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ABSTRACT
To encourage further research and facilitate fair comparisons
of deep learning–based pathloss estimation methods in indoor
environments, particularly in the less-explored case of hav-
ing access to sparse ground truth pathloss samples in tandem
with physical propagation environment information, we or-
ganized the MLSP 2025 Sampling-Assisted Pathloss Radio
Map Prediction Data Competition. This overview paper de-
scribes the sampling-assisted indoor pathloss prediction prob-
lem, the datasets used, the competition tasks, and the eval-
uation methodology. Lastly, it provides an overview of the
submitted methods and the results of the challenge.

Index Terms— Radio map, pathloss, deep learning, chal-
lenge, dataset.

1. INTRODUCTION
In wireless communications, pathloss (PL)—also referred to
as the large-scale fading coefficient—is a metric that quanti-
fies the attenuation of signal strength between a transmitter
(Tx) and a receiver (Rx) due to large-scale effects. These
effects include free-space propagation loss, and interactions
such as penetration, reflection, and diffraction of radio waves
with objects and structures in the propagation environment.
A wide range of existing and emerging applications in wire-
less communications are inherently dependent on the precise
location-specific knowledge of PL, the so-called PL radio
maps. Consequently, reliable estimates of this quantity are es-
sential. A non-exhaustive list of indicative use cases includes:
user-cell site association, network deployment, fingerprint-
based localization, physical-layer security, optimal power
control, path planning, and activity detection [1].

The estimation of PL and other wireless channel charac-
teristics can be achieved through the utilization of radio prop-
agation models. Existing channel modeling techniques ex-
hibit a notorious trade-off. Deterministic models, such as ray
tracing, are highly accurate when precise physical informa-
tion about the propagation environment is available, namely
the geometry and electromagnetic material properties of the
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environment’s objects and structures. However, these models
are computationally demanding. The opposite is true for em-
pirical and stochastic models. They are not computationally
demanding, but their accuracy is low. Recently, considerable
effort has been made to develop data-driven methods that can
be trained to yield commensurate accuracy with deterministic
propagation models. These methods, which utilize the same
physical environment information as the deterministic mod-
els, exhibit impressive computational efficiency due to the
native graphics processing unit (GPU) parallelization of deep
neural networks (DNNs) [2] (see e.g. [3, 4, 5] and the sur-
veys [6, 1, 7, 8] for the specific case of PL estimation consid-
ered in this competition). In contrast to the outdoor scenarios,
where reflected and diffracted electromagnetic field compo-
nents dominate, in indoor environments, refracted field com-
ponents through obstacles play a more significant role. Fur-
thermore, the accurate estimation of indoor radio maps neces-
sitates the consideration of the diverse range of construction
materials and their electromagnetic properties [4].

This work aspires to promote further research and enable
fair comparisons of DNN-based indoor PL estimation meth-
ods, particularly in the less studied scenario where sparse
ground truth PL samples along with detailed environment in-
formation are available. To this end, inspired by the suc-
cess of the First Pathloss Radio Map Prediction Challenge
at ICASSP 2023 [9, 1] and the First Indoor Pathloss Radio
Map Prediction Challenge at ICASSP 2025 [10], we released
an indoor PL radio map dataset generated via ray tracing sim-
ulations and organized the Sampling-Assisted Pathloss Radio
Map Prediction Data Competition at MLSP 2025.1

The challenge consisted of two tasks focused on predict-
ing PL radio maps using deep learning (DL)-based methods,
leveraging sparse ground truth PL samples collected at vary-
ing sampling rates from the propagation environment (see,
e.g., [3, 11]). The first task involved a uniform, random se-
lection of ground truth PL sampling locations. The second
task investigated how sampling location selection impacts ra-
dio map estimation accuracy, exploring efficient techniques
beyond random sampling.

1https://sapradiomapchallenge.github.io
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Fig. 1: An example from the Indoor Radio Map Dataset: (a)-(c) the three channels of the RGB input image; (a) the normal
incidence reflectance and (b) transmittance coefficients at each point of the grid, (c) the distance between Tx and each point;
(d) the target PL radio map.

Remark 1: To prevent potential confusion, it should be em-
phasized that the competition setting was still based on train-
ing on a large dataset in a fully supervised manner, where
all the PL values in the target radio maps are available. The
sparse samples from the ground truth radio maps should be
considered an additional source of information, in addition to
the physical information about the propagation environment.

2. DATASET - THE INDOOR RADIO MAP DATASET
The Indoor Radio Map Dataset that we previously made pub-
lic [12] includes various indoor PL radio maps generated us-
ing Ranplan Wireless 2 ray tracing software in different set-
tings. For this competition, a subset of the dataset was used.
2.1. Training Dataset
For the current data competition, the Task 2 sub-dataset of
the Indoor Radio Map Dataset was designated as the train-
ing dataset. This sub-dataset includes PL radio maps from 25
indoor environments of various sizes, and complexity, com-
prising different construction material types (e.g., concrete,
plasterboard, wood, glass, and metal), 50 randomly assigned
isotropic Tx positions per indoor layout, and 3 Tx signal fre-
quency bands (868 MHz, 1.8 GHz, and 3.5 GHz), amounting
to a total of 3750 radio maps.

For all ray tracing simulations, both the Tx and receiving
plane were set at a height of 1.5 meters above the floor. The
spatial resolution was set to 0.25 m. The simulated rays could
undergo up to 8 reflections, 10 transmissions, and 2 diffrac-
tions. The computed PL values were measured in decibels
(dB) and saved as grayscale .png images. The minimum
and maximum PL values in the training dataset are 13 dB and
160 dB, respectively.

Each PL radio map is associated with an input RGB image
(of the same length and width as the corresponding PL radio
map) that conveys physical information about the propaga-
tion environment and the simulation of the PL values. Specif-
ically, the 3 channels of the input image represent (i) the nor-
mal incidence reflectance of each material (zero for air), (ii)
the normal incidence transmittance of each material (zero for
air), and (iii) the physical distance from the Tx to each point

2https://www.ranplanwireless.com/

of the grid. In addition, the coordinates of the Tx location are
provided for each target radio map. Figure 1 illustrates a typi-
cal instance from the dataset, showing three input components
and their corresponding ground truth.

2.2. Test Dataset
An additional test dataset, which had not been published be-
fore, was used to evaluate the performance of the submitted
methods. The test dataset was generated through the same
procedure used for the Indoor Radio Map Dataset. It involves
five indoor geometries, one frequency band (868 MHz), and
25 or 50 transmitter (Tx) positions per indoor layout, resulting
in a total of 200 radio maps.

Remark 2: Note that we provided a training dataset with
three center frequencies (868 MHz, 1.8 GHz, and 3.5 GHz,
Task 2 sub-dataset of Indoor Radio Map Dataset), although
the test dataset involved only one frequency (868 MH). The
decision of how to use the training dataset was left up to
the participants, i.e., they could use either the entire train-
ing sub-dataset or only the part that corresponds to the test
frequency. Our rationale for doing this was twofold. 1) In
machine learning tasks, one frequently has access to training
data from a setting that is analogous to the test setting, al-
though they may not be a precise match. Nevertheless, their
utilization may still yield favorable outcomes. 2) The training
dataset for the three center frequencies was already publicly
available [12] and we wanted to provide a fair basis for com-
parison by informing all the participants of its availability.
These additional data could prove useful, as detailed above
and as evidenced by the fact that they were utilized by all the
successful participating teams (cf. Sec. 5).

3. THE COMPETITION TASKS
The competition consisted of two supervised learning tasks,
Task 1 and Task 2, constituting 60% and 40% of the total
score, respectively. Both tasks aimed to accurately and ef-
ficiently estimate PL radio maps of indoor environments.
For this purpose, participants used the provided input RGB
image (cf. Sec. 2.1), which contains physical properties of
the propagation scenario of interest, i.e., the electromagnetic

https://www.ranplanwireless.com/
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properties of the walls, which implicitly also provides infor-
mation about the building layout, along with sparse samples
from the target (ground truth) PL radio map. For both tasks,
two equally weighted sampling rates were considered: 0.5%
and 0.02% of the total spatial points. This enabled investi-
gating a high and a low sampling rate regime under different
sampling strategies, resulting in a total of four sub-tasks.

Let St,r
n denote the sampling points for the n-th radio map

with a sampling rate of r (in percent), for Task t ∈ {1, 2}. The
number of sampling points were found by

|St,r
n | = ⌈rWnHn

100
⌉, (1)

where ⌈·⌉ denotes the ceiling function, and Wn and Hn are
the width and length of the n-th radio map. As mentioned pre-
viously and detailed below in Sections 3.1 and 3.2, the Tasks
differed in how the locations of St,r

n are determined.
The participants were permitted to employ the supplied

ground truth PL samples in a flexible manner, provided that
this did not lead to impractical computational times. Further-
more, the PL samples from a specific test radio map were to
be utilized exclusively for the estimation of that radio map.

A key component of a successful submission was that the
total run-time of a method should be significantly smaller than
that of the underlying propagation model used to generate the
ground truth dataset (i.e., Ranplan Wireless). Previous work
in the literature, as well as the results of The First Pathloss
Radio Map Prediction Challenge [9, 1], and The First Indoor
Pathloss Radio Map Prediction Challenge [10], indicate that
run-times on the order of 10–100 ms are reasonable on mod-
ern GPUs.

As mentioned previously, the radio maps (and their corre-
sponding input images) in the Indoor Radio Map Dataset have
varying lengths and widths. The participants were also tasked
with addressing this issue. The common practice of resizing
the images to a fixed resolution (as outlined in [4]) was com-
municated to the participants along with a script that performs
this. Naturally, the performance metrics are still based on the
degree of alignment with the original-size ground truth radio
map images (cf. Sec. 4).

3.1. Task 1
For this Task, the locations of the sampling points of the n-th
radio map were found by the organizers by uniformly ran-
domly drawing |St,r

n | (cf. (1)) points without replacement
from the total WnHn points of the radio map. The 0.02% rate
samples were selected as a subset of the 0.5% rate samples.

3.2. Task 2
Given the number of sampling points, the participants were
asked to choose their own sampling points for this Task. The
objective of this Task was to examine the merits of carefully
selecting sampling points instead of using random sampling.

4. EVALUATION METHODOLOGY

To evaluate the fidelity of each submitted method for each
sub-task, we computed the root mean square error (RMSE),
excluding the sampling points of the ground truth samples
used to aid the radio map reconstruction. Specifically, for
each Task t and rate r, we computed the RMSE via (2), where
1{·} is the indicator function, D denotes the test dataset, and

P̃L
t,r

n (i, j) and PLn(i, j) are the predicted and the ray trac-
ing ground truth PL values in dB of the n-th radio map at
pixel (i, j), respectively. The final score F was calculated as a
weighted average of the RMSEs of the sub-tasks

F = 0.3× (RMSE1,0.02% + RMSE1,0.5%) +

0.2× (RMSE2,0.02% + RMSE2,0.5%).
(3)

5. SUBMITTED METHODS
Out of the eleven submissions, seven solutions demonstrated
remarkable performance (cf. Table 1). We expound on these
approaches in the following subsections.

5.1. Feng et al. [13]
SAIPP-Net is a UNet-based neural network that incorporates
consecutive dilated convolution layers. It uses an augmented
model channel input that improves upon the standard 3GPP
InH model by incorporating a learnable material attenuation
vector and a material count map. The authors assign higher
sampling probabilities to regions farther from the transmitter
and to those with larger signal gradients, estimated from an
initial radio map. For the 0.02% sampling rate, they first pre-
train a model without sampled values and then fine-tune it
using the sparse samples. In contrast, for the 0.5% sampling
rate, the sampled pathloss radio map is incorporated as an
additional input channel to the DNN.

5.2. Xing et al. [14]
The authors use a UNet-based model and, in addition to stan-
dard input features, include several environment-aware geo-
metric features such as obstruction count maps, accumulated
transmittance maps, free-space pathloss, and log-scaled dis-
tance as additional input channels. Each input channel is in-
dividually normalized to ensure a consistent dynamic range
across features. To handle varying propagation environment
sizes, they apply dynamic padding at the batch level. They
also employ a hybrid sampling strategy that allocates 95%
of the sampling budget to uniform points and 5% to corner
points, which are extracted using the Harris detector from the
reflectance channel.

5.3. Zheng et al. [15]
The proposed model is built on a UNet encoder–decoder
architecture and incorporates an enhanced Transformer mod-
ule. The conventional fully connected linear layers in the



Table 1: Competition results showing the RMSEs (in dB) of the submitted methods on the test set for the case of no samples (ablation
study), and for each sub-task, the final weighted RMSE, and the approximate run-time of each method (in milliseconds). Row 1 presents the
ablation study results, illustrating the impact of not using sparse ground truth samples as inputs. Rows 2–5 show how the methods performed
in each sub-task of the competition. Row 6: The final scores calculated as a weighted average of the RMSEs across these sub-tasks (3). Row
7: Rough average overall run-times (including pre-processing/fine-tuning) and inference times of the DNNs alone (in parentheses).

Team Feng et al. [13] Xing et al. [14] Zheng et al. [15] Chen et al. [16] Petrosyan et al. [17] TerRaIn [18] Kojima et al. [19] Javid et al. Tang et al. Ge et al. UDENAR
Ablation

(no samples) [dB] 6.90 11.17 7.00 6.42 6.85 6.71 16.08 N/A N/A N/A N/A

Task 1 0.02% [dB] 5.99 6.12 6.36 6.20 6.42 6.91 7.63 7.76 7.75 9.97 11.35
Task 2 0.02% [dB] 6.08 6.84 6.27 5.91 6.54 6.91 7.78 7.93 10.70 7.97 11.28

Task 1 0.5% [dB] 3.32 3.17 3.57 4.36 4.01 4.18 4.50 8.33 7.76 8.45 5.77
Task 2 0.5% [dB] 3.28 3.22 3.52 3.84 3.65 3.81 4.51 8.11 7.69 6.95 7.30

Final
(weighted) [dB] 4.67 4.80 4.94 5.12 5.17 5.47 6.10 8.04 8.33 8.51 8.85

Run-time
(rough) [ms] 65 (6) 13.84 (1.27) 38.27 (34.22) 57.18 (48.92) 90.32 (7.90) 151.82 (142.72) 15,82 (4.48) N/A N/A N/A N/A

self-attention and feed-forward modules within the Trans-
former are replaced with combinations of 1 × 1 pointwise
convolutions and depthwise separable convolutions. The
authors incorporate a gating mechanism that enables the net-
work to adaptively weight the features extracted from the
attention module, thus allowing it to handle complex and
diverse spatial feature distributions. The authors employ a
spatial structure-aware stratified sampling strategy that opti-
mizes sampling point distribution.

5.4. Chen et al. [16]
IRM-Net is a UNet variant that replaces traditional convo-
lutional layers with a cascaded combination of a Detail En-
hancement Block and a Detail Enhancement Attention Block
to enhance the extraction of localized, fine-grained features.
Dense connections are integrated into both the encoder and
decoder, and multi-level feature interaction pathways are con-
structed to improve multi-scale contextual awareness and mit-
igate information loss caused by downsampling and upsam-
pling operations. A radio map based on free-space pathloss
is used as an additional input feature. The authors propose
a range-based sampling strategy prioritizing locations farther
from the Tx.

5.5. Petrosyan et al. [17]
The authors use a UNet-based model featuring ResNet-34
encoder and Atrous Spatial Pyramid Pooling bottleneck and
additional input features of free-space pathloss, cumulative
transmittance losses, log-distance from the antenna, and a bi-
nary mask of padded pixels. Data augmentations include ro-
tation, distance scaling, synthetic wall insertion, and flipping.
Their distance-weighted sampling strategy sets probabilities
inversely proportional to Tx distance while enforcing min-
imum separation constraints. A variable-number sampling
method is adopted during training. This method allows for
the use of a single model for all considered sampling rates
and outperforms the use of separate models.

5.6. TerRaIn [18]
The authors use a UNet-based model featuring a shortcut
pathway that connects the sample input channel to the later
stages, along with double convolutions with residual connec-
tions and stacked dilated convolutions applied before each

upsampling and downsampling step. For Task 2, a uniform
grid sampling strategy that excludes points near the Tx is
used at the high sampling rate, while at the low sampling rate,
sampling is focused on regions with higher prediction errors,
typically areas with strong reflection effects. Transmittance-
spread and free-space pathloss are incorporated as additional
input features, and random flips and rotations are performed
for data augmentation.

5.7. Kojima et al. [19]
Sparse-Guided RadioUNet is a UNet-variant, which takes
the sampling mask as input, along with the samples and the
standard inputs, and uses instance normalization and Leaky
ReLU activations throughout. The authors applied random
rotations, flips, and crops of the inputs to augment the data.
Inspired by the classical anisotropic Total Variation regu-
larizer, they introduce a Spread Loss term that penalizes
discontinuities, though it may occasionally oversmooth sharp
transitions. Their sampling strategy prioritizes environment
edges, shadow regions, and line-of-sight/non-line-of-sight
transition areas while enforcing high separation between
sampling locations.

6. RESULTS AND CONCLUSIONS
The results of the competition are presented in Table 1 in de-
tail, while representative visual examples are shown in Fig. 2.
We would like to note that the reported run-times are based
on running the evaluation scripts of the participants (on an
NVIDIA RTX A5000 GPU) and should be considered rough
estimates, as they may not fully reflect the ultimate efficiency
of the methods.

The results show that all of the participants’ methods sub-
stantially benefited from samples at the high sampling rate. In
contrast, for many methods, samples at the low sampling rate
yielded only marginal improvements compared to the zero-
sample baseline (see ablation study in Table 1). In some
cases, such as in [18] and in the samples-as-input scenario of
[13], using low-rate samples even led to lower accuracy. Fur-
thermore, the selective sampling strategies employed by par-
ticipants generally did not produce consistent improvements
over random sampling across the two sampling rates, with
the exception of [15, 16]. We hope these general observations
serve as a strong motivation for future research.



Ground truth [13] RMSE: 3.69 [14] RMSE: 3.46 [15] RMSE: 3.59

[16] RMSE: 3.77 [17] RMSE: 4.28 [18] RMSE: 4.59 [19] RMSE: 4.03

Ground truth [13] RMSE: 4.48 [14] RMSE: 5.59 [15] RMSE: 4.36

[16] RMSE: 5.36 [17] RMSE: 5.52 [18] RMSE: 5.88 [19] RMSE: 6.50

Random sampling locations [13] RMSE: 4.33 [14] RMSE: 5.97 [15] RMSE: 4.52

[16] RMSE: 5.16 [17] RMSE: 5.79 [18] RMSE: 5.88 [19] RMSE: 6.14

Fig. 2: Examples from the test dataset and participants’ radio map estimates. The ground truth simulation and the radio map
estimates of the successful seven participants are shown along with their per-image RMSEs. Sampling points are indicated by
plus signs. Rows 1-2: An example from Building 4 (size 135 × 168) with sampling rate 0.5%, 114 sampling points chosen by
the participants (Task 2). Rows 3-4: An example from Building 2 (size 230 × 319) with sampling rate 0.02%, 15 sampling
points chosen by the participants (Task 2). Rows 5-6: The same example from Building 2 with sampling rate 0.02%, 15
samples. Each method was given the same samples, which were randomly selected by the organizers (Task 1).
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