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Abstract

Fact verification aims to automatically judge001
the veracity of a claim according to several ev-002
idences. Due to the manual construction of003
datasets, spurious correlations between claim004
patterns and its veracity (i.e., biases) inevitably005
exist. Recent studies show that models usu-006
ally learn such biases instead of understanding007
the semantic relationship between the claim008
and evidences. Existing debiasing works can009
be roughly divided into data-augmentation-010
based and weight-regularization-based pipeline,011
where the former is inflexible and the latter012
relies on the uncertain output on the training013
stage. Unlike previous works, we propose014
a novel method from a counterfactual view,015
namely CLEVER, which is augmentation-free016
and mitigates biases on the inference stage.017
Specifically, we train a claim-evidence fusion018
model and a claim-only model independently.019
Then, we obtain the final prediction via sub-020
tracting output of the claim-only model from021
output of the claim-evidence fusion model,022
which counteracts biases in two outputs so023
that the unbiased part is highlighted. Compre-024
hensive experiments on several datasets have025
demonstrated the effectiveness of CLEVER.026

1 Introduction027

Unverified claims have been prevalent online with028

the dramatic increase of information, which poses029

a threat to public security over various domains,030

e.g., public health (Naeem and Bhatti, 2020), poli-031

tics (Allcott and Gentzkow, 2017), and economics032

(Kogan et al., 2019). Therefore, fact verification,033

which aims to automatically predict the veracity of034

claims based on several collected evidences, has035

attracted lots of research interests (Liu et al., 2020;036

Zhong et al., 2020; Vo and Lee, 2021).037

Existing fact-checking datasets inevitably in-038

volve some biases since they are manually col-039

lected. For example, Schuster et al. (2019) discover040

that negation words in claims are highly-correlated041

with the label ‘REFUTES’ in the FEVER dataset 042

(Thorne et al., 2018). Such biases may mislead 043

models to explore the spurious correlation between 044

claim patterns and its label without looking into the 045

evidences. In consequence, though models achieve 046

promising performance on biased datasets, they 047

suffer from obvious performance decline on out- 048

of-domain unbiased datasets and are vulnerable to 049

adversarial attacks (Thorne et al., 2019). 050

To alleviate the aforementioned problems, sev- 051

eral debiasing methods have been proposed, which 052

can be mainly grouped into two categories. The 053

first pipeline is based on data augmentation, which 054

utilizes manually-designed schemes, such as word 055

swapping (Wei and Zou, 2019) and span replace- 056

ment (Lee et al., 2021) to generate additional data 057

for training. However, these methods heavily rely 058

on the quality of augmented data and are difficult to 059

be employed under complicated circumstance, e.g., 060

multi-hop evidence reasoning, due to their inflexi- 061

ble augmentation rules. The second pipeline aims 062

to downweigh the contribution of biased samples 063

to the training loss of main model, whose inputs 064

are both claim and evidence. Then, the key issue 065

is how to recognize the biased instances. Specifi- 066

cally, Schuster et al. (2019) downweigh the claim 067

involving n-grams that share spurious correlation 068

with labels. Mahabadi et al. (2020) assume in- 069

stances correctly classified by the bias-only model 070

are biased, where the input of bias-only model is 071

the claim only. Nevertheless, the former lacks the 072

generalization to different types of biases since 073

they only focus on n-grams; the latter relies on 074

the assumption that the outputs of main model and 075

bias-only model regarding the biased instances are 076

similar, which does not always hold (Amirkhani 077

and Pilehvar, 2021). Moreover, the inaccurate and 078

unstable outputs of bias-only model during training 079

may mistakenly result in downweighing unbiased 080

samples (Xiong et al., 2021). 081

Unlike existing works based on augmentation or 082
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Figure 1: The causal view of proposed framework CLEVER. The nodes with ‘F’ and ‘O’ denote the claim-evidence
fused information and the model output, respectively. We take a typical sample in the biased FEVER dataset as
input, where the label is ‘SUPPORTS’ and the strong correlation between the phrase ‘did not’ and label ‘REFUTES’
exists. The output in original graph (Total Causal Effect) is affected by two sources, i.e., claim and claim-evidence
fused information. After the intervention via cutting off the fusion path, the output (Direct Claim Effect) is solely
influenced by the claim, which contains biases that mislead the model to produce spurious label prediction. To
mitigate such biases, a subtraction scheme is proposed to obtain the Total Indirect Effect, which inclines to the
true debiased distribution. Note that a path from evidence to output does not exist since there is no obvious bias in
evidences that affects the outcome.

adjusting the data contribution on the training stage,083

we propose a novel method from a CounterfactuaL084

view for dEbiasing fact VERification, namely085

CLEVER, which is augmentation-free and allevi-086

ates biases on the inference stage. In general, exist-087

ing methods fuse the claim and evidences to make088

the final prediction, which is equivalent to asking089

the model to answer a factual question: What will090

the output be if the model receives a claim and091

its corresponding evidences? Causally, the Total092

Causal Effect is estimated in this condition, where093

claim biases are entangled with the claim-evidence094

fused information, making them difficult to be miti-095

gated precisely. To overcome this, we aim to obtain096

the debiased output by removing claim biases from097

the Total Causal Effect. Inspired by the progress of098

counterfactual inference (Sekhon, 2008; Niu et al.,099

2021), we would expect to ask a counterfactual100

question: What would the output be if the model101

only received a claim? That is, from a causal per-102

spective, requiring the fact-checking model to learn103

the Direct Claim Effect solely affected by claim bi-104

ases. Practically, we first train a claim-evidence fu-105

sion model and a claim-only model independently106

to capture the Total Causal Effect and the Direct107

Claim Effect, respectively. Then, we subtract the108

Direct Claim Effect from the Total Causal Ef-109

fect on the inference stage to obtain the Total Indi-110

rect Effect, which is the final debiased prediction.111

Taking Figure 1 as an example, the claim is spuri-112

ously correlated with the false label ‘REFUTES’. 113

Therefore, the Direct Claim Effect inclines to the 114

label ‘REFUTES’ since it is affected by the claim 115

only. However, the prediction is turned towards 116

the ground-truth label via using the Total Indirect 117

Effect as the final output, where the high proba- 118

bility of ‘REFUTES’ induced by claim biases is 119

counteracted. 120

Our main contributions are listed as follows: 121

• We open up a new counterfactual pipeline for 122

debiasing fact verification by analyzing the 123

biased problem from a causal view. 124

• We propose a novel debiasing method 125

CLEVER, which is augmentation-free and 126

mitigates biases on the inference stage. 127

• Comprehensive experiments are conducted to 128

validate the effectiveness of CLEVER, where 129

the results demonstrate the superiority and the 130

in-depth analysis provides the rationality. 131

2 Related Work 132

In this section, we briefly review the related lit- 133

erature in both domains of fact verification and 134

debiasing strategy. 135

2.1 Fact Verification 136

Recent years have witnessed the rapid development 137

of research on fact verification. Since the unified 138
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benchmark dataset FEVER along with the shared139

task were proposed (Thorne et al., 2018), most140

researchers utilize them to evaluate the model per-141

formance. Generally, the fact-checking task mainly142

consists of three separate parts, i.e., document re-143

trieval, evidence selection, and claim verification.144

Existing works mainly focus on the last subtask145

and employ traditional and widely used methods146

(Hanselowski et al.; Soleimani et al., 2020) to re-147

trieve relevant documents and evidences. Early148

works treat fact verification as a natural language149

inference (NLI) task and apply methods from NLI150

to perform verification (Chen et al., 2017; Ghaeini151

et al., 2018). Then, to capture more fine-grained se-152

mantic consistency between claims and evidences,153

a series of methods have been proposed to promote154

the claim-evidence interaction by formulating them155

as graph-structure data (Zhou et al., 2019; Liu et al.,156

2020; Zhong et al., 2020). Besides, inspired by the157

strong representation ability of pretrained language158

models (PLM), some works attempt to fine-tune159

PLM on fact-checking datasets and achieve promis-160

ing results (Lee et al., 2020; Subramanian and Lee,161

2020). Recently, researchers have paid more atten-162

tion to explainable fact verification, which requires163

a model to produce both veracity prediction and164

its corresponding explanation (Kotonya and Toni,165

2020a,b).166

2.2 Debiasing Strategy167

Although the aforementioned fact-checking meth-168

ods have achieved promising performance on the169

FEVER test set, it is demonstrated that they lack170

robustness since they learn biases (shortcuts) from171

claims in datasets instead of performing reasoning172

over evidences. To this end, several unbiased and173

adversarial datasets are proposed to evlatuate the174

model robustness and reasoning ability (Thorne175

et al., 2019; Schuster et al., 2019). Existing debi-176

asing strategies in fact verification can be roughly177

divided into two groups:178

1) Data-augmentation-based pipeline: In this179

group, methods aim to generate unbiased samples180

and incorporate them into training, with the ex-181

pectation that the proportion of biased instances182

will be downgraded, resulting in a more unbiased183

model. In detail, Wei and Zou (2019) utilize ran-184

dom word swapping and synonym replacement to185

obtain new training data. Lee et al. (2021) design a186

cross contrastive strategy to augment data, where187

original claims are modified to be negative using188

the generation model BART (Lewis et al., 2020) 189

and evidences are changed via span replacement to 190

support such negative claims. 191

2) Weight-regularization-based pipeline: The 192

motivation of methods in this pipeline is to reduce 193

the contribution of biased samples to the final loss 194

computation, thus models may attach importance to 195

the unbiased data. Next, the problem is transformed 196

into how to filter the biased instances out of the 197

full dataset. Schuster et al. (2019) utilize Local 198

Mutual Information to obtain the n-grams that are 199

highly correlated with a specific label. Then, the 200

claims involving such n-grams are downweighed. 201

Mahabadi et al. (2020) employ a bias-only model to 202

capture biases in claims and assume the unevenness 203

of output label distribution is positively correlated 204

to the confidence of biased instances. However, 205

the confidence estimation is inaccurate observed by 206

some researchers and some calibration methods are 207

further proposed to adjust the estimation (Xiong 208

et al., 2021; Amirkhani and Pilehvar, 2021). 209

Apart from the mentioned debiasing research 210

pipeline in fact verification, much attention has 211

been paid to incorporating causal inference tech- 212

niques to obtain more unbiased model. Representa- 213

tive works include counterfactual inference for ex- 214

posure biases in recommender systems (Tan et al., 215

2021), implicit knowledge biases and object ap- 216

prearance biases in computer vision (Niu et al., 217

2021; Sun et al., 2021). However, such pipeline is 218

still under-explored in fact verification. Inspired by 219

these works, we open up a new debiasing pipeline 220

for fact verification from a counterfactual view. 221

Compared to the existing two pipelines, our pro- 222

posed method is augmentation-free and mitigates 223

biases on the inference stage. 224

3 Method 225

In this section, we introduce the proposed debiasing 226

framework CLEVER in detail. Firstly, we provide 227

some background information of fact verification. 228

Then, we describe the method from a causal view. 229

Finally, we elaborate the detail of training and in- 230

ference. The overview of CLEVER is shown in 231

Figure 2. 232

3.1 Preliminary 233

3.1.1 Task Formulation 234

Given a claim c and its corresponding evidence set 235

{e1, e2, . . . , en}, a fact-checking model is required 236

to predict the veracity of claim, i.e., evidences sup- 237
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Figure 2: The proposed framework CLEVER. We simulate the standard and counterfactual scenarios via training
a claim-evidence fusion model and a claim-only model independently. The final prediction Ou is obtained by
subtracting the output of counterfactual scenario Oc from that of standard scenario Oc,e.

port, refute, or lack enough information to justify238

the claim.239

3.1.2 Causal View of Fact Verification240

The causal graph is mathematically a directed241

acyclic graph, where vertices denote variables and242

the edge represents the effect from the start vertex243

to the end vertex.244

The causal view of fact verification is repre-245

sented as a graph Go = {V, Eo}, where V contains246

four variables with each represents the claim (C),247

evidences (E), the fusion of claim and evidences248

(F), and the output (O), respectively (See the stan-249

dard scenario in Figure 2). In counterfactual sce-250

nario, we expect to capture biases in the claim, so251

we solely preserve the edge from claim to output.252

Then, we obtain an intervened causal graph Gi, c.f.,253

the counterfactual scenario in Figure 2.254

3.2 The Proposed Framework: CLEVER255

In this part, we specifically introduce how to ob-256

tain debiased predictions using the counterfactual257

inference technique.258

The first step of counterfactual inference is es-259

tablishing an imagined scenario different from stan-260

dard settings. In our task, as shown at the top half261

of Figure 2, the standard setting is that the out-262

come is affected by the claim and its corresponding263

evidences simultaneously in the causal graph Go.264

In practice, we take both claim c and evidences265

{e1, e2, . . . , en} as inputs to simulate such setting,266

which can be formulated as:267

Oc,e = fs(c, e1, e2, . . . , en) (1) 268

where fs denotes the claim-evidence fusion model, 269

n is the number of evidences, and Oc,e ∈ RL de- 270

notes the predicted class distribution (L is the num- 271

ber of class). 272

Then, a key problem in our framework is how 273

to design a counterfactual scenario for debiasing. 274

Causally, if we expect to estimate the effect of 275

a variable on the outcome, we can give the vari- 276

able a specific treatment while keep other variables 277

unchanged. Since the target of our work is to ob- 278

tain the unbiased outcomes affected by both claim 279

and evidences, the treatment is to make the claim- 280

evidence fusion information unavailable for the 281

fact-checking model. In other words, as shown at 282

the bottom half of Figure 2, we create a counter- 283

factual scenario Gi via intervention on the original 284

causal graph Go, where the edge from the fused 285

information of claim-evidence pair to the outcome 286

is cut off. In practice, claims are solely fed into 287

a fact-checking model fb (i.e., claim-only model) 288

to simulate the absence of claim-evidence informa- 289

tion and require the model to produce prediction 290

Oc ∈ RL based on claims solely, 291

Oc = fb(c) (2) 292

The second step is comparing the outcomes un- 293

der standard and counterfactual settings. The out- 294

put of claim-only model Oc is biased that simply 295

relies on the spurious correlation between claim 296

patterns and labels. To reduce such biases, inspired 297
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by the Potential Outcomes Model (Sekhon, 2008),298

we subtract Oc from Oc,e with a hyperparameter α299

(named bias coefficient that controls the extent of300

bias) and obtain the counterfactual debiased output301

Ou,302

Ou = Oc,e − α ·Oc (3)303

In this way, the probability of false biased predic-304

tion is decreased while the predicted probability of305

ground truth is relatively higher.306

Training and Inference At training stage, as307

biases are mainly involved in claims, we expect that308

the claim-only model captures such biases so that309

they can be reduced via the subtraction scheme.310

Motivated by this, we encourage the output of311

claim-only model Oc to represent the biased la-312

bel distribution by imposing a classification loss on313

Oc. Similarly, Oc,e is also supervised to mine the314

claim-evidence interaction. Formally, the objective315

function can be written as:316

L = Lclf (Oc) + Lclf (Oc,e) (4)317

where Lclf denotes the cross entropy loss.318

At inference stage, since the outcome in coun-319

terfactual scenario Oc is biased after training, we320

intuitively reduce it via subtraction from the out-321

come in standard scenario Oc,e, c.f., Eq. (3).322

Discussion While the proposed framework323

CLEVER also consists of the claim-evidence324

model and the claim-only model, which is similar325

to the weight-regularization-based approaches, we326

do not rely on the assumption that such two mod-327

els produce similar outputs for biased instances.328

Besides, we avoid utilizing the uncertain output329

of claim-only model to adjust the training loss330

of claim-evidence model. By contrast, we inde-331

pendently train the claim-evidence and claim-only332

model and propose a simple yet effective scheme333

to obtain debiased results on the inference stage.334

4 Experiments335

In this section, we conduct both quantitative and336

qualitative experiments on several public datasets337

to demonstrate the effectiveness of our proposed338

method CLEVER.339

4.1 Experimental Setup340

4.1.1 Dataset and Evaluation Metric341

We utilize a biased training set FEVER-Train to342

train models and a biased dataset FEVER-Dev343

(Thorne et al., 2018), an unbiased dataset FEVER- 344

Symmetric (Schuster et al., 2019), and an adver- 345

sarial dataset FEVER-Adversarial (Thorne et al., 346

2019) to test models, closely following existing 347

works (Mahabadi et al., 2020; Lee et al., 2021; 348

Xiong et al., 2021). Furthermore, we introduce a 349

new subset of FEVER-Dev, namely FEVER-Hard1, 350

where all samples cannot be correctly classified 351

using claims only. Therefore, it can be used to eval- 352

uate the model ability to perform evidence-to-claim 353

reasoning indeed. To further validate the debias- 354

ing performance under the multi-hop setting, we 355

augment the dataset Train and Dev with instances 356

consisting of several evidences and generate two 357

multi-hop datasets Train-MH and Dev-MH. Be- 358

sides, we add the multi-hop instances that cannot 359

be predicted correctly using claims only into Hard 360

and form a new test set Hard-MH. Note that we 361

train all models without using ’NOT ENOUGH 362

INFO’ samples since these test sets only involve 363

‘SUPPORTS’ and ‘REFUTES’ samples. Follow- 364

ing previous works (Lee et al., 2021), we use label 365

classification accuracy as the metric. 366

4.1.2 Baselines 367

We compare our proposed method with several 368

baselines from both two existing pipelines, the spe- 369

cific description is listed as follows: 370

Data-augmentation-based methods: 1) EDA 371

(Wei and Zou, 2019). They swap words and re- 372

place synonym to generate new training samples. 373

2) CrossAug (Lee et al., 2021). They design a cross 374

contrastive strategy to augment data, where original 375

claims are modified to be negative and evidences 376

are changed to support such negative claims and 377

refute the original claims. 378

Weight-regularization-based methods: 1) 379

ReW (Schuster et al., 2019). They downweigh 380

the samples which involve n-grams highly corre- 381

lated to labels. 2) PoE (Mahabadi et al., 2020). 382

They downweigh samples with spurious class dis- 383

tribution outputed from the bias-only model. 3) 384

MoCaD (Xiong et al., 2021). They propose a cali- 385

bration method to adjust the inaccurate predicted 386

class distribution from bias-only models. Specifi- 387

cally, two calibrators (i.e., temperature scaling and 388

Dirichlet calibrator) are employed in this work. We 389

utilize such methods to further optimize the model 390

PoE, forming two variants namely PoE-TempS and 391

1We omit the prefix ‘FEVER’ for conciseness in following
paragraphs since all unbiased and adversarial datasets are
derived from the original FEVER dataset.
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Dataset Dev Symmetric Hard Adversarial

BERT-base 93.91± 0.14 72.08± 0.51 78.05± 0.54 61.93± 1.31

EDA 93.37± 0.42 72.93± 0.48 78.22± 0.61 62.12± 1.02
CrossAug 92.85± 0.09 78.88± 0.46 82.19± 0.31 61.72± 0.45

ReW 93.65± 0.16 73.39± 0.71 78.43± 0.52 64.52± 1.49
PoE 93.70± 0.21 76.43± 0.64 80.51± 0.70 67.21± 1.69

PoE-TempS 93.70± 0.25 76.89± 0.86 81.13± 0.33 67.05± 2.30
PoE-Dirichlet 93.25± 0.34 78.55± 0.97 82.31± 0.82 66.98± 1.77

CLEVER (ours) 94.10± 0.11 84.73± 0.69 90.17± 0.75 68.34± 0.94
∆ Improvement + 0.20% + 17.55% + 15.53% + 10.35%

Table 1: The performance comparison between our proposed method CLEVER and baselines. Dev is the biased
dataset and other three datasets are introduced to verify the model performance under an unbiased circumstance.
The best result on each dataset is highlighted in boldface and the runner-up is underlined. The improvement in terms
of percentage compared to the BERT-base is shown in the last row.

PoR-Dirichlet.392

4.1.3 Implementation Detail393

Following the aforementioned baselines, we em-394

ploy BERT-base (Devlin et al., 2019) as the back-395

bone model for a fair comparison, i.e., claim-396

evidence fusion model and claim-only model are397

two independent BERT models. We finetune BERT398

with a fully-connected forward layer over the spe-399

cial token [CLS] to obtain the final prediction. The400

maximum input length is 128, batch size is 32, and401

the optimizer is Adam with a learning rate of 2e-5;402

we train the model for 3 epochs and repeat 5 times403

under different random seed settings, which are all404

the same as previous works. The only hyperpa-405

rameter in our framework is the bias coefficient α.406

Since α is utilized in inference stage, we do not407

need to tune it on the validation set. We change408

the value of α from 0.1 to 1.5 with an increasing409

step of 0.1. The best performance is achieved on410

two unbiased datasets Symmetric and Hard when411

α = 1.0 and α = 1.4, respectively. On the dataset412

Adversarial the best value is α = 0.7 and that is413

0.1 for the biased dataset Dev.414

4.2 Performance Comparison415

The overall performance of our proposed method416

CLEVER and baselines is shown in Table 1. We417

can see that CLEVER outperforms all existing418

methods from different pipelines by a significant419

margin on all datasets. More specifically, we have420

the following observations:421

Firstly, the performance gain of CLEVER is422

more consistent on all datasets than that of pre-423

vious methods. We can observe that the runner- 424

up on each dataset is different while CLEVER 425

achieves the best performance on all datasets. More 426

specifically, compared to the vanilla BERT model 427

(i.e., BERT-base) without any debiasing method, 428

CLEVER advances by 17.55% and 15.53% on 429

two unbiased datasets Symmetric and Hard, re- 430

spectively. Furthermore, most baselines, especially 431

CrossAug, perform relatively worse on the dataset 432

Adversarial, since debiasing methods are always 433

specially designed for avoiding learning biases in 434

claim while do not explicitly consider adversar- 435

ial attacks. By contrast, our proposed method 436

still achieves a promising result on it (about 10% 437

performance improvement upon the BERT-base), 438

which demonstrates the generalization ability of 439

our method to handle both adversarial and biased 440

data. 441

Secondly, CLEVER further improves the perfor- 442

mance on the biased dataset Dev while all existing 443

debiasing methods suffer from a decline, compared 444

to the BERT-base model. This is because CLEVER 445

captures the biased and unbiased data distribution 446

independently on training stage and adjusts the fi- 447

nal prediction on inference stage, which prevents 448

entangling uncertain biased prediction with unbi- 449

ased one like previous works. 450

4.3 Study of the Bias Coefficient 451

The bias coefficient α is introduced in the infer- 452

ence stage, which can be adjusted without tuning 453

according to different properties of datasets. We 454

test the model with several values of α, ranging 455

form 0.1 to 1.5, with a step of 0.1. As illustrated 456
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Figure 3: The model performance regarding different
values of bias coefficient α.

in Figure 3, the performance on the biased dataset457

Dev decreases with the growth of bias coefficient.458

This is reasonable that most of performance gain459

on the dataset Dev is obtained via exploring claim460

biases, once the biased factors are alleviated, such461

performance will be naturally downgraded. On un-462

biased and adversarial datasets, a similar trend can463

be seen that the performance first rises to a peak464

and then drops when α increases. This indicates465

that 1) the claim-only model successfully captures466

the biases in claims, which can be mitigated via the467

proposed subtraction scheme, thus the performance468

advances when α is enlarged in the early period.469

2) Excessively increasing α is harmful for model470

performance since useful semantic information of471

claims is reduced.472

Furthermore, it is worth noting that the model473

performance consistently increases until α = 1.4474

on the dataset Hard, which is larger than α = 1.0475

on Symmetric and α = 1.0 on Adversarial. It in-476

dicates that the unbiased extent of Hard is greater477

than that of Adversarial and Symmetric. There-478

fore, the dataset Hard can better reflect the model479

ability of understanding the relationship between480

claim and evidences. As a result, the consistent481

performance improvement on Hard further demon-482

strates the effectiveness of our proposed debiasing483

strategy.484

4.4 Study of Complicated Circumstance485

Existing methods only utilize samples with single486

evidence to evaluate the debiasing performance,487

however, we argue that more complicated reason-488

ing circumstance should be considered since a489

Dataset Dev-MH Hard-MH

BERT-base 93.58± 0.18 77.99± 0.34

PoE 93.34± 0.28 80.10± 0.49
PoE-TempS 93.42± 0.21 81.22± 0.55

PoE-Dirichlet 93.36± 0.19 82.73± 0.58

CLEVER (ours) 93.76± 0.14 89.85± 0.30
∆ Improvement + 0.19% + 15.20%

Table 2: The performance comparison between our pro-
posed method CLEVER and baselines under the com-
plicated multi-hop reasoning circumstance.

claim may be verified via several evidences in the 490

realistic scenario. Therefore, we further validate 491

debiasing methods under a multi-hop reasoning 492

setting, where instances with more than one evi- 493

dences are involved in both biased set Dev-MH and 494

unbiased set Hard-MH. Since data-augmentation 495

methods are hard to be adapted to such compli- 496

cated scenario, we compare our method CLEVER 497

with baselines from the weight regularization based 498

pipeline. As shown in Table 2, CLEVER consis- 499

tently outperforms its competitors by a significant 500

margin, which demonstrates its effectiveness of 501

handling complicated data. 502

4.5 Qualitative Analysis 503

In this section, we design some case studies to 504

further analyze the advantages of our proposed 505

method CLEVER on a qualitative aspect. 506

4.5.1 Case Study 507

In this part, we aim to compare the performance of 508

different models at an instance level. We choose 509

the best debiasing method from each pipeline 510

(i.e., CrossAug and PoE) to carry out the analy- 511

sis. Specifically, we select representative examples 512

from the dataset Hard that are correctly classified 513

using our method while mistakenly predicted by 514

baselines. 515

From Figure 4, the top instance shows that the 516

output of claim-evidence fusion model correctly 517

inclines to the ground-truth ‘REFUTES’ while the 518

output of claim-only model is mistakenly biased 519

towards ‘SUPPORTS’. That is, the claim-evidence 520

fusion model deals with biased instances in a differ- 521

ent way from the claim-only model, which echoes 522

the discovery in the previous work (Amirkhani and 523

Pilehvar, 2021). Therefore, PoE downweighs such 524

instance in training objective according to the bi- 525

ased extent of claim-only model would result in 526

performance degradation. However, our method 527
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CLEVER separates such outputs of two models in528

training and the predicted probability of ground-529

truth label is further enlarged via subtraction on530

inference stage.531

The bias in the bottom instance is mainly532

induced by the word ‘is’, which is highly533

correlated with the label ‘SUPPORTS’. Data-534

augmentation based methods simply insert nega-535

tions or antonyms, such as transforming ‘is’ to ‘is536

not’, are hard to capture the intrinsic conflict be-537

tween the claim and evidences. In this instance, the538

conflict lies between ‘Idaho’ and ‘Virginia’, not the539

word ‘is’. Therefore, augmenting training instances540

via inserting negations or antonyms contribute lit-541

tle to such complex reasoning circumstance. How-542

ever, our approach CLEVER directly captures both543

claim-evidence interactions and claim biases which544

is augmentation-free. Note that the biased label dis-545

tribution is alleviated in the claim-evidence fusion546

model, i.e., the probability of wrong prediction547

‘SUPPORTS’ is decreased to 0.89 from 0.98 (See548

Figure 4(b)), since it partly pays attention to the549

evidential information. Though the distribution is550

still biased towards the falsity due to the strong bias551

between ‘is’ and the label ‘SUPPORTS’, CLEVER552

can eliminates such bias in both models via sub-553

traction so as to highlight the intrinsic evidential554

segment, thus providing the correct prediction.555

4.5.2 Error Analysis556

In this part, we categorize wrong predictions out-557

puted by our method CLEVER into two groups.558

The first type of error is induced by the uncon-559

spicuous biased features of claims. For example,560

the claim Scandinavia includes the remote Norwe-561

gian islands of Svalbard and Jan Mayen. does not562

contain obvious biases so that the output of claim-563

only model cannot represent the biased distribution.564

Therefore, subtracting such output fails to mitigate565

biases but reduces the beneficial claim information566

instead. These errors may be avoided by employ-567

ing different strategies for instances with distinct568

bias extents, which we leave as future work.569

The second type of error occurs when high-level570

reasoning is required, e.g., mathematical compu-571

tation and multi-hop reasoning, which drops into572

the scope of model reasoning ability. This work573

mainly focuses on debiasing fact-checking models574

that make them concentrate on the intrinsic eviden-575

tial information. After debiasing, how to enhance576

the reasoning ability over such information is a577

promising future direction.578

(a)

Claim

Evidence
Gray Matter Interactive Studios, Inc. was a computer
game developer founded in 1994, and was acquired by
Activision in January 2002.

Gray Matter Interactive Studios, Inc. was a computer game 
developer founded after 2000.

Label
REFUTES

Prediction
PoE: SUPPORTS ❌
CrossAug: SUPPORTS❌

0.24

0.76

SUP REF

0.87

0.13

SUP REF

➖ 0.22

0.78

SUP REF

➖➖

(Normalized)

CLEVER: REFUTES ✅

(b)

Claim

Evidence

Label
REFUTES

Prediction
PoE: SUPPORTS ❌
CrossAug: SUPPORTS❌

0.89

0.11

SUP REF

0.98

0.02

SUP REF

➖
0.46

0.54

SUP REF

➖➖

(Normalized)

CLEVER: REFUTES ✅

As of 2014, the electric chair is an optional form of
execution in Alabama, Florida, South Carolina, and Idaho.

As of 2014, electrocution is an optional form of execution
in Alabama, Florida, South Carolina, and Virginia.

Figure 4: Two representative instances where our pro-
posed method CLEVER outputs correct veracity predic-
tion while baselines make mistakes. The bars denote the
outputed label distribution, i.e., Ou = Oc,e − α · Oc

(Eq. (3)). α is set to be 1.0 for brief illustration.

5 Conclusion 579

In this paper, we have proposed a novel counter- 580

factual framework CLEVER for debiasing fact- 581

checking models. Unlike existing works, CLEVER 582

is augmentation-free and mitigates biases on infer- 583

ence stage. In CLEVER, the claim-evidence fusion 584

model and the claim-only model are independently 585

trained to capture the corresponding information. 586

On the inference stage, a simple subtraction scheme 587

is proposed to mitigate biases. Comprehensive 588

experiments have demonstrated the superiority of 589

CLEVER. 590
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A Dataset Statistics699

Dataset # SUP # REF Sum

Train 100,570 41,850 142,420
Dev 7,983 8,681 16,664

Symmetric 379 338 717
Adversarial 364 402 766

Hard 679 2,638 3,317
Train-MH 120,081 41,850 168,424
Dev-MH 9,214 9,796 19,010
Hard-MH 855 3,027 3,882

Table 3: The statistics of datasets. ‘SUP’ and ‘REF’
is the abbreviation of the label ‘SUPPORTS’ and ‘RE-
FUTES’, respectively. ‘#’ stands for the number of.

B Experimental Environment700

We conduct all experiments using PyTorch 1.8.0 on701

a single GeForce RTX 662 3090 GPU with 24GB702

memory. The training and inference process cost703

about 1 hour and less than 5 minutes, respectively.704

10


