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ABSTRACT

Reinforcement learning (RL) research requires diverse, challenging environments
that are both tractable and scalable. While modern video games may offer rich
dynamics, they are computationally expensive and poorly suited for large-scale
experimentation due to their CPU-bound execution. We introduce OCTAX, a
high-performance suite of classic arcade game environments implemented in JAX,
based on CHIP-8 emulation, a predecessor to Atari, which is widely adopted
as a benchmark in RL research. OCTAX provides the JAX community with a
long-awaited end-to-end GPU alternative to the Atari benchmark, offering image-
based environments, spanning puzzle, action, and strategy genres, all executable at
massive scale on modern GPUs. Our JAX-based implementation achieves orders-
of-magnitude speedups over traditional CPU emulators while maintaining perfect
fidelity to the original game mechanics. We demonstrate OCTAX’s capabilities by
training RL agents across multiple games, showing significant improvements in
training speed and scalability compared to existing solutions. The environment’s
modular design enables researchers to easily extend the suite with new games
or generate novel environments using large language models, making it an ideal
platform for large-scale RL experimentation.

1 INTRODUCTION

Modern reinforcement learning (RL) research (Sutton & Bartol 2018)) demands extensive experi-
mentation to achieve statistical validity, yet computational constraints severely limit experimental
scale. RL papers routinely report results with fewer than five random seeds due to prohibitive train-
ing costs (Henderson et al 2018} |Colas et al., [2018; |Agarwal et al., [2021; [Mathieu et al., 2023}
Gardner et al, 2025). While understandable from a practical standpoint, this undersampling un-
dermines statistical reliability and impedes algorithmic progress. Environment execution creates
this bottleneck: while deep learning has embraced end-to-end GPU acceleration, RL environments
remain predominantly CPU-bound. Originally designed under severe hardware constraints, classic
arcade games represent a solution for scalable RL experimentation. The Atari Learning Environment
(ALE) (Bellemare et al.l 2013)) has established itself as a standard RL benchmark, although existing
implementations remain fundamentally CPU-bound. As noted by |Obando-Ceron & Castro| (2020),
the Rainbow paper (Hessel et al., 2018) required 34,200 GPU hours (equivalent to 1,425 days) of
experiments, a computational cost that is prohibitively high for small research laboratories. In this
paper, we propose an alternative approach for training RL agents in environments with mechanisms
similar to ALE, with significantly reduced computational cost.

Contributions. We introduce OCTA a suite of arcade game environments implemented in JAX
(Bradbury et al.| 2018a) through CHIP-8 emulation. CHIP-8, a 1970s virtual machine specification
contemporary with early Atari systems, became the foundation for numerous classic games spanning
puzzle, action, and strategy genres. CHIP-8’s constraint-driven design creates games with similar
cognitive demands to Atari while enabling efficient vectorized emulation that scales to thousands
of parallel instances. The JAX ecosystem has rapidly emerged as a solution for scalability in RL
research but lacks native environments, particularly image-based ones. Our framework addresses

'The anonymized repository containing all source code, experiments, and data is available at: https:
//anonymous.4open.science/r/octax-C8E8/README .md
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Figure 1: Overview of CHIP-8 game environments implemented in OCTAX.

this gap by transforming classic games into fully vectorized, GPU-accelerated simulations. These
simulations run thousands of game instances in parallel while maintaining perfect fidelity to the orig-
inal mechanics. This approach dramatically reduces experiment times. Experiments that previously
required days or weeks can now be completed in hours. This efficiency makes comprehensive hy-
perparameter sweeps and ablation studies computationally feasible. The modular design facilitates
extension with new games or automated generation using large language models that can directly
output CHIP-8 assembly code. Figure [I] provides an overview of the integrated CHIP-8 games.

QOutline. First, we present the our end-to-end JAX implementation of classic arcade environments
through CHIP-8 emulation (Section[3). Second, we demonstrate diverse learning dynamics through
PPO evaluation across 16 games (Section {f.I). Third, we achieve 350,000 environment steps per
second (1.4 million frames per second) on consumer-grade hardware, substantially outperforming
CPU-based solutions (Section [4.2)). Fourth, we establish an LLM-assisted pipeline for automated
environment generation that creates meaningful difficulty gradients (Section [&.3).

2 RELATED WORK

Game environments have proven essential for RL research because they provide engaging, human-
relevant challenges with clear success metrics. The Arcade Learning Environment (ALE) Bellemare
et al.[(2013)) demonstrated this principle by establishing Atari 2600 games as the standard RL bench-
mark, enabling breakthrough algorithms like DQN (Mnih et al.| 2015)) and Rainbow (Hessel et al.,
2018)). The success of these classic arcade games stems from their constraint-driven design: simple
rules that yield complex behaviors, deterministic dynamics that enable reproducible experiments,
and visual complexity that tests spatial reasoning without overwhelming computational resources.

While algorithmic advances demand increasingly large-scale experiments with thousands of parallel
environments and extensive hyperparameter sweeps, traditional game environments remain CPU-
bound and poorly suited for parallel execution. This mismatch has driven a progression of solutions,
each addressing different aspects of the scalability problem.

Game-based RL environment platforms. Increasingly sophisticated gaming platforms have been
developed to test different dimensions of learning performance. NetHack Learning Environment
(Kiittler et al.l 2020) provides procedurally generated roguelike challenges that test long-term plan-
ning, while Crafter (Hafner, [2021) offers simplified Minecraft-like environments focused on re-
source management. These environments expand cognitive challenges beyond arcade games, but
their CPU-based implementations compound the scalability problem.

CPU high-performance solutions. Several projects have focused on optimizing CPU-based envi-
ronment execution. EnvPool (Weng et al.| 2022)) achieves substantial speed improvements through
highly optimized C++ implementation, demonstrating up to 1 million Atari frames per second on
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high-end hardware. PufferLib 2025) provides environments written entirely in C, achieving
millions of steps per second through over 20,000 lines of optimized code. While these approaches
improve CPU throughput, they retain fundamental limitations: costly CPU-GPU data transfers dur-
ing training and require C implementation in a Python-dominated field.

GPU-accelerated RL environments. GPU-accelerated solutions target the constraint more directly
by moving environment execution to accelerators. CUDA Learning Environment (CuLE)
2020) provides a pioneering CUDA port of ALE, achieving 40-190 million frames per hour
on single GPUs. Isaac Gym (Makoviychuk et al.l[2021)) demonstrates similar principles for robotics
tasks, achieving 2-3 orders of magnitude speedups over CPU approaches by running thousands of
environments simultaneously. These GPU approaches solve computational bottlenecks but intro-
duce NVIDIA hardware dependence and substantial per-environment engineering costs.

JAX-based environments. The adoption of JAX (Bradbury et al [2018b) has enabled natively
accelerated environments that combine portability across hardware with end-to-end GPU acceler-
ation. Brax (Freeman et al., [2021)) established viability through MuJoCo-like physics simulation,
while Gymnax (Lange} 2022) provides JAX implementations of classic control tasks and simplified

environments from BSuite (Osband et all, 2019) and MinAtar (Young & Tianl, 2019). Specialized
environments target specific research needs: XLand-MiniGrid (Nikulin et al., 2024)) and Navix (Pig-

natelli et al.| [2024) focus on gridworld navigation, Jumanji (Bonnet et al., [2023) spans domains

from simple games to NP-hard combinatorial problems, Pgx (Koyamada et al.,[2023)) provides clas-
sic board games, and PuzzleJAX (2025)) enables dynamic compilation of puzzle games.

Despite this coverage, a critical gap remains: classic arcade games. While MinAtar provides sim-
plified versions of Atari games, the full visual complexity and authentic game mechanics of classic
arcade games remain absent from the JAX ecosystem. OCTAX addresses this gap by providing the
first end-to-end JAX implementation of classic arcade games through CHIP-8 emulation, delivering
computational benefits while preserving the engaging gameplay mechanics that made arcade games
valuable for algorithmic development.

3 OCTAX: THE ACCELERATED CHIP-8 PLATFORM
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Figure 2: OCTAX architecture: ROM loading, CHIP-8 emulation pipeline, and RL environment in-
tegration. The system transforms game ROMs through fetch-decode-execute cycles into vectorized
JAX operations suitable for GPU acceleration.

This section presents our JAX implementation of CHIP-8 emulation. We detail the design deci-
sions that enable GPU acceleration while maintaining behavioral fidelity to original games, and ex-
plain how CHIP-8’s architecture provides an optimal foundation for scalable experimentation in RL.
Figure 2] summarizes this section.

3.1 WHY CHIP-8 FOR RL RESEARCH?

CHIP-8 represents a strategic choice for RL environment design. Created in the 1970s as a virtual
machine specification, CHIP-8 features a 64x32 monochrome display, 16 registers, 4KB memory,
and 35-instruction set. These constraints, originally imposed by early microcomputer limitations,
create several research advantages.
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The platform provides image-based environments comparable to Atari games while offering some
computational advantages. The 4KB memory footprint allows thousands of simultaneous game
instances without memory constraints. The simple instruction set reduces emulation overhead com-
pared to complex modern processors. The deterministic execution model ensures experimental re-
producibility across different hardware configurations.

The platform supports everything from precise action games requiring split-second timing to com-
plex puzzles demanding long-horizon planning. The 16-key input system provides sufficient com-
plexity for interesting control challenges while remaining tractable for systematic analysis. Most
importantly, CHIP-8 games are inherently modifiable and analyzable: their simple assembly code
can be automatically generated, modified, and assessed for difficulty, enabling novel research direc-
tions in environment design and curriculum learning. This combination of Atari-like visual com-
plexity with modern computational efficiency makes CHIP-8 well-suited for the JAX ecosystem,
where extensive parallelization can transform week-long experiments into hour-long runs.

3.2 How DOES OCTAX WORK?

OcTAX converts CHIP-8 ROM&E] into vectorized RL environments while maintaining compatibil-
ity with original games. The implementation leverages JAX’s functional programming model and
vectorization capabilities to enable GPU acceleration.

ROM loading and initialization. Game data is loaded from . ch8 files into the emulator’s 4KB
memory space starting at address 0x200, following the standard CHIP-8 program layout first in-
troduced in Weisbecker| (1978)). The system initializes with font data at address 0x50, sixteen
general-purpose registers (VO-VF), an index register (I), a program counter (PC), and the 64x32
monochrome display buffer.

Fetch-decode-execute cycle. The core emulation loop implements the classic processor cycle using
JAX primitives. The fetch () function retrieves 16-bit instructions from memory and advances
the program counter. The decode () function extracts instruction components through bitwise
operations, identifying opcodes, register indices, and immediate values. The execute () function
uses JAX’s lax . switch for GPU-compatible instruction dispatch to specialized handlers.

Vectorized instruction execution. Instruction handlers follow JAX’s functional programming
model, treating state as immutable and returning updated copies. ALU operations handle arithmetic
and bitwise logic with carry/borrow flag management. Control flow instructions implement jumps,
calls, and conditional operations using 1ax .cond. The display system uses vectorized operations
to render sprites across the entire framebuffer simultaneously.

Environment integration. The OctaxEnv wrapper transforms the emulator into a standard RL
interface. Each RL step executes multiple CHIP-8 instructions to maintain authentic game timing
relative to the original 700Hz instruction frequency. The default frame skip setting preserves realistic
game dynamics. Observations consist of the 64x32 display with 4-frame stacking, producing (4, 64,
32) boolean arrays. Actions map from discrete RL outputs to game-specific key subsets plus a no-
op option. The wrapper manages delay and sound timers at 60Hz and executes startup sequences to
bypass menu screens.

3.3 HOW TO TRANSFORM GAMES INTO RL ENVIRONMENTS?

Converting CHIP-8 games into RL environments requires extracting reward signals and termination
conditions from game-specific memory layouts and register usage patterns.

Score function design. Games store scores in different registers using various encoding schemes.
OCTAX provides game-specific score_ fn functions that extract scores from appropriate memory
locations. Brix stores its score in register V5, incrementing with each destroyed brick. Pong encodes
scores in BCD format within register V14, requiring score = (V[14] // 10) - (VI[14]
% 10) to compute player advantage. This flexibility allows researchers to experiment with alterna-
tive reward formulations based on different game state components.

>ROM stands for Read-Only Memory, a type of storage originally used in game cartridges to hold software
that cannot be modified by the user.
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Termination logic. Games signal completion through different register states that must be identi-
fied through analysis. Brix terminates when lives (V14) reach zero, while Tetris uses a dedicated
game-state register (V1) that equals 2 on game over. Some games require compound conditions:
Space Flight ends when either lives reach zero or a level completion counter exceeds a threshold,
implemented as terminated = (V[9] == 0) | (V[12] >= 0x3E).

Action space optimization. Most games use subsets of the 16-key hexadecimal keypad. OCTAX
supports custom action_set arrays that map RL action indices to relevant keys. Pong requires
only keys 1 and 4 for paddle movement, while Worm uses directional keys 2, 4, 6, 8. This reduces
action space size and accelerates learning by eliminating irrelevant inputs.

Initialization handling. Many games include menu screens that interfere with RL training. OCTAX
supports startup_instructions parameters that automatically execute instruction sequences
during environment reset, bypassing menus to begin gameplay immediately.

We address CHIP-8’s non-standardized scoring and termination by combining static ROM analysis
and dynamic memory monitoring during gameplay, as detailed in Appendix[C]

3.4 WHICH GAMES DOES OCTAX SUPPORT?

OCTAX provides a curated collection of classic CHIP-8 games across multiple genres and difficulty
levels. The current implementation includes 21 titles, with additional games planned for future
releases. All environments maintain full compatibility with both Gymnasium and Gymnax APIs.

Category Available Games Required Capabilities
Puzzle Tetris, Blinky, Worm Long-horizon planning, spatial reasoning
Action Brix, Pong, Squash, Vertical Brix, Wipe  Timing, prediction, reactive control
Off, Filter
Strategy Missile Command, Rocket, Submarine, Resource management, tactical decisions

Tank Battle, UFO

Exploration  Cavern (7 levels), Flight Runner, Space  Spatial exploration, continuous navigation
Flight (10 levels), Spacejam!

Shooter Airplane, Deep8, Shooting Stars Simple reaction, basic timing

Table 1: Currently implemented games in OCTAX.

The games (Figure [I)) vary across multiple dimensions of difficulty and cognitive demand. Tem-
poral complexity ranges from immediate reactions to long-term planning requirements. Spatial
complexity spans single-screen environments to multi-screen worlds requiring navigation. Reward
structures include both dense scoring mechanisms and sparse achievement-based systems. This sys-
tematic variation enables controlled studies of algorithmic performance across different challenge
types while maintaining a unified technical framework for fair comparison. A categorization of these
games is provided in Table[I] with more detailed descriptions available in Appendix [C.2]

4 EXPERIMENTAL EVALUATION

We evaluate OCTAX through RL training experiments across 16 diverse CHIP-8 games. Our goal is
to demonstrate that the environments exhibit varied difficulties and learning dynamics suitable for
RL research and benchmark the platform’s computational performance.

4.1 How DO RL AGENTS LEARN IN OCTAX?

We train Proximal Policy Optimization (PPO) (Schulman et al.| 2017)) agents across our game suite
due to its widespread adoption and proven scalability with parallel environments (Rudin et al.,[2022)).

Network architecture. Our PPO agen uses a convolutional neural network designed for Oc-
TAX’s (4, 64, 32) stacked observations. The feature extractor consists of three convolutional layers

Based on Rejax implementation (Liesen et al.l 2024).



Under review as a conference paper at ICLR 2026

airplane blinky brix deep
254 200 A /y\/w 20
10 4
0.0 - 150 A
T T T T T T 0+ T T 0+ T T
filter missile pong spacejam
100 4 40 A 5 | 7.5
07 5.0 1
—_ -5 4
3 04 . ; 204 . . ; | | 2543 . ;
= squash submarine tank tetris
n 04 40 A
c i
§ s 0.02 A
2 20 A
a4 50 |
=5 T T T T T T T T T 0.00 - T T T
ufo vertical_brix wipe_off worm
20 A 1A
100 - /_/ 40 /-M
10 .’\//WJA/.
50 i
! . . . . ! 201, . . 04 . .
0 2 4 0 2 4 0 2 4 0 2 4
le6 le6 le6 le6
Timesteps

Figure 3: PPO learning curves across 16 games: Interquartile Mean (IQM) returns using 10th-90th
percentile ranges over SM timesteps, with confidence intervals computed across 12 random seeds.

with 32, 64, and 64 filters respectively. These layers use kernel sizes of (8,4), 4, and 3 with cor-
responding strides of (4,2), 2, and 1. Extracted features are flattened and fed to separate actor and
critic heads, each containing a single 256-unit hidden layer with ReL.U activation throughout.

Training configuration. We combine grid search optimization (detailed in Appendix [4)) on Pong
with CleanRL’s standard Atari PPO hyperparameters (Huang et al.|[2022). This yields GAE lambda
of 0.95, clipping epsilon of 0.2, value function coefficient of 0.5, and entropy coefficient of 0.01.
Each experiment uses 512 parallel environments with 32-step rollouts, 4 training epochs per update,
and 32 minibatches for gradient computation. We apply the Adam optimizer (Kingma & Bal 2014)
with learning rate 5 x 10~* and gradient clipping for stable training across 5 million timesteps per
environment.

Experimental setup. We conduct 12 independent training runs per game using different random
seeds. All experiments run on a single NVIDIA A100 GPU with 24 concurrent training sessions.
Agent performance is assessed every 131,072 timesteps on 128 parallel environments.

Results analysis. The training curves in Figure[3|reveal distinct learning profiles across games. We
observe three main patterns that reflect different cognitive demands. Rapid plateau games (Airplane,
Brix, Deep, Filter, Blinky) show quick initial learning followed by stable performance, suggesting
clear reward signals. Gradual improvement games (Submarine, Tank, UFO) exhibit sustained learn-
ing throughout training, indicating either sparser reward structures or more complex strategic re-
quirements. Limited performance games, like Tetris, exhibit significant variance with little absolute
progress, making them difficult for standard policy gradient methods. Similarly, in Worm (a Snake
clone), agents often manage to eat only a single apple before dying.

These learning profiles support the cognitive diversity of CHIP-8 environments, demonstrating that
different games test varied aspects of learning and control. Individual training runs averaged 65 min-
utes each, with 24 experiments running concurrently, achieving approximately 30,800 environment
steps per second across all parallel sessions.
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4.2 HOW DOES OCTAX SCALE WITH PARALLELIZATION?
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Figure 4: Performance scaling of OCTAX and EnvPool across parallelization levels. The solid purple
line is the number of steps per second (higher is better), and the dashed green line is the total
execution time in seconds (lower is better).

Experimental setup. We measure environment throughput across different parallelization lev-
els to quantify OCTAX’s computational advantages. This experiment isolates pure computational
benefits by fixing the game (Pong) and agent behavior (constant action) while varying parallel en-
vironment instances. Since all environments execute identical CHIP-8 computational cycles, these
performance measurements apply uniformly across the entire game suite. To better interpret our
results, we compare against EnvPool because it is widely adopted in RL research, using ALE Pong
to assess CPU vs. GPU-based environment scalability.

Configuration. We benchmark on a consumer-grade workstation with an RTX 3090 (24GB
VRAM), 32GB RAM, and an Intel i7 processor (20 cores). We measure execution time for 100-
step rollouts across varying parallel environment counts, with 50 independent measurements per
configuration. The primary metric is environment steps per second, calculated as (number of en-
vironments x 100 steps) divided by execution time, where each step represents 4 frames due to
OcCTAX’s default frame skip setting.

Performance results. Figure 4] demonstrates near-linear scaling up to 350,000 steps (or 1,4M
frames) per second with 8,192 parallel environments before hitting VRAM limitations. EnvPool
running ALE Pong with all available CPU cores shows reduced scaling, plateauing around 25,000
steps per second due to CPU saturation. OCTAX achieves a 14x improvement in computational
efficiency at high parallelization levels, reducing the computational cost of large-scale RL exper-
iments. We also measured GPU memory usage across different environment counts, finding that
execution memory scales linearly with the number of parallel environments with our benchmark
script, consuming approximately 2 MB of GPU memory per environment

4.3 How DO LLMS ASSIST ENVIRONMENT CREATION?

Large language models (LLMs) have demonstrated a strong capability in code generation across
diverse programming languages, enabling the automated creation of environments in RL research.
Here we explore OCTAX’s capacity to accelerate research by leveraging LLMs to generate novel
tasks, extending beyond manually designed game suites toward automated environment synthesis,
as explored in |Faldor et al.| (2024)).

Context. During OCTAX’s development, we encountered several games where reward and ter-
mination logic proved difficult to extract through manual analysis of game mechanics. In these
cases, we decompiled ROMs to obtain CHIP-8 assembly code and successfully employed LLMs
to generate appropriate score_fn and terminated_fn functions by analyzing the assembly
instructions. This process revealed LLMs’ capability to understand low-level game logic and trans-
late it into RL-compatible reward structures. This success motivated us to investigate the reverse
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pipeline: using LLMs to generate complete CHIP-8 games from high-level descriptions, then lever-
aging OCTAX’s scalable simulation to evaluate these procedurally created environments.

Automated environment generation pipeline. Our pipeline consists of

seven replicable steps for automatic CHIP-8 game generation. In Step °

1, we construct a corpus of CHIP-8 tutorials, documentation, and pro-

gramming examples, ensuring the LLM understands the architecture’s @@
instruction set, memory layout, and common coding patterns. In Step i

2, we embed this corpus into a prompt (detailed in Appendix that
guides the LLM to produce syntactically correct CHIP-8 programs from
high-level instructions. In Step 3, we provide a description of the game @@
with desired mechanics, objectives, and constraints. In Step 4, the LLM
generates the initial CHIP-8 code based on the provided description. In
Step 5, an automated feedback loop between the LLM and a CHIP-8
compiler iteratively refines the code based on compilation errors until
successful. In Step 6, Python wrapper functions for score_fn and
terminated_fn are automatically generated, translating CHIP-8 reg-
isters into RL-compatible reward and termination signals. Finally, in
Step 7, the game description is augmented to increase difficulty or in-
troduce new challenges. Both the new description and the previously
generated game are added to the LLM’s context before next iteration.

‘ 3. Define Game

4. Generate Code

Retry on Error

5. Check & Refine

Repeat

Figure [5| summarizes the automated environment generation pipeline. Success
Target Shooter case study. We validated this pipeline using Claude 6. Generate Score &
Opus 4.1, known for its proficiency in programming, with the following Terminate funcs

description: "Target Shooter — Targets appear randomly on the screen,
and the player moves a crosshair to shoot them. Score increases per
hit, and the game ends after a fixed number of targets." The system suc- 7. Augment Difficulty
cessfully generated three progressive difficulty levels: static targets for
basic aiming skills, time-limited targets introducing decision pressure,
and moving targets with time constraints requiring predictive aiming.
Each level maintains consistent register mappings for score and termina-
tion, simplifying OCTAX compatibility. Figure [6] shows how the LLM-
generated environment visual appearance. All the code generated by the
LLM is given in[E.2]

RL experiments. Using identical PPO configurations from Section we trained agents on the
three generated difficulty levels over 5M timesteps. Figure[7] demonstrates clear performance strat-
ification across difficulty levels: Level 1 agents achieved optimal returns of 10.0 with rapid con-
vergence by 1M timesteps, Level 2 agents plateaued at 9.0 returns with moderate learning speed,
while Level 3 agents reached 8.0 returns with the slowest progression. The inverse relationship
between difficulty level and both final performance and sample efficiency indicates that our LLM-
generated environments successfully create a meaningful difficulty gradient. This proof-of-concept
demonstrates the feasibility of automated environment generation for RL research via OCTAX, with
promising applications in curriculum learning, open-endedness, and continual learning scenarios.

Figure 5: Environment
generation pipeline.
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Figure 6: Rendering of the Target Shooter
game showing the player (left, circular ob- Figure 7: PPO training performance on gen-
ject) and target (right, cross-shaped object). erated environments with varying difficulty.
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5 CONCLUSION

We introduced OCTAX, a JAX-based CHIP-8 emulation platform that provides GPU-accelerated ar-
cade game environments for reinforcement learning research. Our implementation achieves signifi-
cant performance improvements over CPU-based alternatives, enabling experiments with thousands
of parallel environments while maintaining perfect behavioral fidelity to original games. Through
PPO evaluation across 16 diverse games, we demonstrated varied learning dynamics that highlight
the cognitive diversity within classic arcade environments. The platform’s modular design enables
both manual game integration and automated environment generation using large language models,
providing researchers with flexible experimental design options.

Societal and environmental impact. OCTAX enables more rigorous evaluation with larger sam-
ple sizes, addressing reproducibility concerns that affect institutions with limited computational
resources. This implementation can reduce energy consumption compared to resource-intensive
benchmarks such as ALE: experiments that once required top-tier clusters can now run efficiently
on a single GPU, potentially saving significant compute time and resources.

Limitations. The GPU-based architecture faces performance constraints due to CHIP-8’s variable
instruction execution complexity. JAX synchronization across parallel environments means each
step’s execution time depends on the slowest instruction among CHIP-8’s 35 operations, typically
display rendering or complex ALU operations. The absence of established maximum scores across
our game suite prevents the assessment of whether agents approach theoretical performance limits,
limiting evaluation of algorithmic performance ceilings.

Future work. OCTAX can expand through community contributions, with hundreds of compati-
ble ROMs available online. The LLM-assisted environment generation pipeline enables curriculum
learning and open-ended research through procedurally generated games that provide task diversity.
We plan to investigate emulator optimizations including instruction-level parallelization strategies
and adaptive batching to address synchronization bottlenecks from variable execution times. We
also aim to extend platform support to Super-CHIP8 and XO-CHIP variants: Super-CHIP8 offers
higher resolution displays (128x64) and extended instruction sets originally developed for HP48
calculators, while XO-CHIP provides color graphics, improved audio, and expanded memory while
maintaining backward compatibility. These extensions would enable OCTAX to support more so-
phisticated games and visual complexity while preserving the computational efficiency advantages
of the JAX-native architecture. Many CHIP-8 games feature multi-agent or multi-player mechanics,
which we plan to support in future platform releases. The platform’s high-throughput capabilities
also position it well for offline RL research, enabling the efficient creation of large-scale datasets
and the comprehensive evaluation of offline algorithms across diverse game environments.

REPRODUCIBILITY STATEMENT

We provide complete resources to ensure reproducibility of our results. The OCTAX source code,
including all 21 game environment implementations, JAX-based CHIP-8 emulator, and training
scripts, is available as supplementary material. Our experimental setup uses standard PPO hy-
perparameters detailed in Section [4.1] with hardware specifications and performance benchmark-
ing configurations provided in Section All training experiments use identical network ar-
chitectures and hyperparameters across games, enabling direct replication of our learning curves
in Figure [3] For the LLM-assisted environment generation pipeline in Section [4.3] we include
the prompt templates and generated CHIP-8 assembly code in Appendix [E} The modular design
of OCTAX allows researchers to extend our game suite using the technical specifications in Sec-
tion[3] The anonymized repository containing all source code, experiments, and data is available at:
https://anonymous.4open.science/r/octax—C8E8/README .md
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A USE OF LARGE LANGUAGE MODELS

We used Large Language Models in three capacities during this research. First, Claude Opus 4.1
serves as a core research component in Section[4.3] where we demonstrate automated CHIP-8 game
generation from high-level descriptions. This represents a novel research contribution, with all gen-
erated code validated through compilation and RL experiments. Second, we employed Claude Son-
net 4 for writing assistance, including text refinement, rephrasing technical concepts, and improving
academic tone. Third, LLMs generated code documentation, docstrings, and tutorial content. All
research ideas, experimental design, and scientific claims originate from the authors. We did not
use LLMs for ideation, hypothesis formation, or result interpretation. We manually reviewed and
validated all LLM-assisted content for accuracy and take full responsibility for all presented content.

B CHIP-8 TECHNICAL SPECIFICATIONS

B.1 PLATFORM OVERVIEW

CHIP-8 was created by Joseph Weisbecker at RCA in the mid-1970s as a virtual machine for early
microcomputers. The platform established one of the first successful portable gaming ecosystems
by providing a hardware abstraction layer that enabled games to run across different systems.

B.2 SYSTEM ARCHITECTURE
The CHIP-8 architecture consists of:

* Memory: 4KB total, with programs loaded at address 0x200

* Registers: 16 8-bit registers (VO-VF), with VF serving as a flag register
* Display: 64x32 pixel monochrome screen with XOR-based rendering

* Input: 16-key hexadecimal keypad (0-9, A-F)

* Timers: 60Hz delay timer and sound timer

* Audio: Single-tone buzzer

B.3 INSTRUCTION SET HIGHLIGHTS
CHIP-8’s 35-instruction set includes specialized gaming primitives:

 Sprite Drawing (DXYN): XOR-based rendering enabling collision detection
* Key Input (EX9E, EXA1): Skip instructions based on key state

* BCD Conversion (FX33): Convert register values to decimal display

* Memory Operations: Bulk register loading/storing (FX55, FX65)

The XOR-based sprite system is particularly elegant: drawing the same sprite twice erases it, en-
abling simple animation and automatic collision detection when pixels turn off.

B.4 FONT SYSTEM
CHIP-8 includes built-in 4x5 pixel font data for hexadecimal digits (0-F), stored at addresses 0x050-

0x09F. Games reference these fonts for score and text display by setting the index register to the
appropriate font location.

C GAME ENVIRONMENT IMPLEMENTATION DETAILS

C.1 SCORE DETECTION METHODOLOGY

CHIP-8 games store scoring information in arbitrary memory locations using game-specific formats.
Our automated detection operates in two phases:
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Static Analysis: We analyze ROM structure for common programming patterns, particularly binary-
coded decimal (BCD) operations (FX33 instruction) that suggest numeric display routines.

Dynamic Monitoring: During human gameplay sessions, we monitor memory changes to correlate
locations with scoring events. Register trend analysis identifies increasing values (likely scores)
versus decreasing values (likely lives/health).

C.2 GAME LisT
C.2.1 LONG-HORIZON PLANNING & SPATIAL REASONING

Requires strategic thinking, spatial awareness, and multi-step planning

* tetris — Tetris by Fran Dachille (1991): Classic Tetris with piece rotation, movement, and
dropping

* blinky — Blinky by Hans Christian Egeberg (1991): Pac-Man clone with 2 lives, maze with
energy pills and 2 ghosts

* worm — SuperWorm V4 by RB-Revival Studios (2007): Snake-like game with enhanced
controls and speed fixes

C.2.2 TIMING, PREDICTION & REACTIVE CONTROL

Requires precise timing, trajectory prediction, and fast reactive responses

¢ brix — Brix by Andreas Gustafsson (1990): Breakout clone with paddle controlling the ball
to destroy bricks, 5 lives

» pong — Pong: Single player pong game with paddle control
* squash — Squash by David Winter (1997): Bounce ball around squash court with paddle

* vertical_brix — Vertical Brix by Paul Robson (1996): Breakout variant with vertical brick
layout and paddle movement

» wipe_off — Wipe Off by Joseph Weisbecker: Move paddle to wipe out spots, 1 point per
spot, 20 balls

« filter — Filter: Catch drops from pipe with paddle

C.2.3 RESOURCE MANAGEMENT & TACTICAL DECISIONS

Requires managing limited resources and making strategic tactical choices

* missile — Missile Command by David Winter (1996): Shoot 8 targets using key 8, earn 5
points per target, 12 missiles total

* rocket — Rocket by Joseph Weisbecker (1978): Launch rockets to hit moving UFO across
top of screen, 9 rockets total

* submarine — Submarine by Carmelo Cortez (1978): Fire depth charges at submarines, 15
points for small, 5 for large subs

 tank — Tank Battle: Tank with 25 bombs to hit mobile target, lose 5 bombs if tank hits
target

 ufo — UFO by Lutz V (1992): Stationary launcher shoots in 3 directions at flying objects,
15 missiles

C.2.4 EXPLORATION & CONTINUOUS NAVIGATION
Requires spatial exploration, obstacle avoidance, and continuous movement control

 cavern — Cavern by Matthew Mikolay (2014): Navigate cave without hitting walls, modi-
fied for leftward exploration

¢ flight_runner — Flight Runner by TodPunk (2014): Simple flight navigation game
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* space_flight — Space Flight by Unknown (19xx): Fly through asteroid field using ship
navigation controls

* spacejam — Spacejam! by William Donnelly (2015): Enhanced ship tunnel navigation
game

C.2.5 SIMPLE REACTION & TIMING

Requires basic reaction time and simple decision making

* airplane — Airplane: Bombing game where you drop bombs by pressing key 8

* deep — Deep8 by John Earnest (2014): Move boat left/right, drop and detonate bombs to
destroy incoming squid

* shooting_stars — Shooting Stars by Philip Baltzer (1978): Classic shooting game

D HYPERPARAMETER OPTIMIZATION RESULTS

We conducted a comprehensive grid search on the Pong environment to identify optimal PPO hyper-
parameters before evaluating across the full game suite. The search explored four key dimensions:
number of parallel environments, rollout length, minibatch size, and learning rate. All experiments
used 4 epochs per update, GAE lambda of 0.95, and gradient clipping at 0.5.

D.1 SEARCH SPACE
The hyperparameter search explored the following ranges:

* Environments: {128, 256,512,1024}
* Rollout steps: {32,64,128,512}
* Minibatches: {4, 8, 16,32}
» Learning rate: {2.5 x 1074 5 x 1074,1 x 1073}
Each configuration was trained for 1M timesteps with evaluation every 65,536 steps. Final eval-

uation scores represent the last recorded performance, where less negative values indicate better
performance.

D.2 RESULTS SUMMARY

Table [2] presents the key configurations and their final evaluation scores. Higher scores indicate
better performance (scores are negative, with values closer to zero being better).

D.3 ANALYSIS AND KEY FINDINGS

Learning rate impact. Higher learning rates significantly improved performance, with 5 x 10~*
and 1 x 103 substantially outperforming 2.5 x 10~%. The top three configurations all used learning
rates above the commonly used 2.5 x 1074,

Environment scaling. 512 parallel environments provided the optimal balance between computa-
tional efficiency and sample diversity. Configurations with 1024 environments showed diminishing
returns, possibly due to computational overhead or reduced gradient update frequency.

Rollout length. Shorter rollouts (32 steps) consistently outperformed longer ones, indicating more
frequent policy updates may be beneficial for this environment.

Minibatch size. Larger minibatch sizes (16-32) generally improved performance by providing more
stable gradient estimates, though the effect was less pronounced than learning rate changes.
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Table 2: Hyperparameter search results on Pong environment. Configurations sorted by final evalu-
ation score.

Envs Steps Minibatches LR Score

512 32 32 0.0005  -2.34
512 32 16 0.001 -2.48
512 32 32 0.001 -2.69
128 128 16 0.00025 -2.95
128 64 8 0.00025  -3.19
512 32 16 0.00025 -3.20
256 64 16 0.00025 -3.38
128 32 4 0.00025 -3.44
128 64 16 0.00025 -3.53
512 32 16 0.0005  -3.73
256 32 4 0.00025 -3.78
128 128 8 0.00025 -3.91
256 128 32 0.00025 -4.03
512 64 16 0.00025  -4.17
1024 32 32 0.00025 -4.34
1024 32 16 0.00025 -4.44
256 128 16 0.00025 -4.66
1024 64 32 0.00025 -4.96

D.4 FINAL CONFIGURATION
Based on these results, we selected the following hyperparameters for all subsequent experiments:

* Parallel environments: 512

* Rollout steps: 32

* Training epochs: 4

¢ Minibatches: 32

s Learning rate: 5 x 10™4

* GAE lambda: 0.95

* Clip epsilon: 0.2

* Value function coefficient: 0.5

* Entropy coefficient: 0.01

E LLM-ASSISTED ENVIRONMENT GENERATION

This appendix details the automated environment generation pipeline using large language models
(LLMs) to create novel CHIP-8 games for reinforcement learning research. We demonstrate the
complete process from prompt engineering to code generation across three difficulty levels of a
Target Shooter game.

E.1 PROMPT ENGINEERING

Our LLM generation pipeline relies on carefully crafted prompts that provide comprehensive CHIP-
8 programming context and specific game requirements. The core prompt structure includes CHIP-8
architectural constraints, Octo assembly language syntax, and reinforcement learning compatibility
requirements.

Listing 1: LLM prompt template for CHIP-8 game generation

You are a xxprofessional CHIP-8 (classic version) game developerxx.

Your task is to *xdesign and implement new CHIP-8 games in Octo assembly
language**. I will provide you with tutorials and references for Octo
assembly. You must be rigorous and ensure that your code is *x*
syntactically correct, runnable, and follows CHIP-8 conventionsxx.
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<documentation></documentation>
<tutoriall></tutoriall>
<tutorial2></tutorial2>
<example></example>

The goal is to create a xxgame suitable for reinforcement learning (RL)
research**, which means:

* The xxscorex** must be stored in a clear and consistent register or
memory location.

* The xxtermination conditionxx (game over) must also be easily
extractable (e.g., through a specific flag or register value).

* The game should have x+deterministic rulesxx and be lightweight enough
for training agents.

Here is the description of the game you must implement:

<description>{{description}}</description>

The prompt incorporates several key components:

* Role specification: Establishes the LLM as a professional CHIP-8 developer

* Technical constraints: Emphasizes syntactic correctness and CHIP-8 compliance

* RL compatibility: Specifies requirements for score tracking and termination detection
* Reference material: Includes comprehensive CHIP-8 documentation and examples

* Game description: Placeholder for specific game mechanics and objectives

The prompt template includes placeholder tags that are populated with comprehensive CHIP-8
resources: <documentation> contains the official Octo Manual (https://johnearnest.
github.io/Octo/docs/Manual .html), <tutoriall> includes the Beginner’s
Guide (https://johnearnest.github.io/Octo/docs/BeginnersGuide.html),
<tutorial2> incorporates the Intermediate Guide (https://johnearnest.github.
io/Octo/docs/IntermediateGuide.html), and <example> provides a complete
game implementation (https://github.com/JohnEarnest/chip8Archive/blob/
master/src/outlaw/outlaw. 80) to demonstrate best practices and coding patterns.

E.2 GENERATED TARGET SHOOTER IMPLEMENTATION
Using the prompt template, we generated three progressive difficulty levels of a Target Shooter

game. Each level maintains consistent register mappings for score and termination while introducing
increasing complexity in target behavior and timing constraints.

E.2.1 LEVEL 1: STATIC TARGETS

The first difficulty level features stationary targets that appear at random locations, focusing on basic
aiming and shooting mechanics.

Listing 2: Level 1 Target Shooter - Static targets

FHAFHH A AR AR
#

Target Shooter - RL Training Game

#

#

# A deterministic shooting game designed for
# reinforcement learning research.
#

#

#

Controls:
- WASD to move crosshair
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- E to shoot

Score is stored in register v2 (score_reg)

Game ends after hitting 10 targets.

#
#
#
# Game over flag in register v3 (gameover_req)
#
#
#
#

FHEFAA A

# Sprite data
crosshair

0p10000001
0b01011010
0p00100100
0pb01011010
0p01011010
0p00100100
0p01011010
0b10000001

target
0b00111100

0b01000010
0p10011001
0b10100101
0p10100101
0b10011001
0p01000010
0pb00111100

SRR R R R i i i
# Register Map - Critical for RL extraction
SRR R R i i i i

ralias
ralias
ralias
ralias
ralias
ralias
ralias
ralias
ralias
ralias
ralias
ralias

:const
:const
:const
:const

crosshair_x
crosshair_y
score_reg
gameover_reg
target_x
target_y

target_active

templ

temp2
shot_active
targets_hit
key_reg

MAX_TARGETS 10

TARGET_SIZE

8

v0
vl
v2
v3
v4
v5
v6
v7
v38
v9
va
vb

CROSSHAIR_SIZE 8
POINTS_PER_HIT 1

Crosshair X position
Crosshair Y position
SCORE - RL agents read this!

Target X position

Target Y position

Target active flag

Temporary register

Temporary register

Shot in progress flag

Count of targets hit (max 10)
Key input register

S oS S S S o 3 3 e e S e

Game ends after 10 targets
Target sprite size

Crosshair sprite size

Points awarded per target hit

#
#
#
#

S i
# Main Game Entry Point
S

main

# Initialize game state

score_reg 1=
gameover_reg :=

targets_hit
target_active

[oNeoNoNeNe]

shot_active =

B

Score starts at O

Game 1is not over

No targets hit yet

No target active initially
No shot in progress

17
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# Initial crosshair position (center)

crosshair_x := 28
crosshair_y := 12
clear

# Draw initial UI
draw-crosshair

# Main game loop

loop
# Check if game should end
if targets_hit == MAX_TARGETS then jump game-over

# Spawn new target if none active
if target_active == 0 then spawn-target

# Handle player input
handle-input

# Check for hit if shot was fired
if shot_active == 1 then check-hit

# Small delay for playability

templ := 1

delay := templ

wait-delay
again

FH AR AR AR AR AR AR AR RS
# Game Over Handler
FHE AR AR AR AR A AR AR AR AR S

game-over
gameover_reg := 1 # Set game over flag for RL agent

# Flash screen to indicate game over

templ := 0

loop
clear
temp2 := 5
delay := temp2

wait-delay

draw-crosshair

if target_active == 1 then draw-target
temp2 := 5
delay := temp2

wait-delay

templ += 1
if templ != 3 then
again
# Infinite loop - game is over
loop
# RL agent should detect gameover_reg ==
again

FHEFFE A R R
# Input Handling
FHEHHE A A R R

handle-input
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# Save current position

templ := crosshair_x

temp2 := crosshair_y

# Movement controls (WASD) - use consistent key codes
key_reg := 7 # A key (left)

if key_reg key then templ += -2

key_reg := 9 # D key (right)
if key_reg key then templ += 2

key_reg := 5 # W key (up)
if key_reg key then temp2 += -2

key_reg := 8 # S key (down)
if key_reg key then temp2 += 2

# Boundary checking

if templ >= 254 then templ := 0 # Left boundary (wrapping check)
if templ >= 56 then templ := 56 # Right boundary

if temp2 >= 254 then temp2 := 0 # Top boundary (wrapping check)
if temp2 >= 24 then temp2 := 24 # Bottom boundary

# Check if position changed
if templ != crosshair_x then jump update-crosshair
if temp2 != crosshair_y then jump update-crosshair

# Check for shoot (E key)

key_reg := 6
if key_reg key then shot_active := 1
return

update-crosshair

# Erase old crosshair

i := crosshair

sprite crosshair_x crosshair_y CROSSHAIR_SIZE

# Update position
crosshair_x := templ
crosshair_y := temp2

# Draw new crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

# Check shoot after movement
key_reg := 6
if key_reg key then shot_active := 1

7

FHEFE A AR R R AR R R AR R R A
# Target Management

FHEHFE AR R R

spawn-target

# Generate random position for target
target_x := random 0x37 # 0-55 range
target_y := random 0x17 # 0-23 range

# Ensure minimum distance from edges
if target_x <= 2 then target_x := 3
if target_y <= 2 then target_y := 3

1

target_active
draw-target
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draw-target
i := target
sprite target_x target_y TARGET_SIZE

draw—-crosshair
i := crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

7

EEs s EEEEESEEEE T SES T EEE L]
# Hit Detection
FHAFHHHHH AR AR A A A AR AR AR A AR AR A AR H SRS 4 H

check-hit
shot_active := 0 # Reset shot flag

# Check if target is active
if target_active == 0 then return

# Simple hit detection - check if crosshair center is near target
center

# Calculate X distance

templ := crosshair_x

templ += 4 # Crosshair center

temp2 := target_x

temp2 += 4 # Target center

# Check X proximity
if templ > temp2 then jump check-x-greater

# crosshair is left of or at target
temp2 -= templ

if temp2 > 6 then return # Too far
jump check-y-axis

check-x—greater

# crosshair is right of target
templ -= temp2

if templ > 6 then return # Too far

check-y-axis
# Calculate Y distance

templ := crosshair_y
templ += 4 # Crosshair center
temp2 := target_y

temp2 += 4 # Target center

# Check Y proximity
if templ > temp2 then jump check-y-greater

# crosshair is above or at target
temp2 -= templ

if temp2 > 6 then return # Too far
jump register-hit

check-y—-greater

# crosshair is below target

templ —-= temp2

if templ > 6 then return # Too far

register-hit
# Hit confirmed!
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# Erase target
draw-target
target_active := 0

# Update score (for RL agent)
score_reqg += POINTS_PER_HIT
targets_hit += 1

# Sound feedback
templ := 3
buzzer := templ

’

B i i i
# Utility Functions
B

: wait-delay

loop

templ := delay

if templ != 0 then
again

E.2.2 LEVEL 2: TIME-LIMITED TARGETS

The second level introduces time pressure by making targets disappear after a fixed duration, requir-
ing faster decision-making from RL agents.

Listing 3: Level 2 Target Shooter - Time-limited targets

FHEHE A H A AR
Target Shooter - RL Training Game

A deterministic shooting game designed for
reinforcement learning research.

#

#

#

#

#

#

# Controls:
# — WASD to move crosshair

# - E to shoot

#

# Score is stored in register v2 (score_regq)
# Game over flag in register v3 (gameover_reg)
#
#
#
#
#

Game ends after 10 targets (hit or missed).
Targets disappear after ~3 seconds if not hit.

FREFEFE A R

# Sprite data
crosshair
0b10000001
0b01011010
0b00100100
0b01011010
0b01011010
0b00100100
0b01011010
0b10000001

target

0b00111100
0p01000010
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0p10011001
0pb10100101
0p10100101
0pb10011001
0b01000010
0pb00111100

S i
# Register Map - Critical for RL extraction
FHEHE A H AR

talias crosshair_x v0 # Crosshair X position

:alias crosshair_y vl # Crosshair Y position

ralias score_reg v2 # SCORE - RL agents read this!
ralias gameover_reg v3 # GAME OVER FLAG (0=playing, l=over)
ralias target_x v4 # Target X position

ralias target_y v5 # Target Y position

ralias target_active v6 # Target active flag

ralias templ v7 # Temporary register

ralias temp2 v8 # Temporary register

ralias shot_active v9 # Shot in progress flag

ralias targets_total va # Total targets appeared (max 10)
ralias key_reg vb # Key input register

ralias target_timer vc # Timer for current target

ralias missed_targets vd # Count of missed targets

:const MAX_ TARGETS 10 # Game ends after 10 targets total
:const TARGET_SIZE 8 # Target sprite size

:const CROSSHAIR_SIZE 8 # Crosshair sprite size

:const POINTS_PER_HIT 1 # Points awarded per target hit
:const TARGET_TIMEOUT 60 # Frames before target disappears (~3 sec at

20fps)

AR F AR
# Main Game Entry Point
FHAR A F AR AR

main
# Initialize game state
score_reg 1=
gameover_reg
targets_total
missed_targets :=
target_active
shot_active

target_timer =

Score starts at 0

Game is not over

No targets appeared yet

No missed targets yet

No target active initially
No shot in progress

Timer at O

|
cocoococooo
L

# Initial crosshair position (center)

crosshair_x := 28
crosshair_y := 12
clear

# Draw initial UI
draw-crosshair

# Main game loop

loop
# Check if game should end (10 total targets)
if targets_total == MAX_TARGETS then jump game-over

# Spawn new target if none active
if target_active == 0 then spawn-target
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# Check target timeout
if target_active == 1 then check-target-timeout

# Handle player input
handle-input

# Check for hit if shot was fired
if shot_active == 1 then check-hit

# Small delay for playability
templ :=1

delay := templ

wait-delay

again

FHEHE A H SR AR A A
# Target Timeout Check
FHEHE AR H AR A

check-target-timeout
# Decrement timer
target_timer += -1

# Check if timer expired
if target_timer != 0 then return

# Target timed out - count as miss
draw-target # Erase target
target_active := 0

missed_targets += 1

# Brief sound to indicate miss
templ :=1
buzzer := templ

7

FHHHH A A AR A A AR
# Game Over Handler
FHHHH A H AR A AR

game-over
gameover_reg := 1 # Set game over flag for RL agent

# Flash screen to indicate game over

templ := 0

loop
clear
temp2 := 5
delay := temp2

wait-delay

draw-crosshair

if target_active == 1 then draw-target
temp2 := 5
delay := temp2

wait-delay

templ += 1
if templ != 3 then
again

# Infinite loop - game is over

loop
# RL agent should detect gameover_reg == 1
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again

S
# Input Handling
S

handle-input
# Save current position

templ := crosshair_x

temp2 := crosshair_y

# Movement controls (WASD) - use consistent key codes
key_reg := 7 # A key (left)

if key_reg key then templ += -2

key_reg := 9 # D key (right)
if key_reg key then templ += 2

key_reg := 5 # W key (up)
if key_reg key then temp2 += -2

key_reg := 8 # S key (down)
if key_reg key then temp2 += 2

# Boundary checking

if templ >= 254 then templ := 0 #
if templ >= 56 then templ := 56 # Right boundary
if temp2 >= 254 then temp2 := 0 #
if temp2 >= 24 then temp2 := 24 # Bottom boundary

# Check if position changed
if templ != crosshair_x then jump update-crosshair
if temp2 != crosshair_y then jump update-crosshair

# Check for shoot (E key)

key_reg := 6
if key_reg key then shot_active := 1
return

update-crosshair

# Erase old crosshair

i := crosshair

sprite crosshair_x crosshair_y CROSSHAIR_SIZE

# Update position
crosshair_x := templ
crosshair_y := temp2

# Draw new crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

# Check shoot after movement
key_reg := 6
if key_reg key then shot_active := 1

7

S i
# Target Management
S

spawn-target

# Generate random position for target
target_x := random 0x37 # 0-55 range
target_y := random 0x17 # 0-23 range

24

Left boundary (wrapping check)

Top boundary (wrapping check)




Under review as a conference paper at ICLR 2026

# Ensure minimum distance from edges

if target_x <= 2 then target_x := 3

if target_y <= 2 then target_y := 3

target_active :=1

target_timer := TARGET_TIMEOUT # Set timeout timer
targets_total += 1 # Increment total targets count

draw-target

draw-target
i := target
sprite target_x target_y TARGET_SIZE

draw-crosshair
i := crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

’

FHHFH S H A
# Hit Detection
FHHFH A

check-hit
shot_active := 0 # Reset shot flag

# Check if target is active
if target_active == 0 then return

# Simple hit detection - check if crosshair center is near target
center

# Calculate X distance

templ := crosshair_x

templ += 4 # Crosshair center

temp2 := target_x

temp2 += 4 # Target center

# Check X proximity
if templ > temp2 then jump check-x-greater

# crosshair is left of or at target
temp2 -= templ

if temp2 > 6 then return # Too far
Jjump check-y-axis

check-x—greater

# crosshair is right of target
templ —= temp2

if templ > 6 then return # Too far

check-y-axis
# Calculate Y distance

templ := crosshair_y
templ += 4 # Crosshair center
temp2 := target_y

temp2 += 4 # Target center

# Check Y proximity
if templ > temp2 then jump check-y-greater

# crosshair is above or at target

temp2 —-= templ
if temp2 > 6 then return # Too far
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jump register-hit

check-y—greater

# crosshair is below target

templ —= temp2

if templ > 6 then return # Too far

register-hit

# Hit confirmed!

# Erase target

draw-target

target_active := 0

target_timer := 0 # Clear timer

# Update score (for RL agent)
score_reqg += POINTS_PER_HIT

# Sound feedback
templ := 3
buzzer := templ

7

AR F AR AR
# Utility Functions
FHAR A F A F AR ARSI AR

: wait-delay
loop
templ := delay
if templ != 0 then
again

E.2.3 LEVEL 3: MOVING TARGETS WITH TIME CONSTRAINTS

The most challenging level combines target movement with time limits, requiring predictive aiming
and rapid response times.

Listing 4: Level 3 Target Shooter - Moving targets with time constraints

FHAFA AR A R R R R R

#
# Target Shooter Level 3 - RL Training Game
#
# A deterministic shooting game designed for
# reinforcement learning research.
#
# Controls:
# - WASD to move crosshair
# - E to shoot
#
# Score is stored in register v2 (score_req)
# Game over flag in register v3 (gameover_reg)
#
# Features:
# - Moving targets that bounce off walls
# - Targets disappear after ~3 seconds if not hit
# - Game ends after 10 targets (hit or missed)
#
s EE AL AR EEE LR R RS EEEEEEEEEEEEEE L
# Sprite data

crosshair

0b10000001
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#
#
#

0p01011010
0pb00100100
0p01011010
0pb01011010
0b00100100
0pb01011010
0b10000001

target
0pb00111100
0b01000010
0p10011001
0b10100101
0p10100101
0b10011001
0p01000010
0b00111100

FHEFHFEE AR A R R

Register Map - Critical for RL extraction
FHEHEH A AR
ralias crosshair_x v0 # Crosshair X position
ralias crosshair_y vl # Crosshair Y position
ralias score_reg v2 # SCORE - RL agents read this!
ralias gameover_reg v3 # GAME OVER FLAG (0O=playing, l=over)
ralias target_x v4d # Target X position
ralias target_y v5 # Target Y position
ralias target_active v6 # Target active flag
ralias templ v7 # Temporary register
ralias temp2 v8 # Temporary register
ralias shot_active v9 # Shot in progress flag
ralias targets_total va # Total targets appeared (max 10)
ralias key_reg vb # Key input register
ralias target_timer vc # Timer for current target
ralias target_vx vd # Target X velocity
ralias target_vy ve # Target Y velocity
:const MAX_TARGETS 10 # Game ends after 10 targets total
:const TARGET_SIZE 8 # Target sprite size
:const CROSSHAIR_SIZE 8 # Crosshair sprite size
:const POINTS_PER_HIT 1 # Points awarded per target hit
:const TARGET_TIMEOUT 80 # Frames before target disappears

#
#
#

movement)

FHEHEHH A A R R
Main Game Entry Point
FHEHEHE A A A R R

main
# Initialize game state
score_reg =
gameover_reg
targets_total 1=
target_active
shot_active
target_timer
target_vx =
target_vy =

Score starts at 0
Game is not over

No shot in progress
Timer at O

No initial velocity
No initial velocity

Il
coocoococooo
e

# Initial crosshair position (center)
crosshair_x := 28
crosshair_y := 12
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No target active initially
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clear

# Draw initial UI
draw-crosshair

# Main game loop

loop
# Check if game should end (10 total targets)
if targets_total == MAX_TARGETS then jump game-over

# Spawn new target if none active
if target_active == 0 then spawn-target

# Update target position if active
if target_active == 1 then move-target

# Check target timeout
if target_active == 1 then check-target-timeout

# Handle player input
handle-input

# Check for hit if shot was fired
if shot_active == 1 then check-hit

# Small delay for playability

templ :=1

delay := templ

wait-delay
again

FHF A F AR
# Target Movement
AR F AR

move—-target
# Erase target at current position
draw-target

# Update X position
target_x += target_vx

# Check X boundaries and bounce
if target_x >= 250 then jump bounce-left # Hit left edge
if target_x >= 56 then jump bounce-right # Hit right edge

check-y—-movement
# Update Y position
target_y += target_vy

# Check Y boundaries and bounce
if target_y >= 250 then jump bounce-top # Hit top edge
if target_y >= 24 then jump bounce-bottom # Hit bottom edge

finish-move

# Draw target at new position
draw-target

return

bounce-left

target_x :=1

target_vx := 1 # Reverse to move right
jump check-y-movement
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bounce-right

target_x := 55

target_vx := 255 # -1 to move left
jump check-y-movement

bounce-top

target_y :=1

target_vy := 1 # Reverse to move down
Jump finish-move

bounce-bottom

target_y := 23

target_vy := 255 # -1 to move up
Jjump finish-move

FHEHFE AR R R
# Target Timeout Check
FHEHHE A A R R

check-target-timeout
# Decrement timer
target_timer += -1

# Check if timer expired
if target_timer != 0 then return

# Target timed out - count as miss
draw-target # Erase target
target_active := 0

# Brief sound to indicate miss
templ :=1
buzzer := templ

7

FHHFH A H AR
# Game Over Handler
FHHHH A A AR A A AR

game-over
gameover_reg := 1 # Set game over flag for RL agent

# Flash screen to indicate game over

templ := 0

loop
clear
temp2 := 5
delay := temp2

wait-delay

draw—-crosshair

if target_active == 1 then draw-target
temp2 := 5
delay := temp2

wait-delay

templ += 1
if templ != 3 then
again

# Infinite loop - game is over
loop

# RL agent should detect gameover_reg == 1
again
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ER R i i i i i
# Input Handling
S

handle-input
# Save current position

templ := crosshair_x

temp2 := crosshair_y

# Movement controls (WASD) - use consistent key codes
key_reg := 7 # A key (left)

if key_reg key then templ += -2

key_reg := 9 # D key (right)
if key_reg key then templ += 2

key_reg := 5 # W key (up)
if key_reg key then temp2 += -2

key_reg := 8 # S key (down)
if key_reg key then temp2 += 2

# Boundary checking

if templ >= 254 then templ := 0 # Left boundary (wrapping check)
if templ >= 56 then templ := 56 # Right boundary

if temp2 >= 254 then temp2 := 0 # Top boundary (wrapping check)
if temp2 >= 24 then temp2 := 24 # Bottom boundary

# Check if position changed
if templ !'= crosshair_x then jump update-crosshair
if temp2 != crosshair_y then jump update-crosshair

# Check for shoot (E key)

key_reg := 6
if key_reg key then shot_active := 1
return

update-crosshair

# Erase old crosshair

i := crosshair

sprite crosshair_x crosshair_y CROSSHAIR_SIZE

# Update position
crosshair_x := templ
crosshair_y := temp2

# Draw new crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

# Check shoot after movement
key_reg := 6
if key_reg key then shot_active := 1

7

S
# Target Management
S i

spawn-target

# Generate random position for target
target_x := random 0x37 # 0-55 range
target_y := random 0x17 # 0-23 range

# Ensure minimum distance from edges
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if target_x <= 2 then target_x := 3

if target_y <= 2 then target_y := 3

# Generate random velocity (-1, 0, or 1 for each axis)
target_vx := random 0x03

if target_vx == 2 then target_vx := 255 # Convert 2 to -1
target_vy := random 0x03

if target_vy == 2 then target_vy := 255 # Convert 2 to -1

# Ensure target is moving (not both velocities zero)
if target_vx == 0 then jump ensure-movement
Jjump finish-spawn

ensure-movement
if target_vy == 0 then target_vy :=1

finish-spawn

target_active := 1
target_timer := TARGET_TIMEOUT # Set timeout timer
targets_total += 1 # Increment total targets count

draw-target

draw-target
i := target
sprite target_x target_y TARGET_SIZE

draw—-crosshair
i := crosshair
sprite crosshair_x crosshair_y CROSSHAIR_SIZE

7

FHE AR AR AR AR AR AR AR S
# Hit Detection
FH AR AR AR AR AR AR AR RS

check-hit
shot_active := 0 # Reset shot flag

# Check if target is active
if target_active == 0 then return

# Simple hit detection - check if crosshair center is near target
center

# Calculate X distance

templ := crosshair_x

templ += 4 # Crosshair center

temp2 := target_x

temp2 += 4 # Target center

# Check X proximity
if templ > temp2 then jump check-x-greater

# crosshair is left of or at target
temp2 -= templ

if temp2 > 6 then return # Too far
jump check-y-axis

check-x—-greater

# crosshair is right of target
templ -= temp2

if templ > 6 then return # Too far
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check-y-axis
# Calculate Y distance

templ := crosshair_y
templ += 4 # Crosshair center
temp2 := target_y

temp2 += 4 # Target center

# Check Y proximity
if templ > temp2 then jump check-y-greater

# crosshair is above or at target
temp2 -= templ

if temp2 > 6 then return # Too far
jump register-hit

check-y—-greater

# crosshair is below target

templ —-= temp2

if templ > 6 then return # Too far

register-hit

# Hit confirmed!

# Erase target

draw-target

target_active := 0

target_timer := 0 # Clear timer

# Update score (for RL agent)
score_reg += POINTS_PER_HIT

# Sound feedback
templ := 3
buzzer := templ

7

fiiidsdzdssdddssdddsddadsddtdsdandnaatdndaddisddidi
# Utility Functions
[idissdzsssdzdssdtssddadsddtdsdspdaaadanddddinddidd

wait-delay
loop

templ := delay

if templ != 0 then
again

E.2.4 ENVIRONMENT INTEGRATION AND WRAPPER IMPLEMENTATION

Once the LLM generates the CHIP-8 assembly code for each difficulty level, the games require in-
tegration with OCTAX’s reinforcement learning interface. The environment wrapper extracts reward
signals and termination conditions from the consistent register mapping established during code
generation.

The Target Shooter implementation demonstrates the integration between LLM-generated content
and the OCTAX framework. Each level maintains identical register assignments to ensure com-
patibility across the difficulty progression, enabling curriculum learning experiments without code
modifications.

Listing 5: Target Shooter environment wrapper implementation

from octax import EmulatorState

def score_fn(state: EmulatorState) -> float:
mmn
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Extract score from register V[2]
Score increments by 1 for each successful hit
Range: 0-10 points

mmn

return state.V[2]

def terminated_fn(state: EmulatorState) —-> bool:
Check game termination flag in register V[3]
Game ends after 10 total targets (hit or missed in levels 2-3)

mmn

return state.V[3] == 1

# CHIP-8 key mapping for controls
# w=5 (up), A=7 (left), S=8 (down), D=9 (right), E=6 (shoot)
action_set = [5, 7, 8, 9, 6]

metadata = {
"title": "Target Shooter - _LLM-Generated RL_Environment",
"authors": ["Fully_LLM-Generated_Environment"],
"description": "AI-generated progressive_difficulty_environment",
"roms": {
"target_shooter_levell": {
"file": "target_shooter_levell.ch8",
"description": "Static_targets - _Basic_aiming_skills"
s
"target_shooter_level2": {
"file": "target_shooter_level2.ch8",
"description": "Time-limited_static_targets"
}y
"target_shooter_level3": {
"file": "target_shooter_level3.ch8",
"description": "Moving,  time-limited targets"

The consistent register mapping across all three levels enables direct comparison of agent perfor-
mance and facilitates automated curriculum progression. Register V[2] consistently stores the score
for reward calculation, while V[3] serves as the binary termination flag. The five-action control
scheme (WASD movement plus shoot) provides sufficient complexity for interesting policies while

remaining tractable for systematic analysis.
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