
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OCTAX: ACCELERATED CHIP-8 ARCADE ENVIRON-
MENTS FOR REINFORCEMENT LEARNING IN JAX

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) research requires diverse, challenging environments
that are both tractable and scalable. While modern video games may offer rich
dynamics, they are computationally expensive and poorly suited for large-scale
experimentation due to their CPU-bound execution. We introduce OCTAX, a
high-performance suite of classic arcade game environments implemented in JAX,
based on CHIP-8 emulation, a predecessor to Atari, which is widely adopted
as a benchmark in RL research. OCTAX provides the JAX community with a
long-awaited end-to-end GPU alternative to Atari games, offering image-based
environments, spanning puzzle, action, and strategy genres, all executable atmas-
sive scale on modern GPUs. Our JAX-based implementation achieves orders-of-
magnitude speedups over traditional CPU emulators. We demonstrate OCTAX’s
capabilities bytraining RL agents across multiple games, showing significant im-
provements in training speed and scalability compared to existing solutions. The
environment’s modular design enables researchers to easily extend the suite with
new games or generate novel environments using large language models, making
it an ideal platform for large-scale RL experimentation.

1 INTRODUCTION

Modern reinforcement learning (RL) research (Sutton & Barto, 2018) demands extensive experi-
mentation to achieve statistical validity, yet computational constraints severely limit experimental
scale. RL papers routinely report results with fewer than five random seeds due to prohibitive train-
ing costs (Henderson et al., 2018; Colas et al., 2018; Agarwal et al., 2021; Mathieu et al., 2023;
Gardner et al., 2025). While understandable from a practical standpoint, this undersampling un-
dermines statistical reliability and impedes algorithmic progress. Environment execution creates
this bottleneck: while deep learning has embraced end-to-end GPU acceleration, RL environments
remain predominantly CPU-bound. Originally designed under severe hardware constraints, classic
arcade games represent a solution for scalable RL experimentation. The Atari Learning Environ-
ment (ALE) (Bellemare et al., 2013) has established itself as a standard RL benchmark, although
existing implementations remain fundamentally CPU-bound. As noted by Obando-Ceron & Castro
(2020), the Rainbow paper (Hessel et al., 2018) required 34,200 GPU hours (equivalent to 1,425
days) of experiments, a computational cost that is prohibitively high for small research laboratories.
In this paper, we propose an alternative approach for training RL agents in environments that share
mechanisms with ALE, but which is not intended as a drop-in replacement and offers significantly
reduced computational cost.

Contributions. We introduce OCTAX1, a suite of arcade game environments implemented in JAX
(Bradbury et al., 2018a) through CHIP-8 emulation. CHIP-8, a 1970s virtual machine specification
contemporary with early Atari systems, became the foundation for numerous classic games spanning
puzzle, action, and strategy genres. CHIP-8’s constraint-driven design creates games with similar
cognitive demands to Atari while enabling efficient vectorized emulation that scales to thousands
of parallel instances. The JAX ecosystem has rapidly emerged as a solution for scalability in RL
research but lacks native environments, particularly image-based ones. Our framework addresses

1The anonymized repository containing all source code, experiments, and data is available at: https:
//anonymous.4open.science/r/octax-C8E8/README.md

1

https://anonymous.4open.science/r/octax-C8E8/README.md
https://anonymous.4open.science/r/octax-C8E8/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of CHIP-8 game environments implemented in OCTAX.

this gap by transforming classic games into fully vectorized, GPU-accelerated simulations. These
simulations run thousands of game instances in parallel while maintaining perfect fidelity to the orig-
inal mechanics. This approach dramatically reduces experiment times. Experiments that previously
required days or weeks can now be completed in hours. This efficiency makes comprehensive hy-
perparameter sweeps and ablation studies computationally feasible. The modular design facilitates
extension with new games or automated generation using large language models that can directly
output CHIP-8 assembly code. Figure 1 provides an overview of the integrated CHIP-8 games.

Outline. First, we present the our end-to-end JAX implementation of classic arcade environments
through CHIP-8 emulation (Section 3). Second, we demonstrate diverse learning dynamics through
PPO evaluation across 16 games (Section 4.1). Third, we achieve 350,000 environment steps per
second (1.4 million frames per second) on consumer-grade hardware, substantially outperforming
CPU-based solutions (Section 4.2). Fourth, we establish an LLM-assisted pipeline for automated
environment generation that creates meaningful difficulty gradients (Section 4.3).

2 RELATED WORK

Game environments have proven essential for RL research because they provide engaging, human-
relevant challenges with clear success metrics. The Arcade Learning Environment (ALE) Bellemare
et al. (2013) demonstrated this principle by establishing Atari 2600 games as the standard RL bench-
mark, enabling breakthrough algorithms like DQN (Mnih et al., 2015) and Rainbow (Hessel et al.,
2018). The success of these classic arcade games stems from their constraint-driven design: simple
rules that yield complex behaviors, deterministic dynamics that enable reproducible experiments,
and visual complexity that tests spatial reasoning without overwhelming computational resources.
While algorithmic advances demand increasingly large-scale experiments with dozens of parallel
environments and extensive hyperparameter sweeps, traditional game environments remain CPU-
bound and poorly suited for parallel execution. This mismatch has driven a progression of solutions,
each addressing different aspects of the scalability problem.

Game-based RL environment platforms. Increasingly sophisticated gaming platforms have been
developed to test different dimensions of learning performance. NetHack Learning Environment
(Küttler et al., 2020) provides procedurally generated roguelike challenges that test long-term plan-
ning, while Crafter (Hafner, 2021) offers simplified Minecraft-like environments focused on re-
source management. These environments expand cognitive challenges beyond arcade games, but
their CPU-based implementations compound the scalability problem.

CPU high-performance solutions. Several projects have focused on optimizing CPU-based envi-
ronment execution. EnvPool (Weng et al., 2022) achieves substantial speed improvements through
highly optimized C++ implementation, demonstrating up to 1 million Atari frames per second on
high-end hardware. PufferLib (Suarez, 2025) provides environments written entirely in C, achieving

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

millions of steps per second through over 20,000 lines of optimized code. While these approaches
improve CPU throughput, they retain fundamental limitations: costly CPU-GPU data transfers dur-
ing training and require C implementation in a Python-dominated field.

GPU-accelerated RL environments. GPU-accelerated solutions target the constraint more directly
by moving environment execution to accelerators. CUDA Learning Environment (CuLE) (Dalton
et al., 2020) provides a pioneering CUDA port of ALE, achieving 40-190 million frames per hour
on single GPUs. Isaac Gym (Makoviychuk et al., 2021) demonstrates similar principles for robotics
tasks, achieving 2-3 orders of magnitude speedups over CPU approaches by running thousands of
environments simultaneously. These GPU approaches solve computational bottlenecks but intro-
duce NVIDIA hardware dependence and substantial per-environment engineering costs.

JAX-based environments. The adoption of JAX (Bradbury et al., 2018b) has enabled natively
accelerated environments that combine portability across hardware with end-to-end GPU acceler-
ation. Brax (Freeman et al., 2021) established viability through MuJoCo-like physics simulation,
while Gymnax (Lange, 2022) provides JAX implementations of classic control tasks and simplified
environments from BSuite (Osband et al., 2019) and MinAtar (Young & Tian, 2019). Specialized
environments target specific research needs: XLand-MiniGrid (Nikulin et al., 2024) and Navix (Pig-
natelli et al., 2024) focus on gridworld navigation, Jumanji (Bonnet et al., 2023) spans domains
from simple games to NP-hard combinatorial problems, Pgx (Koyamada et al., 2023) provides clas-
sic board games, and PuzzleJAX Earle et al. (2025) enables dynamic compilation of puzzle games.

Despite this coverage, a critical gap remains: classic arcade games. While MinAtar provides sim-
plified versions of Atari games, the full visual complexity and authentic game mechanics of classic
arcade games remain absent from the JAX ecosystem. OCTAX addresses this gap by providing the
first end-to-end JAX implementation of classic arcade games through CHIP-8 emulation, delivering
computational benefits while preserving the engaging gameplay mechanics that made arcade games
valuable for algorithmic development.

3 OCTAX: THE ACCELERATED CHIP-8 PLATFORM

ROM Loading &
Initialization

Fetch-Decode-Execute
(JAX vectorized)

Octax Environment
Wrapper

Termination Function

Score Function

Action Set

Classic RL Interaction Loop

Startup Instructions35 CHIP-8 Instructions

CHIP-8 ROM

0 1
1 0

RL Agent

Figure 2: OCTAX architecture: ROM loading, CHIP-8 emulation pipeline, and RL environment in-
tegration. The system transforms game ROMs through fetch-decode-execute cycles into vectorized
JAX operations suitable for GPU acceleration.

This section presents our JAX implementation of CHIP-8 emulation. We detail the design deci-
sions that enable GPU acceleration while maintaining behavioral fidelity to original games, and ex-
plain how CHIP-8’s architecture provides an optimal foundation for scalable experimentation in RL.
Figure 2 summarizes this section.

3.1 WHY CHIP-8 FOR RL RESEARCH?

CHIP-8 represents a strategic choice for RL environment design. Created in the 1970s as a virtual
machine specification, CHIP-8 features a 64×32 monochrome display, 16 registers, 4KB memory,
and 35-instruction set. These constraints, originally imposed by early microcomputer limitations,
create several research advantages.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The platform provides image-based environments comparable to Atari games while offering some
computational advantages. The 4KB memory footprint allows thousands of simultaneous game
instances without memory constraints. The simple instruction set reduces emulation overhead com-
pared to complex modern processors. The deterministic execution model ensures experimental re-
producibility across different hardware configurations.

The platform supports everything from precise action games requiring split-second timing to com-
plex puzzles demanding long-horizon planning. The 16-key input system provides sufficient com-
plexity for interesting control challenges while remaining tractable for systematic analysis. Most
importantly, CHIP-8 games are inherently modifiable and analyzable: their simple assembly code
can be automatically generated, modified, and assessed for difficulty, enabling novel research direc-
tions in environment design and curriculum learning. This combination of Atari-like visual com-
plexity with modern computational efficiency makes CHIP-8 well-suited for the JAX ecosystem,
where extensive parallelization can transform week-long experiments into hour-long runs.

3.2 HOW DOES OCTAX WORK?

OCTAX converts CHIP-8 ROMs2 into vectorized RL environments while maintaining compatibil-
ity with original games. The implementation leverages JAX’s functional programming model and
vectorization capabilities to enable GPU acceleration.

ROM loading and initialization. Game data is loaded from .ch8 files into the emulator’s 4KB
memory space starting at address 0x200, following the standard CHIP-8 program layout first in-
troduced in Weisbecker (1978). The system initializes with font data at address 0x50, sixteen
general-purpose registers (V0-VF), an index register (I), a program counter (PC), and the 64×32
monochrome display buffer.

Fetch-decode-execute cycle. The core emulation loop implements the classic processor cycle using
JAX primitives. The fetch() function retrieves 16-bit instructions from memory and advances
the program counter. The decode() function extracts instruction components through bitwise
operations, identifying opcodes, register indices, and immediate values. The execute() function
uses JAX’s lax.switch for GPU-compatible instruction dispatch to specialized handlers.

Vectorized instruction execution. Instruction handlers follow JAX’s functional programming
model, treating state as immutable and returning updated copies. ALU operations handle arithmetic
and bitwise logic with carry/borrow flag management. Control flow instructions implement jumps,
calls, and conditional operations using lax.cond. The display system uses vectorized operations
to render sprites across the entire framebuffer simultaneously.

Environment integration. The OctaxEnv wrapper transforms the emulator into a standard RL
interface. Each RL step executes multiple CHIP-8 instructions to maintain authentic game timing
relative to the original 700Hz instruction frequency. The default frame skip setting preserves realistic
game dynamics. Observations consist of the 64×32 display with 4-frame stacking, producing (4, 64,
32) boolean arrays. Actions map from discrete RL outputs to game-specific key subsets plus a no-
op option. The wrapper manages delay and sound timers at 60Hz and executes startup sequences to
bypass menu screens. Even some games use the RND Chip-8 instruction and are therefore stochastic,
we provide additional wrappers for no-op reset and sticky actions.

3.3 HOW TO TRANSFORM GAMES INTO RL ENVIRONMENTS?

Converting CHIP-8 games into RL environments requires extracting reward signals and termination
conditions from game-specific memory layouts and register usage patterns.

Score function design. Games store scores in different registers using various encoding schemes.
OCTAX provides game-specific score_fn functions that extract scores from appropriate memory
locations. Brix stores its score in register V5, incrementing with each destroyed brick. Pong encodes
scores in BCD format within register V14, requiring score = (V[14] // 10) - (V[14]
% 10) to compute player advantage. Our decision to support modular rewards is intentional; how-
ever, it is incompatible with adopting human-normalized scoring schemes like those used in ALE.

2ROM stands for Read-Only Memory, a type of storage originally used in game cartridges to hold software
that cannot be modified by the user.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Termination logic. Games signal completion through different register states that must be identi-
fied through analysis. Brix terminates when lives (V14) reach zero, while Tetris uses a dedicated
game-state register (V1) that equals 2 on game over. Some games require compound conditions:
Space Flight ends when either lives reach zero or a level completion counter exceeds a threshold,
implemented as terminated = (V[9] == 0) | (V[12] >= 0x3E).

Action space optimization. Most games use subsets of the 16-key hexadecimal keypad. OCTAX
supports custom action_set arrays that map RL action indices to relevant keys. Pong requires
only keys 1 and 4 for paddle movement, while Worm uses directional keys 2, 4, 6, 8. This reduces
action space size and accelerates learning by eliminating irrelevant inputs.

Initialization handling. Many games include menu screens that interfere with RL training. OCTAX
supports startup_instructions parameters that automatically execute instruction sequences
during environment reset, bypassing menus to begin gameplay immediately.

We address CHIP-8’s non-standardized scoring and termination by combining static ROM analysis
and dynamic memory monitoring during gameplay, as detailed in Appendix C.

3.4 WHICH GAMES DOES OCTAX SUPPORT?

OCTAX provides a curated collection of classic CHIP-8 games across multiple genres and difficulty
levels. The current implementation includes 21 titles, with additional games planned for future
releases. All environments maintain full compatibility with both Gymnasium and Gymnax APIs.

Category Available Games Required Capabilities

Puzzle Tetris, Blinky, Worm Long-horizon planning, spatial reasoning
Action Brix, Pong, Squash, Vertical Brix, Wipe

Off, Filter
Timing, prediction, reactive control

Strategy Missile Command, Rocket, Submarine,
Tank Battle, UFO

Resource management, tactical decisions

Exploration Cavern (7 levels), Flight Runner, Space
Flight (10 levels), Spacejam!

Spatial exploration, continuous navigation

Shooter Airplane, Deep8, Shooting Stars Simple reaction, basic timing

Table 1: Currently implemented games in OCTAX.

The games (Figure 1) vary across multiple dimensions of difficulty and cognitive demand. Tem-
poral complexity ranges from immediate reactions to long-term planning requirements. Spatial
complexity spans single-screen environments to multi-screen worlds requiring navigation. Reward
structures include both dense scoring mechanisms and sparse achievement-based systems. This sys-
tematic variation enables controlled studies of algorithmic performance across different challenge
types while maintaining a unified technical framework for fair comparison. A categorization of these
games is provided in Table 1, with more detailed descriptions available in Appendix C.3.

4 EXPERIMENTAL EVALUATION

We evaluate OCTAX through RL training experiments across 16 diverse CHIP-8 games. Our goal is
to demonstrate that the environments present varied difficulties and learning dynamics suitable for
RL research. We then evaluate the platform’s computational performance.

4.1 HOW DO RL AGENTS LEARN IN OCTAX?

We train Proximal Policy Optimization (PPO) (Schulman et al., 2017) agents across our game suite
due to its widespread adoption and proven scalability with parallel environments (Rudin et al., 2022),
and Parallel Q-Network (PQN) (Gallici et al., 2024) as a modern value-based method that also
benefits from parallel environments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.0

2.5

airplane

0

200
blinky

0

20

brix

0

10

deep

0

100
filter

20

40
missile

5
0
5

pong

5

10

spacejam

5

0
squash

25
50
75

submarine

0

25

tank

0.00

0.02

tetris

0 2 4
1e6

50

100

ufo

0 2 4
1e6

10
20
30

vertical_brix

0 2 4
1e6

20

40

wipe_off

0 2 4
1e6

0

1

worm

Timesteps

Re
tu

rn
s (

IQ
M

)

PPO PQN

Figure 3: PPO and PQN learning curves across 16 games: interquartile mean returns using 10th-90th
percentile ranges over 5M timesteps, with confidence intervals computed across 12 random seeds.

Network architecture. Both agents3 uses the same architecture, for fair comparison: a convolu-
tional neural network designed for OCTAX’s (4, 64, 32) stacked observations. The feature extractor
consists of three convolutional layers with 32, 64, and 64 filters, respectively. These layers use
kernel sizes of (8,4), 4, and 3 with corresponding strides of (4,2), 2, and 1. Extracted features are
flattened and fed to separate actor and critic heads, each containing a single 256-unit hidden layer
with ReLU activation throughout (and LayerNorm for PQN).

Training configuration. We combine grid search optimization (detailed in Appendix 4) on Pong
with CleanRL’s standard Atari PPO hyperparameters (Huang et al., 2022). This yields GAE lambda
of 0.95, clipping epsilon of 0.2, value function coefficient of 0.5, and entropy coefficient of 0.01
for PPO. For PQN we use λ = 0.9 and an epsilon-greedy exploration decaying from 1. to 0.05
during 10% of the training. Each experiment uses 512 parallel environments with 32-step rollouts,
4 training epochs per update, and 32 minibatches for gradient computation. We apply the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 5 × 10−4 and gradient clipping to ensure
stable training across 5 million timesteps per environment.

Experimental setup. We conduct 12 independent training runs per game using different random
seeds. All experiments run on a single NVIDIA A100 GPU with 24 concurrent training sessions.
Agent performance is assessed every 131,072 timesteps on 128 parallel environments.

Results analysis. The training curves in Figure 3 reveal distinct learning profiles across games. We
observe three main patterns that reflect different cognitive demands and exploration needs. Rapid
plateau games (Airplane, Brix, Deep, Filter, Blinky) show quick initial learning followed by stable
performance, suggesting clear reward signals. Gradual improvement games (Pong, Tank, Vertical
Brix) learn continuously over the course of training, indicating either sparser reward structures or
more complex strategic requirements. Limited performance games, like Tetris, show little absolute

3Based on Rejax implementation (Liesen et al., 2024).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

progress, making them difficult for methods without targeted exploration. Similarly, in Worm (a
Snake clone), agents often manage to eat only a single apple before dying.

These learning profiles support the diversity of CHIP-8 environments, demonstrating that different
games test varied aspects of learning and control. Individual training runs averaged 65 minutes each,
with 24 experiments running concurrently, achieving approximately 30,800 environment steps per
second across all parallel sessions.

4.2 HOW DOES OCTAX SCALE WITH PARALLELIZATION?

21 22 23 24 25 26 27 28 29 210 211 212 213

Number of Environments

0

100K

200K

300K

St
ep

s p
er

 S
ec

on
d Octax

EnvPool

0

2

4

6

8

10

Ti
m

e
(s

)

Figure 4: Performance scaling of OCTAX and EnvPool across parallelization levels. The solid purple
line is the number of steps per second (higher is better), and the dashed green line is the total
execution time in seconds (lower is better).

Experimental setup. We measure environment throughput across different parallelization lev-
els to quantify OCTAX’s computational advantages. This experiment isolates pure computational
benefits by fixing the game (Pong) and agent behavior (constant action) while varying parallel en-
vironment instances. Since all environments execute identical CHIP-8 computational cycles, these
performance measurements apply uniformly across the entire game suite. To better interpret our
results, we compare against EnvPool because it is widely adopted in RL research, using ALE Pong
to assess CPU vs. GPU-based environment scalability.

Configuration. We benchmark on a consumer-grade workstation with an RTX 3090 (24GB
VRAM), 32GB RAM, and an Intel i7 processor (20 cores). We measure execution time for 100-
step rollouts across varying parallel environment counts, with 50 independent measurements per
configuration. The primary metric is environment steps per second, calculated as (number of en-
vironments × 100 steps) divided by execution time, where each step represents 4 frames due to
OCTAX’s default frame skip setting.

Performance results. Figure 4 demonstrates near-linear scaling up to 350,000 steps (or 1,4M
frames) per second with 8,192 parallel environments before hitting VRAM limitations. EnvPool
running ALE Pong with all available CPU cores shows reduced scaling, plateauing around 25,000
steps per second due to CPU saturation. OCTAX achieves a 14× improvement in computational
efficiency at high parallelization levels, reducing the computational cost of large-scale RL exper-
iments. We also measured GPU memory usage across different environment counts, finding that
execution memory scales linearly with the number of parallel environments with our benchmark
script, consuming approximately 2 MB of GPU memory per environment

4.3 HOW DO LLMS ASSIST ENVIRONMENT CREATION?

Large language models (LLMs) have demonstrated a strong capability in code generation across
diverse programming languages, enabling the automated creation of environments in RL research.
Here we explore OCTAX’s capacity to accelerate research by leveraging LLMs to generate novel

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

tasks, extending beyond manually designed game suites toward automated environment synthesis,
as explored in Faldor et al. (2024).

Context. During OCTAX’s development, we encountered a few games where reward and termina-
tion logic proved difficult to extract through manual analysis of game mechanics. In these cases, we
decompiled ROMs to obtain CHIP-8 assembly code and successfully employed LLMs to explain
the code in guide us in defining the correct score_fn and terminated_fn functions. Using
gpt-4o-mini from the OpenAI API, we evaluated our 21 games by checking whether the model
could reproduce the same score and termination functions as our hand-written implementations.
While the LLM might, in principle, discover alternative reward definitions that are still semantically
valid, our goal here was to assess direct match accuracy under a limited context. We found that
the model performs reliably when the score is stored in a single register (57% perfect matches),
but termination logic proved harder, with only 19% correct due to missed multi-register OR/AND
conditions or encoded state variables. This small feasibility study illustrates that LLMs can recover
simple reward signals but still require human oversight, especially with no interactive debugging
or additional context. Full details and per-game analyses are provided in Appendix E. This exper-
iment motivated us to investigate the reverse pipeline: using LLMs to generate complete CHIP-8
games from high-level descriptions, then leveraging OCTAX’s scalable simulation to evaluate these
procedurally created environments.

Figure 5: Environment
generation pipeline.

Automated environment generation pipeline. Our pipeline consists of
seven replicable steps for automatic CHIP-8 game generation. In Step
1, we construct a corpus of CHIP-8 tutorials, documentation, and pro-
gramming examples, ensuring the LLM understands the architecture’s
instruction set, memory layout, and common coding patterns. In Step
2, we embed this corpus into a prompt (detailed in Appendix F.1) that
guides the LLM to produce syntactically correct CHIP-8 programs from
high-level instructions. In Step 3, we provide a description of the game
with desired mechanics, objectives, and constraints. In Step 4, the LLM
generates the initial CHIP-8 code based on the provided description. In
Step 5, an automated feedback loop between the LLM and a CHIP-8
compiler iteratively refines the code based on compilation errors until
successful. In Step 6, Python wrapper functions for score_fn and
terminated_fn are automatically generated, translating CHIP-8 reg-
isters into RL-compatible reward and termination signals. Finally, in
Step 7, the game description is augmented to increase difficulty or in-
troduce new challenges. Both the new description and the previously
generated game are added to the LLM’s context before next iteration.
Figure 5 summarizes the automated environment generation pipeline.

Target Shooter case study. We validated this pipeline using Claude
Opus 4.1, known for its proficiency in programming, with the following
description: "Target Shooter – Targets appear randomly on the screen,
and the player moves a crosshair to shoot them. Score increases per
hit, and the game ends after a fixed number of targets." The system suc-
cessfully generated three progressive difficulty levels: static targets for
basic aiming skills, time-limited targets introducing decision pressure,
and moving targets with time constraints requiring predictive aiming.
Each level maintains consistent register mappings for score and termina-
tion, simplifying OCTAX compatibility. Figure 6 shows how the LLM-
generated environment visual appearance. All the code generated by the
LLM is given in F.2,

RL experiments. Using identical PPO configurations from Section 4.1, we trained agents on the
three generated difficulty levels over 5M timesteps. Figure 7 demonstrates clear performance strat-
ification across difficulty levels: Level 1 agents achieved optimal returns of 10.0 with rapid con-
vergence by 1M timesteps, Level 2 agents plateaued at 9.0 returns with moderate learning speed,
while Level 3 agents reached 8.0 returns with the slowest progression. The inverse relationship
between difficulty level and both final performance and sample efficiency indicates that our LLM-
generated environments successfully create a meaningful difficulty gradient. This proof-of-concept

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

demonstrates the feasibility of automated environment generation for RL research via OCTAX, with
promising applications in curriculum learning, open-endedness, and continual learning scenarios.

Figure 6: Rendering of the Target Shooter
game showing the player (left, circular ob-
ject) and target (right, cross-shaped object).

0 1 2 3 4 5
Timesteps 1e6

2.5

5.0

7.5

10.0

Re
tu

rn
s (

IQ
M

)

Level 1
Level 2
Level 3

Figure 7: PPO training performance on gen-
erated environments with varying difficulty.

5 CONCLUSION

We introduced OCTAX, a JAX-based CHIP-8 emulation platform that provides GPU-accelerated ar-
cade game environments for reinforcement learning research. Our implementation achieves signifi-
cant performance improvements over CPU-based alternatives, enabling experiments with thousands
of parallel environments while maintaining perfect behavioral fidelity to original games. Through
PPO evaluation across 16 diverse games, we demonstrated varied learning dynamics that highlight
the cognitive diversity within classic arcade environments. The platform’s modular design enables
both manual game integration and automated environment generation using large language models,
providing researchers with flexible experimental design options.

Societal and environmental impact. OCTAX enables more rigorous evaluation with larger sam-
ple sizes, addressing reproducibility concerns that affect institutions with limited computational
resources. This implementation can reduce energy consumption compared to resource-intensive
benchmarks such as ALE: experiments that once required top-tier clusters can now run efficiently
on a single GPU, potentially saving significant compute time and resources.

Limitations. The GPU-based architecture faces performance constraints due to CHIP-8’s variable
instruction execution complexity. JAX synchronization across parallel environments means each
step’s execution time depends on the slowest instruction among CHIP-8’s 35 operations, typically
display rendering or complex ALU operations. The absence of established maximum scores across
our game suite prevents the assessment of whether agents approach theoretical performance limits,
limiting evaluation of algorithmic performance ceilings.

Future work. OCTAX can expand through community contributions, with hundreds of compati-
ble ROMs available online. The LLM-assisted environment generation pipeline enables curriculum
learning and open-ended research through procedurally generated games that provide task diversity.
We plan to investigate emulator optimizations including instruction-level parallelization strategies
and adaptive batching to address synchronization bottlenecks from variable execution times. We
also aim to extend platform support to Super-CHIP8 and XO-CHIP variants: Super-CHIP8 offers
higher resolution displays (128×64) and extended instruction sets originally developed for HP48
calculators, while XO-CHIP provides color graphics, improved audio, and expanded memory while
maintaining backward compatibility. These extensions would enable OCTAX to support more so-
phisticated games and visual complexity while preserving the computational efficiency advantages
of the JAX-native architecture. Many CHIP-8 games feature multi-agent or multi-player mechanics,
which we plan to support in future platform releases. The platform’s high-throughput capabilities
also position it well for offline RL research, enabling the efficient creation of large-scale datasets
and the comprehensive evaluation of offline algorithms across diverse game environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide complete resources to ensure reproducibility of our results. The OCTAX source code,
including all 21 game environment implementations, JAX-based CHIP-8 emulator, and training
scripts, is available as supplementary material. Our experimental setup uses standard PPO hy-
perparameters detailed in Section 4.1, with hardware specifications and performance benchmark-
ing configurations provided in Section 4.2. All training experiments use identical network ar-
chitectures and hyperparameters across games, enabling direct replication of our learning curves
in Figure 3. For the LLM-assisted environment generation pipeline in Section 4.3, we include
the prompt templates and generated CHIP-8 assembly code in Appendix F. The modular design
of OCTAX allows researchers to extend our game suite using the technical specifications in Sec-
tion 3. The anonymized repository containing all source code, experiments, and data is available at:
https://anonymous.4open.science/r/octax-C8E8/README.md

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304–29320, 2021.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of artificial intelligence research, 47:
253–279, 2013.

Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz, Paul Duck-
worth, Vincent Coyette, Laurence I Midgley, Elshadai Tegegn, Tristan Kalloniatis, et al. Ju-
manji: a diverse suite of scalable reinforcement learning environments in jax. arXiv preprint
arXiv:2306.09884, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018a. URL http:
//github.com/jax-ml/jax.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
composable transformations of python+ numpy programs. 2018b.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How many random seeds? statistical power
analysis in deep reinforcement learning experiments. arXiv preprint arXiv:1806.08295, 2018.

Steven Dalton et al. Accelerating reinforcement learning through gpu atari emulation. Advances in
Neural Information Processing Systems, 33:19773–19782, 2020.

Sam Earle, Graham Todd, Yuchen Li, Ahmed Khalifa, Muhammad Umair Nasir, Zehua Jiang, An-
drzej Banburski-Fahey, and Julian Togelius. Puzzlejax: A benchmark for reasoning and learning.
arXiv preprint arXiv:2508.16821, 2025.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via mod-
els of human notions of interestingness with environments programmed in code. arXiv preprint
arXiv:2405.15568, 2024.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax–a differentiable physics engine for large scale rigid body simulation. arXiv preprint
arXiv:2106.13281, 2021.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning. arXiv preprint
arXiv:2407.04811, 2024.

Jason Gardner, Ayan Dutta, Swapnoneel Roy, O Patrick Kreidl, and Ladislau Boloni. Greener deep
reinforcement learning: Analysis of energy and carbon efficiency across atari benchmarks. arXiv
preprint arXiv:2509.05273, 2025.

10

https://anonymous.4open.science/r/octax-C8E8/README.md
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
URL http://jmlr.org/papers/v23/21-1342.html.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara, Haruka Kita,
and Shin Ishii. Pgx: Hardware-accelerated parallel game simulators for reinforcement learning.
Advances in Neural Information Processing Systems, 36:45716–45743, 2023.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The nethack learning environment. Advances in Neural
Information Processing Systems, 33:7671–7684, 2020.

Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environment library, 2022.
URL http://github.com/RobertTLange/gymnax.

Jarek Liesen, Chris Lu, and Robert Lange. rejax, 2024. URL https://github.com/
keraJLi/rejax.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Timothée Mathieu, Riccardo Della Vecchia, Alena Shilova, Matheus Medeiros Centa, Hector
Kohler, Odalric-Ambrym Maillard, and Philippe Preux. Adastop: adaptive statistical testing for
sound comparisons of deep rl agents. arXiv preprint arXiv:2306.10882, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Artem Agarkov, Viacheslav Sinii, and Sergey
Kolesnikov. Xland-minigrid: Scalable meta-reinforcement learning environments in jax. Ad-
vances in Neural Information Processing Systems, 37:43809–43835, 2024.

Johan S Obando-Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful
and inclusive deep reinforcement learning research. arXiv preprint arXiv:2011.14826, 2020.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019.

Eduardo Pignatelli, Jarek Liesen, Robert Tjarko Lange, Chris Lu, Pablo Samuel Castro, and Laura
Toni. Navix: Scaling minigrid environments with jax. arXiv preprint arXiv:2407.19396, 2024.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In Conference on robot learning, pp. 91–100.
PMLR, 2022.

11

http://jmlr.org/papers/v23/21-1342.html
http://github.com/RobertTLange/gymnax
https://github.com/keraJLi/rejax
https://github.com/keraJLi/rejax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Joseph Suarez. Pufferlib 2.0: Reinforcement learning at 1m steps/s. In Reinforcement Learning
Conference, 2025.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 2 edition, 2018.

Joseph Weisbecker. An easy programming system. BYTE, 3(12):108–122, December 1978. First
introduction of CHIP-8 programming language.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen
Liu, Yufan Song, Ting Luo, Yukun Jiang, et al. Envpool: A highly parallel reinforcement learning
environment execution engine. Advances in Neural Information Processing Systems, 35:22409–
22421, 2022.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

A USE OF LARGE LANGUAGE MODELS

We used Large Language Models in three capacities during this research. First, Claude Opus 4.1
serves as a core research component in Section 4.3, where we demonstrate automated CHIP-8 game
generation from high-level descriptions. This represents a novel research contribution, with all gen-
erated code validated through compilation and RL experiments. Second, we employed Claude Son-
net 4 for writing assistance, including text refinement, rephrasing technical concepts, and improving
academic tone. Third, LLMs generated code documentation, docstrings, and tutorial content. All
research ideas, experimental design, and scientific claims originate from the authors. We did not
use LLMs for ideation, hypothesis formation, or result interpretation. We manually reviewed and
validated all LLM-assisted content for accuracy and take full responsibility for all presented content.

B CHIP-8 TECHNICAL SPECIFICATIONS

B.1 PLATFORM OVERVIEW

CHIP-8 was created by Joseph Weisbecker at RCA in the mid-1970s as a virtual machine for early
microcomputers. The platform established one of the first successful portable gaming ecosystems
by providing a hardware abstraction layer that enabled games to run across different systems.

B.2 SYSTEM ARCHITECTURE

The CHIP-8 architecture consists of:

• Memory: 4KB total, with programs loaded at address 0x200

• Registers: 16 8-bit registers (V0-VF), with VF serving as a flag register

• Display: 64×32 pixel monochrome screen with XOR-based rendering

• Input: 16-key hexadecimal keypad (0-9, A-F)

• Timers: 60Hz delay timer and sound timer

• Audio: Single-tone buzzer

B.3 INSTRUCTION SET HIGHLIGHTS

CHIP-8’s 35-instruction set includes specialized gaming primitives:

• Sprite Drawing (DXYN): XOR-based rendering enabling collision detection

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• Key Input (EX9E, EXA1): Skip instructions based on key state

• BCD Conversion (FX33): Convert register values to decimal display

• Memory Operations: Bulk register loading/storing (FX55, FX65)

The XOR-based sprite system is particularly elegant: drawing the same sprite twice erases it, en-
abling simple animation and automatic collision detection when pixels turn off.

B.4 FONT SYSTEM

CHIP-8 includes built-in 4×5 pixel font data for hexadecimal digits (0-F), stored at addresses 0x050-
0x09F. Games reference these fonts for score and text display by setting the index register to the
appropriate font location.

C GAME ENVIRONMENT IMPLEMENTATION DETAILS

C.1 SCORE DETECTION METHODOLOGY

CHIP-8 games store scoring information in arbitrary memory locations using game-specific formats.
Our automated detection operates in two phases:

Static Analysis: We analyze ROM structure for common programming patterns, particularly binary-
coded decimal (BCD) operations (FX33 instruction) that suggest numeric display routines.

Dynamic Monitoring: During human gameplay sessions, we monitor memory changes to correlate
locations with scoring events. Register trend analysis identifies increasing values (likely scores)
versus decreasing values (likely lives/health).

C.2 REWARD DESIGN

Each environment implements a reward function that extracts scoring information from the emula-
tor state. The reward is computed by reading specific CHIP-8 registers (V0-VF) that track game-
relevant metrics. Most environments use direct score extraction where the reward equals the value
stored in a score register. Some environments apply transformations to the raw register values to
shape the reward signal for reinforcement learning.

C.3 GAME LIST

C.3.1 LONG-HORIZON PLANNING & SPATIAL REASONING

Requires strategic thinking, spatial awareness, and multi-step planning

• tetris – Tetris by Fran Dachille (1991): Classic Tetris with piece rotation, movement, and
dropping. Uses keys 4 (rotate left), 5 (move left), 6 (move right), and 7 (drop). Speed
increases every 5 lines and peaks at 45 lines. Reward: Register V[10] containing the score.
Termination: Game over when V[1] equals 2 (Board overflow).

• blinky – Blinky by Hans Christian Egeberg (1991): Pac-Man clone where the player nav-
igates a maze to collect pills while avoiding two ghosts (Packlett and Heward). The maze
contains one gateway and four energy pills near corners. Points awarded for each pill, en-
ergy pill, catching ghosts, and finishing the maze. Player has 2 lives. Uses keys 3, 6, 7, and
8 for movement. Reward: Register V[6] containing the score. Termination: Game over
when V[3] equals 255 (Collision with ghost).

• worm – SuperWorm V4 by RB-Revival Studios (2007): Snake-like game for Chip8. The
player navigate the worm to collect items while avoiding walls and self-collision. Uses
keys 2, 8, 4, and 6 for directional movement. Reward: Register V[5] containing the score.
Termination: Game over when V[7] equals 255 (Collision).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C.3.2 TIMING, PREDICTION & REACTIVE CONTROL

Requires precise timing, trajectory prediction, and fast reactive responses

• brix – Brix by Andreas Gustafsson (1990): Breakout clone where the player controls a
paddle to bounce a ball and destroy bricks. Player has 5 lives. Uses keys 4 (left) and
6 (right) for paddle movement. Reward: Register V[5] increments per brick destroyed.
Termination: Game over when V[14] equals 4 (No more lives).

• pong – Pong: Single player pong game where the player controls a paddle to hit the ball.
Uses keys 1 and 4 for paddle movement. Reward: Computed as (V[14] // 10) - (V[14] %
10), representing player score minus opponent score. Termination: Game over when either
score reaches 9.

• squash – Squash by David Winter (1997): Bounce a ball around a squash court with paddle
control. Uses keys 1 (up) and 4 (down) for paddle movement. Player has 5 lives. Reward:
Register V[11] (Numbeer of lives left). Termination: Game over when V[11] equals 0 (No
more lives).

• vertical_brix – Vertical Brix by Paul Robson (1996): Breakout variant with vertical brick
layout and paddle movement. In the original game you need to press 7 to start, but we skip
that in the environment. Uses keys 1 and 4 to move the paddle vertically. Reward: Register
V[8] (bricks eliminated). Termination: Game over when V[7] (remaining lives) equals 0.

• wipe_off – Wipe Off by Joseph Weisbecker: Move paddle left or right to wipe out spots
on screen. Each spot counts 1 point. Player gets 20 balls. Uses keys 4 (left) and 6 (right)
for paddle movement. Reward: Register V[6] (Number of points wiped out). Termination:
Game over when V[7] (balls left) equals 0.

• filter – Filter: Catch drops falling from a pipe at the top of the screen with paddle. Uses
keys 4 (left) and 6 (right) for paddle movement. 7 lives. Reward: Register V[14] (number
of drops caught). Termination: Game over when V[13] (remaining lives) equals 0.

C.3.3 RESOURCE MANAGEMENT & TACTICAL DECISIONS

Requires managing limited resources and making strategic tactical choices

• missile – Missile Command by David Winter (1996): Shoot 8 targets on screen using key 8.
The shooter moves faster with each shot. Player has 12 missiles total and earns 5 points per
target hit. Reward: Register V[7] (points). Termination: Game over when V[6] (missiles
left) equals 0.

• rocket – Rocket by Joseph Weisbecker (1978): An enemy UFO moves from left to right
across the top of the screen. Launch rockets vertically by pressing key F (15). Rockets
appear at random horizontal positions at the bottom. Score increments by 1 when UFO is
hit. Player has 9 rockets total. Reward: Register V[1] (points). Termination: Game over
when V[2] (rocket launched) equals 9.

• submarine – Submarine by Carmelo Cortez (1978): Fire depth charges at submarines be-
low using key 5. Score 15 points for hitting a small submarine and 5 points for a large
submarine. Player starts with 25 depth charges. Reward: Register V[7] (points). Termina-
tion: Game over when V[8] (remaining lives) equals 0.

• tank – Tank Battle: Control a tank with 25 bombs to hit a mobile target. Uses keys 2, 4, 5,
6, and 8 to move. If the tank hits the target, player loses 5 bombs. Reward: Register V[14]
(points). Termination: Game over when V[6] (bombs left) equals 0.

• ufo – UFO by Lutz V (1992): Stationary missile launcher at the bottom of the screen shoots
at flying objects. Uses keys 4 (left diagonal), 5 (straight up), and 6 (right diagonal) to fire.
Player has 15 missiles. Score displayed on left, remaining missiles on right. Reward:
Register V[7] (score). Termination: Game over when V[8] (missiles left) equals 0.

C.3.4 EXPLORATION & CONTINUOUS NAVIGATION

Requires spatial exploration, obstacle avoidance, and continuous movement control

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• cavern – Cavern by Matthew Mikolay (2014): Navigate through a cave without crashing
into walls. Uses keys 2, 4, 6, and 8 for movement. Modified ROM with leftward progress
reward system where V[0] increments for each new leftmost X position reached, encour-
aging leftward exploration. V[A] tracks leftmost position ever visited. Reward: Register
V[0]. Termination: Game over when V[14] equals 0 (crash into wall).

• flight_runner – Flight Runner by TodPunk (2014): Simple flight navigation game. Uses
keys 5, 7, 8, and 9 for movement controls. Reward: Register V[7]. Termination: Game
over when V[5] or V[7] equals 255.

• space_flight – Space Flight: Fly through an asteroid field from left to right avoiding obsta-
cles. Uses keys 1 and 4 to navigate the spaceship. Modified ROM with single life mode and
immediate termination on collision. V[0] increments per frame survived as distance score.
V[9] tracks lives. Reward: Register V[0]. Termination: Game over when V[9] equals 0 or
V[12] is at least 0x3E.

• spacejam – Spacejam! by William Donnelly (2015): Ship tunnel navigation game based
on ShipTunnel from 2014 OctoJam. Uses keys 5, 8, 7, and 9 for movement. Reward:
Register V[9]. Termination: Game over when V[10] equals 0 (Ship destroyed).

C.3.5 SIMPLE REACTION & TIMING

Requires basic reaction time and simple decision making

• airplane – Airplane: Bombing game where bombs are dropped by pressing key 8. V[11]
tracks remaining targets and V[12] tracks level progression. Reward: Computed as -V[11]
- V[12], rewarding target hits and penalizing level progression. Termination: Game over
when V[11] equals 0 or V[12] equals 6.

• deep – Deep8 by John Earnest (2014): Move boat left and right with keys 7 and 9. Press
key 8 to drop a bomb and release to detonate it. Destroy incoming squid before they tip the
boat. Reward: Register V[9]. Termination: Game over when V[B] does not equal 1.

• shooting_stars – Shooting Stars by Philip Baltzer (1978): Classic shooting game. Uses
keys 2, 8, 4, and 6 for movement. Reward: Register V[0] with capping at 128 (returns 0 if
V[0] exceeds 128). Termination: Never terminates.

D HYPERPARAMETER OPTIMIZATION RESULTS

We conducted a comprehensive grid search on the Pong environment to identify optimal PPO hyper-
parameters before evaluating across the full game suite. The search explored four key dimensions:
number of parallel environments, rollout length, minibatch size, and learning rate. All experiments
used 4 epochs per update, GAE lambda of 0.95, and gradient clipping at 0.5.

D.1 SEARCH SPACE

The hyperparameter search explored the following ranges:

• Environments: {128, 256, 512, 1024}
• Rollout steps: {32, 64, 128, 512}
• Minibatches: {4, 8, 16, 32}
• Learning rate: {2.5× 10−4, 5× 10−4, 1× 10−3}

Each configuration was trained for 1M timesteps with evaluation every 65,536 steps. Final eval-
uation scores represent the last recorded performance, where less negative values indicate better
performance.

D.2 RESULTS SUMMARY

Table 2 presents the key configurations and their final evaluation scores. Higher scores indicate
better performance (scores are negative, with values closer to zero being better).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 2: Hyperparameter search results on Pong environment. Configurations sorted by final evalu-
ation score.

Envs Steps Minibatches LR Score

512 32 32 0.0005 -2.34
512 32 16 0.001 -2.48
512 32 32 0.001 -2.69
128 128 16 0.00025 -2.95
128 64 8 0.00025 -3.19
512 32 16 0.00025 -3.20
256 64 16 0.00025 -3.38
128 32 4 0.00025 -3.44
128 64 16 0.00025 -3.53
512 32 16 0.0005 -3.73
256 32 4 0.00025 -3.78
128 128 8 0.00025 -3.91
256 128 32 0.00025 -4.03
512 64 16 0.00025 -4.17

1024 32 32 0.00025 -4.34
1024 32 16 0.00025 -4.44
256 128 16 0.00025 -4.66

1024 64 32 0.00025 -4.96

D.3 ANALYSIS AND KEY FINDINGS

Learning rate impact. Higher learning rates significantly improved performance, with 5 × 10−4

and 1×10−3 substantially outperforming 2.5×10−4. The top three configurations all used learning
rates above the commonly used 2.5× 10−4.

Environment scaling. 512 parallel environments provided the optimal balance between computa-
tional efficiency and sample diversity. Configurations with 1024 environments showed diminishing
returns, possibly due to computational overhead or reduced gradient update frequency.

Rollout length. Shorter rollouts (32 steps) consistently outperformed longer ones, indicating more
frequent policy updates may be beneficial for this environment.

Minibatch size. Larger minibatch sizes (16-32) generally improved performance by providing more
stable gradient estimates, though the effect was less pronounced than learning rate changes.

D.4 FINAL CONFIGURATION

Based on these results, we selected the following hyperparameters for all subsequent experiments:

• Parallel environments: 512

• Rollout steps: 32

• Training epochs: 4

• Minibatches: 32

• Learning rate: 5× 10−4

• GAE lambda: 0.95

• Clip epsilon: 0.2

• Value function coefficient: 0.5

• Entropy coefficient: 0.01

E EVALUATION STUDY ON LLM-GENERATED REWARD FUNCTIONS

We evaluate whether LLMs can extract reward and termination functions from raw CHIP-8 as-
sembly code, comparing LLM outputs against our human-defined implementations. Given CHIP-8

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

assembly code without symbolic information and any documentation, the LLM must implement
two functions using only 16 registers: score_fn(state) to extract the current game score, and
terminated_fn(state) to determine if the game has ended.

Important caveat: Exact register matches indicate correct understanding of the original implemen-
tation, but alternative register choices may still represent valid game semantics.

We used the model gpt-4o-mini from the OpenAI API due to its low price. The full prompt we
use is shown below:

You are analyzing CHIP-8 assembly code to extract reward and
termination logic for reinforcement learning.

CHIP-8 ASSEMBLY CODE for ’{rom_name}’:
{game_code}

TASK: Implement score_fn() and terminated_fn() using ONLY
the 16 registers in state.V[0-15].

STEP-BY-STEP ANALYSIS REQUIRED:

1. REGISTER IDENTIFICATION:
- Scan the assembly for registers that track score, lives,

or game state
- Look for patterns: incrementing (score), decrementing (lives),

flag checks (game over)
- Note: Multiple registers may be involved (e.g., V[9] AND V[12])

2. SCORE FUNCTION:
- Which register(s) hold the score value?
- Is it a simple read, or does it require calculation

(e.g., BCD decode, multi-register)?
- Provide evidence from assembly code

3. TERMINATION FUNCTION:
- Which register(s) indicate game over?
- What are the exact conditions? (equal, not equal, AND, OR?)
- Check for: lives==0, game_state==X, score>=limit, etc.
- Provide evidence from assembly code

OUTPUT FORMAT:
Game: [One-line description]
ANALYSIS:
Score register(s): V[X] because [reason from code]
Termination register(s): V[Y] because [reason from code]

def score_fn(state): return state.V[X]
def terminated_fn(state): return state.V[Y] == Z

CRITICAL REMINDERS:
- Look for ALL conditions in termination (often OR/AND combinations)
- Verify register choices against actual assembly operations
- Don’t guess - justify each register choice with code evidence

E.1 EVALUATION

We classify LLM outputs into four categories. Perfect: exact register(s) and logic match ground
truth; Partial: correct register(s) but incomplete/incorrect logic; Wrong Logic: uses ground truth
registers in wrong context; Failure: completely unrelated register(s) to ground truth. Results are
summarized in Table 3.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: LLM Function Generation Results (21 CHIP-8 Games)
Game Score Function Termination Function
Airplane Partial Failure
Blinky Failure Failure
Brix Perfect Failure
Cavern Perfect Perfect
Deep8 Perfect Wrong Logic
Filter Perfect Perfect
FlightRunner Perfect Failure
Missile Perfect Partial
Pong Partial Failure
Rocket Perfect Failure
Shooting Stars Partial Failure
SpaceFlight Wrong Logic Failure
Spacejam Perfect Failure
Squash Perfect Wrong Logic
Submarine Perfect Perfect
Tank Failure Failure
Tetris Failure Failure
UFO Perfect Perfect
VerticalBrix Wrong Logic Failure
WipeOff Perfect Failure
Worm Failure Failure

Perfect 12/21 (57%) 4/21 (19%)
Partial 3/21 (14%) 1/21 (5%)
Wrong Logic 3/21 (14%) 2/21 (10%)
Failure 3/21 (14%) 14/21 (67%)

Perfect matches: simple single-register cases. The LLM succeeded when game logic used triv-
ial register assignments. In Submarine, both functions were correctly identified because the as-
sembly showed clear v7 += 0x05 for scoring and if v8 == 0x00 for game-over checks—
unambiguous patterns that the LLM easily recognized.

Partial success: correct registers, wrong logic. In Pong, the LLM identified V[14] as the score
register but missed Binary-Coded Decimal (BCD) encoding where 0x23 represents player=2, oppo-
nent=3. The ground truth decodes this as (V[14]//10)-(V[14]%10) while the LLM simply
returned V[14]. Similarly, in Shooting Stars, the LLM missed overflow protection: the ground
truth returns 0 when V[0] exceeds 128, but the LLM returned raw V[0]. These cases show the LLM
can identify score registers but struggles with encoding schemes and boundary conditions.

Wrong logic: register confusion within context. In Squash, the LLM confused adjacent regis-
ters: it correctly identified V[11] for scoring but used V[12] for termination when V[11] actually
serves dual purpose (score and lives). This "off-by-one" pattern appeared repeatedly (Missile: V[5]
vs V[6], Tank: V[6] vs V[13]). Both registers appear in the assembly’s game logic, but the LLM
incorrectly assumed separate registers for each function rather than recognizing dual-purpose usage.

Complete failures: unrelated register selection. In Blinky, the LLM chose entirely wrong reg-
isters (V[9] for score vs ground truth V[6], and V[6]/V[7] for termination vs ground truth V[3]).
Analysis of the LLM’s reasoning revealed it focused on sprite drawing operations involving these
registers rather than actual score-tracking logic

Termination logic: the major challenge Termination functions achieved only 19% perfect accu-
racy, primarily due to multi-condition logic. In SpaceFlight, the game ends when either lives (V[9])
reach zero OR distance (V[12]) exceeds threshold: (V[9]==0)|(V[12]>=0x3E). The LLM
output only V[14]==0—a single condition using an unrelated register. This pattern repeated: the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

LLM rarely captured compound conditions with multiple registers. In Airplane, the LLM detected
that V[12] reaches 6 at game end but used wrong register V[10] and completely missed the V[11]
lives condition. Even with explicit prompt instructions to check for OR/AND combinations, the
LLM showed strong bias toward single-condition checks.

E.2 DISCUSSION AND IMPLICATIONS

Score functions achieved 57% perfect accuracy, with 71% correctly identifying the primary register.
Success correlated with simple increment patterns (v7 += 0x01) and direct reads. Failures oc-
curred with multi-register calculations, encoding schemes like BCD, and negative scores requiring
subtraction. Termination functions struggled at 19% accuracy with 67% failures, stemming from
multi-condition OR/AND logic, multiple register interactions, and flag-based state machines.

Practical implications: LLMs can assist with reward function extraction for simple game mechan-
ics but require human verification for games with multiple termination conditions, complex scoring
systems, or multi-register state dependencies.

Limitations: Our evaluation measures implementation matching, not semantic equivalence. Alter-
native register choices may provide valid rewards for RL training even when differing from human
implementations.

F LLM-ASSISTED ENVIRONMENT GENERATION

This appendix details the automated environment generation pipeline using large language models
(LLMs) to create novel CHIP-8 games for reinforcement learning research. We demonstrate the
complete process from prompt engineering to code generation across three difficulty levels of a
Target Shooter game.

F.1 PROMPT ENGINEERING

Our LLM generation pipeline relies on carefully crafted prompts that provide comprehensive CHIP-
8 programming context and specific game requirements. The core prompt structure includes CHIP-8
architectural constraints, Octo assembly language syntax, and reinforcement learning compatibility
requirements.

Listing 1: LLM prompt template for CHIP-8 game generation
You are a **professional CHIP-8 (classic version) game developer**.
Your task is to **design and implement new CHIP-8 games in Octo assembly

language**. I will provide you with tutorials and references for Octo
assembly. You must be rigorous and ensure that your code is **

syntactically correct, runnable, and follows CHIP-8 conventions**.

<documentation></documentation>

<tutorial1></tutorial1>

<tutorial2></tutorial2>

<example></example>

The goal is to create a **game suitable for reinforcement learning (RL)
research**, which means:

* The **score** must be stored in a clear and consistent register or
memory location.

* The **termination condition** (game over) must also be easily
extractable (e.g., through a specific flag or register value).

* The game should have **deterministic rules** and be lightweight enough
for training agents.

Here is the description of the game you must implement:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

<description>{{description}}</description>

The prompt incorporates several key components:

• Role specification: Establishes the LLM as a professional CHIP-8 developer
• Technical constraints: Emphasizes syntactic correctness and CHIP-8 compliance
• RL compatibility: Specifies requirements for score tracking and termination detection
• Reference material: Includes comprehensive CHIP-8 documentation and examples
• Game description: Placeholder for specific game mechanics and objectives

The prompt template includes placeholder tags that are populated with comprehensive CHIP-8
resources: <documentation> contains the official Octo Manual (https://johnearnest.
github.io/Octo/docs/Manual.html), <tutorial1> includes the Beginner’s
Guide (https://johnearnest.github.io/Octo/docs/BeginnersGuide.html),
<tutorial2> incorporates the Intermediate Guide (https://johnearnest.github.
io/Octo/docs/IntermediateGuide.html), and <example> provides a complete
game implementation (https://github.com/JohnEarnest/chip8Archive/blob/
master/src/outlaw/outlaw.8o) to demonstrate best practices and coding patterns.

F.2 GENERATED TARGET SHOOTER IMPLEMENTATION

Using the prompt template, we generated three progressive difficulty levels of a Target Shooter
game. Each level maintains consistent register mappings for score and termination while introducing
increasing complexity in target behavior and timing constraints.

F.2.1 LEVEL 1: STATIC TARGETS

The first difficulty level features stationary targets that appear at random locations, focusing on basic
aiming and shooting mechanics.

Listing 2: Level 1 Target Shooter - Static targets
##
#
Target Shooter - RL Training Game
#
A deterministic shooting game designed for
reinforcement learning research.
#
Controls:
- WASD to move crosshair
- E to shoot
#
Score is stored in register v2 (score_reg)
Game over flag in register v3 (gameover_reg)
#
Game ends after hitting 10 targets.
#
##

Sprite data
: crosshair

0b10000001
0b01011010
0b00100100
0b01011010
0b01011010
0b00100100
0b01011010
0b10000001

20

https://johnearnest.github.io/Octo/docs/Manual.html
https://johnearnest.github.io/Octo/docs/Manual.html
https://johnearnest.github.io/Octo/docs/BeginnersGuide.html
https://johnearnest.github.io/Octo/docs/IntermediateGuide.html
https://johnearnest.github.io/Octo/docs/IntermediateGuide.html
https://github.com/JohnEarnest/chip8Archive/blob/master/src/outlaw/outlaw.8o
https://github.com/JohnEarnest/chip8Archive/blob/master/src/outlaw/outlaw.8o

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

: target
0b00111100

0b01000010
0b10011001
0b10100101
0b10100101
0b10011001
0b01000010
0b00111100

##
Register Map - Critical for RL extraction
##

:alias crosshair_x v0 # Crosshair X position
:alias crosshair_y v1 # Crosshair Y position
:alias score_reg v2 # SCORE - RL agents read this!
:alias gameover_reg v3 # GAME OVER FLAG (0=playing, 1=over)
:alias target_x v4 # Target X position
:alias target_y v5 # Target Y position
:alias target_active v6 # Target active flag
:alias temp1 v7 # Temporary register
:alias temp2 v8 # Temporary register
:alias shot_active v9 # Shot in progress flag
:alias targets_hit va # Count of targets hit (max 10)
:alias key_reg vb # Key input register

:const MAX_TARGETS 10 # Game ends after 10 targets
:const TARGET_SIZE 8 # Target sprite size
:const CROSSHAIR_SIZE 8 # Crosshair sprite size
:const POINTS_PER_HIT 1 # Points awarded per target hit

##
Main Game Entry Point
##

: main
Initialize game state
score_reg := 0 # Score starts at 0
gameover_reg := 0 # Game is not over
targets_hit := 0 # No targets hit yet
target_active := 0 # No target active initially
shot_active := 0 # No shot in progress

Initial crosshair position (center)
crosshair_x := 28
crosshair_y := 12

clear

Draw initial UI
draw-crosshair

Main game loop
loop

Check if game should end
if targets_hit == MAX_TARGETS then jump game-over

Spawn new target if none active
if target_active == 0 then spawn-target

Handle player input
handle-input

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Check for hit if shot was fired
if shot_active == 1 then check-hit

Small delay for playability
temp1 := 1
delay := temp1
wait-delay

again

##
Game Over Handler
##

: game-over
gameover_reg := 1 # Set game over flag for RL agent

Flash screen to indicate game over
temp1 := 0
loop

clear
temp2 := 5
delay := temp2
wait-delay

draw-crosshair
if target_active == 1 then draw-target
temp2 := 5
delay := temp2
wait-delay

temp1 += 1
if temp1 != 3 then

again

Infinite loop - game is over
loop

RL agent should detect gameover_reg == 1
again

##
Input Handling
##

: handle-input
Save current position
temp1 := crosshair_x
temp2 := crosshair_y

Movement controls (WASD) - use consistent key codes
key_reg := 7 # A key (left)
if key_reg key then temp1 += -2

key_reg := 9 # D key (right)
if key_reg key then temp1 += 2

key_reg := 5 # W key (up)
if key_reg key then temp2 += -2

key_reg := 8 # S key (down)
if key_reg key then temp2 += 2

Boundary checking
if temp1 >= 254 then temp1 := 0 # Left boundary (wrapping check)
if temp1 >= 56 then temp1 := 56 # Right boundary

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

if temp2 >= 254 then temp2 := 0 # Top boundary (wrapping check)
if temp2 >= 24 then temp2 := 24 # Bottom boundary

Check if position changed
if temp1 != crosshair_x then jump update-crosshair
if temp2 != crosshair_y then jump update-crosshair

Check for shoot (E key)
key_reg := 6
if key_reg key then shot_active := 1

return

: update-crosshair
Erase old crosshair
i := crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

Update position
crosshair_x := temp1
crosshair_y := temp2

Draw new crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

Check shoot after movement
key_reg := 6
if key_reg key then shot_active := 1

;

##
Target Management
##

: spawn-target
Generate random position for target
target_x := random 0x37 # 0-55 range
target_y := random 0x17 # 0-23 range

Ensure minimum distance from edges
if target_x <= 2 then target_x := 3
if target_y <= 2 then target_y := 3

target_active := 1
draw-target

;

: draw-target
i := target
sprite target_x target_y TARGET_SIZE

;

: draw-crosshair
i := crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

;

##
Hit Detection
##

: check-hit
shot_active := 0 # Reset shot flag

Check if target is active

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

if target_active == 0 then return

Simple hit detection - check if crosshair center is near target
center

Calculate X distance
temp1 := crosshair_x
temp1 += 4 # Crosshair center
temp2 := target_x
temp2 += 4 # Target center

Check X proximity
if temp1 > temp2 then jump check-x-greater

crosshair is left of or at target
temp2 -= temp1
if temp2 > 6 then return # Too far
jump check-y-axis

: check-x-greater
crosshair is right of target
temp1 -= temp2
if temp1 > 6 then return # Too far

: check-y-axis
Calculate Y distance
temp1 := crosshair_y
temp1 += 4 # Crosshair center
temp2 := target_y
temp2 += 4 # Target center

Check Y proximity
if temp1 > temp2 then jump check-y-greater

crosshair is above or at target
temp2 -= temp1
if temp2 > 6 then return # Too far
jump register-hit

: check-y-greater
crosshair is below target
temp1 -= temp2
if temp1 > 6 then return # Too far

: register-hit
Hit confirmed!
Erase target
draw-target
target_active := 0

Update score (for RL agent)
score_reg += POINTS_PER_HIT
targets_hit += 1

Sound feedback
temp1 := 3
buzzer := temp1

;

##
Utility Functions
##

: wait-delay
loop

temp1 := delay

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

if temp1 != 0 then
again

;

F.2.2 LEVEL 2: TIME-LIMITED TARGETS

The second level introduces time pressure by making targets disappear after a fixed duration, requir-
ing faster decision-making from RL agents.

Listing 3: Level 2 Target Shooter - Time-limited targets
##
#
Target Shooter - RL Training Game
#
A deterministic shooting game designed for
reinforcement learning research.
#
Controls:
- WASD to move crosshair
- E to shoot
#
Score is stored in register v2 (score_reg)
Game over flag in register v3 (gameover_reg)
#
Game ends after 10 targets (hit or missed).
Targets disappear after ~3 seconds if not hit.
#
##

Sprite data
: crosshair

0b10000001
0b01011010
0b00100100
0b01011010
0b01011010
0b00100100
0b01011010
0b10000001

: target
0b00111100
0b01000010
0b10011001
0b10100101
0b10100101
0b10011001
0b01000010
0b00111100

##
Register Map - Critical for RL extraction
##

:alias crosshair_x v0 # Crosshair X position
:alias crosshair_y v1 # Crosshair Y position
:alias score_reg v2 # SCORE - RL agents read this!
:alias gameover_reg v3 # GAME OVER FLAG (0=playing, 1=over)
:alias target_x v4 # Target X position
:alias target_y v5 # Target Y position
:alias target_active v6 # Target active flag
:alias temp1 v7 # Temporary register

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

:alias temp2 v8 # Temporary register
:alias shot_active v9 # Shot in progress flag
:alias targets_total va # Total targets appeared (max 10)
:alias key_reg vb # Key input register
:alias target_timer vc # Timer for current target
:alias missed_targets vd # Count of missed targets

:const MAX_TARGETS 10 # Game ends after 10 targets total
:const TARGET_SIZE 8 # Target sprite size
:const CROSSHAIR_SIZE 8 # Crosshair sprite size
:const POINTS_PER_HIT 1 # Points awarded per target hit
:const TARGET_TIMEOUT 60 # Frames before target disappears (~3 sec at

20fps)

##
Main Game Entry Point
##

: main
Initialize game state
score_reg := 0 # Score starts at 0
gameover_reg := 0 # Game is not over
targets_total := 0 # No targets appeared yet
missed_targets := 0 # No missed targets yet
target_active := 0 # No target active initially
shot_active := 0 # No shot in progress
target_timer := 0 # Timer at 0

Initial crosshair position (center)
crosshair_x := 28
crosshair_y := 12

clear

Draw initial UI
draw-crosshair

Main game loop
loop

Check if game should end (10 total targets)
if targets_total == MAX_TARGETS then jump game-over

Spawn new target if none active
if target_active == 0 then spawn-target

Check target timeout
if target_active == 1 then check-target-timeout

Handle player input
handle-input

Check for hit if shot was fired
if shot_active == 1 then check-hit

Small delay for playability
temp1 := 1
delay := temp1
wait-delay

again

##
Target Timeout Check
##

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

: check-target-timeout
Decrement timer
target_timer += -1

Check if timer expired
if target_timer != 0 then return

Target timed out - count as miss
draw-target # Erase target
target_active := 0
missed_targets += 1

Brief sound to indicate miss
temp1 := 1
buzzer := temp1

;

##
Game Over Handler
##

: game-over
gameover_reg := 1 # Set game over flag for RL agent

Flash screen to indicate game over
temp1 := 0
loop

clear
temp2 := 5
delay := temp2
wait-delay

draw-crosshair
if target_active == 1 then draw-target
temp2 := 5
delay := temp2
wait-delay

temp1 += 1
if temp1 != 3 then

again

Infinite loop - game is over
loop

RL agent should detect gameover_reg == 1
again

##
Input Handling
##

: handle-input
Save current position
temp1 := crosshair_x
temp2 := crosshair_y

Movement controls (WASD) - use consistent key codes
key_reg := 7 # A key (left)
if key_reg key then temp1 += -2

key_reg := 9 # D key (right)
if key_reg key then temp1 += 2

key_reg := 5 # W key (up)
if key_reg key then temp2 += -2

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

key_reg := 8 # S key (down)
if key_reg key then temp2 += 2

Boundary checking
if temp1 >= 254 then temp1 := 0 # Left boundary (wrapping check)
if temp1 >= 56 then temp1 := 56 # Right boundary
if temp2 >= 254 then temp2 := 0 # Top boundary (wrapping check)
if temp2 >= 24 then temp2 := 24 # Bottom boundary

Check if position changed
if temp1 != crosshair_x then jump update-crosshair
if temp2 != crosshair_y then jump update-crosshair

Check for shoot (E key)
key_reg := 6
if key_reg key then shot_active := 1

return

: update-crosshair
Erase old crosshair
i := crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

Update position
crosshair_x := temp1
crosshair_y := temp2

Draw new crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

Check shoot after movement
key_reg := 6
if key_reg key then shot_active := 1

;

##
Target Management
##

: spawn-target
Generate random position for target
target_x := random 0x37 # 0-55 range
target_y := random 0x17 # 0-23 range

Ensure minimum distance from edges
if target_x <= 2 then target_x := 3
if target_y <= 2 then target_y := 3

target_active := 1
target_timer := TARGET_TIMEOUT # Set timeout timer
targets_total += 1 # Increment total targets count
draw-target

;

: draw-target
i := target
sprite target_x target_y TARGET_SIZE

;

: draw-crosshair
i := crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

;

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

##
Hit Detection
##

: check-hit
shot_active := 0 # Reset shot flag

Check if target is active
if target_active == 0 then return

Simple hit detection - check if crosshair center is near target
center

Calculate X distance
temp1 := crosshair_x
temp1 += 4 # Crosshair center
temp2 := target_x
temp2 += 4 # Target center

Check X proximity
if temp1 > temp2 then jump check-x-greater

crosshair is left of or at target
temp2 -= temp1
if temp2 > 6 then return # Too far
jump check-y-axis

: check-x-greater
crosshair is right of target
temp1 -= temp2
if temp1 > 6 then return # Too far

: check-y-axis
Calculate Y distance
temp1 := crosshair_y
temp1 += 4 # Crosshair center
temp2 := target_y
temp2 += 4 # Target center

Check Y proximity
if temp1 > temp2 then jump check-y-greater

crosshair is above or at target
temp2 -= temp1
if temp2 > 6 then return # Too far
jump register-hit

: check-y-greater
crosshair is below target
temp1 -= temp2
if temp1 > 6 then return # Too far

: register-hit
Hit confirmed!
Erase target
draw-target
target_active := 0
target_timer := 0 # Clear timer

Update score (for RL agent)
score_reg += POINTS_PER_HIT

Sound feedback
temp1 := 3
buzzer := temp1

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

;

##
Utility Functions
##

: wait-delay
loop

temp1 := delay
if temp1 != 0 then

again
;

F.2.3 LEVEL 3: MOVING TARGETS WITH TIME CONSTRAINTS

The most challenging level combines target movement with time limits, requiring predictive aiming
and rapid response times.

Listing 4: Level 3 Target Shooter - Moving targets with time constraints
##
#
Target Shooter Level 3 - RL Training Game
#
A deterministic shooting game designed for
reinforcement learning research.
#
Controls:
- WASD to move crosshair
- E to shoot
#
Score is stored in register v2 (score_reg)
Game over flag in register v3 (gameover_reg)
#
Features:
- Moving targets that bounce off walls
- Targets disappear after ~3 seconds if not hit
- Game ends after 10 targets (hit or missed)
#
##

Sprite data
: crosshair

0b10000001
0b01011010
0b00100100
0b01011010
0b01011010
0b00100100
0b01011010
0b10000001

: target
0b00111100
0b01000010
0b10011001
0b10100101
0b10100101
0b10011001
0b01000010
0b00111100

##

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Register Map - Critical for RL extraction
##

:alias crosshair_x v0 # Crosshair X position
:alias crosshair_y v1 # Crosshair Y position
:alias score_reg v2 # SCORE - RL agents read this!
:alias gameover_reg v3 # GAME OVER FLAG (0=playing, 1=over)
:alias target_x v4 # Target X position
:alias target_y v5 # Target Y position
:alias target_active v6 # Target active flag
:alias temp1 v7 # Temporary register
:alias temp2 v8 # Temporary register
:alias shot_active v9 # Shot in progress flag
:alias targets_total va # Total targets appeared (max 10)
:alias key_reg vb # Key input register
:alias target_timer vc # Timer for current target
:alias target_vx vd # Target X velocity
:alias target_vy ve # Target Y velocity

:const MAX_TARGETS 10 # Game ends after 10 targets total
:const TARGET_SIZE 8 # Target sprite size
:const CROSSHAIR_SIZE 8 # Crosshair sprite size
:const POINTS_PER_HIT 1 # Points awarded per target hit
:const TARGET_TIMEOUT 80 # Frames before target disappears (~4 sec with

movement)

##
Main Game Entry Point
##

: main
Initialize game state
score_reg := 0 # Score starts at 0
gameover_reg := 0 # Game is not over
targets_total := 0 # No targets appeared yet
target_active := 0 # No target active initially
shot_active := 0 # No shot in progress
target_timer := 0 # Timer at 0
target_vx := 0 # No initial velocity
target_vy := 0 # No initial velocity

Initial crosshair position (center)
crosshair_x := 28
crosshair_y := 12

clear

Draw initial UI
draw-crosshair

Main game loop
loop

Check if game should end (10 total targets)
if targets_total == MAX_TARGETS then jump game-over

Spawn new target if none active
if target_active == 0 then spawn-target

Update target position if active
if target_active == 1 then move-target

Check target timeout
if target_active == 1 then check-target-timeout

Handle player input

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

handle-input

Check for hit if shot was fired
if shot_active == 1 then check-hit

Small delay for playability
temp1 := 1
delay := temp1
wait-delay

again

##
Target Movement
##

: move-target
Erase target at current position
draw-target

Update X position
target_x += target_vx

Check X boundaries and bounce
if target_x >= 250 then jump bounce-left # Hit left edge
if target_x >= 56 then jump bounce-right # Hit right edge

: check-y-movement
Update Y position
target_y += target_vy

Check Y boundaries and bounce
if target_y >= 250 then jump bounce-top # Hit top edge
if target_y >= 24 then jump bounce-bottom # Hit bottom edge

: finish-move
Draw target at new position
draw-target
return

: bounce-left
target_x := 1
target_vx := 1 # Reverse to move right
jump check-y-movement

: bounce-right
target_x := 55
target_vx := 255 # -1 to move left
jump check-y-movement

: bounce-top
target_y := 1
target_vy := 1 # Reverse to move down
jump finish-move

: bounce-bottom
target_y := 23
target_vy := 255 # -1 to move up
jump finish-move

##
Target Timeout Check
##

: check-target-timeout

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Decrement timer
target_timer += -1

Check if timer expired
if target_timer != 0 then return

Target timed out - count as miss
draw-target # Erase target
target_active := 0

Brief sound to indicate miss
temp1 := 1
buzzer := temp1

;

##
Game Over Handler
##

: game-over
gameover_reg := 1 # Set game over flag for RL agent

Flash screen to indicate game over
temp1 := 0
loop

clear
temp2 := 5
delay := temp2
wait-delay

draw-crosshair
if target_active == 1 then draw-target
temp2 := 5
delay := temp2
wait-delay

temp1 += 1
if temp1 != 3 then

again

Infinite loop - game is over
loop

RL agent should detect gameover_reg == 1
again

##
Input Handling
##

: handle-input
Save current position
temp1 := crosshair_x
temp2 := crosshair_y

Movement controls (WASD) - use consistent key codes
key_reg := 7 # A key (left)
if key_reg key then temp1 += -2

key_reg := 9 # D key (right)
if key_reg key then temp1 += 2

key_reg := 5 # W key (up)
if key_reg key then temp2 += -2

key_reg := 8 # S key (down)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

if key_reg key then temp2 += 2

Boundary checking
if temp1 >= 254 then temp1 := 0 # Left boundary (wrapping check)
if temp1 >= 56 then temp1 := 56 # Right boundary
if temp2 >= 254 then temp2 := 0 # Top boundary (wrapping check)
if temp2 >= 24 then temp2 := 24 # Bottom boundary

Check if position changed
if temp1 != crosshair_x then jump update-crosshair
if temp2 != crosshair_y then jump update-crosshair

Check for shoot (E key)
key_reg := 6
if key_reg key then shot_active := 1

return

: update-crosshair
Erase old crosshair
i := crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

Update position
crosshair_x := temp1
crosshair_y := temp2

Draw new crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

Check shoot after movement
key_reg := 6
if key_reg key then shot_active := 1

;

##
Target Management
##

: spawn-target
Generate random position for target
target_x := random 0x37 # 0-55 range
target_y := random 0x17 # 0-23 range

Ensure minimum distance from edges
if target_x <= 2 then target_x := 3
if target_y <= 2 then target_y := 3

Generate random velocity (-1, 0, or 1 for each axis)
target_vx := random 0x03
if target_vx == 2 then target_vx := 255 # Convert 2 to -1

target_vy := random 0x03
if target_vy == 2 then target_vy := 255 # Convert 2 to -1

Ensure target is moving (not both velocities zero)
if target_vx == 0 then jump ensure-movement
jump finish-spawn

: ensure-movement
if target_vy == 0 then target_vy := 1

: finish-spawn
target_active := 1
target_timer := TARGET_TIMEOUT # Set timeout timer

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

targets_total += 1 # Increment total targets count
draw-target

;

: draw-target
i := target
sprite target_x target_y TARGET_SIZE

;

: draw-crosshair
i := crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

;

##
Hit Detection
##

: check-hit
shot_active := 0 # Reset shot flag

Check if target is active
if target_active == 0 then return

Simple hit detection - check if crosshair center is near target
center

Calculate X distance
temp1 := crosshair_x
temp1 += 4 # Crosshair center
temp2 := target_x
temp2 += 4 # Target center

Check X proximity
if temp1 > temp2 then jump check-x-greater

crosshair is left of or at target
temp2 -= temp1
if temp2 > 6 then return # Too far
jump check-y-axis

: check-x-greater
crosshair is right of target
temp1 -= temp2
if temp1 > 6 then return # Too far

: check-y-axis
Calculate Y distance
temp1 := crosshair_y
temp1 += 4 # Crosshair center
temp2 := target_y
temp2 += 4 # Target center

Check Y proximity
if temp1 > temp2 then jump check-y-greater

crosshair is above or at target
temp2 -= temp1
if temp2 > 6 then return # Too far
jump register-hit

: check-y-greater
crosshair is below target
temp1 -= temp2
if temp1 > 6 then return # Too far

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

: register-hit
Hit confirmed!
Erase target
draw-target
target_active := 0
target_timer := 0 # Clear timer

Update score (for RL agent)
score_reg += POINTS_PER_HIT

Sound feedback
temp1 := 3
buzzer := temp1

;

##
Utility Functions
##

: wait-delay
loop

temp1 := delay
if temp1 != 0 then

again
;

F.2.4 ENVIRONMENT INTEGRATION AND WRAPPER IMPLEMENTATION

Once the LLM generates the CHIP-8 assembly code for each difficulty level, the games require in-
tegration with OCTAX’s reinforcement learning interface. The environment wrapper extracts reward
signals and termination conditions from the consistent register mapping established during code
generation.

The Target Shooter implementation demonstrates the integration between LLM-generated content
and the OCTAX framework. Each level maintains identical register assignments to ensure com-
patibility across the difficulty progression, enabling curriculum learning experiments without code
modifications.

Listing 5: Target Shooter environment wrapper implementation
from octax import EmulatorState

def score_fn(state: EmulatorState) -> float:
"""
Extract score from register V[2]
Score increments by 1 for each successful hit
Range: 0-10 points
"""
return state.V[2]

def terminated_fn(state: EmulatorState) -> bool:
"""
Check game termination flag in register V[3]
Game ends after 10 total targets (hit or missed in levels 2-3)
"""
return state.V[3] == 1

CHIP-8 key mapping for controls
W=5 (up), A=7 (left), S=8 (down), D=9 (right), E=6 (shoot)
action_set = [5, 7, 8, 9, 6]

metadata = {
"title": "Target Shooter - LLM-Generated RL Environment",
"authors": ["Fully LLM-Generated Environment"],

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

"description": "AI-generated progressive difficulty environment",
"roms": {

"target_shooter_level1": {
"file": "target_shooter_level1.ch8",
"description": "Static targets - Basic aiming skills"

},
"target_shooter_level2": {

"file": "target_shooter_level2.ch8",
"description": "Time-limited static targets"

},
"target_shooter_level3": {

"file": "target_shooter_level3.ch8",
"description": "Moving time-limited targets"

}
}

}

The consistent register mapping across all three levels enables direct comparison of agent perfor-
mance and facilitates automated curriculum progression. Register V[2] consistently stores the score
for reward calculation, while V[3] serves as the binary termination flag. The five-action control
scheme (WASD movement plus shoot) provides sufficient complexity for interesting policies while
remaining tractable for systematic analysis.

37

	Introduction
	Related Work
	Octax: The accelerated CHIP-8 Platform
	Why CHIP-8 for RL research?
	How does Octax work?
	How to transform games into RL environments?
	Which games does Octax support?

	Experimental Evaluation
	How do RL agents learn in Octax?
	How does Octax scale with parallelization?
	How do LLMs assist environment creation?

	Conclusion
	Use of Large Language Models
	CHIP-8 Technical Specifications
	Platform Overview
	System Architecture
	Instruction Set Highlights
	Font System

	Game Environment Implementation Details
	Score Detection Methodology
	Reward Design
	Game List
	Long-horizon Planning & Spatial Reasoning
	Timing, Prediction & Reactive Control
	Resource Management & Tactical Decisions
	Exploration & Continuous Navigation
	Simple Reaction & Timing

	Hyperparameter Optimization Results
	Search Space
	Results Summary
	Analysis and Key Findings
	Final Configuration

	Evaluation Study on LLM-Generated Reward Functions
	Evaluation
	Discussion and Implications

	LLM-Assisted Environment Generation
	Prompt Engineering
	Generated Target Shooter Implementation
	Level 1: Static Targets
	Level 2: Time-Limited Targets
	Level 3: Moving Targets with Time Constraints
	Environment Integration and Wrapper Implementation

