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ABSTRACT

Text-to-SQL is to convert natural language queries into structured SQLs, facili-
tating user interaction with databases without any SQL knowledge. The advent
of LLM technologies significantly accelerates the text-to-SQL development. It is
important to construct an appropriate benchmark to evaluate the performance of
text-to-SQL models. However, existing text-to-SQL benchmarks are mainly pro-
duced by human annotations and suffer from limitations of low SQL complexity,
single questioning mode, and low scalability. To address these limitations, we
present a new multidimensional text-to-SQL benchmark, called OCTOPUS, which
contains comprehensive evaluation metrics and fully auto-generated datasets. OC-
TOPUS has 9 first-level metrics and 18 second-level metrics from four dimensions
to evaluate the performance of text-to-SQL systems, including accuracy, robust-
ness, interactivity, and generalization. To help the benchmark construction, we
also propose a series of fully automatic text-to-SQL data generation methods,
which reduce human involvement, improve efficiency, and support higher scal-
ability. OCTOPUS consists of 10,885 complex question-SQL pairs and 10,874
multi-turn dialogues over 74 public databases. We evaluate state-of-art text-to-
SQL models on OCTOPUS and find they have unsatisfactory performance in all
testing metrics and are still far from practical applications. OCTOPUS can be used
to enhance the accuracy and utility of text-to-SQL models.

1 INTRODUCTION

Text-to-SQL is an active research area at the intersection of natural language processing (NLP)
and database management, aiming at bridging the gap between human language and database
queries (Gkini et al., 2021; Kim et al., 2020; Katsogiannis-Meimarakis & Koutrika, 2023; Li et al.,
2024a). Text-to-SQL enables users to retrieve or manipulate database through natural language
queries even without any SQL knowledge. Recently, it has been witnessed a significant advance-
ment of text-to-SQL fueled by the breakthroughs in large language models (LLMs) (Fu et al.,
2023; Fan et al., 2024; Gu et al., 2023; Gao et al., 2024). According to the SPIDER leaderboard1,
a well-known benchmark for text-to-SQL, the top-performing model has achieved an execution ac-
curacy of 91.2%, and many other solutions integrating LLMs have generally reached accuracies
above 80%. Despite of the considerable advancements, there are still many challenges, including
1) the lack of comprehensive and fine-grained benchmarks that accurately reflect the complexity
of real-world queries, 2) poor performance of text-to-SQL systems on handling ambiguous, com-
plex and domain-specific queries, and 3) the difficulties of integrating of text-to-SQL models into
user-friendly applications. Nowadays, the research on text-to-SQL has shifted towards addressing
limitations of existing text-to-SQL models in real-world applications where models are required to
generate more complex SQL statements and handle ambiguous or incomplete user queries (Sen
et al., 2020; Guo et al., 2019; Deng et al., 2021; Wang et al., 2023).

However, existing benchmarks are not sufficient to satisfy the above evaluation requirements due
to the discrepancies of the distribution between test data and real-world data. They fail to of-
fer fine-grained targeted evaluation or provide comprehensive and multi-dimensional evaluation

1https://yale-lily.github.io/spider
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Table 1: Overview of our benchmark metrics

Test
Dimension

First-level Metrics Second-level Metrics

Accuracy

Database Complexity
Field Naming Complexity

Table Similarity

Table Coupling Degree (Minimum number of tables that need to be involved in a query)

Gold SQL Complexity SQL Structural Complexity

SQL Operation Diversity

NL (Natural Language) Question Diversity Diversity in NL Questioning Ways

Ambiguity of NL Questions

Logical Reasoning Complexity Number of Reasoning Steps Required to Obtain the Query Result from the Question

External Knowledge Complexity Variety of External Knowledge Required for Generating SQL from Questions

Number of Items of External Knowledge Required for Generating SQL from Questions

Robustness

Confusion Question Testing

Questions in the Dataset Including Everyday Conversations (Non-SQL Q&A)

Questions in the Dataset Including Ambiguous Questions

Questions in the Dataset Requiring Querying Information Outside the Database

Questions in the Dataset Including Queries Not Supported by SQL Statements

Perturbation Testing
Including Perturbations to the Database

Including Perturbations to Natural Language Questions

Interactivity Multi-turn Q&A Dataset Containing Multi-turn Interactive Q&A

Generalization SQL dialect diversity Dataset Containing SQL Statements in Multiple Database Languages

metrics. For instance, the targeted SQLs of SPIDER are relative simple and based on small-
scale databases, whereas real-world SQL queries are more complex and often based on large-scale
databases. BIRD (Li et al., 2024b) enhances database complexity in SPIDER by incorporating large
databases, domain knowledge, and a new evaluation metric about the execution speed. However, it
still lacks consideration for the diversity and ambiguity of user queries, lacks detailed categorization
and definition of domain knowledge types, and suffers from insufficient diversity in SQL operations
and high generation cost based on manual generation. SCIENCEBENCHMARK (Zhang et al., 2024b)
proposed a semi-automatic text-to-sql dataset generation method based on manual generated seed
dataset and generated a challenging benchmark over three domain-specific databases. Although
SCIENCEBENCHMARK is more closer to the real application scenario for the professional domain
and improve scalability of the benchmark through semi-automatic generation method, it still needs
SQL experts’ effort to generate seed data and the diversity of generated samples is limited by the
seed data.

To address the above limitations of the existing benchmarks, we propose a novel benchmark de-
signed to evaluate the multi-dimensional capabilities of text-to-SQL systems. Based on four perfor-
mance dimensions of text-to-SQL systems—accuracy, robustness, generalization, and interactivity,
we design 9 first-level metrics and 18 second-level metrics to formulate our benchmark. To facil-
itate our benchmark construction and improve scalability, we also design and implement a series
of question-SQL pair generation algorithms and pipelines for the automatic construction of our
benchmark. Our benchmark consists of 10,885 complex question-SQL pairs and 10,874 multi-turn
dialogues over 74 public databases, covering 9 first-level metrics and 18 second-level metrics. We
evaluate state-of-art text-to-SQL models on OCTOPUS and find they have unsatisfactory perfor-
mance in all testing metrics and are still far from practical applications. The evaluation results show
the importance of OCTOPUS to be proposed. OCTOPUS can be used to enhance the accuracy and
utility of text-to-SQL models. The main contributions of our paper are summarized as follows:

2 RELATED WORK

To improve the accuracy of text-to-SQL models and promote the practical application of text-to-SQL
systems, many famous benchmarks have been proposed in recent years. SPIDER (Yu et al., 2018) is
the first well-known benchmark to introduce a cross-domain dataset containing SQL queries of vary-
ing difficulty levels and to propose two evaluation metrics for measuring the accuracy of text-to-SQL
models. Based on SPIDER, the DR.SPIDER benchmark (Chang et al., 2023) provides a comprehen-
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Root1(3) Root(0) Sel(0) N(0) A(0) 
Op(0) C(2) T(0) C(2) T(0) Sup(0) 
A(3) Op(0) C(0) T(1) C(0) T(1) 
Filter(18) A(0) Op(0) C(1) T(0) 
C(1) T(0) Root(5) Sel(0) N(0) A(0) 
Op(0) C(9) T(1) C(9) T(1)

SELECT T2.roomName 
FROM Reservations AS T1 
JOIN Rooms AS T2 ON 
T1.Room  =  T2.RoomId 
GROUP BY T1.Room ORDER 
BY count(*) DESC LIMIT 1

SQL Templates

Table 
Name

Column 
Name

Type Description

flight flno num flight_no

flight
destinat
ion

text
destination 
of the flight

… … … …

Sample Tables 𝐓 ∗ , Columns 
𝐂(∗) and Values V ∗

Generated SQLs

SELECT T1.aid FROM aircraft 
AS T1 JOIN flight AS T2 ON 
T1.aid = T2.aid  GROUP BY 
T1.aid  ORDER BY 
count( T2.destination) DESC 
LIMIT 1

Sampling Rules

• Define columns for categories
• Define columns relation for math ops
• Define non-aggregatable columns

Database Info

What is the 
aircraft ID that has 
flown to the most 
destinations?

SQL Generation 

Question Generation 

Original SQL 

SemQL

Readable SQLs

SELECT aircraft.aid FROM 
aircraft JOIN flight ON 
aircraft.aid = flight.aid  
GROUP BY aircraft.aid  ORDER 
BY count(flight.destination) 
DESC LIMIT 1

SQL Clauses Hints

SELECT  
aircraft.aid

GROUP BY  
aircraft.aid

ORDER BY  
count(flight.
destination) 

DESC

LIMIT  1

Retrieve the 'aid' from 
the 'aircraft' table

group the results by 'aid'

sort by the count of 
'destination' in the 'flight' 
table in descending order

show only the most 
frequent one

decompose

GPT4
Translator

NL Questions

Translate prompt

Question-SQL Pair Selection 

Question: What is the aircraft ID that has 
flown to the most destinations?

SQL: SELECT T1.aid FROM aircraft AS T1 JOIN 
flight AS T2 ON T1.aid = T2.aid  GROUP BY 
T1.aid  ORDER BY count( T2.destination) 
DESC LIMIT 1

Question-SQL Pairs

GPT4
Scorer

Filter Rules

• Question quality≥80
• SQL quality ≥80
• Consistency ≥80
• Significance ≥80

High-Quality QA Pairs

Question: What is the aircraft ID that has 
flown to the most destinations?

SQL: SELECT T1.aid FROM aircraft AS T1 
JOIN flight AS T2 ON T1.aid = T2.aid  GROUP 
BY T1.aid  ORDER BY count( T2.destination) 
DESC LIMIT 1

Figure 1: Overview of the pipeline for question-SQL pairs automated generation

sive evaluation framework for assessing the robustness and generalization across diverse domains
and complex SQL queries. BIRD (Li et al., 2024b) incorporates real-world large-scale databases
and more complex SQL queries, and further emphasizes the impact of noisy database values and ex-
ternal knowledge. In addition to the above benchmarks that focus on single-turn question-SQL pair,
some works focus on evaluating the ability of text-to-SQL systems to engage in multi-turn conversa-
tions. SPARC (Yu et al., 2019b), CHASE (Guo et al., 2021) and COSQL (Yu et al., 2019a) extend
question-SQL pairs from SPIDER to multi-turn dialogues, thereby building cross-domain corpus
with different conversation types and languages. Our benchmark is the first automatically generated
multidimensional benchmark covering fine-grained metrics to evaluate the comprehensive ability of
text-to-SQL models.

3 BENCHMARK DESIGN

From the perspective of practical applications, we summarize and formulate four dimensions of
metrics to evaluate text-to-SQL systems: accuracy, robustness, interactivity and generalization. We
further divide each dimension into more fine-grained metrics with two levels. We design and develop
our benchmark following these metrics to ensure a comprehensive evaluation of the text-to-SQL
system’s capabilities across different facets. The overview of our benchmark metrics is listed in
Table 1. We will briefly introduce the benchmark metrics in the following due to the page limit. The
detailed definitions of our benchmark metrics is described in Appendix A.

Accuracy Ensuring the correctness of generated SQLs is the primary requirement of text-to-SQL
system. The difficulty of generating SQL is affected by many factors in real applications. For test-
ing the accuracy of text-to-SQL systems, we formulate five first-level evaluation metrics, including
Database Complexity, Gold SQL Complexity, Natural Language Question Diversity, Logical Rea-
soning Complexity and Domain Knowledge Complexity. These metrics involve the major challenges
faced by text-to-SQL systems when generating correct SQLs and require the benchmark to contain
targeted test samples that meet the above metrics.

Robustness A stable text-to-SQL system needs to be robust to disturbances and changes from
internal and external sources. We aim to test the robustness of the text-to-SQL system from two fol-
lowing aspects: Confusion Question Testing and Perturbation Testing. These two metrics require the
benchmark samples simulate perturbations that occur in real applications to evaluate the robustness
of text-to-SQL systems.

Interactivity A user-friendly text-to-SQL system needs to handle variable user queries. The met-
ric in this dimension requires the benchmark dataset to contain multi-turn question-SQL pairs in dif-
ferent conversations to test the text-to-SQL systems’ ability to handle multiple rounds of dialogue.
Multi-turn Q&A samples in the text-to-SQL domain should closely mimic the user’s question pat-
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terns observed in real applications. Additionally, they must precisely present the correct response
behavior of text-to-SQL systems.

Generalization A general text-to-SQL system needs to have the ability to support multiple types
of database systems. This metric requires the benchmark to contain gold SQLs in multiple SQL
dialect formats to test the generalization ability for different database systems. SQL dialect diversity
can be measured by the number of SQL dialects. To the best of our knowledge, this metric has not
been mentioned in previous benchmarks, and our paper is the first to propose it.

4 BENCHMARK CONSTRUCTION

4.1 DATABASE COLLECTION

Figure 2: The domain distribution of bench-
mark databases

To simulate real-world scenarios as much as possible for
testing a text-to-SQL system, we manually collected 74
real-world complex databases from the internet. The
source of databases includes MySQL example databases2

(7%), WikiDBs3 (7%), CTU Prague Relational Learn-
ing Repository4 (27%), Kaggle5 (32%), and SPIDER
benchmark (Yu et al., 2018) (27%). MySQL official
website provides 5 high-quality and large-scale example
databases to test the functionality of MySQL database
system, which is collected to construct our benchmark.
WikiDBs (Vogel & Binnig, 2023) is a novel open-
source corpus of 10,000 relational databases collected
from Wikidata, each of which consists of multiple ta-
bles connected by foreign keys. We manually select
complex databases with at least 8 tables from WikiDBs.
The CTU Prague Relational Learning Repository is an
open platform for machine learning with multi-relational
data which hosts 50 databases. We select top 20 com-
plex databases from CTU. Also, we sampled 20 databases
from SPIDER with consideration of intersectionality. The
rest of databases are selected from Kaggle, which contains high-quality dataset for data science
competitions and collaboration. In our database collection, we specifically select large and complex
databases, characterized by numerous tables, extensive fields, and intricate foreign key constraints,
to closely simulate real-world enterprise databases. Our 74 public databases reaches 23 GB, and
covers a wide range of specific domains, such as sports, finance, medicine, retail, etc.

4.2 DATASET CONSTRUCTION

In previous famous benchmarks (Li et al., 2024b; Yu et al., 2018), question and SQL genera-
tion is completed by human writers and annotators expert in text-to-SQL. Obviously, it is often
time-consuming and labor-intensive if relying only on manual generation. To effectively gener-
ate question-SQL pairs and improve scalability, we propose a new question-SQL pair generation
pipeline which can fully automate the generation of SQLs along with corresponding questions over
any database. As shown in Figure 1, our fully automated generation pipeline is composed of three
main parts: SQL generation, Question generation, and Question-SQL pair selection. The following
will describe the details of our generation algorithm.

SQL Generation: We integrate the SQL generation technique from SCIENCEBENCHMARK
(Zhang et al., 2024b) with SQL templates derived from real-world applications to automate SQL

2https://dev.mysql.com/doc/index-other.html
3https://wikidbs.github.io/
4https://relational-data.org/
5https://www.kaggle.com/
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generation. We first construct a SQL template library comprising SQL templates with various struc-
tures. To obtain SQL templates, we collect SQLs from the internet, previous benchmarks, and
enterprise applications, then convert them into an Abstract Syntax Tree (AST) representation called
SemQL (Guo et al., 2019). In these SQL templates, let the three placeholders T(∗), C(∗), and
V(∗) replace tables, columns, and values related to the database respectively. To generate SQLs
on a specified database, the sampling algorithm takes configured sampling rules and the database
information as input and then fills the placeholders with concrete values according to the specified
database. The sampling rules specify the scope and priority of tables and columns to ensure seman-
tic correctness. Intuitively, the closest table measured by foreign key connections will be sampled
at a high priority. Columns are labeled with three types: categorical columns, computable columns,
and non-aggregatable columns. The column types are automatically annotated by our algorithm.
Then our algorithm automatically samples the columns using the proper type according to the SQL
operation. For example, the columns in the GROUP BY sub-clause will be only sampled from
the categorical columns. Given a specific database, above efficient SQL generation method can
automatically generate lots of SQL statements without any heavy human labor.

Question Generation: After generating SQLs on the specific database, we automatically trans-
form SQLs into the corresponding natural language (NL) questions using the state-of-the-art LLM—
GPT-46. Recent research (Zhang et al., 2024a) benchmarked the capabilities of LLMs in various
Text-to-SQL sub-tasks. Notably, GPT4 achieves the highest performance in the SQL-to-Text sub-
task. It shows the potential of GPT-4 in automatically generating NL questions for given SQLs.
However, directly prompting GPT-4 to translate complex SQL statements into NL questions always
leads to inaccuracies, because GPT-4 may misunderstand nested structures and aliases within SQL
statements or overlook critical details such as specific fields or filter conditions. To address these,
we introduce a SQL decomposition step before translation, as referenced in the previous data aug-
mentation work (Wu et al., 2021). Our algorithm first decomposes a SQL statement into several
sub-clauses separated by SQL keywords such as SELECT, WHERE, GROUP BY, ORDER BY,
etc. For nested structures in a SQL query, our algorithm recursively decomposes sub-queries and
integrates them into a list of SQL clauses. We utilize GPT-4 with the few-shot prompting tech-
nique (Brown et al., 2020) to roughly translate SQL clauses into NL descriptions based on their
functionalities and the information retrieved. Few-shot examples are randomly sampled from the
training data for the clause-to-subquestion translation model (Wu et al., 2021). These NL descrip-
tions for SQL clauses, referred to as hints, are fed into GPT-4 along with the database description.
Finally, GPT-4 combines the original SQL statement, hints, and database description to produce
the comprehensive translated NL question. The complete prompt is shown in Figure 8 in Appendix.
With the hints and database descriptions, GPT-4 can generate more accurate and authentic questions,
which are indistinguishable from those proposed by real users.

Question-SQL Pair Selection: Although our question-SQL pair generation algorithm incorpo-
rates well-designed techniques and strategies to improve semantic correctness, there may still be
some abnormalities in the generated data, such as unreasonable column sampling, question-SQL
inconsistency, and meaningless query results. To further enhance the quality and availability of
the generated data, we define a new question-SQL pair selection step after generation. Recent re-
search (Lin & Chen, 2023) on LLM evaluation for open-domain conversations demonstrates the
effectiveness and efficiency of using LLMs to evaluate conversation quality. This research high-
lights the potential of LLMs as effective automatic evaluators. Therefore, we employ the reasoning
capabilities of GPT-4 to evaluate and filter generated question-SQL pairs. We formulate four fine-
grained scoring metrics to measure the quality of question-SQL pairs: Question quality, SQL quality,
Consistency and Significance. 1) Question quality score reflects the clarity and fluency of the ques-
tion and how relevant it is to potential users. 2) SQL quality score reflects the correctness of the
SQL statement in terms of syntax and its ability to retrieve the correct data. The other two scoring
metrics are assessed by considering the question-SQL pair as a unified entity. 3) Consistency score
reflects the degree to which the SQL statement aligns with the intention of the question, aiding in
the elimination of question-SQL inconsistency. 4) Significance score reflects the likelihood that the
query would be posed by real users, as well as the informativeness and meaningfulness of the query
results. It is designed to eliminate correct but meaningless question-SQL pairs. All scoring met-
rics are individually rated by GPT-4, with each sub-score ranging from 0 to 100. Finally, we retain

6https://openai.com/gpt-4
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question-SQL pairs with all sub-scores greater than or equal to 80 as a high-quality, automatically
generated dataset for constructing our benchmark. The prompt for question-SQL pair selection is
composed of three parts: criteria prompt, one shot prompt and rate qa prompt. Criteria prompt
outlines the specific scoring criteria, including question quality, SQL quality, consistency, signifi-
cance. One shot prompt, containing a sample question-SQL pair and the corresponding scores, is
used to standardize the output format of the LLM. Rate qa prompt involves question-SQL pairs to
be scored and scoring instructions. The final prompt for the LLM input is shown in the Figure 6 in
Appendix.

Multi-turn Q&A Generation: For the generation of multi-turn dialogues, we refer to the previous
multi-turn data construction methods (Yu et al., 2019a;b). Differently from before, GPT-4 is used to
automatically generate samples encompassing multiple Q&A types. We randomly combine single-
turn Q&A types and utilize the chain-of-thoughts technique (Wei et al., 2024) to gradually expand
single-turn Q&A. Validation and correction by LLM are used to improve the quality of generated
Q&A pairs. Figure 4 in Appendix F shows the detailed generation pipeline.

Other Metric Datasets Generation: 1) For the generation of question-SQL pairs with external
knowledge, we manually collect relevant external knowledge about the specific database according
to the fine-grained categories. We then utilize GPT-4, combined with these external knowledge and
database information, to generate question-SQL pairs involving external knowledge. 2) For the gen-
eration of question-SQL pairs containing multiple logical reasoning steps, we manually summarize
several logical reasoning types, and then use GPT-4 to generate question-SQL pairs containing at
least three logical reasoning steps. 3) For the generation of question-SQL pairs covering diverse NL
questions, we utilize GPT-4 to rewrite user questions according to the types of NL questions defined
manually. 4) For the generation of question-SQL pairs supporting multiple SQL dialects, we analyze
and collect 21 unique characteristics for on SQL functions for five prevalent SQL dialects, including
SQL Standard, PostgreSQL, SQL Server, MySQl and Oracle. For each SQL function in Table 8 in
Appendix, we list the corresponding unique SQL keywords or functions for each SQL dialect, where
the symbol “–”indicates no corresponding keywords. Based on functions mentioned in Table 8, we
generate a total of 177 question-SQL pairs, covering these functions across four database systems.

Table 2: An overview comparison between our benchmark and other text-to-SQL benchmarks.

Dataset # Example # DB NL Diversity Ext Knowledge Logical Reasoning Robustness Interactivity Generalizaton

WikiSQL (Zhong et al., 2017) 80,654 26,521 ✗ ✗ ✗ ✗ ✗ ✗
Spider (Yu et al., 2018) 10,181 200 ✗ ✗ ✗ ✗ ✗ ✗

KaggleDBQA (Lee et al., 2021) 272 8 ✗ ✗ ✗ ✗ ✗ ✗
BIRD (Li et al., 2024b) 12,751 95 ✗ ✓ ✗ ✗ ✗ ✗

ScienceBenchmark (Zhang et al., 2024b) 5032 3 ✗ ✗ ✗ ✗ ✗ ✗
SParC (Yu et al., 2019b) 4,298 200 ✗ ✗ ✗ ✗ 4,298 ✗
CoSQL (Yu et al., 2019a) 3,007 200 ✓ ✗ ✗ ✗ 3,007 ✗
ADVETA (Pi et al., 2022) 11,455 178(+283 tables) ✗ ✗ ✗ ✓(Table Perturbation) ✗ ✗

Dr. Spider (Chang et al., 2023) 14999 200 ✗ ✗ ✗ ✓ ✗ ✗

Our benchmark 10,885 74 540 173 31 400 10,874 177

4.3 DATA STATISTICS

Our benchmark consists of 10,885 complex question-SQL pairs and 10,874 multi-turn dialogues
over 74 public databases, covering 9 first-level metrics and 18 second-level metrics. In detail, our
benchmark contains 9,964 question-SQL pairs automatically generated by our generation pipeline,
173 question-SQL pairs with external knowledge, 177 question-SQL pairs for testing generalization
of SQL dialects, 31 question-SQL pairs with complex logical reasoning steps and 540 question-
SQL pairs for NL question diversity. The databases collected in our benchmark spans more than
12 professional domains, including sports, finance, entertainment, health, science, etc. The detailed
distribution of the databases is illustrated in the Figure 2. The 74 databases along with question-
SQL pairs are divided into 3 subsets, 50 databases used as the training set, 13 databases belonged
to the dev set, and 11 databases belonged to the test set. Among them, question-SQL pairs related
to external knowledge, complex logical reasoning, NL question diversity, SQL dialect diversity
all belong to the test set. Table 2 provides a statistical comparison between our benchmark and
previously well-known benchmarks. The depth and width distribution of the SQLs in our benchmark
compared to SPIDER and BIRD is depicted in Figure 5 in Appendix. Our benchmark includes
more complex SQL queries with greater depth, and the width of our SQL queries reaches up to
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80, significantly surpassing other benchmarks. The distribution of SQL keywords and functions is
shown in Figure 3 in Appendix.

4.4 COST ANALYSIS OF DATA GENERATION

In our data generation pipeline, only the question generation and question-SQL pair selection parts
use the OpenAI gpt-4-turbo API, incurring API usage fees. Though batching multiple SQLs or
question-SQL pairs into one prompt, generating a question and scoring a question-SQL pair cost
0.01$ and 0.006$ respectively on average. Therefore, the cost of our data generation pipeline is
only 0.016$ for each question-SQL pair on average, which is much lower than the cost of manual
generation with intensive human labor (1.6$ for each question-SQL pair in BIRD (Li et al., 2024b)).

5 EXPERIMENTS

5.1 BASELINE MODELS

Incorporating LLMs with in-context learning (Dong et al., 2023) techniques is currently a popular
approach for text-to-SQL implemention. We selected several recent state-of-the-art LLMs for gen-
eral or specific domains as our baseline models to perform experiments on our benchmark, including
GPT-3.57, GPT-48, Llama39, Code Llama (Rozière et al., 2024), Gemma10, Mixtral11, Qwen (Bai
et al., 2023), WizardLM (Xu et al., 2024), and SQLcoder12. GPT-4 and GPT-3.5, developed by Ope-
nAI, are advanced closed-source general natural language processing models. GPT-4 demonstrates
significant improvements over GPT-3.5 in terms of linguistic accuracy, contextual comprehension,
and task execution capabilities. Llama3, Gemma, Mixtral and Qwen are well-known open-source
LLMs. WizardLM is fine-tuned Llama model based on generated complex instruction data. Code
Llama is the code-specialized fine-tuned LLM based on Llama 2, which are expert in code genera-
tion. SQLCoder, developed by Defog AI, is a state-of-the-art specialized large language model for
text-to-SQL tasks. Our experiments are conducted on a server with an Intel(R) Xeon(R) Gold 6133
CPU @2.50GHz and two NVIDIA A800 80GB PCIe GPUs utilizing a open-source LLM cloud
platform13.

5.2 EVALUATION METRICS

Following previous works (Li et al., 2024b; Yu et al., 2018; 2019a), we consider execution accu-
racy as our primary evaluation metric to measure the correctness of text-to-SQL systems. Following
previous work (Yu et al., 2019b), we introduce question match and interaction match metrics to eval-
uate the interactivity of text-to-SQL systems. Execution accuracy (EX): The EX Score is computed
as the proportion of samples in the evaluation set where the execution results of the predicted SQL
queries match those of ground-truth SQL queries. Question Match (QM) and Interaction Match
(IM): QM is the exact set matching score over all questions, and IM is the exact set matching score
over all interactions. The exact set matching score is 1 for each question only if all predicted SQL
clauses are correct, and 1 for each interaction only if there is an exact set match for every question
in the interaction.

5.3 EXPERIMENTAL SETTINGS

We conduct our experiments on the LLM API platforms together.ai & OpenAI and a server with
two NVIDIA A800 80GB PCIe GPUs. GPT-3.5, GPT-4, Llama3, Code Llama, Gemma, Mixtral,
Qwen, and WizardLM are deployed on the LLM API platforms, while SQLcoder is deployed on our
server. The ICL prompts input into LLMs for SQL generation are shown in Figure 7 in Appendix.

7https://platform.openai.com/docs/models/gpt-3-5-turbo
8https://openai.com/index/gpt-4
9https://llama.meta.com/llama3

10https://ai.google.dev/gemma
11https://mistral.ai/news/mixtral-of-experts
12https://github.com/defog-ai/sqlcoder
13https://www.together.ai
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Table 3: Model EX accuracy performance comparison.

Models Dev Set
Test Set

SQL complexity
External knowledge

Logical reasoningNL diversity
w/o

knowledge
w/

knowledge

GPT-3.5 54.46 56.22 11.50 12.00 9.67 37.00
GPT-4 62.16 62.13 27.00 28.00 16.12 40.00
Llama3 (70B) 49.60 57.72 12.71 15.60 12.90 40.55
Gemma (7B) 14.32 26.28 2.81 7.04 0.00 9.62
Code Llama (7B) 10.31 12.58 2.90 5.20 0.00 15.18
Code Llama (34B) 47.15 53.03 4.60 7.50 6.45 20.18
Code Llama (70B) 51.80 48.08 0.00 8.10 6.45 10.74
SQLcoder (7B) 6.06 5.95 0.00 0.00 0.00 2.03
SQLcoder (34B) 19.01 16.13 1.20 1.20 0.00 3.33
SQLcoder (70B) 23.59 21.03 1.20 1.20 3.22 4.07
Mixtral (8x7B) 33.98 46.91 2.90 12.70 0.00 20.18
Qwen1.5 (7B) 19.33 38.48 2.30 9.20 3.22 38.70
Qwen1.5 (72B) 42.89 57.27 12.10 17.90 12.90 38.70
WizardLM (13B) 35.49 32.97 0.58 2.30 0.00 4.25
Code Llama-SFT (34B) 74.67 74.57 6.93 10.98 3.22 40.55

For the sake of saving the number of tokens consumed, we batch ten questions into one prompt for
generate SQLs. When generating SQLs with LLMs, we set temperature = 0.7, top p = 1. For
fine-tuning Code Llama model with the training set for single-turn question-SQL pairs on our server,
we use the LoRA fine-tuning method and set r = 16, alpha = 32, lr = 5e − 5, batch size =
4, train epochs = 4. For fine-tuning LLM with multi-turn dialogues, we use QLoRA and set
r = 64, alpha = 16, lr = 5e− 5.

5.4 ACCURACY ANALYSIS

We first analyze the accuracy performance of baseline models on the dev set and test set of our
benchmark. The dev set and the SQL complexity part of test set contains 2,772 and 1,959 complex
question-SQL pairs respectively. In the following experiments, we construct the input prompt for
LLMs with the CREATE SQL of the database and a command for instructing LLMs to generate
SQLs. The results of model accuracy performance are shown in Table 3. Experimental results
demonstrate that our benchmark is challenging to most advanced LLMs, and even the state-of-art
model, GPT-4, only achieves about 62% EX accuracy. Although the open-source models including
Code Llama and SQLcoder have been trained in previous benchmarks, their performance is inferior
to that of the closed-source model due to the small scale of parameters and the lack of training on
our benchmark. This indicates that our benchmark has made up for the missing data patterns in
the previous benchmark. Code Llama SFT (34B) training on our train set can achieve nearly 75%
execution accuracy, surpassing that of GPT-4. We then evaluate the accuracy performance of models
on other metrics. Based on the home-credit-default financial database, the external knowledge,
logical reasoning and NL question diversity parts of the test set contains 17,331 and 540 question-
SQL pairs respectively. The results show that all models exhibit inadequate performance in handling
these complex aspects, indicating significant room for improvement. It is essential to design targeted
promotion strategies to address these deficiencies.

5.5 ROBUSTNESS ANALYSIS

To evaluate the robustness of baseline models, we construct 400 unanswerable questions classified
in four types: everyday questions, ambiguous questions, outside-database questions, and Non-SQL
questions based on the databases of test set. Each type contains 100 different questions. We prompt
the baseline models to evaluate whether the current question can be answered using SQL. If the
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Table 4: Comprehensive model performance analysis.

(a) Robustness performance

Models Everyday Ambiguous Outside Non-SQL

GPT-3.5 100 0 100 100
GPT-4 100 0 100 0
Code Llama 0 0 0 0
SQLcoder 100 70 40 70

(b) Model’s support for SQL dialect features

Models PostgreSQL SQL Server MySQL ORACLE Overall

GPT-4 44.44 38.89 77.78 57.89 54.79
GPT-3.5 10.00 0.00 63.64 36.36 16.43
Code Llama 33.33 0.00 83.33 26.32 35.61
SQLcoder 38.89 33.33 33.33 31.58 34.24

(c) Interactivity performance

Models QM IM

GPT-3.5 32.20 10.40
GPT-4 33.60 10.80
Code Llama 6.40 1.40
Code Llama-SFT 50.90 24.20
SQLcoder 0.70 0.00
SQLcoder-SFT 46.20 19.80

question cannot be answered based on the database information, the models output cannot answer.
We investigate the baseline model’s responses to confusion questions. As shown in Table 4a, the
number indicates the ratio of correctly identified unanswerable questions. The results show that none
of the baseline models can accurately handle all types of confusion questions. Ambiguous questions
are the most confusing and challenging for all models. It is worth noting that GPT-4 outputs SQLs
when encountering ambiguous and Non-SQL questions, but GPT-4 will output extra explanation
about the ambiguity of the questions or output SQLs to extract required information for the next
Non-SQL operations.

5.6 INTERACTIVITY ANALYSIS

To evaluate the interactivity of baseline models and the quality of our generated data, we fine-tune
the open-source LLMs on our multi-turn dialogues, and then test the interactivity performance of
models on COSQL (Yu et al., 2019a) dev set. The QM and IM results are shown in Table 4c,
which show that untrained open-source models cannot process other types of questions in multi-turn
dialogues. After training these models, there is an increase of nearly 50% in QM and 20% in IM.
This demonstrates that our automatically generated data can effectively improve the interactivity
performance of the model.

5.7 GENERALIZATION ANALYSIS

We summarized total 21 features for four SQL dialects, including PostgreSQL, SQL Server, MySQL
and Oracle. We construct specific question-SQL pairs for each feature and test 73 question-SQL
pairs on baseline models. The comparison of baseline models on generalization ability is shown
in Table 4b. GPT-4 supports the most features across four SQL dialects, showcasing its strong
generalization ability. SQLcoder, which claims to support multiple database systems, also covers
nearly half of the SQL dialect features. The experimental results on generalization analysis indicate
that the current support for SQL dialects of current LLMs is not comprehensive enough and needs
to be strengthened.

6 CONCLUSION

Our multidimensional text-to-SQL benchmark, OCTOPUS, comprising 10,885 complex question-
SQL pairs and 10,874 multi-turn dialogues across 74 public databases. With well-designed metrics
and automatic generation pipelines, OCTOPUS not only provides a more fine-grained evaluation of
text-to-SQL model performance, but also reveals deficiencies in current text-to-SQL models. De-
pending on our automatic data generation pipeline, OCTOPUS is highly scalable and can be expanded
at a low cost. The evaluation of advanced text-to-SQL models on OCTOPUS has revealed consider-
able room for improvement, highlighting the necessity for further research and development in this
domain.
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7 ETHICS STATEMENT

The development of the OCTOPUS benchmark was guided by ethical considerations regarding data
sourcing, model usage, and the potential impact of the research. All databases utilized in our bench-
mark were sourced from publicly available and open-source repositories, and were carefully selected
to ensure they do not contain personally identifiable information (PII) or other sensitive data. We
acknowledge that the large language models (LLMs) used for data generation, such as GPT-4, may
reflect biases present in their training corpora. However, the primary purpose of our work is to cre-
ate a comprehensive evaluation tool that can help researchers identify and ultimately mitigate such
weaknesses in text-to-SQL systems. The overarching goal of this research is to advance technol-
ogy that democratizes data access for non-technical users, which we believe is a positive societal
contribution. Furthermore, our automated generation pipeline is designed to reduce the reliance on
intensive manual annotation, promoting a more sustainable and cost-effective approach to bench-
mark creation.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we have provided
detailed descriptions of our experimental setup in Section 5, including the baseline models (Section
5.1), evaluation metrics, and implementation settings. Crucially, the full prompts used for data
generation and model evaluation are included in the Appendix (Figures 6, 8, and 7) to allow for
precise replication of our interactions with the large language models. Upon publication of this
paper, we will publicly release the complete OCTOPUS benchmark dataset, including all question-
SQL pairs, multi-turn dialogues, and associated database schemas. Furthermore, we will release all
the source code used for data generation, model evaluation, and analysis. This will enable other
researchers to verify our results, build upon our work, and use OCTOPUS to evaluate their own
text-to-SQL systems.
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APPENDIX

A THE DETAILED DEFINITIONS OF FIRST-LEVEL AND SECOND-LEVEL
METRICS

The detailed definitions of the first-level and second-level metrics not mentioned in the main paper
are illustrated below.

Table 5: Definition of external knowledge categories.

Primary Category Secondary Category Definition

Database Internal Knowledge Table Definition Descriptions of the meaning of an entire table
in the database

Field Description Descriptions of the meanings of field names in
a table

Value Description Detailed descriptions of database values, in-
cluding value types, ranges, and categories

Database External Knowledge Concept Description Detailed explanations of relevant noun con-
cepts in a specific domain

Calculation Description Calculations and formulas associated with
database fields

Relation Description Entity relationship descriptions for fields and
values, such as inclusion and composition

Constant Definition Constants and statistical data values related to
specific domains

Abbreviation/Alias Descriptions of abbreviations and aliases for
specific domains

Database Complexity. We focus on the complexity of the data model when considering the con-
cept of database complexity. A data model with lengthy field names and complex foreign key as-
sociations will increase the difficulty of extracting relevant table information and generating JOIN
clauses for text-to-SQL system based on user questions. In order to test the understanding and infor-
mation extraction capabilities of a text-to-SQL system on complex database structures, we further
decompose database complexity metric into three second-level metrics, containing field naming
complexity, table similarity, and table coupling degree from perspective of increasing the difficulty
of SQL generation.

• Field Naming Complexity. This metric requires the benchmark dataset to contain diverse
and complex field naming method. We expect the benchmark to contain databases with
different field naming styles including English, Chinese, and Abbreviation. Meanwhile,
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we expect the database field names to be as long as possible to test if the LLM based on
probability can output the field name accurately and stably.

• Table Similarity. Table similarity is defined as the overlapping degree of the set of fields
of two tables. The higher the overlapping degree of two tables, the closer their seman-
tic meanings are and the harder for LLMs to distinguish them. This metric requires the
databases in our benchmark to contain tables with high similarity as many as possible. It
is designed to examine the text-to-SQL system’s ability of retrieval for relevant tables and
columns.

• Table Coupling Degree. We defined the table coupling degree of a database as the density
of database graph where tables are treated as nodes and foreign key constraints are regarded
as edges. Higher table coupling degree means that querying the same information needs
more JOIN operations in one SQL, which is a key challenge in the text-to-SQL translation
process. This metric requires the benchmark to contain the databases with higher table
coupling degree to inspect the ability of JOIN clause generation for complex SQL.

Gold SQL Complexity. Gold SQLs are correct SQL statements corresponding to user questions,
which should be predicted by text-to-SQL models. We measure the gold SQL complexity from the
following two perspectives: SQL structural complexity and SQL operation diversity. We design
this metric to concentrate on assessment of text-to-SQL system’s ability for SQL generation part.

• SQL structural complexity. We utilize the depth and width of the AST(Abstract Syntax
Tree) of SQL statements to assess the SQL structural complexity. A deeper AST structure
often indicates that the SQL statement has a higher level of nested structure, meanwhile, a
wider AST structure implies that the SQL statement has a greater number of clauses, which
poses a great challenge for SQL generation. We set this metric to guide our benchmark to
contain more deeper and wider SQL samples to test text-to-SQL system’s ability in aspect
of generating complex SQLs.

• SQL operation diversity. To enhance the comprehensiveness of our benchmark, it is im-
perative to include SQL samples that not only exhibit more intricate structures, but also
encompass a broader array of SQL operations, including diverse keywords, functions, and
additional syntactic elements. We aim for our benchmark to encompass as wide a range of
SQL syntactic operations as possible to assess the text-to-SQL model’s comprehension of
SQL syntax.

Natural Language(NL) Question Diversity. Natural language questions are proposed by users
and treated as input by text-to-SQL systems. Most text-to-SQL systems do not format questions
input by users, thus natural language questions containing different kinds of forms and variations.
Taking the impact of natural language questions on accuracy for text-to-SQL systems into consider-
ation, we depict the natural language question diversity into two fine-grained metrics: Diversity in
NL Questioning Ways and Ambiguity of NL Questions.

• Diversity in NL Questioning Ways. This second-level metric concentrates on the different
ways of natural language questions being asked regardless of information it contains. For
example, we regard “What are the maximum and minimum budget of the departments?”
and “List the maximum and minimum budget of the departments?” as two different ques-
tioning ways but querying the same information. In our benchmark, we change the ques-
tioning ways of users’ queries to test if the accuracy of text-to-SQL system will decline
under different circumstances.

• Ambiguity of NL Questions. Due to the fact that users of text-to-SQL systems are usu-
ally not expert in database systems and SQL syntax, questions proposed by them could
be ambiguous and vague, including synonyms and implications. This metric is designed
to simulate ambiguous natural language questions by categorizing different types of such
questions as encountered in real-world scenarios, in order to evaluate the capability of text-
to-SQL systems to respond accurately to these questions.

Logical Reasoning Complexity. A complex SQL statement frequently involves intricate logical
reasoning steps, which can be decomposed into a sequence of simpler SQL query statements in
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order. We define a logical clause in a complex SQL query, such as JOIN, GROUP BY, SORT, or
SUBQUERY clauses, which can be dismantled to obtain an intermediate result, as a constituent step
in the logical reasoning process. Logical reasoning complexity means the number of logical reason-
ing steps required to generate one complex SQL statement. Our benchmark introduces this metric
and constructs question-SQL pairs with high logical reasoning complexity to test the reasoning ca-
pabilities of text-to-SQL systems.

External Knowledge Complexity. Real-world databases cover multiple domains and different
definitions. Incorporating descriptions of databases and domain-specific knowledge is essential for
text-to-SQL systems to generate executable and accurate SQL queries. For example, considering
a situation where a financial database contains one table Transactions(ID, Revenue, Cost, Date)
and a user question is ”Calculate the total profit for all transactions.”, the text-to-SQL system must
comprehend the calculation of profit corresponding to the equation Profit=Revenue-Cost to generate
the correct SQL ”SELECT SUM(Revenue - Cost) AS TotalProfit FROM Transactions”. Based on
the analysis of user problems that may occur in real scenarios and the integration of other related
research on external knowledge, we summarize and classify the external knowledge that text-to-sql
system may need to generate correct SQLs, as detailed in Table 5. In our paper, we consider that the
external knowledge can be divided into two main categories based on the relevance to the database,
one is the internal knowledge of the database which is database-specific, the other is knowledge
external to the database the database which contains common sense and domain-specific knowledge.
We further split these two kinds into more fine-grained categories. We set the variety and number of
external knowledge required for generating gold SQLs as the second-level metrics to form a subset
dataset containing various user questions related to external knowledge for testing the text-to-SQL
systems’ ability to retrive and understand external knowledge.

Confusion Question Testing. In real-world scenarios, user questions are diverse and may in-
clude some distracting questions. We have defined four types of confusion questions referring to
the Dr.spider benchmark (Chang et al., 2023): Everyday Conversations (Non-SQL Q&A), Am-
biguous Questions (one question corresponding two or more correct SQLs), Unanswerable Ques-
tions(querying information outside the database), and Unsupported Questions(querying operations
not supported by SQL statements such as plotting figures). We introduce these confusing ques-
tions to test the ability of the text-to-SQL system to identify and process questions that cannot be
answered.

Perturbation Testing. A robust text-to-SQL system must exhibit resilience against potential vari-
ations that may arise during the course of user interaction. To evaluate the robustness of the text-
to-SQL systems, we stimulate two real-world common kinds of perturbations in our benchmark:
Perturbations to the database and Perturbations to natural language questions. It is common for
database tables, fields, and records to be updated in enterprise applications, and user questions may
also contain replacement changes. We aim to simulate these two types of perturbation through
constructing samples to measure how robust a text-to-SQL system is.

A.1 DEFINITION OF EXTERNAL KNOWLEDGE CATEGORIES

We further divide external knowledge into two categories: Database Internal Knowledge and
Database External Knowledge.

Database internal knowledge refers to specific information about databases that cannot be accessed
or obtained through a standard connection to the database system. In real applications, database ad-
ministrators often use abbreviations to name tables and columns (also called fields) for convenience.
These tables and fields are frequently not well-documented within the database, making it challeng-
ing for text-to-SQL systems to comprehend the database structure. Although we can obtain the data
types and sample values of fields through the database system, the specific meanings represented
by these values (e.g., ’F’ representing ’female’) are difficult for text-to-SQL systems to understand.
Therefore, text-to-SQL systems need to combine detailed descriptions for the specific database in-
cluding table definition, field description and value description as external knowledge to generate
the correct SQL statement. This kind of external knowledge varies with different databases.
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Database external knowledge refers to the external information independent of the specific database,
which is often common sense or domain knowledge. We further divide database external knowledge
into 5 secondary categories: Concept Description, Calculation Description, Relation Descrip-
tion, Constant Definition and Abbreviation/Alias. The definitions of these categories are listed in
the Table 5. Let us give a concrete example for each category to make it easier to understand. For
example, DPD, short for Days Past Due (Abbreviation/Alias), indicates how many days have passed
since the due date of the loan or credit card payment (Concept Description). Profit equals revenue
minus cost, which is a simple example of calculation description. Relation description involves
inclusive and non-inclusive relationships, such as “China belongs to an Asian country”. Constant
definition describes the specific values not included in the database corresponding to the concept.
π = 3.1415926 is a simple example for this category. In our samples related to external knowl-
edge in the dataset, we have detailed annotations of the involved external knowledge descriptions
and classifications. It is worth noting that a single sample may involve multiple entries of external
knowledge.

A.2 THE DEFINITIONS OF CATEGORIES FOR NL DIVERSITY

We summarize and define the types of possible variations on user questions in practical text-to-SQL
systems in Table 7. These types are used to guide the generation of test samples for NL diversity.
We paraphrase the original questions of question-SQL pairs to rewritten questions with the help of
GPT-4. A rewritten question can involve multiple types of NL variations. All rewritten questions
are annotated with types and descriptions of each included variation .

B THE COLLECTION OF UNIQUE CHARACTERISTICS FOR DIFFERENT SQL
DIALECTS

We analyze and collect 21 unique characteristics for on SQL functions for five prevalent SQL di-
alects, including SQL Standard, PostgreSQL, SQL Server, MySQl and Oracle. For each SQL func-
tion in Table 8, we list the corresponding unique SQL keywords or functions for each SQL dialect,
where the symbol “–”indicates no corresponding keywords. Based on functions mentioned in Ta-
ble 8, we generate a total of 177 question-SQL pairs, covering these functions across four database
systems.

C THE COST ANALYSIS OF DATA GENERATION PIPELINE

In our data generation pipeline, only the question generation and question-SQL pair selection parts
use the OpenAI gpt-4-turbo API, incurring API usage fees. Though batching multiple SQLs or
question-SQL pairs into one prompt, generating a question and scoring a question-SQL pair cost
0.01$ and 0.006$ respectively on average. Therefore, the cost of our data generation pipeline is
only 0.016$ for each question-SQL pair on average, which is much lower than the cost of manual
generation with intensive human labor.

D THE STATISTICS OF THE DISTRIBUTION OF SQL KEYWORDS AND
FUNCTIONS

We conduct a statistical analysis of the keywords and functions in the SQL statements we generated.
We create the following visual word cloud in Figure 3 based on the frequency of keywords and
functions. We categorize all the keywords and functions into the following eight categories:

Basic comparison and logical operators. =, ̸=, >,<,≥,≤, <>, ||,+,−,×, /, OR, AND, IS,
NOT

Data aggregation functions. COUNT(), AVG(), SUM(), MIN(), MAX(), GROUP CONCAT(),
GREATEST()
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Figure 3: SQL keyword and function distribution

Date and time handling functions. TIMESTAMP(), MINUTE(), DATE SUB(), EXTRACT(),
DAY(), DATEDIFF(), DATE(), CURRENT TIMESTAMP, CURRENT DATE, CURDATE(), IN-
TERVAL(), YEAR(), LOCALTIMESTAMP

String handling functions and pattern matching. LIKE, POSITION(), LENGTH(), CON-
CAT(), TRIM(), SUBSTRING(), CHARACTER LENGTH(), OCTET LENGTH()

Conditional statements and data type handling. IN(), COALESCE(), CASE, BETWEEN

Mathematical operators and functions. FLOOR(), ABS(), SIGN()

Encryption and encoding functions. DECODE()

Other miscellaneous functions. USER()

Figure 4: Overview of the pipeline for automatic multi-turn dialogues generation
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E THE DETAIL OF PROMPTS

E.1 PROMPT FOR QUESTION-SQL PAIR SELECTION

The prompt for question-SQL pair selection is composed of three parts: criteria prompt,
one shot prompt and rate qa prompt. Criteria prompt outlines the specific scoring criteria, includ-
ing question quality, SQL quality, consistency, significance. One shot prompt, containing a sample
question-SQL pair and the corresponding scores, is used to standardize the output format of the
LLM. Rate qa prompt involves question-SQL pairs to be scored and scoring instructions. The final
prompt for the LLM input is shown in the Figure 6.

E.2 QUESTION GENERATION PROMPT

Question generation for specific SQL consists of three steps: rough translation to convert SQL
clauses into spoken English, clause translation to prepare hints and final translation which combines
the results of rough translation and clause translation to obtain the final corresponding question.
Figure 8 shows the detailed prompt for each translation step.

E.3 PROMPT FOR TESTING SQL GENERATION

The prompt for testing SQL generation consists of three main components: base prompt, exter-
nal knowledge prompt, and sql dialect prompt. The base prompt instructs the model to generate
SQL queries based on provided SQL tables and user requests, returning the results as a list. The ex-
ternal knowledge prompt extends this by incorporating additional context from external knowledge
sources to enhance the relevance of the generated queries. The sql dialect prompt further specifies
that each generated SQL must conform to a particular SQL dialect, using predefined functions and
database system types. The final prompt used as input to the LLM is illustrated in Figure 7.

F MULTI-TURN DIALOGUE GENERATION PIPELINE

Figure 4 shows the generation pipeline for multi-turn dialogues. The pipeline for automatic multi-
turn dialogue generation starts with a target SQL query and a database schema, generating interac-
tions through a large language model (LLM) using thematic relations and multiple Q&A types.
These interactions are randomly combined to create diverse dialogue scenarios. The generated
Q&As are then verified and refined by checking categorization, refining expressions, and scoring
the results. Only those with high scores (e.g., score > 9) are deemed valid, resulting in a set of co-
herent and accurate multi-turn dialogues that reflect the original SQL queries and database schema.

G ERROR ANALYSIS ON TEST SAMPLES FOR LOGICAL REASONING

In our experimental results, we discover that all models perform poorly on the test set for logical
reasoning, even the state-of-the-art GPT-4 model achieves only about 16% accuracy. The test set for
logical reasoning is comprised of 31 complex question-SQL pairs which involves multiple difficult
logical reasoning steps including sub-query, group-by, sort and join operations. Figure 9 shows
an example of test set for logical reasoning, which needs three logical reasoning steps for LLM to
correctly generate the gold SQL. It requires the text-to-SQL model to have a deep understanding of
the database, stable SQL generation capabilities, and strong logical reasoning abilities. We analyze
the results of LLMs in our experiments on these complex questions, and observe that the majority
of errors are due to the execution of generated SQL statements, with logical errors accounting for
only a minority. This indicates that the current text-to-SQL model has significant limitations in its
capability to generate complex SQL statements that involve intricate logical reasoning steps.

H EVALUATION OF GENERATED DATA QUALITY

Due to the fact that the sampling rules for generating SQL cannot fully cover all potential cases
that may lead to semantic issues, which may result in the generation of nonsensical SQL queries, we
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Table 6: Correlation and Significance Levels

Metric Pearson Spearman Kendall

Correlation P-value Correlation P-value Correlation P-value

question quality 0.561 1.18e-9 0.514 4.36e-8 0.424 3.55e-8
SQL quality 0.873 1.90e-32 0.875 9.29e-33 0.778 5.30e-24
consistency 0.903 6.12e-38 0.851 3.01e-29 0.712 2.95e-22
significance 0.788 1.97e-22 0.770 6.72e-21 0.628 5.70e-15

adopted a strategy of using GPT-4 to evaluate and filter the generated question-answer pairs to ensure
high-quality outputs. The idea of using large models for evaluation originates from previous work
that employed large models to assess the quality of conversations and text-to-3D data, including G-
EVAL (Liu et al., 2023), SummEval (Fabbri et al., 2021) and GPTEval3D (Wu et al., 2024), which
is known as LLM-eval research filed. We follow the statistical tests in these papers to verify the
alignment between GPT-4 and human experts on assessing generated text-to-SQL data. We collected
5 SQL experts to score one hundred randomly selected samples (including both high-quality and
low quality data samples), according to the same scoring criteria provided to GPT-4. We introduce a
cross-validation method in the scoring process. Each sample will be evaluated by two experts. If the
score difference is less than 20, the average of the two scores will be taken as the final score. If the
score difference exceeds 20, the experts will re-evaluate the sample through consultation until the
score difference is reduced to less than 20. Finally, following the method of analysis used in previous
work, we calculated Pearson, Spearman, and Kendall’s Tau correlation coefficients along with their
corresponding p-values for the scores given by GPT-4 and human experts. The final statistical
analysis results are presented in Table 6. All the correlation coefficients and p-values mentioned
above indicate that the human expert scores and GPT-4 scores have a strong positive correlation
across all four scoring dimensions. This demonstrates the effectiveness of GPT-4’s quality scoring
and its consistency with human evaluations. We then analyzed the results of the high-quality and
low-quality datasets selected by GPT-4 and human experts. Among these 100 random samples, 89%
of the results from GPT-4 were consistent with those of human experts. Only 2% (2 out of 100) of
the samples that humans deemed low quality were mistakenly identified as high quality by GPT-4.
Additionally, 9% (9 out of 100) of the high-quality data samples were misclassified as low quality
by GPT-4. This suggests that GPT-4 may apply stricter criteria than human experts. However, this
does not compromise the overall quality of the final dataset.

I LICENSES FOR OPEN-SOURCE DATABASES

The databases in our benchmark are all in accordance with one of following licenses:

Public Domain Public Domain Mark
A public domain license refers to a legal designation that allows intellectual property, such as cre-
ative works or inventions, to be freely used, shared, and built upon by anyone without restrictions.
When a work is in the public domain, it is no longer protected by copyright, patent, or trademark
laws.

CC-BY Creative Commons Attribution 4.0 International
This license is one of the open Creative Commons licenses and allows users to share and adapt the
dataset so long as they give credit to the creator.

CC-BY-SA Creative Commons Attribution-ShareAlike 4.0 International
This license is one of the open Creative Commons licenses and allows users to share and adapt the
dataset so long as they give credit to the creator and distribute any additions, transformations, or
changes to the dataset under this license.

GPL General Public License
The GPL was created by the Free Software Foundation (FSF) and is also known as the GNU GPL,
as it is used by the GNU Project. And it allows users to use, study, share, and modify the software
under certain terms and conditions.
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CPOL Code Project Open License
It is a software license that is often used for articles, tutorials, and sample code shared on The Code
Project website. The CPOL is intended to be a more permissive license, allowing developers to use,
modify, and distribute the software without many of the restrictions imposed by other licenses like
the GPL.

CC0 Creative Commons Zero
It is a public domain dedication tool created by Creative Commons. It allows creators to waive all
their copyright and related rights in a work, effectively placing it in the public domain. This means
that anyone can freely use, share, modify, and build upon the work without seeking permission or
providing attribution to the original creator.

J GENERATIVE AI USAGE STATEMENT

We utilized a large language model (LLM) to assist in the preparation of this paper. The LLM’s role
was strictly limited to improving grammar, clarity, fluency, and overall readability. It is important to
distinguish this use from the application of LLMs as a core component of our research methodology.
The utilization of GPT-4 for the automatic generation of questions and the filtering of question-SQL
pairs, as part of the OCTOPUS benchmark creation pipeline, is a central aspect of our technical
contribution and is described in detail in Section 4. We meticulously reviewed, revised, and edited
all text to ensure it accurately reflects our research and findings. Full responsibility for the scientific
content, claims, and final wording of this paper rests entirely with the human authors.

Figure 5: Depth and width distribution of SQLs.
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Table 7: The definitions and examples of NL diversity categories.

Type Definition Question Paraphrases Description

keyword
synonym

Use synonyms of key-
words in SQL to rewrite
the question.

Find the code of air-
port that has the highest
number of flights.

Show me the code for
the airport that currently
has the most flights.

find and show are both
synonyms for select

keyword
implicit

Use the implicit ex-
pression of keywords in
SQL to rewrite the ques-
tion.

Arrange the test scores
in descending order,
who is ranked 5th?

Who is the student with
fifth place in the exam?

fifth place implies order
by desc

operator
synonym

Use synonyms of opera-
tor or function in SQL to
rewrite the question.

What is the code of air-
port that has the highest
number of flights?

Show me the code for
the airport that currently
has the most flights.

the most is synonyms
for max()

operator
implicit

Use implicit expression
of operator or function
in SQL to rewrite the
question.

Show the name and
theme for all concerts
and the number of
singers in each concert.

List the names and
themes for all concerts
and how many singers
are in each.

how many implicts
count()

column syn-
onym

Use synonyms for
columns in database
tables to rewrite the
question.

List the name of teach-
ers whose hometown is
not Little Lever Urban
District.

Find the name of teach-
ers who were not born in
Little Lever Urban Dis-
trict.

born in is synonym of
hometown

column im-
plicit

Use implicit expression
of columns in database
tables to rewrite the
question.

Show the name of teach-
ers aged either 32 or 33?

Which teachers are aged
either 32 or 33.

which implicit name

column
attribute

Use attributes of
columns in database
tables to rewrite the
question.

What is the name of
the conductor who has
worked the greatest
number of year?

Who has worked the
longest as conductor?

longest represents an at-
tribute of year

column
value

Use value of columns
in database tables to
rewrite the question.

What are the ids of
the students who do not
own cats as pets?

Find the IDs of students
who don’t own cats.

cats is a value in the pets
column

column sub-
set

Use subset of columns
in database tables to
rewrite the question.

how many dogs are
there?

how many puppies are
there.

puppy refers to the col-
umn dog

column
shuffling

Rewrite the question by
shuffling the order of the
columns in the returned
database table

List students’ names,
grades, and classes.

List students’ grades,
names, and classes.

Shuffle the order in
which columns are
returned

column ab-
breviation

Use abbreviation of
columns in database
tables to rewrite the
question.

What is China’s GDP in
2023?

What is Gross Domes-
tic Product of China in
2023

find and show are both
synonyms for select

grammar
conversion

change the question by
changing the sentence
pattern, such as chang-
ing the question method,
etc.

Find all technical de-
partment employees
whose salary is higher
than 5000.

Find all technical de-
partment employees
with a salary higher
than 5,000.

Two sentences have
the same semantics but
different grammatical
structures
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Table 8: SQL function/method comparison across different database systems.

Method/Function SQL Standard PostgreSQL SQL Server MySQL Oracle

String Length CHARACTER LENGTH CHARACTER LENGTH
CHAR LENGTH
LENGTH (all equivalent)

LEN CHARACTER LENGTH
CHAR LENGTH

CHARACTER LENGTH
CHAR LENGTH
LENGTH

Substring SUBSTRING SUBSTRING SUBSTRING SUBSTRING SUBSTR

Trim Whites-
pace

TRIM TRIM LTRIM
RTRIM

TRIM TRIM

Local Times-
tamp

LOCALTIMESTAMP LOCALTIMESTAMP
CURRENT TIME

CURRENT TIMESTAMP
GETDATE()
SYSDATETIME

LOCALTIMESTAMP
NOW
CURTIME()

LOCALTIMESTAMP
SYSTIMESTAMP

String Concate-
nation

string1 | string2 – string1 + string2 CONCAT() string1 | string2

Null Handling – COALESCE ISNULL IFNULL NVL

Date Truncation – DATE TRUNC N/A DATEFORMAT TRUNC

String Search – POSITION CHARINDEX LOCATE INSTR

Time Difference – AGE+EXTRACT DATEDIFF DATEDIFF +/- INTERVAL

Paging Query – LIMIT
FETCH

FETCH LIMIT
FETCH

FETCH

Simple Condi-
tional Control

– – IIF – DECODE

Flashback
Query

– – – – TIME

Group Dedu-
plication/Field
Deduplication

– DISTINCT ON – – –

Sampling – TABLESAMPLE TABLESAMPLE ORDER BY RAND() SAMPLE(PERCENTAGE)

Value Retrieval
by Index

– – CHOOSE ELT –

String Regex
Match and Split

– REGEXP SPLIT TO TABLE
STRING TO ARRAY
REGEXP MATCHES (rec-
ommended)

STRING SPLIT REGEXP SUBSTR REGEXP SUBSTR

String Byte
Length

OCTET LENGTH OCTET LENGTH DATALENGTH LENGTH LENGTHB

Multi-group
String Concate-
nation

– STRING AGG STRING AGG GROUP CONCAT LISTAGG

Float Truncation – TRUNC FLOOR TRUNCATE TRUNC

Array
Merge/Collection
Generation

– – – – COLLECT

Full Join – FULL JOIN FULL JOIN LEFT JOIN + UNION +
RIGHT JOIN

FULL JOIN
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criteria_prompt 

Based on the following question-SQL pair, rate 'question_quality', 
'SQL_quality', 'consistency', and 'significance’ on a scale from 0 to 100. 
The scores should closely align with the following expectations: 
- 'question_quality' should reflect the clarity and fluency of the 

question and how relevant it is to potential users.\n
- 'SQL_quality' should reflect the correctness of the SQL query in 

terms of syntax and its ability to retrieve the correct data as per the 
question.\n

- 'consistency' should reflect how closely the SQL query matches the 
intention of the question.\n

- 'significance' should reflect how likely the query is to be posed by 
real users and how informative and meaningful the results of the 
SQL query are.\n

rate_qa_prompt 

Below are all the question-SQL pairs that need to be evaluated. 
Each question-SQL is given in the form of a 2-tuple like (question, SQL) 
in a list.\n
Please evaluate each question-SQL pair separately and add in 
response list with no key.\n
Fill in the rationale field in the json in a short language\n       
f"{question_sql_list}"

final_prompt 

Question1:
Here is the question-SQL pair:\n
Question: What is the average number of Mubi users who love 
movies directed by Stanley Kubrick?\n
SQL: SELECT AVG(movie_popularity) FROM movies WHERE 
director_name = 'Stanley Kubrick'\n\n
Use the information provided to assign scores that align with the 
specified expectations. 
Give me the score and reason and insert into json format
Answer1 :
 """{ "question_quality": …,        
 "SQL_quality": …,       
 "consistency":…
 "significance": …}"""

One-shot

criteria_prompt 

rate_qa_prompt 

Figure 6: Prompt for question-SQL pair selection

ICL prompt

Given the following SQL tables, your job is to write queries given a user’s request. {Create_DDL_sql}
Write a SQL query for each question in the following question list: {question_list} 
Only return the generated SQLs in a list object like [generated_sql1,generated_sql2,generated_sql3,generated_sql4,...]

Base prompt

Given the following SQL tables, your job is to write queries given a user’s request. {Create_DDL_sql}
Write a SQL query for each question in the following question list: {question_list} 
External knowledge: {external_knowledge_description_list}
Only return the generated SQLs in a list object like [generated_sql1,generated_sql2,generated_sql3,generated_sql4,...]

Prompt with external knowledge

Given the following SQL tables, your job is to write queries given a user’s request. {Create_DDL_sql}
Write a SQL query for each question in the following question list:  {question_list} 
Each SQL must be corresponding to the database system in order in the list {type_list} 
and use the function in order in the list {function_list}
Only return the generated SQLs in a list object like [generated_sql1,generated_sql2,generated_sql3,generated_sql4,...].

Prompt for specific SQL dialect

Figure 7: Prompt for SQL generation in experiments
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Rough translation prompt

Translate the sentences provided into spoken English, not contain any special symbols except commas and periods.
Only returns the translated sentences, do not generate any other content, such as "The caluse is: ...".
If you have trouble doing it or hold that nothing need to be changed, just return the original sentences.
The returned sentences is either the translated sentences or the original sentences, but we encourage you to translate the 
sentences even if the changes are minor.
The sentences is:  {sentences}
Make sure to return the result in JSON format: {"sentence1":"","sentence2":"", ...}

Clause translation prompt with few-shot

You are a language expert. You need to translate the sql clauses provided and then return the colloquial result.
Here is some examples: {examples}
You need to translate the sql clauses provided and then return the colloquial result. 
Do not generate any other content, such as "The paragraph means: ", just the result. 
If you can't translate the sql clauses, return the clauses provided, don't reply content as such 'The SQL clauses is not valid. 
Please provide a valid SQL clauses.’.
The sql clauses is:  {clauses}
Make sure to return the result in JSON format: {"sentence1":"","sentence2":"", ...}

Final translation prompt 

You are a sql to question translation expert. You need to translate the sql provided and then return the coresponding 
question easy to understand. 
…
Here is some examples: {random_selection_examples}
You need to translate the sql provided and then return coresponding question. 
Because sometimes SQL is too complex to understand, or even contains errors, we will also provide a simplified version(a 
clause list, contains main information about the sql) for reference. 
In addition, we will also provide some tips to introduce the meaning of this sql, and what the generated question is mostly 
about.
…
We will provide the descriptions of the columns in SQL, which you can take as reference: {columns info}
The original sql is:  {original_sql}
The simplified version is: {simplified_version}
The hints are: {hints}
Make sure to return the result in JSON format: {"question":" coresponding question to the sql provided"}

Figure 8: Prompt for question generation

An example of test set for logical reasoning

Query the customer with the highest average 
overdue days under married status, whose latest 
loan was applied on a weekend, and provide the 
customer's gender and total income.

question

SELECT app.NAME_FAMILY_STATUS,  
app.CODE_GENDER,  app.AMT_INCOME_TOTAL,  
app.SK_ID_CURR,  MAX(average_days_overdue) 
AS max_avg_overdue FROM 
(SELECT bureau.SK_ID_CURR, 
AVG(bureau.CREDIT_DAY_OVERDUE) AS 
average_days_overdue FROM bureau GROUP 
BY bureau.SK_ID_CURR) AS sub_bureau
JOIN application_train AS app ON 
sub_bureau.SK_ID_CURR = app.SK_ID_CURR 
WHERE app.NAME_FAMILY_STATUS = 'Married' 
AND WEEKDAY_APPR_PROCESS_START IN 
('Saturday', 'Sunday’) GROUP BY  
app.SK_ID_CURR,  app.NAME_FAMILY_STATUS, 
app.CODE_GENDER, app.AMT_INCOME_TOTAL 
ORDER BY max_avg_overdue DESC LIMIT 1;

Gold SQL

1. Calculate Average Overdue Days
First, we need to calculate the average overdue days for each 
customer in the bureau table. This can be achieved with the 
following subquery:

SELECT bureau.SK_ID_CURR,     
AVG(bureau.CREDIT_DAY_OVERDUE) AS 
average_days_overdueFROM bureauGROUP BY 
bureau.SK_ID_CURR

2. Filter and Join Tables
We need to join the results of the above subquery with the 
application_train table and filter based on marital status and 
loan application date:

- Marital status is 'Married': app.NAME_FAMILY_STATUS = 
'Married’
- Loan application date is on the weekend: 
WEEKDAY_APPR_PROCESS_START IN ('Saturday', 'Sunday’)

3. Group and Sort
After joining and filtering, we need to group by customer ID, 
marital status, gender, and total income, and find the customer 
with the highest average overdue days.

Logical Reasoning Steps

Figure 9: An example illustration of test set for logical reasoning

24


	Introduction
	Related Work
	Benchmark Design
	Benchmark construction
	Database Collection
	Dataset Construction
	Data Statistics
	Cost Analysis of Data Generation

	Experiments
	Baseline Models
	Evaluation Metrics
	Experimental Settings
	Accuracy Analysis
	Robustness Analysis
	Interactivity Analysis
	Generalization Analysis

	Conclusion
	Ethics Statement
	Reproducibility Statement
	The detailed definitions of first-level and second-level metrics
	Definition of external knowledge categories
	The definitions of categories for NL diversity

	The collection of unique characteristics for different SQL dialects
	The cost analysis of data generation pipeline
	The statistics of the distribution of SQL keywords and functions
	The Detail of Prompts
	Prompt for question-SQL pair selection
	Question generation prompt
	Prompt for Testing SQL Generation

	Multi-turn dialogue generation pipeline
	Error Analysis on Test Samples for Logical Reasoning
	Evaluation of Generated Data Quality
	Licenses for Open-source Databases
	Generative AI Usage Statement

