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ABSTRACT

This paper primarily investigates large-scale finite-sum optimization problems,
which are particularly prevalent in the big data era. In the field of zeroth-order
optimization, stochastic optimization methods have become essential tools. Natu-
ral zeroth-order stochastic optimization methods are primarily based on stochastic
gradient descent (SGD). The method of preprocessing the stochastic gradient with
Gaussian vector is referred to as ZO-SGD—-Gauss (ZSG), while estimating par-
tial derivatives along coordinate directions to compute the stochastic gradient is
known as ZO-SGD-Coordinate (ZSC). Compared to ZSC, ZSG often demon-
strates superior performance in practice. However, the underlying mechanisms
behind this phenomenon remain unclear in the academic community. To the best
of our knowledge, our work is the first to theoretically analyze the potential ad-
vantages of ZSG compared to ZSC. Unlike the fundamental assumptions applied
in general stochastic optimization analyses, the quadratic regularity assumption is
proposed to generalize the smoothness and strong convexity to the Hessian matrix.
This assumption allows us to incorporate Hessian information into the complexity
analysis. When the objective function is quadratic, the quadratic regularity as-
sumption reduces to the second-order Taylor expansion of the function, and we
focus on analyzing and proving the significant improvement of ZSG. For other
objective function classes, we also demonstrate the convergence of ZSG and its
potentially better query complexity than that of ZSC. Finally, experimental results
on both synthetic and real-world datasets substantiate the effectiveness of our the-
oretical analysis.

1 INTRODUCTION

Modern machine learning presents significant challenges for optimization due to the large scale of
the problems involved. Contemporary datasets are both enormous and high-dimensional, often with
millions of samples and features. Because evaluating the full objective or gradient even once is too
slow to be useful, stochastic optimization methods have emerged in response.

Throughout the paper, we aim to solve finite-sum minimization problems of the form

min f(x) </ % 3 i) (1)
=1

zERY

An optimization method that solves the problem (I)) with function value access only is known as
zeroth-order optimization or black-box optimization (Ghadimi & Lan, [2013} |Nesterov & Spokoiny),
2017). In recent years, zeroth-order optimization has attracted widespread attention from both the
machine learning community and the optimization community (Nesterov & Spokoiny, [2017; [Ilyas
et al.,|2018)). One important application of the zeroth-order optimization is the black-box adversarial
attack on deep neural networks (Chen et al.,|2017; Zhao et al., [2020; |[Zhang et al.,|2020; Bai et al.,
2023). In the black-box adversarial attack, only the inputs and outputs of the neural network are
available and back propagation is often prohibited (Papernot et al., |2017). In the above situation,
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the evaluation of gradient V f(x) is infeasible. So, applying zeroth-order optimization methods be-
comes a natural choice. Additional application scenarios in the field of artificial intelligence where
zeroth-order optimization algorithms demonstrate significant effectiveness are deep reinforcement
learning (Salimans et al.| 2017; Mania et al., |2018; [Zhang & Zavlanos| 2023} Jing et al., [2024),
hyper-parameter tuning (Snoek et al.l 2012; Rapin & Teytaud, 2018), the problem of optimizing
functions with only ranking feedback (Tang et al., 2023)), learning linear quadratic regulators (Ma-
lik et al.| [2020; Mohammadi et al., [2020), and so on. Zeroth-order optimization has even played
a significant role in fine-tuning large language models (LLMs). |Malladi et al.| (2023)) and [Zhao
et al.| (2024) use the zeroth-order optimization methods for fine-tuning, in addressing the signifi-
cant memory overhead of first-order optimizers. Zeroth-order optimization achieves a substantial
memory reduction and makes it possible to train and store LLMs on low-cost hardware.

Though Z0-SGD-Gauss (ZSG) and ZO-SGD-Coordinate (ZSC) share the same theoretical
convergence rate and their sample complexity is both linear to the dimension (Ghadimi & Lan,
2013), ZSG has wider application ranges and performs better than ZSC in practice. For exam-
ple, ZSG has been widely used in fine tuning LLMs (Malladi et al., [2023}; |Zhao et al.| [2024) and
black-box attacks (Ilyas et al., 2018). The academic community is still unclear about the underly-
ing mechanism why ZSG outperforms ZSC. For the gradient descent method, recent works by [Yue
et al.| (2023) and [Wang et al.| (2024) show that zeroth-order Gaussian gradient descent can outper-
form coordinate descent if the Hessian has skewed eigenvalue distribution. An intriguing question
is whether the zeroth-order SGD algorithm possesses a similar property to the zeroth-order gradient
descent algorithm. Inspired by these works, we try to prove that ZSG can outperform ZSC under
similar conditions. We obtain a surprising result: compared to ZSC, ZSG possesses weak dimen-
sional dependence. Our work fills a theoretical gap in the field of zeroth-order optimization.

1.1 LITERATURE REVIEW

Here, we present a concise overview of stochastic optimization methods.

An optimization method that solves the problem (I)) by accessing gradient information from a subset
of samples is called SGD. SGD and its variance reduction variants, which operate on only a small
mini-batch of data at each iteration, have become the preferred methods (Robbins & Monrol (1951}
Moulines & Bach, 201 1;Johnson & Zhang|, 2013};/Allen-Zhul [2018)). However, stochastic optimizers
sacrifice stability in favor of speed. Parameters such as the learning rate are challenging to choose
(Nemirovski et al.l 2009)), and for ill-conditioned large-scale machine learning problems, even find-
ing the optimal learning rate can lead to very slow convergence. Second-order optimizers based on
the Hessian, such as Newton’s method (Battiti, |1992) and quasi-Newton methods (Dennis & Moré,
1977;Jin & Mokhtaril [2023)), are the classic remedy for solving above challenges. Some researchers
have proposed using stochastic Hessian approximations while still utilizing the full gradient (Lacotte
et al., 2021; Tong et al., |2021)). Then, Frangella et al.[|(2022)) propose the Sket chySGD algorithm
whose excellent performance suggests it could potentially replace SGD.

When the gradient is difficult to calculate or cannot be obtained, researchers shift their attention from
the study of SGD to stochastic zeroth-order optimization algorithms, estimating the gradient using
function value differences (Ghadimi & Lan, 2013} |Duchi et al., 2015} Nesterov & Spokoinyl [2017).
Malladi et al.| (2023)) directly use zeroth-order optimizer (Z0O) for fine-tuning LLMs. However, the
zeroth-order optimization algorithms mentioned above overlook the use of higher-order information
about the objective, leading to less competitive convergence in practice. Similar to the development
of SGD, researchers have begun to introduce second-order Hessian information into zeroth-order
optimization algorithms. This idea holds promise for the design of efficient and competitive algo-
rithms. |Chen et al.| (2017)) utilize the second-order Hessian information in a relatively coarsened
manner. Ye et al.|(2018) take a first step to efficiently incorporate second-order Hessian information
of the objective function and propose a novel class of algorithms called the ZOHA algorithm. |Zhao
et al.| (2024) propose HiZ0O, which is the first work to leverage the diagonal Hessian to enhance
Z0O0 for fine-tuning LLMs.

It is worth noting that Nesterov & Spokoiny| (2017) conduct a theoretical analysis of the complex-
ity bounds for three random gradient-free oracles. However, they don’t find the conditions under
which ZSG algorithm performs better than zZSC algorithm. The essential reason is that they do
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not effectively utilize the information from the Hessian matrix in their theoretical analysis process.
Therefore, in essence, our work is different from that of (Nesterov & Spokoinyl 2017).

1.2 CONTRIBUTIONS
The main contributions of this paper are summarized as follows:

* Our work theoretically analyzes the conditions under which the Z SG algorithm outperforms
the ZSC algorithm. To the best of our knowledge, our conclusion is innovative and novel,
particularly in the context of quadratic functions. Through rigorous theoretical analysis,
we demonstrate that as long as tr(M) < dApax(M), where M is the Hessian matrix of
the objective function, the performance of the ZSG algorithm will surpass that of the ZSC
algorithm.

* Qur theoretical analysis is based on the upper and lower quadratic regularity assumptions,
which generalize the L-smooth assumption and p-strongly convexity assumption. Building
on a comprehensive theoretical examination of quadratic functions, we extend our com-
plexity analysis conclusions to a broader class of functions.

* Our research indicates that ZSG also possesses weak dimensional dependence, similar to
zeroth-order gradient descent. This fills a theoretical gap in the field of zeroth-order opti-
mization, and our analytical results provide significant theoretical insights.

» Extensive experiments confirm the reliability of theoretical analysis of our work. Either
using synthetically designed data or real-world datasets, the performance of the ZSG algo-
rithm outperforms that of the ZSC algorithm.

2 NOTATION AND ASSUMPTIONS

Let us define the weighted Euclidean norm and weighted inner product associated with a positive
definite weight matrix M > 0

def

[N

[zlly = (@ 2)5
def

We define the stochastic gradient V f(x,S) = ﬁ > jes Vfi(x), where S represents the sample
set and |S| represents the sample size.

A widely accepted notion is that the assumptions of f being L-smooth and p-strongly convex are
standard in the analysis of stochastic gradient methods for solving the problem (I)). As the study
of stochastic algorithms deepens, many researchers have proposed more generalized assumptions.
Hanzely et al.|(2018) introduce the M-smoothness assumption, which is a common assumption in
modern analyses of stochastic coordinate descent methods, to analyze the convergence of the SEGA
algorithm and propose the Q-smoothness assumption, which further generalizes the M-smoothness
assumption. (Gower et al.| (2019) introduce the relative smoothness assumption and relative convex-
ity assumption to exploit the information from the Hessian matrix. [Frangella et al.| (2023) utilize
the quadratic regularity assumption to overcome the dilemma of infrequent preconditioner updates.
Frangella et al.| (2022)) propose the relative quadratic regularity assumption, which replaces the Hes-
sian matrix with any positive definite matrix.

Then, we make the following assumptions for the objective function f. First, we introduce the
quadratic regularity assumption (Frangella et al., 2023), which can be viewed as a global general-
izations of the smoothness and strong convexity constants to the Hessian norm.

Assumption 2.1. Let f : R¢ — R be a twice differentiable function, and let M denote the Hessian
matrix of f. The function f is said to be upper quadratically regular with respect to M if, for all
@,y and z € (x,y), there exists a constant 0 < ,, < oo such that the following inequality holds:

f@) < f@) + (Vi@)y — @) + 2 lly = @l @)
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Similarly, f is said to be lower quadratically regular with respect to M if, forall , y and z € (x, y),
there exists a constant 0 < 7; < oo such that the following inequality holds:

F@) > f@) + (Vi @),y — @) + 3 |y — 2l - 3

We define the quadratic regularity ratio to be
def Yu
q= .
"

Frangella et al.| (2023)) also prove that +,,,y; and ¢ are independent of the condition number of the
data for many popular machine learning problems.

Next, we introduce the standard variance control assumption.

Assumption 2.2. The variance of the stochastic gradient can be bounded by o2, which means
E[IVf(z,8) - V@] <o )
Rearranging above formula, we can obtain,

E[IVf(@ S)I*| < IVF @) + o2 5)

3 ALGORITHM DESCRIPTION

This section commences with a detailed description of the algorithm. In the following, we briefly
introduce the classical zeroth-order gradient estimator SPSA (Spall, |1992).

Definition 3.1. (Simultaneous Perturbation Stochastic Approximation). Given a model with param-
eters € R and loss function f> SPSA estimates the gradient on a minibatch S as

[f(x+ au,S) — f(x — au,S)]

Vf(x,S)= o

‘uxuu! Vi, S), (6)

where u € R? is sampled from N(0,1;) and o is a very small perturbation scale.

It should be noted that V f (z,S) is called the zeroth-order-estimated first-order gradient informa-
tion. In order to help us prove complexity, we need to find the connection between the zeroth-order
oracles and the gradient.

Lemma 3.2. We access to the f(x + au,S) and f(x — au,S). Through the upper quadratically
regular assumption, we yield the following equivalence relation

Vi(x,S) =uu' Vf(x,S)+ ¢(u,a,x), (7
with
6w, o, @)l < 25% ul e - lull. ®)

M(z1) ifM(z1) = M(z1)
M(z3) otherwise

where z1 € (x,x + au), 22 € (x — au,x) and M(z) = {

The detailed proof is presented in The aforementioned relationships can help us conduct con-
vergence analysis. This paper focuses on analyzing the convergence properties of the following
update rule:

't =t — nt@f(a:t,st). 9)

The main algorithmic procedure of the ZSG is provided in Algorithm [I]
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Algorithm 1 ZSG: ZO-SGD-Gauss Method

Input and Initialize: parameters = € RY, loss function f : R? — R, step budget ¢, step size
ny > 0, perturbation scale «, sample distribution D, initial point £° € R¢
fort=0,1,--- do
Sample S; ~ D and u; ~ N(0,1,)
Query the zeroth-order oracle f! = f(x' + auy, St)
Query the zeroth-order oracle f! = f(x! — au;, S;)
Estimating the gradient V f(z*,S;) = ”*Tj’) :
't =t — 1, Vf(x!,S))
end for

Uy

4 MAIN THEORETICAL RESULTS

This section provides an in-depth examination of the iterative complexity of ZSG under the assump-
tions we introduced. First, we study the convergence properties of quadratic functions. To explain
the superiority of ZSG conveniently, we assume that f(x) = 22" Mx — b z. If the objective func-
tion f in Assumptionis quadratic function, we need to point that v; = v, = 1 and M(z) = M,
meaning the Hessian matrix is independent of the iteration points.

We begin by presenting several essential lemmas that help us derive the main theorems in this sec-
tion. The detailed proofs of Lemma [.T] and Lemma [.2] are provided in Section [B] In addition,
several other lemmas and the proofs of them are listed in Section|A] The detailed proofs of the main
theorems and corollaries in this section are presented in Section [C]

Lemma 4.1. Let u; ~ N(0,1;) be a random vector and x € R? be an arbitrary point. For all
t>0, the variance of the zeroth-order-estimated first-order gradient information can be bounded as
follows:

Eu, [[un! Vi@, S)lly,] < 30M) [V 1,80 (10)

Lemma 4.2, Let f* be optimum of the objective function. For all t>0, if z € (x*, x*), the difference
between the function value at ' and the optimum f* can be bounded as follows:
* 1 2
J@) = < o |V I

<> Vi)

INIK 1

< 11
)HM(z)—l — 2’Yl)\min(M(Z)) | ( )
Theorem 4.3. Let f be quadratic function, and assume that f is upper quadratically regular and
lower quadratically regular with respect to M. That is, Assumption holds. In addition, the
stochastic gradient is limited by the noise. That is, Assumption holds. Let &'t be updated

according to Eq. @) We define Py(a?) = P‘"‘““XQ f27(q\516)+d)3a2. We choose

1

=< ——— 12
Tt n> 12tr(M)7 ( )

then, we can obtain

6ntr(M)o?

E[f") - < 555

;n)\min(M):| [f(mo) - f*] .

+ P 1 (042) + |:]. —
We can observe that Z SG converges to a ball around the optimum from Theorem@.3]when we choose

fixed step size. This phenomenon is analogous to the classic SGD which employs a fixed learning
rate (Moulines & Bach,[2011)).

Corollary 4.4. We observe Theorem[d.3|and find that if a fixed step size is chosen, the algorithm will
eventually fail to converge in the presence of noise. Let f satisfy the properties described in Theorem
H.3|and select the parameters described in Theorem[d.3] Since we can choose a sufficiently small o
in practice, we can omit it. If 62 = 0, to find an e-suboptimal solution, the iteration complexity is

B tr(M) 1
t_o()\mm(l\/l)bgs)' (13)
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When 02 = 0, that is, the update of  depends on the real gradient, and we obtain the same conclu-
sion as in (Wang et al.,|2024)). The conclusion of (Wang et al.,[2024])) is an intermediate analysis prod-
uct of our work, and their purpose is to compare it with the coordinate sketching version of the SEGA

(Hanzely et al., 2018) whose iteration complexity is O (d/\"‘i"((M) log = ) and achieve the best con-

vergence rate without the importance sampling. Obviously, when condition tr(M) < dApax(M)
is met, this algorithm is better than SEGA algorithm. However, our work focus on the analysis of
stochastic gradient. The following theorem and corollary will indicate that ZSG outperforms ZSC.

Theorem 4.5. Let f be quadratic function, and suppose that Assumption 2.1) and Assumption [2.2)]
e

hold. Let x'*' be updated according to Eq. (9). Then, we let general 0y = P be decreasing
and > 0. In addition, we assume that t,.x = T and we can fix the intermediate parameter
r 3 2
| = (M) We deﬁne Ql( ) [18+108)\max(M)t (M)L\%}:}T?K/E?/I))\mm(M)T](G"rd)  We choose
ininal step size
l 1
-2 < 14
=25 )’ (14)
which means we can obtain a lower bound for parameter 7y,
36tr(M)
] 15
1= Amin (M) ( )
Then, we choose another parameter
o Ddtr(M)o?
v =max {7(f(z°) - f )a)\g(()>+Q1(a2)}‘ (16)
Finally, we can obtain
v

E[f@) -1 <

Corollary 4.6. We observe Theorem{d.3|and find that if a decreasing step size is chosen in practice,
the algorithm will eventually converge in the presence of noise. Let f satisfy the properties and select
the parameters described in Theorem[.3] The following holds: to find an e-suboptimal solution, the

iteration complexity is
B tr(M)o? o 1
t_O(LQ(+Q1(a) - (17)

min )

When o2 > 0 and a sufficiently small « is chosen in practice, the iteration complexity of Algorithm

is O (f\r(lvl()lf/l) i) Clearly, we only need to call the zeroth-order oracle twice per iteration. So

the query complexity of Algorlthm I is also O ( (1\(:[) 1) The iteration complexity of SGD is
O (% i) (Rakhlin et al., [2011). However, the number of times we call the zeroth-order

oracles in each iteration is 2 x d. Then, the query complexity of ZSC is O (% é) . So, Z5G

is better than ZSC when the eigenvalues of the Hessian matrix are very different. That is to say, we
only need to select the algorithm with better performance by comparing tr(IM) and dA,.x(M).

Then, we will generalize our results to the other functions based on Assumption[2.1] In other words,
maybe y; # 1 or v, # 1.

Theorem 4.7. Iffis in the general form described in the problem ([I)) and Assumption hold.
Let '+ be updated according to Eq. (9). We choose a fixed step size

=< — 18
== 12, tr(M)’ (18)
where tr(M) = max,: tr(M(2!)), Apin(M) = ming: )\mm(M(zt)) and Apax(M) =
t Amax (M) +27,,1) (6+d) 2 o2 ;
max,t Amax(M(2)). We also define Py(a?) = T (M) . Then, we can obtain
67y, tr(M)o? 1 ¢
E Y ol < LN 4 Po(a? 1 — =Y Amin (M 0y — £*].
e+ = 7] < SO 1 P+ (1= iV () - £
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If 0* = 0 and a sufficiently small « is chosen, to find an e-suboptimal solution, the iteration com-

plexity is
B Yutr(M) 1
t=0 (’Yl)\min(M) log - ) (19)

From Theorem we can observe that ZSG may outperform the coordinate sketching version of
the SEGA algorithm when tr(M) < dApmax(M) and ¢ = O (1). This conclusion generalizes the
results in (Wang et al.,[2024).

Theorem 4.8. Iffis in the general form described in the problem (I)) and Assumption hold.
Let '+ be updated according to Eq. @) Then, we let general n, = # be decreasing and y > 0.
In addition, we assume that t.,.x = T and we can fix the intermediate parameter | = ﬁ We
. 3.2 2
deﬁne QQ(O[2) _ [184108~u vt Amax (M) tr(IM)+3~; Amax (M) Amin (M) T](6+d)°~; o

. We choose initial step

4712>‘r2nin(M)
size
l 1
=< —_— 20
o v T 12y, tr(M)’ 20)
which means we can obtain a lower bound for parameter 7,
367y, tr(M)
> 21
72 (M) 2D
Then, we choose another parameter
547, tr(M)o?
0 * u 2
v:max{v(f(a: )—f )7W+Q2(a )}7 (22)
where tr(M) = max,: tr(M(2?)), Apin(M) = minge Apin(M(2%)) and Apax(M) =
max,t Amax(M(2?)). Then, we can obtain
v
E ty _ p* < )
e -1 <
If 0% > 0, to find an e-suboptimal solution, the iteration complexity is
Yutr(M)o? o] 1
t=0||5——F—= - . 23
(G5t +@xh] -

From Theorem if a sufficiently small « is chosen in practice, we can observe that ZSG may
outperform zZSC when tr(M) < dApmax(M) and % = O(1). For quadratic functions, we can
easily find that ¢ = % = 1, which is consistent with our previous analysis. For other functions, we
can impose further assumptions to show that the query complexity of algorithm ZSG is significantly
improved compared to algorithm ZSC. This is an interesting direction to explore further. Without
additional assumptions, improved global convergence for quadratic functions is the best result that
can be hoped for.

5 EXPERIMENTS

We have provided a comprehensive theoretical analysis of ZSG in the preceding sections. This
section is dedicated to the empirical validation of ZSG’s effectiveness and superiority. We give the
detailed structure of ZSC in Algorithm[2] which we intend to use for comparison.

5.1 QUADRATIC FUNCTIONS

In this part, our experiments will focus on the quadratic minimization problem, whose objective
function adheres to the form delineated in the problem (IJ), characterized by

1
min f(z) = —x AATz —b'x, (24)
z€R4 2n
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Table 1: Setting of diagonal matrix X used in Eq. to construct A.

[ Type | b |
1 d = 100 Matrix with first 99 components equal to 10 and the remaining one equal to 101/10

2 d = 100 Matrix with first 80 components equal to 10 and the rest equal to 10+/10

3 d = 500 Matrix with first 499 components equal to 10v/5 and the remaining one equal to 100v/5
4 d = 500 Matrix with first 480 components equal to 10/5 and the rest equal to 100v/5

where M = %AAT. The parameters of the quadratic function which we construct as follows: the
dimension of feature vector x is d. We set

A usuT, (25)

where U obtained from QR decomposition of random matrix with independent entries from N (0, 1)
and X is set as Table and b is a random vector with independent entries drawn from A/(0, 1). For
each problem, the starting point was chosen to be a vector with independent entries from N (0, 1).

In this experiment, we compare ZSG with ZSC algorithm for problem described in Eq. (24). We
properly choose the decreasing step sizes of them. According to the theoretical results of ZSG and
7SC, step sizes of these two algorithms should be proportional to O(1/(tr(M) + Apmin(M)t)) and
O(1/(Amin(M)t)), respectively. We report the experimental results in Figure

When d = 100, we can observe that in the first two experiments, ZSG is faster than ZSC. As tr(IM)
increases, the running speed of ZSG slows down. As long as condition tr(M) < dApax(M) is met,
ZSG is superior to ZSC.

When d = 500, we can observe that in the remaining two experiments, ZSG is significantly faster
than ZSC. At the same time, we can observe similar results when tr(M) increases. It should be
pointed out that as the dimension of the problem increases, the eigenvalues of Hessian matrix be-
come more and more diverse, and ZSG is more likely to perform better than ZSC. All results match
our theoretical analysis.

5.2 LOGISTIC REGRESSION FOR BINARY CLASSIFICATION

In this part, we will use a real dataset to compare the convergence rates of ZSG and ZSC on the
strongly convex function. We consider the logistic regression with a loss function

Py = 13" loalt + exp(— fas, )] + 2 2l

i=1

where a; € R? is the i-th input data, y; € {—1,1} is the corresponding label and 3 is the regularizer
parameter. We conduct experiments on ‘mushrooms’, ’phishing’ and ’a8a’ with d = 112,68 and
d = 123 respectively. These three datasets can be downloaded from libsvm datasets. The number
of samples of ‘mushrooms’ is n = 8124 and the number of samples of ‘phishing’ is n = 11055. In
our experiments on ‘mushrooms’ and ’phishing’, we divide the training set and test set in a ratio of
4:1 and set 8 = 0.001. We properly choose the batch size |S| and the decreasing step sizes of them.
We report the experimental results in Figure 2]

We report the training loss for all experiments in the three subgraphs of the first column. We can
observe that ZSG achieve much faster convergence rate than ZSC. We report the test accuracy in
the second column. We observe that the test accuracy of ZSG on the mushrooms dataset increases
rapidly in the initial phase, exceeding that of ZSC. Subsequently, as the changes in test accuracy
stabilize, ZSG’s accuracy improves relative to ZSC. Furthermore, in the experiments on the phishing
and a8a datasets, the test accuracy of ZSG exceeded that of ZSC. All in all, we can conclude that the
convergence performance of the ZSG algorithm is superior to that of the ZSC algorithm in practice,
while ZSG also achieves better test accuracy compared to ZSC. This result matches our theoretical
analysis. A plain understanding is that ZSG can simultaneously handle all coordinates in a single
oracle call, while ZSC processes one coordinate.



Under review as a conference paper at ICLR 2025

Type: 1 Type: 2

10" 4

100 4
100 4

0 50000 100000 150000 200000 250000 300000 350000 400000 0 50000 100000 150000 200000 250000 300000 350000 400000
oracle calls oracle calls

(a) The comparison on the first type diagonal matrix (b) The comparison on the second type diagonal matrix

Type: 3 Type: 4

102 4 —e— 75C —e— 7SC
—=— 7ZSG —=— 7ZSG

102 4

0 100000 200000 300000 400000 500000 600000 0 100000 200000 300000 400000 500000 600000
oracle calls oracle calls

(c) The comparison on the third type diagonal matrix (d) The comparison on the fourth type diagonal matrix

Figure 1: Comparison of running results of ZSG and ZSC on quadratic functions.

6 CONCLUSION AND FUTURE WORK

In this paper, we are the first to theoretically analyze the conditions under which the performance
of algorithm ZSG exceeds that of algorithm ZSC. The most critical step is to verify whether condi-
tion tr(M) < dAmax(M) holds. When the distribution of eigenvalues of the Hessian matrix varies
significantly, the aforementioned condition can naturally hold. We obtain the best results for the
analysis of quadratic functions. When o = 0, we get the main conclusion proposed by Wang et al.

(2024): the complexity of ZSG is O (% log %) outperforms the coordinate sketching version

dAmax (M)
Amin (M)
mization. When o2 > 0, we obtain the main conclusion of our paper: the query complexity of ZSG is
dAmax(M)o® ;)

of the SEGA algorithm whose complexity is O ( log é) in the field of zeroth-order opti-

2
O (%é), which outperforms zSC algorithm, whose query complexity is O ( N M) <
In other words, Z SG exhibits weak dimensional dependence. Both the synthetic datasets and the real
dataset match our theoretical analysis. So, our research can contribute practical guidance in the field

of zeroth-order optimization.

By retaining the upper and lower quadratic regularity constants 7, and y;, we extend our conver-
gence analysis result from quadratic functions to any class of functions. We may need to consider
more additional assumptions or conduct a more in-depth analysis to verify the conditions in the
future under which ¢ = O (1) or % = O (1) holds.

In addition, a meaningful research direction is to incorporate information from the second-order
Hessian matrix into the gradient estimation V f(x!, S;). The motivation of this change come from
a question: significant difference in curvature of loss function can lead to instability or decelerated
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Figure 2: Comparison of running results of ZSG and ZSC on binary classification problem.

training. The Hessian information can be leveraged to effectively adjust the magnitude of the param-
eter updates solving the above dilemma. We believe that we can achieve better practical performance
in terms of query complexity within our analytical framework, and then, extend the conclusion by
using the quadratic regularity assumption.
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Algorithm 2 ZSC: ZO-SGD-Coordinate Method

Input and Initialize: parameters = € RY, loss function f : R? — R, step budget ¢, step size
ny > 0, perturbation scale «, sample distribution D, initial point £° € R¢
fort=0,1,--- do
vf(xt7 St) =0
Sample S; ~ D
fori:=0,1,--- ,ddo
Query the zeroth-order oracle f! = f(x' + ae;, S;)
Query the zeroth-order oracle f! = f(z! — ae;, St)

Estimating the partial derivative V, f (!, S;) = % -e;
Vf(wt78t) = vf(wtvst) + veif(wtv'st)
end for ~
't =zt — V(2! S,)
end for

A  SEVERAL USEFUL LEMMAS

The following lemma shows that the expectation of the product of two quadratic forms of the random
Gaussian vector is related to the trace of the corresponding matrix.

Lemma A.1 (Magnus et al.| (1978)). Let A and B be two symmetric matrices, and u obeys the
Gaussian distribution, that is, u ~ N'(0,1,). Define z = u' Au - u' Bu. The expectation of z is

Eu[z] = (trA)(trB) + 2(trAB). (26)
Lemma A.2 (Nesterov & Spokoiny| (2017)). Let uw obeys the Gaussian distribution, that is,
u ~ N(0,1;). We define normalization constant k = fe—%\\u”zdu and define moments

M,=1] |u|[Pe=2141° du. For p > 2, we can obtain upper bounds

/2 <M, < (p+d)P/2. @n

Lemma A.3. If we have a positive definite matrix M defined as weighted inner product, for all
x € RY, we can obtain the following inequalities

llpg < ex (VD) [l (28)
2 2 2
Amin(M) [[2]” < |2y < Amax (M) [ (29)
Proof. For a positive definite matrix M, there must exist an orthogonal matrix T such that M is

similar to a diagonal matrix whose elements are eigenvalues of matrix M. We denote \; be the i-th
eigenvalue of matrix M, then, we can obtain an equation as follows

M = Tdiag {\1, Aa, -, \g} T L. (30)
Let y = T " x, then, we can easily prove this Lemma. We first prove Eq.

HwH%VI =Mz, z) = ' Mz x " Tdiag {\1, Ao, -+, Ag} T 'z
=z Tdiag {\1, X, , A} T '
=y diag {\;, A2, -, \a} ¥
Str(M)azTTTT:r:
=tr(M) [l
Similarly, we can prove the Eq. (29). O

Lemma A.4. For the sake of simplicity in the subsequent proof, we first derive the upper bound of
V f(xt,S;). The upper bound is related to V f(xt, St) and a:

6 + d)*y2a?
ngglﬁi 31)

E’U.t [”@f(wt’St)H%/[(zf)} < 6tI‘(M(Zf)) va(:vt78t)’|2 +

13
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Proof. This part of the proof involves the basic properties of the norm and some important lemmas.
= @ 2
Eu, [V 8)Baee)]| DB, [[luce] 95t 80) + ou 0,2 240

<2Eut |:Hutu;rvf(w St)HM(zi):| +2EUt |:||¢(utaa7wt)“i/[(zt)]

. 2 2

2By, [furs] V80 Ry | + 5B, [l R
[0+ @7 3y2a2
.§.6tr(M(zt)) IV, S| + %.

O

Lemma A.5. For the sake of simplicity in the subsequent proof, we will derive the upper bound of an
important inner product (V f(x!), ¢(uy, ). The upper bound is related to real gradient V f(x')
and «:

R, [(Vf(2'), d(us, 0, 2"))] < % ||Vf(mt)H2 n Amax (M (2 ))8(6 +d)3y2a 2. )

Proof. The techniques involved in this part are similar to those in Lemmal[A4]
—Eu, [(V/(@), $(us, 0. 2'))] <Eu, [[[VF (@[] [|é (e, o, 2")]]

<5 IV 7@ + 5B, oG, 0, 2|

@1 2
<5 V4@ + L= Bu, [luslipggary - el

(29) )\max M ¢ 3 2
DL sty 4 2oL ]

2 /\max(M(Zt))(G +d)5 . 2
+ 8

= |vi@)|

B PROOF OF IMPORTANT LEMMAS

In this section, we give some details of proof about some important Lemmas.

B.1 PROOF OF LEMMA[3.2]

Proof. By the Taylor’s expansion, we can obtain that
flx+aou,S) = f(z)+a(Vf(x,S),u) + ¢ (u,a,x)
where ¢' (u, o, ) = f(x + au,S) — f(x) — a(Vf(z,S),u). Similarly, we can obtain
flx—au,S) = f(x) — a(Vf(z,S),u) + ¢ (u,—a,x).

@f(ac,S) _ [f(x+ ozu,S)2—af(€B —au,S)] = uuTVf(:c,S)+¢/(u’ a,x) ;j/(u, —a, ) ”

By the upper quadratically regular assumption, we can obtain that

2
Tu ¥ 2
)< HU‘HM(zl)a

¢/ (u, 0, )| = |f(@ + o, S) - f(&) — a(Vf(z,S),u

‘QZ),(U,*OZ,ZB” = |f(.’1370tu,8)7f($)+Oé<Vf(ZB,S) >
Then, we can finally obtain that

"¢/<uaavm) B (b,(ua *Ol7w) . U/H < |¢)/(u,a,w)| —+ \qﬁ'(u, )| || || <

= - 5 luliRace) -l

O
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B.2 PROOF OF LEMMA [4]]
Proof. This part of the proof mainly relies on the properties of the matrix trace.
2
Ee, [Hutut Vix'S) HM] =E [Vf (x',S)) utu:MTutut Vf(xt, St)}
w, [tr(Vf(z! S Twgu MTuu Vf(x, S))]
=Eu, [tr(uf M uu V(' S)Vf(x',S) uy)]
Bumye(v s, s)via,s)T)
+2tr(Vf(z', S) "MV f(z,Sh))

—tr(M) ||V (", S)||” + 2|V (', )

¥
< 3tr(M) ||V £ (=, S|

B.3 PROOF OF LEMMA[4.2]

Proof. We use the lower quadratically regular introdeced in Assumption 2.1}

F) > f@) + (Vi @),y — @) + 5 ly - 2l -

Then, we construct an auxiliary function,

F(y) = f(2) + (Vi(@),y — @) + 3 [y — 2|Rscs) -
To obtain the minimum of the auxiliary function, we need to make
VF(y") = Vf(z) +2mM(z)(y" —z) = 0.
So, we can find that
¥ = -M(2)7'V/ (@), (33)
Using the above information, we can continue to deduce that

fly) >F(y)

>F(y™)
2
@ () <Vf(w)7 .

M() V@) + 3 | M) VS

m

M(z)

() - % IV £ @)y + 2i%Vf<:c>T<M<z>*1>TM<z>T1\4<z>*lVf<oc>

1 1
=f(z) - ” IV £ (@)lag(z)- + o IV £ (@) Inae -

() - zi% IV £ (@) g -

Let x = x!, y = =*, and rearrange the above formula, we can obtain

£ = <5 97 g

Q /\maX(M(z)_l)
B 27

_ 1

29 Amin(M(2))

V(]
NFCHIE
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C PROOF OF MAIN THEOREMS

C.1 PROOF OF THEOREM [4.3]

Proof. Firstly, we can deduce the expectation of f(z!*1),

f(mtﬂ) f(mt) + <vf(mt)’wt+l . mt> + % ||mt+1 . thle[

B0 1 (3t) — 5 (T f(2t), we] VI (,8) + bl 0, 2"))
2
L ] Vi (@,8) + dlur, a2y (34)
Let us deduce the expectation of f(x t“) for u,
E'u.t I:f(wt"rl)} : <vf Ut [’U,t’u,;rv‘f(iﬂ S) ¢(ut7ath)]>
+ 1 Eut [Hutut Vi, S)+ ¢(us, a, @ ||M}
<f(z )*77<Vf ), V(&' 8t)) — B, [(V ('), (ur, . 2"))]

2
+ LB, [ o] V (@, 8) + duw, o,y

< p@h) -0 (Vi) VI, st> + 2|V + 3P [V S

Amax(M) + 2] (6 + d)°a?
8

Then, let us deduce the expectation of E,, [ f (w”l)] ,

E[f(@*)] <f(a") = (Vi(@").E[VI(@2', 8)]) + 1 |V ()]

+

+3n*tr(M [HVf :ct,St)HQ} + Prmex(M) + 2877] (6+d)a
—f(@") = 2|V (@) +3r*tr(MIE ||V £ (', S0)]]
[)\maX(M) + 2n] (6 + d)3a?
* g
2 at) = 2|V + 3P 0* + 5

Amax (M) + 277] (6 +d)°a®

_|_
{ 3n*tr(M g} ||Vf(alr:t)||2 + 3n%o2tr(M)
[ ax(M )+27ﬂ (6 +d)’a®

[)‘maX(M) + 277} (6 + d)3a2

=f(z") +3n 02tr(M) + 3

= () 7 )|

f(wt) + 37720'2t1'(M) + [)\max(M) + 281” (6 + d)3a2,,7
— DAmin (M) [1 = 6ntr(M)] (f(z') — £7)
f(:ct) + 377202tr(M) " [Amax (M) + 2;] (6 + d)3a’n

- %U)\min(M)(f(wt) =) (35)
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And then, let us use the optimal value f* to transform the inequality,
Amax (M) + 2n] (6 + d)3a?n

E[f(™) = f] + f = f(a') <3n°c®tr(M) +

Rearranging the above formula, we can obtain,

Amax (M) + 27] (6 + d)3a?n
8

1 *
+ 1= gD B (@) - £
We need to construct a recursive relation with the following structure,
* 1 *
B[/ = £ = 8] < 1= g M) B (1) - £ = 5]

_ 24ntr(M)o? + [Amax (M) + 2] (6 + d)3a?

E [f(a"*!) — f*] <3iotr(M) + |

If 6 Dhomn (V) , the above formula can be derived as
B [party g 2intr(M)o? + D80 20+ d)w]
1 ] . 24ntr(M)o? + [Amax (M) + 27] (6 + d)3a?
=[' g (M E {f @ -1 - Drnin (M) }
1 Ik . 24ntr(M)o? + [Amax (M) + 27] (6 + d)3a?
<[F g (M)] {f @) =1 - Dranin (M) }
- qt
<1 S| [ - 5]

Thus, we can obtain that

E[f@*) - /1] < 24ntr(M)o? + Amax (M) + 21 (6 + d)3a?

A min(M)

#[1- I (765 - 1.

C.2 PROOF OF THEOREM [4.3]

Proof. Firstly, if we choose decreasing step size 7;, based on we can obtain the following
formula

E [f(a:”l) - f(mt)] <3n2o2tr(M) + [Amax (M) + QZt] (6 + d)>a’n,

— Nt Amin (M) [1 = 67, tr(M)] E [ f (') — f*]
[Amax(M) + 2] (6 + d)3a?n;

<3nio?tr(M) +

8
— Nt Amin (M) [1 — 6notr(M)] E [ f(x') — f*]
Dot ¢ LM 2?;] (6+ d)>an,
1

- intAmin(M)E [f(mt) - f*] .
Let us prove the final result by induction, for t = 0

E[f@") — ] = f@") — 1" = = [~ 1] <

v
v+ 0

)
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by the definition of v.
Suppose that holds for ¢ > 0, then

Amax(M) + 2] (6 + d)*a?n,
8

;ntAmin<M)] E [f(wf) - f*]
[Amax (M) + 27],5} (6 + d)3a’n;

E [f(mt+1) —f ] <377ta tr(M) +

+[1—

<3nto tr(M) +

+ 1 mll’l

_302l2tr( ) max(M )(6 + d)3 21 (64 d)3a?l?
(v )2 8(y +1) A(y +1)2
Ll lAmin(M):| v
L 20y +1) [+t
C(yHt—1w  307Ptr(M)  Anax(M)(6 +d)3a?l (64 d)*a?l?
()2 (v +1)? 8(y +1) Ay +1)?
(l)‘min(M) — 2)/0
200+
W Lot 27PEM) | Anax(M)(6 +d)*0?l (6 +d)%0l® (min(M) — 2)u 0. This is
(v +1)? 8(v+1) 4y +1)? 2(y+1)?

equivalent to
(6 + d)3a?l? N Amax (M) (6 + d)3a2l(y + t)
2 4
y s D (M)o® | 9(6+d)’a® | Bhmax(M)(6+d)°a®(y +1)
=X (M) | 2X%, (M) Amin(M) '

min min

p > HM)o? 96 +d)Pa? | Bhnax(M)(6 +d)°a’(y +T)
N )\1211111(M 2)\1211111(1\/‘[) 4)\min(M)

)
. 54tr(M)o?  [18 4 108\ max (M)tr(M) + 3Amax (M) Amin (M)T] (6 + d)3a?
2. (M) 4X2 . (M)

mln mln
+ Q1(a?).

_ 5dtr(M)o?
C (M)

54tr(M)o?
Anin(M)

min
min

6021%tr(M) + < (Dmin(M) — 2)v.

+ Ql (042).

So, we can finally obtain v >

Due to the facts
(Y+1)?2> (y+t+D)(y+t—1) = (y+1)* -1,

then
v

E [f(a’t+1) - f*] Sm

C.3 PROOF OF THEOREM[4.7]

If the objective function is not quadratic function, we notice that ,, # 1 and ; # 1. So, we can
transform inequality (34) into

f@th) <f(@') — (V") uu V' S) + d(us, a,zt))

%72
2

Hutut V' S)+ o(ur, o, '

2
+ HM(z")'
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Let us deduce the expectation of f(z!*!) for u,

GD+E2
<

Eu, [f("*)] F(@") + 3077t (M) [Vt ) + 3 [ V7 @)

Amax(M(21)) + 27,1] (6 + d)342a?n
. .

—n(Vf(@"), Vf(x'S))+
And we can transform inequality into

Amax(M(2")) + 27u1] (6 + d)*y7a’y

E [f(@")] <f(@") + 30’0 yutr(M(2")) + S

B %’Ym)\min(M(Zt))(f(mt) =

If we let tr(M) = max,: tr(M(2%)), Apin(M) = minge Apin(M(2?)) and A\pax(M) =
max,t Amax(IM(2?)) in the subsequent analysis. Then, we can obtain

. 24071 (M)o? 4 Pmax (M) + 297] (6 + d)*120?

E|f(=*) - f LM
= :1 - immmM): E [fw) e 2mutrM)o + [Z:jiili\fgl\;fm] (6+ d)3730z2]
= :1 - ;nwmm(M):t [f(x% e 2mutr(M)o® + [Z%)\LM() l\z)mn] (6+ d)svioﬁ]
<|1- iwmmM)_t [F@*) = 1]

Thus, we can obtain that

< 2477utr(M)o? + Amax (M) + 29u11] (6 + d)*y3 0
o 4’}/l)\min (M)

=+ |:]. — ;UVZ)\mln(M)] [f(xo) - f*] :

E [f(z) — f*]

Let 0 = 0 and a sufficiently small « is chosen, similar to the proof process of we can obtain

the iteration complexity

Yutr (M) 1)

t=0—<log—]. (36)
(71)\min(M) & €

C.4 PROOF OF THEOREM [4.§]

Firstly, if we choose decreasing step size 1y, we can obtain the following formula

P‘maX(M(zt» + 27um:] (6 + d)3712¢04277t

E [f(="h)] <f(a') + 3nf o yutr(M(2")) + 3

— 5w (M) () — 1),

We let tr(M) = max tr(M(2")), Apin(M) = ming Apin(M(2")) and Apax(M) =
max,¢ )\maX(M(zt)) in the subsequent analysis. Then, we need to add ~, and ~; to the appro-
priate position in the proof process of [C.2] like the similar ways we operated in Suppose that
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holds for ¢ > 0, then

[Amax(M) + 2711,7715] (6 + d)3730427]
8

_ 1 _ )

+[1-— ipylnt)‘min(M) E [f(wt) - f }

P‘maX(M) + 2’Yu77t] (6 + d)372a277t
8

E [f(z'") = f*] <3nfoy,tr(M) +

SSnfgzyutr(M) +

v
v+t
( + t—1)v  3022y,tr(M) N Amax (M) (6 + d)342a2l
()2 (v +1)? 8(y +1)
(6 + d)B’YSO‘ZlQ (Yl Amin(M) = 2)v

Ay 02 2y +1t)?

[18 + 1087, Vi Amax (M) tr(M) + 39 Amax (M) Amin (M) T] (6 + d)3v2a?

472%311“( ) '
30°Pyutr(M) | Amax(M)(6 + d)*vaa®l | (6 + d)*vpal? . (9 Amin (M) — 2)v
(v +1)? 8(y+1) 4(7+t) 2(y +1)?
547, tr(M)o? N

Finally, we obtain the iteration complexity

1 -
+ 1-— §7lnt)\mm(M)

+

We define Q2 (a?) =

Then, we let

0, which is equivalent to v >

D PROOF OF MAIN COROLLARIES

D.1 PROOF OF COROLLARY [4.4]

Proof. From the proof of Theorem [4.3] if we choose a sufficiently small « in practice, we can find
that

<exp (— gmhmin(M)?) [£(2) — ]

min *
< o (- ) U - 11

Thus, in order to achieve e-suboptimal solution, ¢ is required to be

=m<legi +log (f(wo) - f))

—o (5208 et )
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