,3) Boundedness of F, h and `: As long as there is no inherent singularity in the interior of these
functions (e.g., unlike 1/(x-a)), this is a redundant condition, given the boundedness of θ. We simply
keep it to make our notations simple during analysis. But this condition does not put any additional
restriction, if the underlying function does not have a singularity in the interior.

(4) Size of B: This is a parameter used in our algorithm— it does not put any restriction of the
underlying setup, neither the loss function nor the models.

(5) Adversarial network always perturbs a feature: This imposes the notion of a very strong
adversary. Even if we deviate, the theoretical bounds would be stronger. We keep this condition for
the sake of brevity.

18



Under review as a conference paper at ICLR 2023

E PROOFS OF THE TECHNICAL RESULTS IN SECTION 3

E.1 MONOTONICITY AND γ-WEAK SUBMODULARITY OF Gλ: THEOREM 2

Theorem 2. Given Assumption 1 let there be a value of minimum non-zero constant λmin > 0 such
that `∗ = minx∈X ,y∈Y minθ[λminR(θ) + `(hθ(x), y)− 2qµβLφ] > 0 where q and β are given in
Assumption 1. Then, for λ > λmin, we have the following statements:

(1) Gλ(S) is monotone in S

(2) Gλ(S) γ-weakly submodular with γ > γ∗ = `∗[`∗ + 2LhLxLφφmax + 3qµβLφ]−1.

Proof sketch. To prove monotonicity, we first show that Gλ(k |S) > `(hθ(aφ∗(θ,S)(xk)), yk) +∑
i∈S [ρC(aφ∗(θ,S∪k)(xi),xi) − ρC(aφ∗(θ,S)(xi),xi)] + λR(θ) which is more than λR(θ) +

`(hθ(aφ∗(θ,S)(xk)), yk)− βρ|S|||φ∗(θ, S ∪ k)− φ∗(θ, S)||. Next, we use Assumptions 1 to show
that this quantity is more than `∗.

To prove γ-weak submodularity, we first show that Gλ(k |T ) ≤ `∗ + 2φmax + 3qµβLφ. To
that aim, we show that Gλ(k |T ) ≤ λR(θ) + `(hθ(aφ∗(θ,T∪k)(xk)), yk) + qµβ ≤ λR(θ) +
`(hθ(aφ∗(θ,S)(xk)), yk)+ |`(hθ(aφ∗(θ,T∪k)(xk)), yk)− `(hθ(aφ∗(θ,S)(xk)), yk)|+ qµβ. Next we
use the Lipschitzness of different functions to show that it is less than `∗+2LhLxLφφmax +3qµβLφ.
This, together with the fact that Gλ(k |S) > `∗ derived during the proof of monotonicity, results in
the inequality Gλ(k |S)/Gλ(k |T ) ≥ `∗[`∗ + 2LhLxLφφmax + 3qµβLφ]−1. Finally, we use the
result of Proposition 6 (in Appendix F) to complete the proof.

Proof. Monotonicity of Gλ. Let S ⊂ D and let k ∈ D \ S. For any θ ∈ Θ,
Gλ(θ, S ∪ k)−Gλ(θ, S)

=
1

|D|

[ ∑
i∈S∪k

λR(θ) + `(hθ(aφ∗(θ,S∪k)(xi)), yi)

]
− 1

|D|

[∑
i∈S

λR(θ) + `(hθ(aφ∗(θ,S)(xi)), yi)

]
=

1

|D|

[
λR(θ) +

∑
i∈S∪k

`(hθ(aφ∗(θ,S∪k)(xi)), yi)−
∑
i∈S

`(hθ(aφ∗(θ,S)(xi)), yi)

]
(25)

We now derive a bound on
∑
i∈S∪k `(hθ(aφ∗(θ,S∪k)(xi)), yi)−

∑
i∈S `(hθ(aφ∗(θ,S)(xi)), yi). Us-

ing the definition of aφ∗(S∪k) from Eq. (3), we obtain:

∑
i∈S∪k

[`(hθ(aφ∗(θ,S∪k)(xi)), yi)− µC(aφ∗(θ,S∪k)(xi),xi)]

≥
∑
i∈S∪k

[`(hθ(aφ∗(θ,S)(xi)), yi)− µC(aφ∗(θ,S)(xi),xi)] (26)

=⇒
∑
i∈S∪k

[`(hθ(aφ∗(θ,S∪k)(xi)), yi)− `(hθ(aφ∗(θ,S)(xi)), yi)]

≥ µ
∑
i∈S∪k

[C(aφ∗(θ,S∪k)(xi),xi)− C(aφ∗(θ,S)(xi),xi)] (27)

Substituting inequality (27) in Eq. (25), we obtain:

Gλ(θ, S ∪ k)−Gλ(θ, S) ≥ 1

|D|

[
λR(θ) + `(hθ(aφ∗(θ,S)(xk)), yk) (28)

+
∑
i∈S∪k

µ[C(aφ∗(θ,S∪k)(xi),xi)− C(aφ∗(θ,S)(xi),xi)]

]
(29)

=
1

|D|

[
λR(θ) + `(hθ(aφ∗(θ,S)(xk)), yk)

−
∑
i∈S∪k

µ[C(aφ∗(θ,S)(xi),xi)]− C(aφ∗(θ,S∪k)(xi),xi)

]
(30)
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≥ 1

|D|

[
λR(θ) + `(hθ(aφ∗(θ,S)(xk)), yk)

− µ
∑
i∈S∪k

C(aφ∗(θ,S∪k)(xi), aφ∗(θ,S)(xi))

]
(31)

≥ 1

|D|

[
λR(θ) + `(hθ(aφ∗(θ,S)(xk)), yk)− qµβLφ

|S ∪ k|
|S|

]
(32)

≥ 1

|D|
[λR(θ) + `(hθ(aφ∗(θ,S)(xk)), yk)− 2qµβLφ] (33)

Here, inequality (31) follows from using triangle inequality of Assumption 1 and inequality (32)
follows from the stability assumption in Assumption 1. We use the assumption on `∗ to conclude that
the right hand side of inequality (33) is non-negative. This shows that Gλ is monotone in S.

γ-weak submodularity of Gλ. We first provide an upper bound of Gλ(θ, T ∪ k)−Gλ(θ, T ).
Gλ(θ, T ∪ k)−Gλ(θ, T )

=
1

|D|

[ ∑
i∈T∪k

λR(θ) + `(hθ(aφ∗(θ,T∪k)(xi)), yi)

]
− 1

|D|

[∑
i∈T

λR(θ) + `(hθ(aφ∗(θ,T )(xi)), yi)

]
=

1

|D|

[
λR(θ) +

∑
i∈T∪k

`(hθ(aφ∗(θ,T∪k)(xi)), yi)−
∑
i∈T

`(hθ(aφ∗(θ,T )(xi)), yi)

]
(34)

=
1

|D|

[
λR(θ) +

∑
i∈T

(
`(hθ(aφ∗(θ,T∪k)(xi)), yi)− µC(aφ∗(θ,T∪k)(xi),xi)

)
−
∑
i∈T

(
`(hθ(aφ∗(θ,T )(xi)), yi)− µC(aφ∗(θ,T )(xi),xi)

)
+ `(hθ(aφ∗(θ,T∪k)(xk)), yk) + µ

∑
i∈T

(
C(aφ∗(θ,T∪k)(xi),xi)− C(aφ∗(θ,T )(xi),xi)

) ]
(35)

≤ 1

|D|

[
λR(θ) + `(hθ(aφ∗(θ,T∪k)(xk)), yk) + qµβLφ

]
(36)

Here, the last inequality is due to the fact that:∑
i∈T

(
`(hθ(aφ∗(θ,T∪k)(xi)), yi)− µC(aφ∗(θ,T∪k)(xi),xi)

)
(37)

−
∑
i∈T

(
`(hθ(aφ∗(θ,T )(xi)), yi)− µC(aφ∗(θ,T )(xi),xi)

)
≤ 0 (38)

since φ∗(θ, T ) provides the maximum of the second term and the fact that:

µ
∑
i∈T

(
C(aφ∗(θ,T∪k)(xi),xi)− C(aφ∗(θ,T )(xi),xi)

)
≤ qµ

∑
i∈T
||aφ∗(θ,T∪k)(xi)− aφ∗(θ,T )(xi)||

(39)

≤ |T |qµLφ
β

|T |
(Stability of φ) (40)

Lower bounding the ratio. Using inequality (33) and inequality (36), we get the following
Gλ(θ, S ∪ k)−Gλ(θ, S)

Gλ(θ, T ∪ k)−Gλ(θ, T )

≥
λR(θ) + `(hθ(aφ∗(θ,S)(xk)), yk)− 2qµβLφ

λR(θ) + `(hθ(aφ∗(θ,T∪k)(xk)), yk) + qµβLφ

≥
λR(θ) + `(hθ(aφ∗(θ,S)(xk)), yk)− 2qµβLφ

λR(θ) + `(hθ(aφ∗(θ,S)(xk)), yk) + `(hθ(aφ∗(θ,T∪k)(xk)), yk)− `(hθ(aφ∗(θ,S)(xk)), yk) + qµβLφ

≥ `∗

`∗ + 2LhLxLφφmax + 3qµβLφ
= γ∗ (41)
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Above inequality (41) follows from Lipschitz continuity assumption, and upper boundedness of Φ
mentioned in Assumptions 1. This together with Proposition 6 gives us the result.

E.2 APPROXIMATION GUARANTEES

Theorem 4. Given the conditions of Theorem 2 and Assumptions 2, let F (hθ, S | aφ∗(θ,S))
be a PL function in θ for all S, i.e., ||∇θF (hθ, S | aφ∗(θ,S))|| ≥ σ[F (hθ, S | aφ∗(θ,S)) −
minθ′ F (hθ′ , S | aφ∗(θ′,S))] for some constant σ. If we set the learning rate η = 1/kT in Algorithm 1,
then for T = O(1/kε) iterations, δ < (1−e−γ∗) and ρ < [Cmin((e−γ

∗
+ δ)−1−1)−λθ2

max]/`max,
we have the following approximation guarantee for Algorithm 1:

min
t

E[F (hθ̂t , ŜT | aφ∗(θ̂t,ŜT ))] ≤ max
S

min
t

E[F (hθ̂t , S | aφ∗(θ̂t,S))]

≤
[
1− (e−γ

∗
+ δ)/κ

]−1(
OPT + 2L2hmax/σ + ε

)
(42)

where θt is the iterate in Line 3 in Algorithm 1, OPT is the value at the optimum solution of our
adversarial training problem (2), κ = Cmin/(λθ

2
max + ρ`max + Cmin). Here θmax is defined in

Assumption 1 and `max, Cmin are defined in Assumptions 2.

Proof. Under the assumptions, Lemmas 13 and 14 hold. Using Lemma 13, we have that for all S,(
1− e−γ

∗
+ δ

κ

)
F (hθ̂t , S | aφ∗(θ̂t,S))− E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))] ≤ 4kη∇2

max (43)

where the expectation above is taken over the randomness in stochastic distorted greedy algorithm.
Now, taking expectation over the randomness in k-SGD gives us,

(
1− e−γ

∗
+ δ

κ

)
E[F (hθ̂t , S | aφ∗(θ̂t,S))]− E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))] ≤ 4kη∇2

max (44)

where the expectation is computed over all the total randomness of the algorithm. We now sum the
above equation over all T to get,
T∑
t=1

[(
1− e−γ

∗
+ δ

κ

)
E[F (hθ̂t , S | aφ∗(θ̂t,S))]− E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))]

]
≤ 4Tkη∇2

max (45)

Using Lemma 14, we have that for all θ,

E[F (hθ̂t−1
, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1))]−E[F (hθ, Ŝt−1 | aφ∗(θ,Ŝt−1))]

≤ 2kη∇2
max +

4Lθ2
max(1− ησ)k

σ
+
Lη∇2

max

2σ
(46)

where the expectation is w.r.t. the total randomness of the algorithm. Summing over all T , we obtain:

T∑
t=1

[
E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))]−E[F (hθ, Ŝt | aφ∗(θ,Ŝt))]

]
≤ 2Tkη∇2

max +
4TLθ2

max(1− ησ)k

σ
+
LTη∇2

max

2σ
(47)

Combining inequality (45) and inequality (47) and then dividing by T throughout we obtain:

(
1− e−γ

∗
+ δ

κ

) T∑
t=1

[E[F (hθ̂t , S | aφ∗(θ̂t,S))]

T

]
≤ max

S
E[F (hθ, S | aφ∗(θ,S))] + 6kη∇2

max +
4Lθ2

max(1− ησ)k

σ
+
Lη∇2

max

2σ
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Taking min over θ on both sides and noting that all terms except one are independent of θ, we get(
1−e

−γ∗ + δ

κ

) T∑
t=1

[E[F (hθ̂t , S | aφ∗(θ̂t,S))]

T

]
≤ min

θ
max
S

E[F (hθ, S | aφ∗(θ,S))] + 6kη∇2
max + e−kησ

[
4Lθ2

max

σ

]
+
Lη∇2

max

2σ
(48)

Putting η = 1
kT , we obtain:

(
1− e−γ

∗
+ δ

κ

) T∑
t=1

[E[F (hθ̂t , S | aφ∗(θ̂t,S))]

T

]
≤ OPT + e−σ/T

[
4Lθ2

max

σ

]
+

6∇2
max

T
+
L∇2

max

2kTσ

T∑
t=1

[E[F (hθ̂t , S | aφ∗(θ̂t,S))]

T

]
≤ OPT(

1− e−γ∗+δ
κ

) +

e−σ/T
[

4Lθ2max

σ

]
(

1− e−γ∗+δ
κ

) +
ε(

1− e−γ∗+δ
κ

) (49)

This gives us the statement in the proof of the theorem.
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Algorithm 2 ROGET Algorithm (with additional
variants of gradient descent for convex F )
Require: Training instances D, regularization param-

eter λ, budget b, # of iterations T , learning rate η,
METHOD∈ {GD,SGD,k− SGD}

1: INIT(hθ), Ŝ0 ← ∅
2: for t = 0 to T − 1 do
3: θ̂t+1 ← TRAIN(θ̂t, Ŝt, ηt, METHOD)

4: Ŝt+1 ← SDG (Gλ,mλ, θ̂t+1, b).
5: θ̂ =

∑T
t=1 ηtθ̂t/

∑T
t=1 ηt

6: return θ̂, ŜT
1: procedure SDG (Gλ,mλ, θ̂, b)
2: S ← ∅
3: for s ∈ [b] do
4: γb,s ← (1− γ/b)b−s−1

5: Randomly draw a subset B from D
6: e∗ = argmax

e∈B
γb,sGλ(e |S)−mλ({e})

7: if γb,sGλ(e∗ |S)−mλ({e∗}) ≥ 0 then
8: S ← S ∪ {e}
9: return S

1: procedure TRAIN(θ̂, S, η, METHOD)

2: //deterministic gradient
descent

3: if METHOD is GD then
4: return θ̂−η ∂F (hθ, S | aφ∗(θ,S))/∂θ

∣∣
θ=θ̂

5: //stochastic gradient descent
6: if METHOD is SGD then
7: Draw i ∼ D uniformly at random
8: if i ∈ S then
9: F ← `(hθ(aφ(xi)), yi)

10: else
11: F ← ρ `(hθ(xi), yi)

12: return θ̂ − η ∂F
∂θ

∣∣
θ=θ̂

Approximation guarantee for convex F . Next we consider the unlikely case when F is convex.
Here, we present the approximation guarantees of our algorithm, again copied here in Algorithm 2,
specifically with two different variants of stochastic gradient descent, viz., simple gradient descent
(GD) and one-step stochastic gradient descent (SGD) (instead of k-SGD) that allows us to derive
approximation guarantees for convecity. These guarantees generalize the results from Adibi et al.
(2021).

Theorem 5. Given the conditions of Theorem 2 and Assumption 2, let F (hθ, S | aφ∗(θ,S)) be convex
in θ for all S, the learning rate η = 1/

√
T . Now, suppose we set either method = GD or method

= SGD in line 3 in Algorithm 2, i.e., we use either one step gradient descent or stochastic gradient
descent during training θ for fixed S, then for T = O(1/ε2) iterations, δ < (1 − e−γ

∗
) and

ρ > λθ2
max(1 + eγ

∗
)/(eγ

∗
(1− δ)Cδ) ρ < [Cmin((e−γ

∗
+ δ)−1 − 1)− λθ2

max]/`max, we have the
following approximation guarantee.

E[F (hθ̂, ŜT | aφ∗(θ̂,ŜT ))] ≤ max
S

E[F (hθ̂, S | aφ∗(θ̂,S))] ≤
[
1− (e−γ

∗
+ δ)/κ

]−1
(OPT + ε)

(50)

where OPT is the value at the optimum solution of our adversarial training problem (2), κ =
Cmin/(λθ

2
max + ρ`max + Cmin). Here, θmax is defined in Assumption 1 and `max, Cmin are defined

in Assumption 2.

Proof. Under the Assumptions 2 and convexity of F , Lemma 11 holds. Hence, we have that θ ∈ Θ,
T∑
t=1

[
E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))]− E[F (hθ, Ŝt | aφ∗(θ,Ŝt))]

]
≤ 2Tη∇2

max +
2θ2

max

η
(51)

Under Assumptions 1 and 2, Lemma 9 also holds, which gives us, for all S, t

(
1− e−γ

∗
+ δ

κ

)
F (hθ̂t , S | aφ∗(θ̂t,S))− E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))] ≤ 2η∇2

max (52)

We note that in Lemma 9, the expectation was taken over the randomness in stochastic distorted
greedy algorithm. We now include the randomness due to stochastic gradient descent and take the
total expectation to obtain,(

1− e−γ
∗

+ δ

κ

)
E[F (hθ̂t , S | aφ∗(θ̂t,S))]− E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))] ≤ 2η∇2

max (53)
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Summing the above equation over t = 1 to T gives us, for all θ ∈ Θ, S,
T∑
t=1

[(
1− e−γ

∗
+ δ

κ

)
E[F (hθ̂t , S | aφ∗(θ̂t,S))]− E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))]

]
≤ 2Tη∇2

max (54)

Summing inequality (51) and inequality (54) and dividing by T , we obtain:

(
1− e−γ

∗
+ δ

κ

) T∑
t=1

E[F (hθ̂t , S | aφ∗(θ̂t,S))]

T
≤

[
T∑
t=1

E[F (hθ, Ŝt | aφ∗(θ,Ŝt))]
T

]
+ 4η∇2

max +
2θ2

max

Tη

Since the above holds for all S, we take the maximum over all possible S, on both sides to obtain,(
1− e−γ

∗
+ δ

κ

)
max
S

T∑
t=1

E[F (hθ̂t , S | aφ∗(θ̂t,S))]

T
≤

[
T∑
t=1

max
S

E[F (hθ, S | aφ∗(θ,S))]

T

]
+ 4η∇2

max +
2θ2

max

Tη

≤ max
S

F (hθ, S | aφ∗(θ,S)) + 4η∇2
max +

2θ2
max

Tη

Since F is convex in θ, we get that for all S and for θ̂ =
∑T
t=1

θ̂t
T ,

F (hθ̂, S | aφ∗(θ̂,S)) ≤
T∑
t=1

F (hθ̂t , S | aφ∗(θ̂t,S))

T
(55)

Along with linearity of expectation, this gives us that for all θ ∈ Θ,

max
S

(
1− e−γ

∗
+ δ

κ

)
E[F (hθ̂, S | aφ∗(θ̂,S))]

≤ max
S

F (hθ, S | aφ∗(θ,S)) + 4η∇2
max +

2θ2
max

Tη
(56)

Finally, we take the minimum over θ on both sides. Noting that the LHS is independent of θ, we
obtain: (

1− e−γ
∗

+ δ

κ

)
max
S

E[F (hθ̂, S | aφ∗(θ̂,S))]

≤ min
θ

max
S

F (hθ, S | aφ∗(θ,S)) + 4η∇2
max +

2θ2
max

Tη

= OPT + 4η∇2
max +

2θ2
max

Tη
(57)

Setting η = 1√
T

, we obtain:

(
1− e−γ

∗
+ δ

κ

)
max
S

E[F (hθ̂, S | aφ∗(θ̂,S))] ≤ OPT +
1√
T

[
4∇2

max + 2θ2
max

]
(58)

= OPT + ε (59)

Rearranging, we get the statement in the theorem. This completes the proof.
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F AUXILIARY LEMMAS

Proposition 6. If a functionQ satisfies α-submodularity, i.e.,Q(k |S) > αQ(k |T ) for all k ∈ D\T
with S ⊂ T , then Q satisfies γ-weak submodularity (El Halabi et al., 2018, Proposition 8, Appendix)

Lemma 7. (Guarantees from Stochastic Distorted Greedy) Let , g, c : 2D → R+ be two non-negative,
monotone set functions, such that g is γ-weakly submodularfor some γ ∈ (0, 1] and c is modular (see
Definition 1). Furthermore, suppose that for all S, c(S)/g(S) ≤ 1− κ for some κ ∈ [0, 1).

Suppose we wish to solve the following problem:

max
|S|≤b

[g(S)− c(S)] (60)

for some fixed K. Let S∗ denote the value of set for which the maximum in optimization (60) is
attained. Then, for a given value of δ > 0 such that δ + e−γ < 1, Stochastic Distorted Greedy
Algorithm makes O(Dlog(1/δ)) evaluations of g and returns a set S′ of size |S′| ≤ b which satisfies,

g(S∗)− c(S∗) ≤
(

κ

κ− e−γ − δ

)
E[g(S′)− c(S′)] (61)

As a corollary, we observe that for all S such that |S| ≤ K, it holds that,

g(S)− c(S) ≤ g(S∗)− c(S∗) ≤
(

κ

κ− e−γ − δ

)
E[g(S′)− c(S′)] (62)

Proof. We begin with the approximation guarantee on Stochastic Distorted Greedy Algorithm as
stated in (Harshaw et al., 2019), Theorem 3. (Harshaw et al., 2019) show that on running Distorted
Greedy with K iterations for optimization problem (60), the output is a set S′ with size |S′| ≤ K
and,

(1− e−γ − δ)g(S∗)− c(S∗) ≤ E[g(S′)− c(S′)] (63)

g(S∗) ≤ E[g(S′)− c(S′)]
(1− e−γ − δ)

+
c(S∗)

(1− e−γ − δ)
(64)

g(S∗)− c(S∗) ≤ E[g(S′)− c(S′)]
(1− e−γ − δ)

+
e−γ+δ

(1− e−γ−δ)
c(S∗) (65)

g(S∗)− c(S∗) ≤ E[g(S′)− c(S′)]
(1− e−γ − δ)

+
(e−γ + δ)(1− κ)

(1− e−γ − δ)κ
(g(S∗)− c(S∗)) (66)

where in the last inequality we use definition of κ. Collecting the terms involving g(S∗)− c(S∗) on
the left, g(S′)− c(S′) on the right and then simplifying gives us the result of the lemma.

Lemma 8. (Derivation of κ) Let Gλ(θ, S) and mλ(θ, S) be as defined in definition 4 and 5 re-
spectively. Let Assumption 1 hold and suppose max

θ∈Θ
R(θ) = θ2

max and for all θ ∈ Θ, and let

`max, Cmin, θmax be defined as in Assumption 1. Then, for all θ,∀S, it holds that

mλ(θ, S)

Gλ(θ, S)
≤ λθ2

max + ρ`max

λθ2
max + ρ`max + µCmin

(67)

Proof. We first note that:

mλ(θ, S)

Gλ(θ, S)
=

λR(θ)|S|+ ρ
∑
i∈S `(hθ(xi), yi)

λR(θ)|S|+
∑
i∈S `(hθ(aφ∗(θ,S)(xi)), yi) + ρ

∑
j∈D `(hθ(xj), yj)

(68)

Using the definition of aφ∗(θ,S) from Eq. (3), we have, for all φ ∈ Φ∑
i∈S

[
`(hθ(aφ∗(θ,S)(xi)), yi)− µC(aφ∗(θ,S)(xi),xi)

]
≥

∑
i∈S

[`(hθ(aφ(xi)), yi)− µC(aφ(xi),xi)]

(69)
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In particular, this also holds for φ such that for all x, aφ(x) = x. This gives,∑
i∈S

[
`(hθ(aφ∗(θ,S)(xi)), yi)− µC(aφ∗(θ,S)(xi),xi)

]
≥
∑
i∈S

[`(hθ(xi), yi)− µC(xi,xi)] (70)

=⇒
∑
i∈S

[
`(hθ(aφ∗(θ,S)(xi)), yi)

]
≥
∑
i∈S

[`(hθ(xi), yi) + µCmin] (71)

The last line uses the definition of Cmin from Assumption 1, and the fact that for all x, C(x,x) = 0.

Plugging inequality (71) back into inequality. (68), we obtain:

mλ(θ, S)

Gλ(θ, S)
≤

λR(θ)|S|+ ρ
∑
i∈S `(hθ(xi), yi)

λR(θ)|S|+
∑
i∈S [`(hθ(xi), yi) + µCmin] + ρ

∑
j∈D `(hθ(xj), yj)

(72)

≤
λR(θ)|S|+ ρ

∑
i∈S `(hθ(xi), yi)

λR(θ)|S|+
∑
i∈S [`(hθ(xi), yi) + µCmin] + ρ

∑
j∈S `(hθ(xj), yi)

(73)

≤ λR(θ)|S|+ ρ`max|S|
λR(θ)|S|+ µCmin|S|+ ρ

∑
j∈S `(hθ(xi), yi)

(74)

≤ λR(θ)|S|+ ρ`max|S|
λR(θ)|S|+ µCmin|S|+ ρ`max|S|

(75)

=
λR(θ) + ρ`max

λR(θ) + ρ`max + µCmin
(76)

Here inequalities (73) and (74) follow from non-negativity of `. Finally, substituting R(θ) ≤ θ2
max,

we get the statement in the lemma.

Lemma 9. Suppose the assumptions of Lemma 8 and Theorem 2 hold. Let κ = µCmin/(λθ
2
max +

ρ`max + µCmin), where the symbols are the same as defined in the statement of Lemma 8 and γ∗

is defined in Theorem 2. Furthermore, let δ < (1− e−γ∗) and let ρ < [Cmin((e−γ
∗

+ δ)−1 − 1)−
λθ2

max]/`max. Then for any S such that |S| ≤ b,(
1− (e−γ

∗
+ δ)/κ

)
F (hθ̂t , S | aφ∗(θ̂t,S))− E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))] ≤ 2η∇2

max (77)

where the expectation is w.r.t. the randomness in Stochastic Distorted Greedy.

Proof. To obtain our guarantees, we require
(

1− e−γ
∗

+δ
κ

)
≥ 0. Substituting κ = µCmin/(λθ

2
max +

ρ`max +µCmin) and simplifying gives us ρ < [µCmin((e−γ
∗

+δ)−1−1)−λθ2
max]/`max. To ensure

that the this bound is positive, we require δ < (1− e−γ∗).

In our algorithm, we obtain Ŝt by applying Stochastic Distorted Greedy using θ̂t−1. Therefore, by
our characterization of F as stated in Eq. (6) and using Lemma 7, we have that for any S,

F (hθ̂t−1
, S | aφ∗(θ̂t−1,S)) ≤

(
κ

κ− e−γ∗ − δ

)
E[F (hθ̂t−1

, Ŝt | aφ∗(θ̂t−1,Ŝt)
)] (78)

Using the∇max-Lipschitzness of F , we get

|F (hθ̂t , S | aφ∗(θ̂t,S))− F (hθ̂t−1
, S | aφ∗(θ̂t−1,S))| ≤ ∇max‖θ̂t − θ̂t−1‖ (79)

= ∇maxη‖∇θ̂t−1
F (hθ̂t−1

, S | aφ∗(θ̂t−1,S))‖
(80)

≤ ∇2
maxη (81)

Now, using the Lipschitz condition, from inequality (81) we get that for t and S
F (hθ̂t , S | aφ∗(θ̂t,S)) ≤ F (hθ̂t−1

, S | aφ∗(θ̂t−1,S)) + η∇2
max (82)

≤
(

κ

κ− e−γ∗ − δ

)
E[F (hθ̂t−1

, Ŝt | aφ∗(θ̂t−1,Ŝt)
)] + η∇2

max (83)
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=⇒
(

1− e−γ
∗

+ δ

κ

)
F (hθ̂t , S | aφ∗(θ̂t,S)) ≤ E[F (hθ̂t−1

, Ŝt | aφ∗(θ̂t−1,Ŝt)
)] +

(
1− e−γ

∗
+ δ

κ

)
η∇2

max

(84)

Here, inequality (83) is obtained by using inequality (78). Subtracting E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))]
from both sides of inequality (84), we obtain:

(
1− e−γ

∗
+ δ

κ

)
F (hθ̂t , S | aφ∗(θ̂t,S))− E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))] (85)

≤ E[F (hθ̂t−1
, Ŝt | aφ∗(θ̂t−1,Ŝt)

)− F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))] +

(
1− e−γ

∗
+ δ

κ

)
η∇2

max (86)

Using inequality (81), we conclude that the above quantity is less than

η∇2
max +

(
1− e−γ

∗
+ δ

κ

)
η∇2

max =

(
2− e−γ

∗
+ δ

κ

)
η∇2

max ≤ 2η∇2
max (87)

This completes the proof of the lemma.

Lemma 10. Suppose Assumption 1 and 2 hold. Let ∇̂θF (hθ, S | aφ∗(θ,S)) denote the stochastic
gradient of F at hθ, S such that E[∇̂θF (hθ, S | aφ∗(θ,S))] = ∇θF (hθ, S | aφ∗(θ,S)), for all θ, S.
Furthermore, suppose that for all θ, S, we have, ‖∇̂θF (hθ, S | aφ∗(θ,S))‖ ≤ ∇max. For any θ, S,
let θ′ = θ − η∇̂θF (hθ, S | aφ∗(θ,S)). Then, for any θ̃ ∈ Θ

E[F (hθ′ , S | aφ∗(θ′,S))|θ]−F (hθ̃, S | aφ∗(θ̃,S)) ≤
η

2
(Lη + 1)∇2

max +
1

2η

[
‖θ − θ̃‖2 − E[‖θ′ − θ̃‖2 |θ]

]
where the expectation is over the randomness in computing the stochastic gradient
∇̂θF (hθ, S | aφ∗(θ,S)).

Proof. In what follows, we fix S and denote F (hθ, S | aφ∗(θ,S)) ≡ F (hθ). We do this for brevity
and succinctness. Using first L-smoothness and then θ′ = θ − η∇̂θF (hθ, S | aφ∗(θ,S)), we obtain:

F (hθ′) ≤ F (hθ) + 〈∇θF (hθ),θ′ − θ〉+
L

2
‖θ′ − θ‖2 (88)

=⇒ F (hθ′)− F (hθ) ≤ −η〈∇θF (hθ), ∇̂θF (hθ)〉+
Lη2

2
‖∇̂θF (hθ)‖2 (89)

Taking expectations on both sides over the randomness in computing SGD, we obtain:

E[F (hθ′)− F (hθ)|θ] ≤ −ηE[〈∇θF (hθ), ∇̂θF (hθ)〉 |θ] +
Lη2

2
E[‖∇̂θF (hθ)‖2|θ] (90)

=⇒ E[F (hθ′)|θ]− F (hθ) ≤ −η〈∇θF (hθ),E[∇̂θF (hθ) |θ]〉+
Lη2

2
E[‖∇̂θF (hθ)‖2|θ] (91)

= −η‖∇θF (hθ)‖2 +
Lη2

2
E[‖∇̂θF (hθ)‖2|θ] (92)

Since F is convex in θ̃, we have:
F (hθ)− F (hθ̃) ≤ 〈∇θF (hθ),θ − θ̃〉 (93)

Adding the inequality (93) and inequality (92), we obtain:

E[F (hθ′)|θ]− F (hθ̃) ≤ −η‖∇θF (hθ)‖2 +
Lη2

2
E[‖∇̂θF (hθ)‖2|θ] + 〈∇θF (hθ),θ − θ̃〉 (94)

We derive a value for 〈∇θF (hθ),θ − θ̃〉 using the following:

‖θ′ − θ̃‖2 = ‖θ′ − θ + θ − θ̃‖2 (95)

= ‖θ′ − θ‖2 + ‖θ − θ̃‖2 + 2〈θ′ − θ,θ − θ̃〉 (96)
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= ‖ − η∇̂θF (hθ)‖2 + ‖θ − θ̃‖2 + 2〈−η∇̂θF (hθ),θ − θ̃〉 (97)

= η2‖∇̂θF (hθ)‖2 + ‖θ − θ̃‖2 − 2η〈∇̂θF (hθ),θ − θ̃〉 (98)

Taking expectation on both sides, given θ (noting that θ̃ does not depend on θ), we get

E
[
‖θ′ − θ̃‖2 |θ

]
− ‖θ − θ̃‖2 = η2E

[
‖∇̂θF (hθ)‖2 |θ

]
− 2ηE

[
〈∇̂θF (hθ),θ − θ̃〉|θ

]
(99)

= η2E[‖∇̂θF (hθ)‖2 |θ]− 2η〈∇θF (hθ),θ − θ̃〉 (100)

Rearranging, we obtain:

〈∇θF (hθ),θ − θ̃〉 =
η

2
E[‖∇̂θF (hθ)‖2 |θ]− 1

2η

[
E[‖θ′ − θ̃‖2 |θ]− ‖θ − θ̃‖2

]
(101)

Plugging inequality (101) back into the inequality (94), we get

E[F (hθ′)|θ]− F (hθ̃)

≤ η

2
(Lη + 1)E[‖∇̂θF (hθ)‖2 |θ]− η‖∇θF (hθ)‖2 +

1

2η

[
‖θ − θ̃‖2 − E[‖θ′ − θ̃‖2 |θ]

]
≤ η

2
(Lη + 1)∇2

max +
1

2η

[
‖θ − θ̃‖2 − E[‖θ′ − θ̃‖2 |θ]

]
(102)

Lemma 11. Suppose the assumptions of Lemma 10 hold. Furthermore, let θ̂t, Ŝt denote the iterates
of our algorithm. Then, for any θ̃ ∈ Θ,

T∑
t=1

[
E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))]− E[F (hθ̃, Ŝt | aφ∗(θ̃,Ŝt))]

]
≤ 2Tη∇2

max +
2θ2

max

η
(103)

Here the expectation is taken w.r.t. the total randomness of the algorithm. This includes the
randomness in stochastic gradient descent as well as stochastic distorted greedy.

Proof. Putting θ′ = θ̂t,θ = θ̂t−1 and S = Ŝt−1, in the statement of Lemma 10 we obtain: that for
any θ̃ ∈ Θ

E[F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1))|θ̂t−1]− F (hθ̃, Ŝt−1 | aφ∗(θ̃,Ŝt−1))

≤ η

2
(Lη + 1)∇2

max +
1

2η

[
‖θ̂t−1 − θ̃‖2 − E

[
‖θ̂t − θ̃‖2 | θ̂t−1

] ]
(104)

We now take the expectation w.r.t. θ̂0, θ̂1, . . . , θ̂t. Let θ̂0:τ := θ̂0, . . . , θ̂τ . Using law of total
expectation and noting that given θ̂t−1, θ̂t is independent of θ̂τ for τ 6= t− 1, we get

E
θ̂0:t

[F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1))] = E
θ̂0:t−1

[
E

θ̂0:t|θ̂0:t−1

[F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1))|θ̂0, . . . , θ̂t−1]

]
(105)

= E
θ̂0:t−1

[
E

θ̂t|θ̂0:t−1

[F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1))|θ̂0, . . . , θ̂t−1]

]
(106)

= E
θ̂0:t−1

[
E

θ̂t|θ̂t−1

[F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1))|θ̂t−1]

]
(107)

Finally, we note that E
θ̂0:T

[F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1))] = E
θ̂0:t

[F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1)))] as later

iterations cannot impact previous iterations. We finally take the expectation w.r.t the randomness in
stochastic distorted greedy as well. Thus, we obtain:
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E[F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1))]− E[F (hθ̃, Ŝt−1 | aφ∗(θ̃,Ŝt−1))]

≤ η

2
(Lη + 1)∇2

max +
1

2η

[
E[‖θ̂t−1 − θ̃‖2]− E[‖θ̂t − θ̃‖2]

]
where E now denotes the expectation w.r.t. the randomness in the entire procedure (stochastic gradient
descent and stochastic distorted greedy). Using Lipschitzness of F , we get that

|F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1))− F (hθ̂t−1
, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1))| ≤ ∇max‖θ̂t − θ̂t−1‖

F (hθ̂t−1
, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1)) ≤ F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1)) + η∇2

max

Plugging this in the equation above, we get

E[F (hθ̂t−1
, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1))]− F (hθ̃, Ŝt−1 | aφ∗(θ̃,Ŝt−1))

≤ η∇2
max +

η

2
(Lη + 1)∇2

max +
1

2η

[
E[‖θ̂t−1 − θ̃‖2]− E[‖θ̂t − θ̃‖2]

]
Setting η < 1/L and simplifying gives us the following,

E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))]− E[F (hθ̃, Ŝt | aφ∗(θ̃,Ŝt))]

≤ 2η∇2
max + +

1

2η

[
E[‖θ̂t − θ̃‖2]− E[‖θ̂t+1 − θ̃‖2]

]
Summing over all T gives us a telescoping sum on the right. Simplifying, we obtain:

T∑
t=1

[
E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))] − E[F (hθ̃, Ŝt | aφ∗(θ̃,Ŝt))]

]
≤ 2Tη∇2

max +
1

2η
E[‖θ̂1 − θ̃‖2]

(108)

We give an upper bound on ‖θ̂1 − θ̃‖2 as follows

‖θ̂1 − θ̃‖2 ≤
[
‖θ̂1‖+ ‖θ̃‖

]2 ≤ (2θmax)2 = 4θ2
max (109)

Substituting upper bound from inequality (109) in inequality (108) gives us the statement of the
Lemma:

T∑
t=1

[
E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))]− E[F (hθ̃, Ŝt | aφ∗(θ̃,Ŝt))]

]
≤ 2Tη∇2

max +
2θ2

max

η
(110)

F.1 AUXILIARY LEMMAS FOR THEOREM 4

Lemma 12. (k-SGD guarantee for a fixed S) Suppose Assumption 1 and 2 hold and F is a non-
convex function that satisfies the PL condition. Fix S and suppose θ(1), . . . ,θ(k) are obtained using
k-step stochastic gradient descent, for the fixed S, starting from θ(0). Then, for any θ̃ ∈ Θ, we have,

E[F (hθ(k) , S | aφ∗(θ(k),S)) |θ(0), . . . ,θ(k−1)]− F (hθ̃, S | aφ∗(θ̃,S)) ≤
4Lθ2

max(1− ησ)k

σ
+
Lη∇2

max

2σ
where the expectation is w.r.t. randomness in computing the stochastic gradient.

Proof. Since S is fixed, we drop the second argument and denote FS(hθ, S | aφ∗(θ,S)) ≡ FS(hθ)

for succinctness and brevity. For i = 0, . . . , k− 1, we have, θ(i+1) = θ(i)− η∇̂θ(i)FS(hθ(i)). Using
L-smoothness, we obtain:

FS(hθ(k)) ≤ FS(hθ(k−1)) + 〈∇θ(i)FS(hθ(i)),θ(k) − θ(k−1)〉+
L

2
‖θ(k) − θ(k−1)‖2

Taking expectation (given θ(k−1)) on both sides w.r.t. randomness in stochastic gradient descent, we
obtain:
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E[FS(hθ(k)) |θ(k−1)] ≤ FS(hθ(k−1))− η
〈
∇θ(k−1)FS(hθ(k−1)),E[∇̂θ(k−1)FS(hθ(k−1))]

〉
(111)

+
Lη2

2
E[‖∇̂θ(k−1)FS(hθ(i))‖2 | ] (112)

≤ FS(hθ(k−1))− η‖∇θ(k−1)FS(hθ(k−1))‖2 +
Lη2

2
∇2

max (113)

The PL condition implies that,
‖∇θ(k−1)FS(hθ(k−1))‖2 ≥ σ[FS(hθ(k−1))− FS(hθ∗S )] (114)

where θ∗S = minθ′ F (hθ′ , S | aφ∗(θ′,S)). Substituting this in the inequality (113), we obtain:

E[FS(hθ(k)) |θ(k−1)] ≤ FS(hθ(k−1))− ησ[FS(hθ(k−1))− FS(hθ∗S )] +
Lη2∇2

max

2
(115)

Subtracting FS(hθ∗S ) from both sides and simplifying gives us,

E[FS(hθ(k)) |θ(k−1)]− FS(hθ∗S ) ≤ (1− ησ)[FS(hθ(k−1))− FS(hθ∗S )] +
Lη2∇2

max

2
(116)

Now, we take expectation given θ(k−2) and get,

E[FS(hθ(k)) |θ(k−1),θ(k−2)]− FS(hθ∗S )

≤ (1− ησ)[E[FS(hθ(k−1)) |θ(k−2)]− FS(hθ∗S )] +
Lη2∇2

max

2
(117)

Note that E[FS(hθ(k)) |θ(k−1),θ(k−2)] = E[FS(hθ(k)) |θ(k−1)] because θ(k), is conditionally in-
dependent of θ(k−2) when θ(k−1) is given. Moreover, the term E[FS(hθ(k−1)) |θ(k−2)]− FS(hθ∗S )
can be simplified in the same manner as above to get,

E[FS(hθ(k−1)) |θ(k−2)]− FS(hθ∗S ) ≤ (1− ησ)[E[FS(hθ(k−2)) |θ(k−3)]− FS(hθ∗S )] +
Lη2∇2

max

2
(118)

Let θ(0):(τ) denote θ(0), . . . ,θ(τ). Then, repeating the above procedure and simplifying yields,

Eθ(0):(k−1) [FS(hθ(k−1))]− FS(hθ∗S )

≤ (1− ησ)k[E[FS(hθ(0))]− FS(hθ∗S )] +
Lη2∇2

max

2

k∑
τ=1

(1− ησ)τ (119)

≤ (1− ησ)k[FS(hθ(0))− FS(hθ∗S )] +
Lη2∇2

max

2

1

ησ
(120)

≤ (1− ησ)k

σ
‖∇θ(0)FS(hθ(0))‖2 +

Lη∇2
max

2σ
(121)

≤ L(1− ησ)k

σ
‖θ(0) − θ∗S‖2 +

Lη∇2
max

2σ
(122)

≤ 4Lθ2
max(1− ησ)k

σ
+
Lη∇2

max

2σ
(123)

where, in inequality (121) we have used the PL condition and in inequality (122) we have used the
fact that ‖∇θ(0)FS(hθ(0))‖ = ‖∇θ(0)FS(hθ(0))−∇θ∗SFS(hθ∗S )‖ ≤ L‖θ(0) − θ∗S‖ (using Lipschitz
gradients).

Finally, we note that by the definition of θ∗S , FS(hθ̃) ≥ FS(hθ∗S ). Thus, we replace FS(hθ̃) by
FS(hθ∗S ) in the LHS to get the statement of the lemma. This completes the proof of the lemma.
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Lemma 13. (k-SGD guarantee) Suppose Assumption 1 and 2 hold and F is a non-convex function
that satisfies the PL condition. Let θ̂t, Ŝt denote the iterates of our algorithm and suppose method
= k-SGD is used. Then, for any θ̃ ∈ Θ

E[F (hθ̂t−1
, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1))]−E[F (hθ̃, Ŝt−1 | aφ∗(θ̃,Ŝt−1))]

≤ 2kη∇2
max +

4Lθ2
max(1− ησ)k

σ
+
Lη∇2

max

2σ
(124)

where the expectation is taken w.r.t. the total randomness of the algorithm (stochastic gradient
descent and stochastic distorted greedy).

Proof. In our algorithm with method = k-SGD θ̂t is derived from θ̂t−1 using k steps of SGD
with fixed set Ŝt−1. In this case, θ̂t−1 = θ(0), θ̂t = θ(k), S = Ŝt−1 and θ(1), . . . ,θ(k−1), denote
the intermediate k-SGD iterates. In this case, Lemma 12 holds and we obtain:

E[F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1)) | θ̂t−1,θ
(1), . . . ,θ(k−1)]− F (hθ̃, Ŝt−1 | aφ∗(θ̃,Ŝt−1))

≤ 4Lθ2
max(1− ησ)k

σ
+
Lη∇2

max

2σ
(125)

Taking total expectation on both sides, w.r.t. θ(1), . . . ,θ(k−1), using law of total expectation and
observing that the other terms in the equation are independent of these random variables, we obtain:

E[F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1)) | θ̂t−1]− F (hθ̃, Ŝt−1 | aφ∗(θ̃,Ŝt−1)) ≤
4Lθ2

max(1− ησ)k

σ
+
Lη∇2

max

2σ
(126)

Using Lipschitzness of F from Assumption 1, we obtain:

|F (hθ̂t−1
, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1))−F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1))|

≤ ∇max‖θ̂t−1 − θ̂t‖

= ∇max‖θ̂t−1 − θ(1) + θ(1) . . .+ θ(k−1) − θ̂t‖
≤ 2kη∇2

max (127)

Adding and subtracting F (hθ̂t−1
, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1)) from inequality (126) gives us,

F (hθ̂t−1
,Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1))− F (hθ̃, Ŝt−1 | aφ∗(θ̃,Ŝt−1))

≤ F (hθ̂t−1
, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1))− E[F (hθ̂t−1

, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1)) | θ̂t−1]

+
4Lθ2

max(1− ησ)k

σ
+
Lη∇2

max

2σ
Now, using inequality (127), we obtain:

F (hθ̂t−1
, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1))−F (hθ̃, Ŝt−1 | aφ∗(θ̃,Ŝt−1))

≤ 2kη∇2
max +

4Lθ2
max(1− ησ)k

σ
+
Lη∇2

max

2σ
(128)

Finally, taking expectation w.r.t. the total randomness of the algorithm (stochastic gradient descent
and stochastic distorted greedy), we obtain:

E[F (hθ̂t−1
, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1))]−E[F (hθ̃, Ŝt−1 | aφ∗(θ̃,Ŝt−1))]

≤ 2kη∇2
max +

4Lθ2
max(1− ησ)k

σ
+
Lη∇2

max

2σ
(129)

Lemma 14. Suppose the assumptions of Lemma 8 and Theorem 2 hold. Let κ = µCmin/(λθ
2
max +

ρ`max + µCmin), where the symbols are the same as defined in the statement of Lemma 8 and γ∗ is
defined in Theorem 2.(

1− e−γ
∗

+ δ

κ

)
F (hθ̂t , S | aφ∗(θ̂t,S))− E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))] ≤ 4kη∇2

max (130)
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where the expectation is w.r.t. the randomness in Stochastic Distorted Greedy.

Proof. To obtain our guarantees, we require (1− e−γ
∗

+δ
κ ) ≥ 0. Substituting κ = µCmin/(λθ

2
max +

ρ`max +µCmin) and simplifying gives us ρ < [µCmin((e−γ
∗

+δ)−1−1)−λθ2
max]/`max. To ensure

that the this bound is positive, we require δ < (1− e−γ∗).

In our algorithm, we obtain Ŝt by applying Stochastic Distorted Greedy using θ̂t−1. Therefore, by
our characterization of F as stated in Eq. (6) and using Lemma 7, we have that for any S,

F (hθ̂t−1
, S | aφ∗(θ̂t−1,S)) ≤

(
κ

κ− e−γ∗ − δ

)
E[F (hθ̂t−1

, Ŝt | aφ∗(θ̂t−1,Ŝt)
)] (131)

Since θ̂t is derived from θ̂t−1 using method = k-SGD, we cannot use Lipschitzness directly.
Instead, we use inequality (127). Doing so, we get that for all t, S,

F (hθ̂t , S | aφ∗(θ̂t,S)) ≤ F (hθ̂t−1
, S | aφ∗(θ̂t−1,S)) + 2kη∇2

max (132)

≤
(

κ

κ− e−γ∗ − δ

)
E[F (hθ̂t−1

, Ŝt | aφ∗(θ̂t−1,Ŝt)
)] + 2kη∇2

max (133)(
1− e−γ

∗
+ δ

κ

)
F (hθ̂t , S | aφ∗(θ̂t,S)) ≤ E[F (hθ̂t−1

, Ŝt | aφ∗(θ̂t−1,Ŝt)
)] +

(
1− e−γ

∗
+ δ

κ

)
2kη∇2

max

(134)

where in inequality (133) we use inequality (131). Subtracting E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))] from both
sides, we obtain:(

1− e−γ
∗

+ δ

κ

)
F (hθ̂t , S | aφ∗(θ̂t,S))− E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))]

≤ E[F (hθ̂t−1
, Ŝt | aφ∗(θ̂t−1,Ŝt)

)− F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))] +

(
1− e−γ

∗
+ δ

κ

)
2kη∇2

max

(135)
Using Lipschitzness of F from Assumption 1, we obtain:

|F (hθ̂t−1
, Ŝt−1 | aφ∗(θ̂t−1,Ŝt−1))−F (hθ̂t , Ŝt−1 | aφ∗(θ̂t,Ŝt−1))|

≤ ∇max‖θ̂t−1 − θ̂t‖

= ∇max‖θ̂t−1 − θ(1) + θ(1) . . .+ θ(k−1) − θ̂t‖
≤ 2kη∇2

max (136)

We use inequality (136) into the inequality (135) to have:(
1− e−γ

∗
+ δ

κ

)
F (hθ̂t , S | aφ∗(θ̂t,S))− E[F (hθ̂t , Ŝt | aφ∗(θ̂t,Ŝt))]

≤ 2kη∇2
max +

(
1− e−γ

∗
+ δ

κ

)
2kη∇2

max

=

(
2− e−γ

∗
+ δ

κ

)
2kη∇2

max

≤ 4kη∇2
max (137)
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G ADDITIONAL DETAILS ABOUT THE EXPERIMENTAL SETUP

G.1 DATASET SPLIT INTO TRAIN, VALIDATION AND TEST

We split the datasets1 into training, validation, and test set in the ratio of 4:1:1, 5:1:1 and 4:1:1 for
CIFAR10, FMNIST and CIFAR100 respectively. For CIFAR10, we use 40000 training examples,
10000 validation examples and 10000 test examples. For Fashion MNIST, we use 50000 training
examples, 10000 validation examples, and 10000 test examples. For CIFAR100, we use 40000
training examples, 10000 validation examples and 10000 test examples. The same train, validation
and test split it used for the baselines as well. In all cases, unless otherwise mentioned, we consider
|S| ≤ b = 0.1|D| during training. Similarly, during test we use 10% test instances for attack. The
exact nature of drawing this 10% test instances varies across experiments and is mentioned therein.

G.2 DETAILS ABOUT THE BASELINES

In all baselines, we used ResNet18 architecture for CIFAR10 and ResNet9 for CIFAR100, with the
last layers having 10 and 100 neurons respectively. For FMNIST, we use LeNet architecture. For
all the methods (including ours) which use PGD attack during training, we keep the PGD attack
parameters to be the same as ROGET (aφ = PGD) (details in the following subsection). Similar
to ρ in our method, GAT, TRADES, Nu-AT and, MART also offer specific hyperparameters which
can control the tradeoff between Aclean and Arobust. For all methods (including Ours), we use
PGD attack as the assumed adversarial perturbation method during hyperparameter selection on the
validation set.

GAT (Sriramanan et al., 2020). We used the code from the official repository2. They provide two
different codebases for CIFAR10 and MNIST. We used their MNIST code for experiments with
FMNIST dataset. For default hyperparameter selection (Table 1), we refer to the official repository3

in which they provide the value of l2_reg = 10 for CIFAR10 and l2_reg = 15 for MNIST (which
we use for FMNIST). For worst-case hyperparameter selection (Table 2), we train GAT on a range
of l2_reg values: {2.5, 5.0, 10.0, 15.0, 20.0, 30.0} for CIFAR10 and FMNIST, and {2.0, 5.0, 10.0,
20.0, 30.0} for CIFAR100. In their official code, they train GAT for 100 epochs on CIFAR10 and for
50 epochs on MNIST. Hence we train GAT for 100, 50 and 100 epochs on CIFAR10, FMNIST and
CIFAR100 respectively.

FBF (Wong et al., 2019). For CIFAR10 we used the code from the official repository4. For
FMNIST and CIFAR100, we implemented their code parallel to CIFAR10. The only changes (other
than the architecture) were the mean and standard deviation that we computed for FMNIST and
CIFAR100 separately. FBF does not have any tunable parameter and hence it does not undergo any
hyperparameter selection. For CIFAR10 and CIFAR100, we train FBF for 80 epochs (as used in the
official code for CIFAR10). For FMNIST, we train FBF for 10 epochs (as used in the official code
for MNIST).

TRADES (Zhang et al., 2019b). We used the code from the official repository5. They provide two
different codebases for CIFAR10 and MNIST. We used their MNIST code for experiments with
FMNIST dataset. For default hyperparameter selection (Table 1), we refer to the official repository6

in which they use β = 6.0 for CIFAR10 and β = 1.0 for MNIST (which we use for FMNIST). For
worst-case hyperparameter selection (Table 2), we train TRADES on a range of β values: {0.1, 0.2,
0.4, 0.6, 0.8, 2.0, 4.0, 6.0} for CIFAR10, {0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0} for FMNIST, and {1.0,
2.0, 4.0, 6.0, 8.0} for CIFAR100. Optimizer, batch size and learning rate are same as those used in
the official repository. We train TRADES for 120, 100, and 120 epochs on CIFAR10, FMNIST and,
CIFAR100 respectively.

1We collect the datasets from https://www.cs.toronto.edu/ kriz/cifar.html (CIFAR-10), and
https://www.kaggle.com/datasets/zalando-research/fashionmnist (FMNIST).

2https://github.com/val-iisc/GAMA-GAT/
3https://github.com/val-iisc/GAMA-GAT/
4https://github.com/locuslab/fast_adversarial/
5https://github.com/yaodongyu/TRADES/
6https://github.com/yaodongyu/TRADES/
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Nu-AT (Sriramanan et al., 2021). We used the code from the official repository7. They only provide
code for CIFAR10 hence for running it on FMNIST, we modify the PGD parameters to the one we
used in FMNIST and the number of epochs to 100. For default hyperparameter selection (Table 1),
we refer to the supplementary material of Nu-AT, in which the authors mention that "We use a λmax
of 4.5 for CIFAR-10 on ResNet-18 architecture and 4 for WideResNet-34-10. For MNIST we use
λmax of 1...". Hence we use λmax=4.5 for CIFAR10 and λmax=1.0 for FMNIST. For worst-case
hyperparameter selection (Table 2), we train Nu-AT on a range of λmax values: {2.0, 2.5, 3.0, 3.5,
4.0, 4.5, 5.0} for CIFAR10 and FMNIST, and {1.0, 2.0, 4.5, 6.0, 8.0} for CIFAR100. Optimizer,
batch size and learning rate are same as those used in the official repository. We train Nu-AT for 120,
100, and 120 epochs on CIFAR10, FMNIST and, CIFAR100 respectively.

MART (Wang et al., 2019). We used the code from the official repository8. They only provide code
for CIFAR10 hence for running it on FMNIST, we modify the PGD parameters and the number of
epochs. For default hyperparameter selection (Table 1), we refer to the official repository9 in which
they use β = 5.0 for CIFAR10. We were not able to find any mention of their hyperparameter values
for MNIST either in their paper or their code. Hence using Figure 2(d) of their paper as reference,
we trained MART on FMNIST for β ={0.5, 1.0, 2.5, 5.0, 7.5, 10.0} and found that only β = 1.0
undergone effective training and gave Aclean above 50%. Hence we chose β = 1.0 as the default
value for FMNIST. For worst-case hyperparameter selection (Table 2), we train MART on a range of
β values: {0.5, 1.0, 2.5, 5.0, 7.5, 10.0} for CIFAR10 and FMNIST, and {0.5, 1.0, 2.5, 5.0, 10.0} for
CIFAR100. We train MART for 120, 100, and 120 epochs on CIFAR10, FMNIST and, CIFAR100
respectively.

PGD-AT (Madry et al., 2017). We could not find any official Pytorch implementation for PGD-AT.
Therefore, we implemented it ourselves using the architecture mentioned above, for each dataset.
We use SGD optimizer along with batch size of 128 was used for both datasets. For FMNIST,
initial learning rate 0.01 and momentum 0.9 was used. For CIFAR10 and CIFAR100, we use initial
learning rate of 0.1 and momentum 0.9. PGD-AT has no tunable parameter and hence it undergoes
no hyperparameter selection. We train PGD-AT for 100 epochs on all three datasets.

RFGSM-AT (Tramèr et al., 2018). We could not find any official Pytorch implementation for
RFGSM-AT. Therefore, we implemented it ourselves using the architecture mentioned above, for
each dataset. RFGSM-AT also does not have any tunable parameter that controls the tradeoff between
Arobust and Aclean but it has a parameter α which does affect its robust accuracy to a significant
extent. We refer to their paper in which they use α = ε/2 for ImageNet and MNIST. Hence, for
default hyperparameter selection (Table 1), we use α = ε/2 for CIFAR10 and FMNIST. This value
however gives very low robust accuracy for all the attacks. Hence for worst-case hyperparameter
selection (Table 2), we tune α such that it achieves Arobust above 40% on PGD attack which gives
us the value of α = 0.05ε. Optimizer, batch size and learning rate are same as those used in the
official repository. We use SGD optimizer along with batch size of 128 was used for both datasets.
For FMNIST, initial learning rate 0.01 and momentum 0.9 was used. For CIFAR10 and CIFAR100,
we use initial learning rate of 0.1 and momentum 0.9. We train RFGSM-AT for 100 epochs on all
three datasets.

G.3 IMPLEMENTATION DETAILS OF OUR METHOD

Hyperparameters of our method. For default hyperparameter selection (Table 1), we simply use
ρ = 1 for all the datasets. For worst-case hyperparameter selection (Table 2), we train ROGET
(aφ = PGD) on a range of ρ values: {0.01, 0.05, 0.5, 1.0, 2.0, 5.0, 8.0, 10.0} for CIFAR10, {0.01,
0.1, 0.5, 1.0, 1.5, 2.0, 4.0, 8.0} for FMNIST, and {2.0, 5.0, 10.0, 20.0, 30.0} for CIFAR100. For
ROGET (aφ = AdvGAN), we train for ρ values: {0.01, 0.25, 0.5, 1.0, 1.5, 2.0} for CIFAR10, {0.001,
0.005, 0.01, 0.1, 0.5, 1.0, 1.5, 2.0} for FMNIST and {0.005, 0.01, 0.25, 0.5, 1.0} for CIFAR100.
Batch size was set to 128 in all the datasets. We use k-SGD to train our method. Moreover, we use
early stopping as follows. While running multiple training epochs for a fixed S we use early stopping
to determine when to stop. In k-SGD, we stop training for the current S if on the validation set, the
attacked set accuracy, Arobust, drops.

7https://github.com/val-iisc/NuAT/
8https://github.com/YisenWang/MART
9https://github.com/YisenWang/MART
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Details about aφ. For ROGET (aφ = PGD), we set ε = 0.031, number of steps = 20 and step size
= 0.007 for CIFAR10 and CIFAR100 while for FMNIST, we use ε = 0.3, number of steps = 40 and
step size = 0.01.

For ROGET (aφ = AdvGAN), we used the Pytorch implementation available in an online reposi-
tory10. The same architecture was used for all the datasets with only changes to the number of input
channels. No changes to the generator or discriminator architecture were made besides the number of
input channels which was set to 1 for FMNIST and 3 for CIFAR10 and CIFAR100. At the end of
every iteration, we retrain AdvGAN on set S output by stochastic distorted greedy algorithm, for 15
epochs. Retraining AdvGAN every time we add a point to the set S in stochastic distorted greedy
(SDG) algorithm increases the running time of SDG to such an extent that it becomes infeasible. For
this reason, we instead choose to retrain AdvGAN after SDG outputs a set S, for the current iteration.
This is equivalent to fine-tuning AdvGAN to attack the set S, output by SDG.

G.4 DETAILS ABOUT ADVERSARIAL PERTURBATION

For PGD attack, we used same specifications used to train ROGET (aφ = PGD). More specifically,
we set ε = 0.031, number of steps = 20 and step size = 0.007 for CIFAR10 and CIFAR100 while
for FMNIST, we use ε = 0.3, number of steps = 40 and step size = 0.01. For Auto Attack, we use
the standard version which consists of untargeted APGD-CE, targeted APGD-DLR, targeted FAB
and Square attacks each with the default parameters. For square attack, we set number of queries
to 1000 and ε same as that for PGD attack above. For applying MI-FGSM in black box setting, we
take a source model trained on the chosen dataset, get the perturbed sample by computing gradients
using the source model and then test the method on this obtained perturbed sample. Transfer based
black box attacks are weaker than white-box attacks. Hence we set the parameters of MI-FGSM to
be stronger than those for PGD attack. We set ε = 0.2, number of steps = 60, step size = 0.007 for
CIFAR10 and CIFAR100 and ε = 0.305, number of steps = 80, step size = 0.01 for FMNIST. For
Square attack, we use `∞ norm with ε = 0.031 for CIFAR10 and ε = 0.3 for FMNIST.

G.5 INFRASTRUCTURE DETAILS

We implement ROGET using Python 3.8 and PyTorch 1.10.1. The experiments were run on servers
equipped with 2.9GHz CPUs, NVIDIA Quadro (48GB), NVIDIA RTX A6000 (48 GB), NVIDIA
A40 (46 GB), NVIDIA Quadro RTX 8000 (49 GB) and NVIDIA TITAN RTX (24 GB) GPUs.

G.6 LICENSE

We collect the datasets from https://www.cs.toronto.edu/∼kriz/cifar.html (CIFAR10 and CI-
FAR100), and https://www.kaggle.com/datasets/zalando-research/fashionmnist (Fashion-MNIST).
These sources allow the use of datasets for research purposes. Furthermore, we
use the following publicly available repositories— https://github.com/val-iisc/GAMA-GAT/
(GAT), https://github.com/locuslab/fast_adversarial/ (FBF), https://github.com/yaodongyu/TRADES/
(TRADES), https://github.com/val-iisc/NuAT/ (Nu-AT), https://github.com/YisenWang/MART
(MART) to implement the baselines, https://github.com/mathcbc/advGAN_pytorch (AdvGAN) to
implement AdvGAN, and https://submodlib.readthedocs.io/en/latest/functions/facilityLocation.html
to solve the Facility Location problem in one of our additional experiments mentioned in section H
below.

10https://github.com/mathcbc/advGAN_pytorch
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H ADDITIONAL EXPERIMENTS

H.1 RESULTS ON LOSS BASED HYPERPARAMETER SELECTION TECHNIQUE ON CIFAR10 AND
FMNIST

We also explore another hyperparameter selection technique in which the learner assumes a subset
selection strategy of the adversary. More specifically, the learner assumes a distribution across
validation samples which is inversely proportional to the loss of a classifier trained on clean samples.
Based on this strategy an attack is simulated on the validation set and the hyperparameter giving
the best overall accuracy is selected. We present the results for CIFAR10 and FMNIST in Table 7
For CIFAR10, we observe that our method achieves the highest overall accuracy for all attacks. For
FMNIST, TRADES has a better overall accuracy on AA and Square attack by a small margin.

CIFAR10
PGD AA Square MIFGSM AdvGAN

Aclean Arobust A Arobust A Arobust A Arobust A Arobust A
GAT 77.55 63.26 76.12 49.73 74.77 60.07 75.80 52.91 75.09 81.07 77.91
FBF 74.92 72.04 74.64 31.10 70.54 31.59 70.59 36.09 71.04 37.22 71.15
TRADES 83.63 51.43 80.41 42.55 79.52 58.60 81.13 48.00 80.07 87.37 84.02
Nu-AT 84.66 54.64 81.66 45.79 80.77 61.34 82.33 47.41 80.93 88.18 85.01
MART 80.49 61.30 78.57 49.32 77.37 61.26 78.57 51.13 77.56 84.25 80.87
PGD-AT 83.36 57.33 80.76 48.50 79.88 62.71 81.30 50.00 80.03 87.13 83.74
RFGSM-AT 85.84 45.94 81.85 37.49 81.00 60.25 83.28 37.91 81.04 89.42 86.20
ROGET (PGD) 86.63 51.16 83.09 43.06 82.28 62.33 84.20 42.20 82.19 90.15 86.99
ROGET (AdvGAN) 87.86 47.97 83.87 39.97 83.07 62.21 85.29 40.27 83.10 91.53 88.22

FMNIST
PGD AA Square MIFGSM AdvGAN

Aclean Arobust A Arobust A Arobust A Arobust A Arobust A
GAT 91.47 3.18 82.64 0.00 82.32 0.01 82.32 8.32 83.15 29.09 85.24
FBF 80.47 14.29 73.85 66.74 79.10 68.43 79.27 84.81 80.90 85.94 81.02
TRADES 86.85 62.90 84.45 53.37 83.50 57.37 83.90 81.43 86.30 70.42 85.20
Nu-AT 90.21 5.11 81.70 0.00 81.19 0.11 81.20 19.77 83.17 11.35 82.32
MART 78.94 77.72 78.82 59.73 77.02 61.46 77.19 79.81 79.03 70.10 78.06
PGD-AT 83.77 79.62 83.36 53.62 80.76 57.05 81.10 83.73 83.77 72.88 82.69
RFGSM-AT 89.46 13.49 81.86 0.00 80.51 0.02 80.51 24.88 83.00 21.85 82.70
ROGET (PGD) 87.01 63.24 84.63 49.63 83.27 54.29 83.74 80.92 86.40 69.16 85.22
ROGET (AdvGAN) 87.08 49.62 83.33 47.32 83.10 51.99 83.57 82.49 86.62 73.44 85.71

Table 7: Performance comparison under Loss based hyperparameter selection. Here, the adversary
adopts uncertainty based subset selection to perform attack, where the true subset chosen for attack
Slatent consists of top 10% test instances in terms of the uncertainty of a classifier trained on all the
clean examples. Numbers in green (yellow) indicate the best (second best) performers.
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H.2 EVALUATION ON LABEL BASED SUBSET SELECTION STRATEGY

We present the complete set of results for label based subset selection strategy on CIFAR10 in Table
8 and 9. Note that we use the worst case hyperparameter setting for all the methods. We observe that
our method achieves the highest overall accuracy for all classes and for all attacks.

PGD
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

GAT 76.37 76.17 76.71 76.36 75.46 76.69 75.48 76.18 75.71 76.19
FBF 74.43 74.66 74.59 74.96 74.54 74.51 74.40 74.91 74.48 74.64
TRADES 80.92 81.30 80.25 80.06 78.85 81.12 79.45 81.03 80.44 81.04
Nu-AT 82.12 82.63 81.50 80.96 80.22 81.94 80.71 82.36 81.61 82.36
MART 78.49 79.02 78.68 78.45 78.15 78.91 78.09 78.99 77.96 78.73
PGD-AT 81.11 81.53 80.53 80.88 79.17 80.98 80.17 81.03 80.97 81.03
RFGSM-AT 82.45 83.19 81.72 81.63 80.48 82.08 80.39 82.31 82.06 82.33
ROGET (aφ = PGD) 83.76 84.68 82.94 82.84 80.73 83.63 81.38 83.53 83.16 84.23
ROGET (aφ = AdvGAN) 84.98 86.02 83.41 83.70 81.32 84.30 82.01 84.40 83.86 84.87

AA
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

GAT 75.19 75.41 74.76 73.76 72.92 75.06 74.20 75.21 74.85 75.28
FBF 72.39 66.43 74.21 71.38 72.71 71.77 68.54 69.59 73.29 67.11
TRADES 80.17 80.79 78.75 78.31 77.47 79.52 78.41 80.14 79.94 80.44
Nu-AT 81.32 82.06 79.97 79.36 78.76 80.54 79.71 81.62 81.00 81.68
MART 77.69 78.43 76.91 76.31 75.57 77.34 76.85 78.01 77.17 78.02
PGD-AT 80.38 80.89 79.15 79.08 77.83 79.60 79.15 80.31 80.28 80.45
RFGSM-AT 81.80 82.58 80.37 80.08 79.19 80.84 79.54 81.53 81.42 81.46
ROGET (aφ = PGD) 82.97 84.19 81.48 81.07 79.73 82.05 80.67 82.79 82.49 83.68
ROGET (aφ = AdvGAN) 84.24 85.63 82.01 81.96 80.45 82.93 81.14 83.71 83.19 84.03

Table 8: A on label based subset selection strategy on CIFAR10 under white box (PGD, AA) attacks.
Here, the attacked subset selection is based on the uncertainty of a vanilla classifier (hv) on the test
samples. For all the methods, we perform worst-case hyperparameter selection.

Square
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

GAT 76.06 76.39 75.42 74.80 74.15 75.98 75.48 76.20 75.98 76.27
FBF 72.44 66.44 74.34 71.44 72.75 71.80 68.59 69.65 73.35 67.12
TRADES 81.39 82.23 80.26 79.44 79.16 80.90 80.60 81.70 81.65 82.05
Nu-AT 82.78 83.28 81.52 80.63 80.31 81.83 81.67 83.06 82.81 83.23
MART 78.78 79.36 78.01 77.33 76.84 78.40 78.19 79.10 78.75 79.32
PGD-AT 81.57 82.02 80.39 80.01 79.62 80.90 81.04 81.71 81.79 81.86
RFGSM-AT 83.49 84.39 82.15 81.74 81.64 82.59 83.07 83.51 83.95 83.90
ROGET (aφ = PGD) 84.42 85.57 83.14 82.55 81.96 83.51 83.47 84.67 84.77 85.47
ROGET (aφ = AdvGAN) 85.92 87.01 83.88 83.61 82.96 84.70 84.00 85.95 85.79 86.33

MIFGSM
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

GAT 74.43 74.64 75.33 74.58 73.03 75.40 77.23 75.76 74.23 76.42
FBF 72.65 66.42 76.14 71.73 74.71 71.92 68.81 69.81 73.52 67.10
TRADES 79.60 79.97 79.49 79.12 78.26 79.50 82.37 81.42 78.63 82.33
Nu-AT 80.19 80.56 80.91 79.74 79.67 80.62 83.33 82.36 79.25 82.75
MART 76.98 77.26 77.35 76.94 76.23 77.40 80.54 78.29 75.78 78.98
PGD-AT 79.72 79.90 80.99 79.34 78.32 78.80 82.72 80.49 78.69 81.36
RFGSM-AT 80.35 80.58 81.72 80.60 79.79 79.99 84.34 81.72 80.28 81.74
ROGET (aφ = PGD) 81.27 82.37 82.56 81.42 80.35 80.97 85.20 83.04 81.20 83.88
ROGET (aφ = AdvGAN) 82.53 83.57 83.58 82.21 80.93 81.87 85.59 84.31 81.88 84.64

Table 9: A on label based subset selection strategy on CIFAR10 under black box (Square, MIFGSM)
attacks. Here, the attacked subset selection is based on the uncertainty of a vanilla classifier (hv) on
the test samples. For all the methods, we perform worst-case hyperparameter selection.
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H.3 DISCLOSING THE SUBSET SELECTION STRATEGY TO THE BASELINES

In this experiment, we reveal the advsersary’s subset selection strategy (uncertainty based) to the
baselines during hyperparameter selection. We select the hyperparameter of the baseline which has
the best overall accuracy on the validation set using the revealed subset selection strategy. The results
are presented in Table 10. Comparing with results in Table 2, we see that GAT, TRADES, Nu-AT and
MART have improved i.e., all the baselines which had a tunable hyperparameter have become better.
More importantly, our method still achieves the best overall accuracy across all attacks except PGD.

CIFAR10 PGD AA Square MIFGSM AdvGAN
Aclean Arobust A Arobust A Arobust A Arobust A Arobust A

GAT 86.18 35.68 81.13 11.80 78.74 48.92 82.45 38.47 81.41 89.66 86.52
FBF 74.92 72.04 74.64 31.10 70.54 31.59 70.59 36.09 71.04 37.22 71.15
TRADES 84.70 50.98 81.33 39.58 80.19 60.29 82.26 41.97 80.43 88.27 85.06
Nu-AT 87.88 47.54 83.85 18.87 80.98 53.01 84.40 39.15 83.01 91.28 88.22
MART 82.12 60.29 79.94 48.73 78.78 61.92 80.10 51.21 79.03 85.42 82.46
PGD-AT 83.36 57.33 80.76 48.50 79.88 62.71 81.30 50.00 80.03 87.13 83.74
RFGSM-AT 85.84 45.94 81.85 37.49 81.00 60.25 83.28 37.91 81.04 89.42 86.20
ROGET (PGD) 87.40 49.91 83.65 42.14 82.88 62.45 84.91 41.53 82.82 91.12 87.78
ROGET (AdvGAN) 88.23 44.24 83.83 36.48 83.05 61.01 85.51 37.42 83.15 91.96 88.60

Table 10: Performance under revealed hyperparameter selection, where for the baselines, we select
the hyperparameters which would maximize the overall accuracy using the adversary’s true subset
selection strategy (uncertainty based). Numbers in green (yellow) indicate the best (second best)
performers.

H.4 WORST CASE OVERALL ACCURACY

In this experiment choose R = 10000 subsets {Sj}Rj=1 uniformly at random from DTest and report
the minimum A along with the corresponding Aclean and Arobust. We use default hyperparameter
selection and report the results for CIFAR10 and FMNIST in Table 11. We make the following
observations: (1) our method achieves the best min A for PGD, AA, and MIFGSM attacks on
CIFAR10 and PGD, Square and MIFGSM attacks on FMNIST. (2) There is no clear winner among
the baselines. RFGSM-AT has a good A on CIFAR10 but poor Arobust. For FMNIST, GAT achieves
the highest A for AA. However it is purely because of its Aclean as it has 0% Arobust.

CIFAR10
PGD AA Square MIFGSM

Aclean Arobust min A Aclean Arobust min A Aclean Arobust min A Aclean Arobust min A
GAT 78.96 50.60 76.12 78.96 38.70 74.93 78.96 51.70 76.23 78.98 42.90 75.37
FBF 75.02 65.80 74.10 75.18 25.20 70.18 75.18 25.70 70.23 75.09 30.70 70.65
TRADES 80.28 56.90 77.94 80.28 46.10 76.86 80.28 56.40 77.89 80.53 46.80 77.16
Nu-AT 83.30 49.30 79.90 83.49 37.20 78.86 83.36 53.30 80.35 83.40 42.60 79.32
MART 81.58 54.90 78.91 81.57 42.50 77.66 81.57 54.90 78.90 81.47 46.80 78.00
PGD-AT 83.56 47.70 79.97 83.64 38.80 79.16 83.66 52.90 80.58 83.60 42.20 79.46
RFGSM-AT 89.19 26.70 82.94 89.39 18.10 82.26 89.19 48.00 85.07 89.14 18.70 82.10
ROGET (aφ = PGD) 85.46 47.30 81.64 85.58 37.60 80.78 85.63 52.60 82.33 85.40 41.00 80.96
ROGET (aφ = AdvGAN) 88.12 39.40 83.25 88.09 31.40 82.42 88.37 49.20 84.45 87.98 33.30 82.51

FMNIST
PGD AA Square MIFGSM

Aclean Arobust min A Aclean Arobust min A Aclean Arobust min A Aclean Arobust min A
GAT 91.54 3.30 82.72 91.54 0.00 82.39 91.54 0.00 82.39 91.57 3.60 82.77
FBF 80.68 13.60 73.97 80.97 52.70 78.14 80.97 54.20 78.29 80.73 75.60 80.22
TRADES 86.23 54.40 83.05 86.64 37.90 81.77 86.37 44.60 82.19 86.53 69.60 84.84
Nu-AT 90.56 4.20 81.92 90.52 0.00 81.47 90.54 0.00 81.49 90.74 10.50 82.72
MART 79.63 65.70 78.24 79.48 47.30 76.26 79.48 48.80 76.41 79.71 68.00 78.54
PGD-AT 84.17 68.80 82.63 84.32 37.80 79.67 84.32 41.50 80.04 84.39 73.20 83.27
RFGSM-AT 89.33 9.80 81.38 89.24 0.00 80.32 89.24 0.00 80.32 89.34 20.70 82.48
ROGET (aφ = PGD) 87.28 49.30 83.48 87.34 34.70 82.08 87.34 39.50 82.56 87.46 69.40 85.65
ROGET (aφ = AdvGAN) 88.06 26.90 81.94 88.30 23.10 81.78 88.23 29.20 82.33 88.38 68.20 86.36

Table 11: MinA acrossR = 10000 random subsets along with the correspondingAclean andArobust

for CIFAR10 and FMNIST. For all the methods, we use default hyperparameter selection.
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H.5 TRADE OFF BETWEEN Aclean AND Arobust

In this experiment, we evaluate various hyperparameters of the baselines and plot their Aclean vs
Arobust in Table 12 and 13. Each point on the plot represents a hyperparameter of the method. Here
the adversary uses uncertainty based subset selection where the true subset chosen for attack Slatent

consists of top 10% test instances in terms of the uncertainty of a classifier trained on all the clean
examples. We observe that our method forms a pareto optimal front for all the attacks and hence
achieves a better trade off between Aclean and Arobust. We also notice that the baselines do not
follow a regular trend and show high sensitivity with their tunable parameter. In that aspect, our
method is relatively stable with respect to ρ.
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Figure 12: Trade off between Aclean vs Arobust for all methods for whitebox attacks (PGD, AA) on
CIFAR10. Here, the adversary adopts uncertainty based subset selection to perform attack, where the
true subset chosen for attack Slatent consists of top 10% test instances in terms of the uncertainty of a
classifier trained on all the clean examples.
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Figure 13: Trade off between Aclean vs Arobust for all methods for blackbox attacks (Square,
MIFGSM) on CIFAR10. Here, the adversary adopts uncertainty based subset selection to perform
attack, where the true subset chosen for attack Slatent consists of top 10% test instances in terms of
the uncertainty of a classifier trained on all the clean examples.
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H.6 VARIATION OF Arobust, Aclean AND A VS ρ

On CIFAR10 dataset, we try out different values of ρ for two variants of our methods, i.e., ROGET
(aφ = PGD) and ROGET (aφ = AdvGAN). We probe the variation of Aclean, Arobust and A vs
ρ for two attacks— AA (standard) and black-box MI-FGSM. The plot for ROGET (aφ = PGD) is
shown in Figure 14. For each value of ρ, we test using 5 random attack-clean (1:9) splits on the test
set and report the mean accuracy with standard deviation. The plot for ROGET (aφ = AdvGAN) is
shown in Figure 15. We make the following observations: (1) For white box attack (AA), the standard
deviation from the mean is ±1.07% across all values of ρ and across all models. In case of black
box MI-FGSM attack, the standard deviation rises to ±3.34%. (2) For ROGET (aφ = PGD), Arobust

accuracy decreases as ρ increases (except ρ = 8). (3) For ROGET (aφ = AdvGAN), we observe that
Arobust rises slightly before decreasing as ρ increases.
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Figure 14: Variation of Arobust, Aclean and A vs ρ of ROGET (aφ = PGD) on CIFAR10 dataset for
two attacks viz., Auto Attack and MI-FGSM. For each value of ρ, we test using uncertainty based
subset selection and report the mean accuracy with standard deviation. We show the mean of Arobust,
Aclean and A, along with error bars to show the standard deviation.
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Figure 15: Variation ofArobust, Aclean and A vs ρ of ROGET (aφ = AdvGAN) on CIFAR10 dataset
for two attacks viz., Auto Attack and MI-FGSM. For each value of ρ, we test using uncertainty based
subset selection and report the mean accuracy with standard deviation. We show the mean of Arobust,
Aclean and A, along with error bars to show the standard deviation

40



Under review as a conference paper at ICLR 2023

H.7 RUN-TIME AND MEMORY ANALYSIS

In this section, we present details about the training time and the maximum GPU memory required
for all methods while training on CIFAR10. Note that the time mentioned for our method includes
both, the time taken for a gradient step and a stochastic greedy step. Here, the size of the attacked
subset was |S| = 0.1|D|, where D denotes the training set. The results are presented in Table 16.

CIFAR10 Time(s)/epoch Max GPU Memory (GB)
GAT 86.80 2.0
FBF 87.36 2.7
TRADES 578.61 4.0
Nu-AT 74.29 3.2
MART 284.52 2.8
PGD-AT 290.18 2.7
RFGSM-AT 39.07 2.7
ROGET (PGD) 479.05 5.1
ROGET (AdvGAN) 68.89 7.7

Table 16: Run-time and memory analysis for all the methods on CIFAR10.

H.8 ATTACK ON THE MOST VULNERABLE SET

In this experiment, we take the final set ŜT from our algorithm for CIFAR-10 and find b = 0.1|D|
number of samples with highest loss. Then, we compute the corresponding nearest samples from
the test set to get the most vulnerable test set. We attack on this set for all the methods and show
the results in Table 17. We observe that our method makes a good trade-off between accuracy and
robustness. Although RFGSM-AT is best in terms of overall accuracy, its robustness is very poor.

Aclean Arobust A
TRADES 80.1 24.4 74.5
Nu-AT 41.3 0.0 37.2
MART 78.1 24.1 72.7
PGD-AT 82.6 23.2 76.7
RFGSM-AT 91.0 6.6 82.5
ROGET (aφ = PGD) 88.1 19.0 81.2

Table 17: Performance under AA (white-box) on the most vulnerable test set of CIFAR-10 under
the worst case hyperparameter selection, when Slatent was chosen using uncertainty based subset
selection strategy.

H.9 WORST-CASE HYPERPARAMETER SETTING FOR FMNIST

We present the results of worst-case hyperparameter selection for FMNIST in Table 18. Here, we
achieve the best overall accuracy A for three attacks and second-best overall accuracy for the rest.

FMNIST PGD AA Square MIFGSM AdvGAN
Aclean Arobust A Arobust A Arobust A Arobust A Arobust A

GAT 91.47 3.18 82.64 0.00 82.32 0.01 82.32 8.32 83.15 29.09 85.24
FBF 80.47 14.29 73.85 66.74 79.10 68.43 79.27 84.81 80.90 85.94 81.02
TRADES 86.85 62.90 84.45 53.37 83.50 57.37 83.90 81.43 86.30 70.42 85.20
Nu-AT 90.37 5.92 81.92 0.00 81.33 0.07 81.34 20.26 83.36 14.01 82.73
MART 78.94 77.72 78.82 59.73 77.02 61.46 77.19 79.81 79.03 70.10 78.06
PGD-AT 83.77 79.62 83.36 53.62 80.76 57.05 81.10 83.73 83.77 72.88 82.69
RFGSM-AT 89.46 13.49 81.86 0.00 80.51 0.02 80.51 24.88 83.00 21.85 82.70
ROGET (PGD) 87.01 63.24 84.63 49.63 83.27 54.29 83.74 80.92 86.40 69.16 85.22
ROGET (AdvGAN) 87.08 49.62 83.33 47.32 83.10 51.99 83.57 82.49 86.62 73.44 85.71

Table 18: Performance comparison under worst case hyperparameter setting for two white box
attacks (PGD and AA) and three black box attacks (Square, MIFGSM, and AdvGAN) on FMNIST.
Numbers in green (yellow) indicate the best (second best) performers.
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H.10 EXPERIMENTS ON CIFAR100

Here, we present results on CIFAR-100 dataset. Here, the model is Resnet-9. In default hyperparame-
ter setting, we use ρ = 0.5 for ROGET (aφ = PGD) and ρ = 2.0 for ROGET (aφ = AdvGAN) . For
the baselines, we choose the same default hyperparameters as in CIFAR10. The results can be seen in
Table 19. We also report the results of worst-case hyperparameter setting in Table 20. We observe
that our method outperforms all the baselines in terms of clean, robust (except on PGD attack), and
overall accuracies.

CIFAR100 PGD AA Square MIFGSM AdvGAN
Aclean Arobust A Arobust A Arobust A Arobust A Arobust A

GAT 45.05 43.37 44.88 21.50 42.69 24.03 42.95 20.75 42.62 31.48 43.69
TRADES 43.71 47.56 44.10 32.50 42.59 35.04 42.84 35.44 42.88 43.91 43.73
Nu-AT 32.64 33.15 32.70 8.03 30.37 24.84 31.86 8.24 30.39 15.72 31.14
MART 33.66 32.49 33.55 17.41 32.06 19.72 32.27 22.89 32.59 26.45 32.94
RFGSM-AT 44.55 41.66 44.26 9.20 41.02 10.34 41.13 8.10 40.91 14.71 41.57
ROGET (PGD, ρ = 0.5) 51.65 47.65 51.25 40.75 50.56 45.52 51.04 44.03 50.89 57.57 52.24
ROGET (AdvGAN, ρ = 2.0) 53.29 45.02 52.46 39.76 51.92 44.93 52.45 41.65 52.11 57.52 53.70

Table 19: Performance comparison under default hyperparameter setting on CIFAR100. We report
(percentage) (i) accuracy on the clean examplesAclean, (ii) robustness to the adversarial perturbations
Arobust and (iii) overall accuracy A. Here, the adversary adopts uncertainty-based subset selection
to perform attack, where the true subset chosen for attack Slatent consists of top 10% test instances in
terms of the uncertainty of a classifier trained on all the clean examples.

CIFAR100 PGD AA Square MIFGSM AdvGAN
Aclean Arobust A Arobust A Arobust A Arobust A Arobust A

GAT 47.23 44.11 46.92 18.54 44.36 21.56 44.66 16.63 44.17 28.50 45.36
TRADES 49.37 47.95 49.23 26.54 47.09 29.13 47.34 25.40 46.97 38.00 48.23
Nu-AT 32.64 33.15 32.70 8.03 30.37 24.84 31.86 8.24 30.39 15.72 31.14
MART 33.66 32.49 33.55 17.41 32.06 19.72 32.27 22.89 32.59 26.45 32.94
RFGSM-AT 44.55 41.66 44.26 9.20 41.02 10.34 41.13 8.10 40.91 14.71 41.57
ROGET (PGD) 52.71 46.89 52.13 40.77 51.52 45.29 51.97 43.60 51.80 57.20 53.16
ROGET (AdvGAN) 53.29 45.02 52.46 39.76 51.92 44.93 52.45 41.65 52.11 57.52 53.70

Table 20: Performance comparison under worst-case hyperparameter setting on CIFAR100. We
report (percentage) (i) accuracy on the clean examples Aclean, (ii) robustness to the adversarial
perturbations Arobust and (iii) overall accuracy A. Here, the adversary adopts uncertainty-based
subset selection to perform attack, where the true subset chosen for attack Slatent consists of top 10%
test instances in terms of the uncertainty of a classifier trained on all the clean examples.

H.11 COMPARISON OF ROBUST ACCURACY SUBJECT TO A MINIMUM OVERALL ACCURACY

Here, we produce more results related to Table 21. Specifically, we first tune the hyperparameters of
all the methods to ensure that the overall accuracy of all methods reaches a given threshold and then
compare their robustness. If P indicates the hyperparameters, then we find maxP Arobust(P ) such
that A(P ) ≥ a for some given a. We present the results of CIFAR10 for a = 0.81 and FMNIST for
a = 0.83 in Table 21 for different attacks. For CIFAR10, we find that ROGET (aφ = PGD) is the
best performer in terms of robust accuracy and ROGET (aφ = AdvGAN) is the best performer in
terms of overall accuracy (except for MIFGSM attack). Moreover, ROGET (aφ = AdvGAN) is the
second-best performer in terms of robust accuracy. For FMNIST, ROGET (aφ = AdvGAN) achieves
the highest robust accuracy Arobust (except for PGD attack).
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CIFAR10 PGD AA Square MIFGSM AdvGAN
Arobust A Arobust A Arobust A Arobust A Arobust A

GAT 35.68 81.13 – – 62.05 81.56 38.47 81.41 89.66 86.52
FBF – – – – – – – – – –
TRADES 53.78 81.01 – – 61.13 81.74 0.04 81.90 88.27 85.06
Nu-AT 54.64 81.66 – – 61.34 82.33 39.15 83.01 91.28 88.22
MART – – – – – – – – 85.42 82.46
PGD-AT 35.35 81.64 – – 55.84 81.88 – – 92.66 88.82
RFGSM-AT 45.94 81.85 37.49 81.00 60.25 83.28 37.91 81.04 89.42 86.20
ROGET (PGD) 59.42 81.40 50.60 81.19 64.73 82.60 49.05 81.03 91.12 87.78
ROGET (AdvGAN) 55.73 82.85 47.66 82.03 63.93 83.67 45.04 81.78 91.96 88.60

FMNIST PGD AA Square MIFGSM AdvGAN
Arobust A Arobust A Arobust A Arobust A Arobust A

GAT – – – – – – 9.43 83.07 29.09 85.24
FBF – – – – – – – – – –
TRADES 75.30 83.35 53.37 83.50 57.37 83.90 82.05 87.32 70.60 86.18
Nu-AT – – – – – – 20.26 83.36 – –
MART – – – – – – – – – –
PGD-AT 70.50 89.66 4.42 83.05 37.74 86.38 80.55 90.66 54.32 88.04
RFGSM-AT – – – – – – – – – –
ROGET (PGD) 64.10 84.62 49.67 83.25 54.29 83.74 81.59 86.99 69.47 85.78
ROGET (AdvGAN) 72.61 84.87 54.86 83.10 58.19 83.43 83.97 86.01 75.00 85.28

Table 21: Performance comparison for two white-box attacks (PGD and AA) and three black-
box attacks (Square, MIFGSM, and AdvGAN). We report (percentage) (i) accuracy on the clean
examples Aclean, (ii) robustness to the adversarial perturbations Arobust and (iii) overall accuracy
A. Here, we apply a threshold on A and then compare the best possible Arobust for all the methods.
Also, the adversary adopts uncertainty-based subset selection to perform the attack, where the true
subset chosen for attack Slatent consists of top 10% test instances in terms of the uncertainty of a
classifier trained on all the clean examples. Numbers in green (yellow) indicate the best (second
best) performers. "–" indicates that we could not find the hyperparameter that satisfies the condition
applied on A

H.12 PERFORMANCE VARIATION WITH |SLATENT|

Here, we train both the variants of ROGET using b = 0.1|DTr| and evaluate using different number of
instances |Slatent| perturbed during test. We already reported the results for CIFAR10 in the main. In
Figure 22, we report the results for FMNIST, which show that ROGET (aφ = AdvGAN) and ROGET

(aφ = PGD) outperform the baselines at the smaller values of |Slatent|. For larger value of |Slatent|,
our methods are only being outperformed by the PGD-AT.
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Figure 22: A vs. |Slatent| for FMNIST

In the experiments, i.e., in Figures 5 and 22, we kept the value of ρ same across different values
of |Slatent|, set by worst case hyperparameter selection with b = 0.1|Dtr| We observed that our
method performed better for smaller values of |Slatent|. Next, we adjust ρ for different |Slatent| with
b = |Slatent|

|Dtest| |Dtr|, i.e., we provide a little information about the proportion of instances that are going to
be attacked. Figure 23 summarizes the results which show that ROGET (aφ = AdvGAN) outperforms
the baselines for a wide range of the size of attacked test instances.
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Figure 23: A vs. |Slatent| for CIFAR10 after tuning ρ based on the size of number of instances being
attacked.

H.13 PLUGGING OTHER MODELS INTO OUR FRAMEWORK

Here, we performed experiments where we plugged TRADES loss in the proposed algorithm. Results
are as follows for CIFAR10 for PGD and Square attack.

Aclean Arobust A Arobust A
TRADES 80.25 64.68 78.69 63.06 78.53
TRADES-Our 84.50 56.08 81.62 63.06 82.32

Table 24: Effect of plugging Trades into our algorithm improves its performance.

We observe that plugging TRADES in our algorithm improves the performance of TRADES in terms
of the overall accuracy.

H.14 EXPERIMENTS WITH LOSS BASED ATTACK

Here, we performed the experiments where the adversary chooses instances based on the predicted
accuracy. The following table summarizes the results for PGD and Square Attacks which show
that our methods outperform the existing method in terms of the overall accuracy as well as robust
accuracy.

CIFAR10 PGD Square
Aclean Arobust A Arobust A

GAT 78.85 46.33 75.60 37.32 74.70
FBF 76.49 54.62 74.30 21.65 71.01
TRADES 84.63 32.36 79.40 32.77 79.44
Nu-AT 85.62 34.00 80.46 36.35 80.70
MART 81.86 42.29 77.90 36.41 77.32
PGD-AT 84.92 37.07 80.14 34.54 79.88
RFGSM-AT 86.76 27.06 80.79 34.13 81.50
ROGET(PGD) 86.23 37.64 81.38 38.18 81.43
ROGET(AdvGAN) 86.75 33.98 81.47 38.24 81.90

Table 25: Performance on loss-based attack.
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