
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OCTOPUS: AN AUTO-GENERATED MULTIDIMEN-
SIONAL FINE-GRAINED BENCHMARK FOR EVALUAT-
ING TEXT-TO-SQL SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-SQL is to convert natural language queries into structured SQLs, facili-
tating user interaction with databases without any SQL knowledge. The advent
of LLM technologies significantly accelerates the text-to-SQL development. It is
important to construct an appropriate benchmark to evaluate the performance of
text-to-SQL models. However, existing text-to-SQL benchmarks are mainly pro-
duced by human annotations and suffer from limitations of low SQL complexity,
single questioning mode, and low scalability. To address these limitations, we
present a new multidimensional text-to-SQL benchmark, called OCTOPUS, which
contains comprehensive evaluation metrics and fully auto-generated datasets. OC-
TOPUS has 9 first-level metrics and 18 second-level metrics from four dimensions
to evaluate the performance of text-to-SQL systems, including accuracy, robust-
ness, interactivity, and generalization. To help the benchmark construction, we
also propose a series of fully automatic text-to-SQL data generation methods,
which reduce human involvement, improve efficiency, and support higher scal-
ability. OCTOPUS consists of 10,885 complex question-SQL pairs and 10,874
multi-turn dialogues over 74 public databases. We evaluate state-of-art text-to-
SQL models on OCTOPUS and find they have unsatisfactory performance in all
testing metrics and are still far from practical applications. OCTOPUS can be used
to enhance the accuracy and utility of text-to-SQL models.

1 INTRODUCTION

Text-to-SQL is an active research area at the intersection of natural language processing (NLP)
and database management, aiming at bridging the gap between human language and database
queries (Gkini et al., 2021; Kim et al., 2020; Katsogiannis-Meimarakis & Koutrika, 2023; Li et al.,
2024a). Text-to-SQL enables users to retrieve or manipulate database through natural language
queries even without any SQL knowledge. Recently, it has been witnessed a significant advance-
ment of text-to-SQL fueled by the breakthroughs in large language models (LLMs) (Fu et al.,
2023; Fan et al., 2024; Gu et al., 2023; Gao et al., 2024). According to the SPIDER leaderboard1,
a well-known benchmark for text-to-SQL, the top-performing model has achieved an execution ac-
curacy of 91.2%, and many other solutions integrating LLMs have generally reached accuracies
above 80%. Despite of the considerable advancements, there are still many challenges, including
1) the lack of comprehensive and fine-grained benchmarks that accurately reflect the complexity
of real-world queries, 2) poor performance of text-to-SQL systems on handling ambiguous, com-
plex and domain-specific queries, and 3) the difficulties of integrating of text-to-SQL models into
user-friendly applications. Nowadays, the research on text-to-SQL has shifted towards addressing
limitations of existing text-to-SQL models in real-world applications where models are required to
generate more complex SQL statements and handle ambiguous or incomplete user queries (Sen
et al., 2020; Guo et al., 2019; Deng et al., 2021; Wang et al., 2023).

However, existing benchmarks are not sufficient to satisfy the above evaluation requirements due
to the discrepancies of the distribution between test data and real-world data. They fail to of-
fer fine-grained targeted evaluation or provide comprehensive and multi-dimensional evaluation

1https://yale-lily.github.io/spider

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Overview of our benchmark metrics

Test
Dimension

First-level Metrics Second-level Metrics

Accuracy

Database Complexity
Field Naming Complexity

Table Similarity

Table Coupling Degree (Minimum number of tables that need to be involved in a query)

Gold SQL Complexity SQL Structural Complexity

SQL Operation Diversity

NL (Natural Language) Question Diversity Diversity in NL Questioning Ways

Ambiguity of NL Questions

Logical Reasoning Complexity Number of Reasoning Steps Required to Obtain the Query Result from the Question

External Knowledge Complexity Variety of External Knowledge Required for Generating SQL from Questions

Number of Items of External Knowledge Required for Generating SQL from Questions

Robustness

Confusion Question Testing

Questions in the Dataset Including Everyday Conversations (Non-SQL Q&A)

Questions in the Dataset Including Ambiguous Questions

Questions in the Dataset Requiring Querying Information Outside the Database

Questions in the Dataset Including Queries Not Supported by SQL Statements

Perturbation Testing
Including Perturbations to the Database

Including Perturbations to Natural Language Questions

Interactivity Multi-turn Q&A Dataset Containing Multi-turn Interactive Q&A

Generalization SQL dialect diversity Dataset Containing SQL Statements in Multiple Database Languages

metrics. For instance, the targeted SQLs of SPIDER are relative simple and based on small-
scale databases, whereas real-world SQL queries are more complex and often based on large-scale
databases. BIRD (Li et al., 2024b) enhances database complexity in SPIDER by incorporating large
databases, domain knowledge, and a new evaluation metric about the execution speed. However, it
still lacks consideration for the diversity and ambiguity of user queries, lacks detailed categorization
and definition of domain knowledge types, and suffers from insufficient diversity in SQL operations
and high generation cost based on manual generation. SCIENCEBENCHMARK (Zhang et al., 2024b)
proposed a semi-automatic text-to-sql dataset generation method based on manual generated seed
dataset and generated a challenging benchmark over three domain-specific databases. Although
SCIENCEBENCHMARK is more closer to the real application scenario for the professional domain
and improve scalability of the benchmark through semi-automatic generation method, it still needs
SQL experts’ effort to generate seed data and the diversity of generated samples is limited by the
seed data.

To address the above limitations of the existing benchmarks, we propose a novel benchmark de-
signed to evaluate the multi-dimensional capabilities of text-to-SQL systems. Based on four perfor-
mance dimensions of text-to-SQL systems—accuracy, robustness, generalization, and interactivity,
we design 9 first-level metrics and 18 second-level metrics to formulate our benchmark. To facil-
itate our benchmark construction and improve scalability, we also design and implement a series
of question-SQL pair generation algorithms and pipelines for the automatic construction of our
benchmark. Our benchmark consists of 10,885 complex question-SQL pairs and 10,874 multi-turn
dialogues over 74 public databases, covering 9 first-level metrics and 18 second-level metrics. We
evaluate state-of-art text-to-SQL models on OCTOPUS and find they have unsatisfactory perfor-
mance in all testing metrics and are still far from practical applications. The evaluation results show
the importance of OCTOPUS to be proposed. OCTOPUS can be used to enhance the accuracy and
utility of text-to-SQL models. The main contributions of our paper are summarized as follows:

2 RELATED WORK

To improve the accuracy of text-to-SQL models and promote the practical application of text-to-SQL
systems, many famous benchmarks have been proposed in recent years. SPIDER (Yu et al., 2018) is
the first well-known benchmark to introduce a cross-domain dataset containing SQL queries of vary-
ing difficulty levels and to propose two evaluation metrics for measuring the accuracy of text-to-SQL
models. Based on SPIDER, the DR.SPIDER benchmark (Chang et al., 2023) provides a comprehen-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Root1(3) Root(0) Sel(0) N(0) A(0)
Op(0) C(2) T(0) C(2) T(0) Sup(0)
A(3) Op(0) C(0) T(1) C(0) T(1)
Filter(18) A(0) Op(0) C(1) T(0)
C(1) T(0) Root(5) Sel(0) N(0) A(0)
Op(0) C(9) T(1) C(9) T(1)

SELECT T2.roomName
FROM Reservations AS T1
JOIN Rooms AS T2 ON
T1.Room = T2.RoomId
GROUP BY T1.Room ORDER
BY count(*) DESC LIMIT 1

SQL Templates

Table
Name

Column
Name

Type Description

flight flno num flight_no

flight
destinat
ion

text
destination
of the flight

… … … …

Sample Tables 𝐓 ∗ , Columns
𝐂(∗) and Values V ∗

Generated SQLs

SELECT T1.aid FROM aircraft
AS T1 JOIN flight AS T2 ON
T1.aid = T2.aid GROUP BY
T1.aid ORDER BY
count(T2.destination) DESC
LIMIT 1

Sampling Rules

• Define columns for categories
• Define columns relation for math ops
• Define non-aggregatable columns

Database Info

What is the
aircraft ID that has
flown to the most
destinations?

SQL Generation

Question Generation

Original SQL

SemQL

Readable SQLs

SELECT aircraft.aid FROM
aircraft JOIN flight ON
aircraft.aid = flight.aid
GROUP BY aircraft.aid ORDER
BY count(flight.destination)
DESC LIMIT 1

SQL Clauses Hints

SELECT
aircraft.aid

GROUP BY
aircraft.aid

ORDER BY
count(flight.
destination)

DESC

LIMIT 1

Retrieve the 'aid' from
the 'aircraft' table

group the results by 'aid'

sort by the count of
'destination' in the 'flight'
table in descending order

show only the most
frequent one

decompose

GPT4
Translator

NL Questions

Translate prompt

Question-SQL Pair Selection

Question: What is the aircraft ID that has
flown to the most destinations?

SQL: SELECT T1.aid FROM aircraft AS T1 JOIN
flight AS T2 ON T1.aid = T2.aid GROUP BY
T1.aid ORDER BY count(T2.destination)
DESC LIMIT 1

Question-SQL Pairs

GPT4
Scorer

Filter Rules

• Question quality≥80
• SQL quality ≥80
• Consistency ≥80
• Significance ≥80

High-Quality QA Pairs

Question: What is the aircraft ID that has
flown to the most destinations?

SQL: SELECT T1.aid FROM aircraft AS T1
JOIN flight AS T2 ON T1.aid = T2.aid GROUP
BY T1.aid ORDER BY count(T2.destination)
DESC LIMIT 1

Figure 1: Overview of the pipeline for question-SQL pairs automated generation

sive evaluation framework for assessing the robustness and generalization across diverse domains
and complex SQL queries. BIRD (Li et al., 2024b) incorporates real-world large-scale databases
and more complex SQL queries, and further emphasizes the impact of noisy database values and ex-
ternal knowledge. In addition to the above benchmarks that focus on single-turn question-SQL pair,
some works focus on evaluating the ability of text-to-SQL systems to engage in multi-turn conversa-
tions. SPARC (Yu et al., 2019b), CHASE (Guo et al., 2021) and COSQL (Yu et al., 2019a) extend
question-SQL pairs from SPIDER to multi-turn dialogues, thereby building cross-domain corpus
with different conversation types and languages. Our benchmark is the first automatically generated
multidimensional benchmark covering fine-grained metrics to evaluate the comprehensive ability of
text-to-SQL models.

3 BENCHMARK DESIGN

From the perspective of practical applications, we summarize and formulate four dimensions of
metrics to evaluate text-to-SQL systems: accuracy, robustness, interactivity and generalization. We
further divide each dimension into more fine-grained metrics with two levels. We design and develop
our benchmark following these metrics to ensure a comprehensive evaluation of the text-to-SQL
system’s capabilities across different facets. The overview of our benchmark metrics is listed in
Table 1. We will briefly introduce the benchmark metrics in the following due to the page limit. The
detailed definitions of our benchmark metrics is described in Appendix A.

Accuracy Ensuring the correctness of generated SQLs is the primary requirement of text-to-SQL
system. The difficulty of generating SQL is affected by many factors in real applications. For test-
ing the accuracy of text-to-SQL systems, we formulate five first-level evaluation metrics, including
Database Complexity, Gold SQL Complexity, Natural Language Question Diversity, Logical Rea-
soning Complexity and Domain Knowledge Complexity. These metrics involve the major challenges
faced by text-to-SQL systems when generating correct SQLs and require the benchmark to contain
targeted test samples that meet the above metrics.

Robustness A stable text-to-SQL system needs to be robust to disturbances and changes from
internal and external sources. We aim to test the robustness of the text-to-SQL system from two fol-
lowing aspects: Confusion Question Testing and Perturbation Testing. These two metrics require the
benchmark samples simulate perturbations that occur in real applications to evaluate the robustness
of text-to-SQL systems.

Interactivity A user-friendly text-to-SQL system needs to handle variable user queries. The met-
ric in this dimension requires the benchmark dataset to contain multi-turn question-SQL pairs in dif-
ferent conversations to test the text-to-SQL systems’ ability to handle multiple rounds of dialogue.
Multi-turn Q&A samples in the text-to-SQL domain should closely mimic the user’s question pat-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

terns observed in real applications. Additionally, they must precisely present the correct response
behavior of text-to-SQL systems.

Generalization A general text-to-SQL system needs to have the ability to support multiple types
of database systems. This metric requires the benchmark to contain gold SQLs in multiple SQL
dialect formats to test the generalization ability for different database systems. SQL dialect diversity
can be measured by the number of SQL dialects. To the best of our knowledge, this metric has not
been mentioned in previous benchmarks, and our paper is the first to propose it.

4 BENCHMARK CONSTRUCTION

4.1 DATABASE COLLECTION

Figure 2: The domain distribution of bench-
mark databases

To simulate real-world scenarios as much as possible for
testing a text-to-SQL system, we manually collected 74
real-world complex databases from the internet. The
source of databases includes MySQL example databases2

(7%), WikiDBs3 (7%), CTU Prague Relational Learn-
ing Repository4 (27%), Kaggle5 (32%), and SPIDER
benchmark (Yu et al., 2018) (27%). MySQL official
website provides 5 high-quality and large-scale example
databases to test the functionality of MySQL database
system, which is collected to construct our benchmark.
WikiDBs (Vogel & Binnig, 2023) is a novel open-
source corpus of 10,000 relational databases collected
from Wikidata, each of which consists of multiple ta-
bles connected by foreign keys. We manually select
complex databases with at least 8 tables from WikiDBs.
The CTU Prague Relational Learning Repository is an
open platform for machine learning with multi-relational
data which hosts 50 databases. We select top 20 com-
plex databases from CTU. Also, we sampled 20 databases
from SPIDER with consideration of intersectionality. The
rest of databases are selected from Kaggle, which contains high-quality dataset for data science
competitions and collaboration. In our database collection, we specifically select large and complex
databases, characterized by numerous tables, extensive fields, and intricate foreign key constraints,
to closely simulate real-world enterprise databases. Our 74 public databases reaches 23 GB, and
covers a wide range of specific domains, such as sports, finance, medicine, retail, etc.

4.2 DATASET CONSTRUCTION

In previous famous benchmarks (Li et al., 2024b; Yu et al., 2018), question and SQL genera-
tion is completed by human writers and annotators expert in text-to-SQL. Obviously, it is often
time-consuming and labor-intensive if relying only on manual generation. To effectively gener-
ate question-SQL pairs and improve scalability, we propose a new question-SQL pair generation
pipeline which can fully automate the generation of SQLs along with corresponding questions over
any database. As shown in Figure 1, our fully automated generation pipeline is composed of three
main parts: SQL generation, Question generation, and Question-SQL pair selection. The following
will describe the details of our generation algorithm.

SQL Generation: We integrate the SQL generation technique from SCIENCEBENCHMARK
(Zhang et al., 2024b) with SQL templates derived from real-world applications to automate SQL

2https://dev.mysql.com/doc/index-other.html
3https://wikidbs.github.io/
4https://relational-data.org/
5https://www.kaggle.com/

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

generation. We first construct a SQL template library comprising SQL templates with various struc-
tures. To obtain SQL templates, we collect SQLs from the internet, previous benchmarks, and
enterprise applications, then convert them into an Abstract Syntax Tree (AST) representation called
SemQL (Guo et al., 2019). In these SQL templates, let the three placeholders T(∗), C(∗), and
V(∗) replace tables, columns, and values related to the database respectively. To generate SQLs
on a specified database, the sampling algorithm takes configured sampling rules and the database
information as input and then fills the placeholders with concrete values according to the specified
database. The sampling rules specify the scope and priority of tables and columns to ensure seman-
tic correctness. Intuitively, the closest table measured by foreign key connections will be sampled
at a high priority. Columns are labeled with three types: categorical columns, computable columns,
and non-aggregatable columns. The column types are automatically annotated by our algorithm.
Then our algorithm automatically samples the columns using the proper type according to the SQL
operation. For example, the columns in the GROUP BY sub-clause will be only sampled from
the categorical columns. Given a specific database, above efficient SQL generation method can
automatically generate lots of SQL statements without any heavy human labor.

Question Generation: After generating SQLs on the specific database, we automatically trans-
form SQLs into the corresponding natural language (NL) questions using the state-of-the-art LLM—
GPT-46. Recent research (Zhang et al., 2024a) benchmarked the capabilities of LLMs in various
Text-to-SQL sub-tasks. Notably, GPT4 achieves the highest performance in the SQL-to-Text sub-
task. It shows the potential of GPT-4 in automatically generating NL questions for given SQLs.
However, directly prompting GPT-4 to translate complex SQL statements into NL questions always
leads to inaccuracies, because GPT-4 may misunderstand nested structures and aliases within SQL
statements or overlook critical details such as specific fields or filter conditions. To address these,
we introduce a SQL decomposition step before translation, as referenced in the previous data aug-
mentation work (Wu et al., 2021). Our algorithm first decomposes a SQL statement into several
sub-clauses separated by SQL keywords such as SELECT, WHERE, GROUP BY, ORDER BY,
etc. For nested structures in a SQL query, our algorithm recursively decomposes sub-queries and
integrates them into a list of SQL clauses. We utilize GPT-4 with the few-shot prompting tech-
nique (Brown et al., 2020) to roughly translate SQL clauses into NL descriptions based on their
functionalities and the information retrieved. Few-shot examples are randomly sampled from the
training data for the clause-to-subquestion translation model (Wu et al., 2021). These NL descrip-
tions for SQL clauses, referred to as hints, are fed into GPT-4 along with the database description.
Finally, GPT-4 combines the original SQL statement, hints, and database description to produce
the comprehensive translated NL question. The complete prompt is shown in Figure 8 in Appendix.
With the hints and database descriptions, GPT-4 can generate more accurate and authentic questions,
which are indistinguishable from those proposed by real users.

Question-SQL Pair Selection: Although our question-SQL pair generation algorithm incorpo-
rates well-designed techniques and strategies to improve semantic correctness, there may still be
some abnormalities in the generated data, such as unreasonable column sampling, question-SQL
inconsistency, and meaningless query results. To further enhance the quality and availability of
the generated data, we define a new question-SQL pair selection step after generation. Recent re-
search (Lin & Chen, 2023) on LLM evaluation for open-domain conversations demonstrates the
effectiveness and efficiency of using LLMs to evaluate conversation quality. This research high-
lights the potential of LLMs as effective automatic evaluators. Therefore, we employ the reasoning
capabilities of GPT-4 to evaluate and filter generated question-SQL pairs. We formulate four fine-
grained scoring metrics to measure the quality of question-SQL pairs: Question quality, SQL quality,
Consistency and Significance. 1) Question quality score reflects the clarity and fluency of the ques-
tion and how relevant it is to potential users. 2) SQL quality score reflects the correctness of the
SQL statement in terms of syntax and its ability to retrieve the correct data. The other two scoring
metrics are assessed by considering the question-SQL pair as a unified entity. 3) Consistency score
reflects the degree to which the SQL statement aligns with the intention of the question, aiding in
the elimination of question-SQL inconsistency. 4) Significance score reflects the likelihood that the
query would be posed by real users, as well as the informativeness and meaningfulness of the query
results. It is designed to eliminate correct but meaningless question-SQL pairs. All scoring met-
rics are individually rated by GPT-4, with each sub-score ranging from 0 to 100. Finally, we retain

6https://openai.com/gpt-4

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

question-SQL pairs with all sub-scores greater than or equal to 80 as a high-quality, automatically
generated dataset for constructing our benchmark. The prompt for question-SQL pair selection is
composed of three parts: criteria prompt, one shot prompt and rate qa prompt. Criteria prompt
outlines the specific scoring criteria, including question quality, SQL quality, consistency, signifi-
cance. One shot prompt, containing a sample question-SQL pair and the corresponding scores, is
used to standardize the output format of the LLM. Rate qa prompt involves question-SQL pairs to
be scored and scoring instructions. The final prompt for the LLM input is shown in the Figure 6 in
Appendix.

Multi-turn Q&A Generation: For the generation of multi-turn dialogues, we refer to the previous
multi-turn data construction methods (Yu et al., 2019a;b). Differently from before, GPT-4 is used to
automatically generate samples encompassing multiple Q&A types. We randomly combine single-
turn Q&A types and utilize the chain-of-thoughts technique (Wei et al., 2024) to gradually expand
single-turn Q&A. Validation and correction by LLM are used to improve the quality of generated
Q&A pairs. Figure 4 in Appendix F shows the detailed generation pipeline.

Other Metric Datasets Generation: 1) For the generation of question-SQL pairs with external
knowledge, we manually collect relevant external knowledge about the specific database according
to the fine-grained categories. We then utilize GPT-4, combined with these external knowledge and
database information, to generate question-SQL pairs involving external knowledge. 2) For the gen-
eration of question-SQL pairs containing multiple logical reasoning steps, we manually summarize
several logical reasoning types, and then use GPT-4 to generate question-SQL pairs containing at
least three logical reasoning steps. 3) For the generation of question-SQL pairs covering diverse NL
questions, we utilize GPT-4 to rewrite user questions according to the types of NL questions defined
manually. 4) For the generation of question-SQL pairs supporting multiple SQL dialects, we analyze
and collect 21 unique characteristics for on SQL functions for five prevalent SQL dialects, including
SQL Standard, PostgreSQL, SQL Server, MySQl and Oracle. For each SQL function in Table 8 in
Appendix, we list the corresponding unique SQL keywords or functions for each SQL dialect, where
the symbol “–”indicates no corresponding keywords. Based on functions mentioned in Table 8, we
generate a total of 177 question-SQL pairs, covering these functions across four database systems.

Table 2: An overview comparison between our benchmark and other text-to-SQL benchmarks.

Dataset # Example # DB NL Diversity Ext Knowledge Logical Reasoning Robustness Interactivity Generalizaton

WikiSQL (Zhong et al., 2017) 80,654 26,521 ✗ ✗ ✗ ✗ ✗ ✗
Spider (Yu et al., 2018) 10,181 200 ✗ ✗ ✗ ✗ ✗ ✗

KaggleDBQA (Lee et al., 2021) 272 8 ✗ ✗ ✗ ✗ ✗ ✗
BIRD (Li et al., 2024b) 12,751 95 ✗ ✓ ✗ ✗ ✗ ✗

ScienceBenchmark (Zhang et al., 2024b) 5032 3 ✗ ✗ ✗ ✗ ✗ ✗
SParC (Yu et al., 2019b) 4,298 200 ✗ ✗ ✗ ✗ 4,298 ✗
CoSQL (Yu et al., 2019a) 3,007 200 ✓ ✗ ✗ ✗ 3,007 ✗
ADVETA (Pi et al., 2022) 11,455 178(+283 tables) ✗ ✗ ✗ ✓(Table Perturbation) ✗ ✗

Dr. Spider (Chang et al., 2023) 14999 200 ✗ ✗ ✗ ✓ ✗ ✗

Our benchmark 10,885 74 540 173 31 400 10,874 177

4.3 DATA STATISTICS

Our benchmark consists of 10,885 complex question-SQL pairs and 10,874 multi-turn dialogues
over 74 public databases, covering 9 first-level metrics and 18 second-level metrics. In detail, our
benchmark contains 9,964 question-SQL pairs automatically generated by our generation pipeline,
173 question-SQL pairs with external knowledge, 177 question-SQL pairs for testing generalization
of SQL dialects, 31 question-SQL pairs with complex logical reasoning steps and 540 question-
SQL pairs for NL question diversity. The databases collected in our benchmark spans more than
12 professional domains, including sports, finance, entertainment, health, science, etc. The detailed
distribution of the databases is illustrated in the Figure 2. The 74 databases along with question-
SQL pairs are divided into 3 subsets, 50 databases used as the training set, 13 databases belonged
to the dev set, and 11 databases belonged to the test set. Among them, question-SQL pairs related
to external knowledge, complex logical reasoning, NL question diversity, SQL dialect diversity
all belong to the test set. Table 2 provides a statistical comparison between our benchmark and
previously well-known benchmarks. The depth and width distribution of the SQLs in our benchmark
compared to SPIDER and BIRD is depicted in Figure 5 in Appendix. Our benchmark includes
more complex SQL queries with greater depth, and the width of our SQL queries reaches up to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

80, significantly surpassing other benchmarks. The distribution of SQL keywords and functions is
shown in Figure 3 in Appendix.

4.4 COST ANALYSIS OF DATA GENERATION

In our data generation pipeline, only the question generation and question-SQL pair selection parts
use the OpenAI gpt-4-turbo API, incurring API usage fees. Though batching multiple SQLs or
question-SQL pairs into one prompt, generating a question and scoring a question-SQL pair cost
0.01$ and 0.006$ respectively on average. Therefore, the cost of our data generation pipeline is
only 0.016$ for each question-SQL pair on average, which is much lower than the cost of manual
generation with intensive human labor (1.6$ for each question-SQL pair in BIRD (Li et al., 2024b)).

5 EXPERIMENTS

5.1 BASELINE MODELS

Incorporating LLMs with in-context learning (Dong et al., 2023) techniques is currently a popular
approach for text-to-SQL implemention. We selected several recent state-of-the-art LLMs for gen-
eral or specific domains as our baseline models to perform experiments on our benchmark, including
GPT-3.57, GPT-48, Llama39, Code Llama (Rozière et al., 2024), Gemma10, Mixtral11, Qwen (Bai
et al., 2023), WizardLM (Xu et al., 2024), and SQLcoder12. GPT-4 and GPT-3.5, developed by Ope-
nAI, are advanced closed-source general natural language processing models. GPT-4 demonstrates
significant improvements over GPT-3.5 in terms of linguistic accuracy, contextual comprehension,
and task execution capabilities. Llama3, Gemma, Mixtral and Qwen are well-known open-source
LLMs. WizardLM is fine-tuned Llama model based on generated complex instruction data. Code
Llama is the code-specialized fine-tuned LLM based on Llama 2, which are expert in code genera-
tion. SQLCoder, developed by Defog AI, is a state-of-the-art specialized large language model for
text-to-SQL tasks. Our experiments are conducted on a server with an Intel(R) Xeon(R) Gold 6133
CPU @2.50GHz and two NVIDIA A800 80GB PCIe GPUs utilizing a open-source LLM cloud
platform13.

5.2 EVALUATION METRICS

Following previous works (Li et al., 2024b; Yu et al., 2018; 2019a), we consider execution accu-
racy as our primary evaluation metric to measure the correctness of text-to-SQL systems. Following
previous work (Yu et al., 2019b), we introduce question match and interaction match metrics to eval-
uate the interactivity of text-to-SQL systems. Execution accuracy (EX): The EX Score is computed
as the proportion of samples in the evaluation set where the execution results of the predicted SQL
queries match those of ground-truth SQL queries. Question Match (QM) and Interaction Match
(IM): QM is the exact set matching score over all questions, and IM is the exact set matching score
over all interactions. The exact set matching score is 1 for each question only if all predicted SQL
clauses are correct, and 1 for each interaction only if there is an exact set match for every question
in the interaction.

5.3 EXPERIMENTAL SETTINGS

We conduct our experiments on the LLM API platforms together.ai & OpenAI and a server with
two NVIDIA A800 80GB PCIe GPUs. GPT-3.5, GPT-4, Llama3, Code Llama, Gemma, Mixtral,
Qwen, and WizardLM are deployed on the LLM API platforms, while SQLcoder is deployed on our
server. The ICL prompts input into LLMs for SQL generation are shown in Figure 7 in Appendix.

7https://platform.openai.com/docs/models/gpt-3-5-turbo
8https://openai.com/index/gpt-4
9https://llama.meta.com/llama3

10https://ai.google.dev/gemma
11https://mistral.ai/news/mixtral-of-experts
12https://github.com/defog-ai/sqlcoder
13https://www.together.ai

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Model EX accuracy performance comparison.

Models Dev Set
Test Set

SQL complexity
External knowledge

Logical reasoningNL diversity
w/o

knowledge
w/

knowledge

GPT-3.5 54.46 56.22 11.50 12.00 9.67 37.00
GPT-4 62.16 62.13 27.00 28.00 16.12 40.00
Llama3 (70B) 49.60 57.72 12.71 15.60 12.90 40.55
Gemma (7B) 14.32 26.28 2.81 7.04 0.00 9.62
Code Llama (7B) 10.31 12.58 2.90 5.20 0.00 15.18
Code Llama (34B) 47.15 53.03 4.60 7.50 6.45 20.18
Code Llama (70B) 51.80 48.08 0.00 8.10 6.45 10.74
SQLcoder (7B) 6.06 5.95 0.00 0.00 0.00 2.03
SQLcoder (34B) 19.01 16.13 1.20 1.20 0.00 3.33
SQLcoder (70B) 23.59 21.03 1.20 1.20 3.22 4.07
Mixtral (8x7B) 33.98 46.91 2.90 12.70 0.00 20.18
Qwen1.5 (7B) 19.33 38.48 2.30 9.20 3.22 38.70
Qwen1.5 (72B) 42.89 57.27 12.10 17.90 12.90 38.70
WizardLM (13B) 35.49 32.97 0.58 2.30 0.00 4.25
Code Llama-SFT (34B) 74.67 74.57 6.93 10.98 3.22 40.55

For the sake of saving the number of tokens consumed, we batch ten questions into one prompt for
generate SQLs. When generating SQLs with LLMs, we set temperature = 0.7, top p = 1. For
fine-tuning Code Llama model with the training set for single-turn question-SQL pairs on our server,
we use the LoRA fine-tuning method and set r = 16, alpha = 32, lr = 5e − 5, batch size =
4, train epochs = 4. For fine-tuning LLM with multi-turn dialogues, we use QLoRA and set
r = 64, alpha = 16, lr = 5e− 5.

5.4 ACCURACY ANALYSIS

We first analyze the accuracy performance of baseline models on the dev set and test set of our
benchmark. The dev set and the SQL complexity part of test set contains 2,772 and 1,959 complex
question-SQL pairs respectively. In the following experiments, we construct the input prompt for
LLMs with the CREATE SQL of the database and a command for instructing LLMs to generate
SQLs. The results of model accuracy performance are shown in Table 3. Experimental results
demonstrate that our benchmark is challenging to most advanced LLMs, and even the state-of-art
model, GPT-4, only achieves about 62% EX accuracy. Although the open-source models including
Code Llama and SQLcoder have been trained in previous benchmarks, their performance is inferior
to that of the closed-source model due to the small scale of parameters and the lack of training on
our benchmark. This indicates that our benchmark has made up for the missing data patterns in
the previous benchmark. Code Llama SFT (34B) training on our train set can achieve nearly 75%
execution accuracy, surpassing that of GPT-4. We then evaluate the accuracy performance of models
on other metrics. Based on the home-credit-default financial database, the external knowledge,
logical reasoning and NL question diversity parts of the test set contains 17,331 and 540 question-
SQL pairs respectively. The results show that all models exhibit inadequate performance in handling
these complex aspects, indicating significant room for improvement. It is essential to design targeted
promotion strategies to address these deficiencies.

5.5 ROBUSTNESS ANALYSIS

To evaluate the robustness of baseline models, we construct 400 unanswerable questions classified
in four types: everyday questions, ambiguous questions, outside-database questions, and Non-SQL
questions based on the databases of test set. Each type contains 100 different questions. We prompt
the baseline models to evaluate whether the current question can be answered using SQL. If the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comprehensive model performance analysis.

(a) Robustness performance

Models Everyday Ambiguous Outside Non-SQL

GPT-3.5 100 0 100 100
GPT-4 100 0 100 0
Code Llama 0 0 0 0
SQLcoder 100 70 40 70

(b) Model’s support for SQL dialect features

Models PostgreSQL SQL Server MySQL ORACLE Overall

GPT-4 44.44 38.89 77.78 57.89 54.79
GPT-3.5 10.00 0.00 63.64 36.36 16.43
Code Llama 33.33 0.00 83.33 26.32 35.61
SQLcoder 38.89 33.33 33.33 31.58 34.24

(c) Interactivity performance

Models QM IM

GPT-3.5 32.20 10.40
GPT-4 33.60 10.80
Code Llama 6.40 1.40
Code Llama-SFT 50.90 24.20
SQLcoder 0.70 0.00
SQLcoder-SFT 46.20 19.80

question cannot be answered based on the database information, the models output cannot answer.
We investigate the baseline model’s responses to confusion questions. As shown in Table 4a, the
number indicates the ratio of correctly identified unanswerable questions. The results show that none
of the baseline models can accurately handle all types of confusion questions. Ambiguous questions
are the most confusing and challenging for all models. It is worth noting that GPT-4 outputs SQLs
when encountering ambiguous and Non-SQL questions, but GPT-4 will output extra explanation
about the ambiguity of the questions or output SQLs to extract required information for the next
Non-SQL operations.

5.6 INTERACTIVITY ANALYSIS

To evaluate the interactivity of baseline models and the quality of our generated data, we fine-tune
the open-source LLMs on our multi-turn dialogues, and then test the interactivity performance of
models on COSQL (Yu et al., 2019a) dev set. The QM and IM results are shown in Table 4c,
which show that untrained open-source models cannot process other types of questions in multi-turn
dialogues. After training these models, there is an increase of nearly 50% in QM and 20% in IM.
This demonstrates that our automatically generated data can effectively improve the interactivity
performance of the model.

5.7 GENERALIZATION ANALYSIS

We summarized total 21 features for four SQL dialects, including PostgreSQL, SQL Server, MySQL
and Oracle. We construct specific question-SQL pairs for each feature and test 73 question-SQL
pairs on baseline models. The comparison of baseline models on generalization ability is shown
in Table 4b. GPT-4 supports the most features across four SQL dialects, showcasing its strong
generalization ability. SQLcoder, which claims to support multiple database systems, also covers
nearly half of the SQL dialect features. The experimental results on generalization analysis indicate
that the current support for SQL dialects of current LLMs is not comprehensive enough and needs
to be strengthened.

6 CONCLUSION

Our multidimensional text-to-SQL benchmark, OCTOPUS, comprising 10,885 complex question-
SQL pairs and 10,874 multi-turn dialogues across 74 public databases. With well-designed metrics
and automatic generation pipelines, OCTOPUS not only provides a more fine-grained evaluation of
text-to-SQL model performance, but also reveals deficiencies in current text-to-SQL models. De-
pending on our automatic data generation pipeline, OCTOPUS is highly scalable and can be expanded
at a low cost. The evaluation of advanced text-to-SQL models on OCTOPUS has revealed consider-
able room for improvement, highlighting the necessity for further research and development in this
domain.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

The development of the OCTOPUS benchmark was guided by ethical considerations regarding data
sourcing, model usage, and the potential impact of the research. All databases utilized in our bench-
mark were sourced from publicly available and open-source repositories, and were carefully selected
to ensure they do not contain personally identifiable information (PII) or other sensitive data. We
acknowledge that the large language models (LLMs) used for data generation, such as GPT-4, may
reflect biases present in their training corpora. However, the primary purpose of our work is to cre-
ate a comprehensive evaluation tool that can help researchers identify and ultimately mitigate such
weaknesses in text-to-SQL systems. The overarching goal of this research is to advance technol-
ogy that democratizes data access for non-technical users, which we believe is a positive societal
contribution. Furthermore, our automated generation pipeline is designed to reduce the reliance on
intensive manual annotation, promoting a more sustainable and cost-effective approach to bench-
mark creation.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we have provided
detailed descriptions of our experimental setup in Section 5, including the baseline models (Section
5.1), evaluation metrics, and implementation settings. Crucially, the full prompts used for data
generation and model evaluation are included in the Appendix (Figures 6, 8, and 7) to allow for
precise replication of our interactions with the large language models. Upon publication of this
paper, we will publicly release the complete OCTOPUS benchmark dataset, including all question-
SQL pairs, multi-turn dialogues, and associated database schemas. Furthermore, we will release all
the source code used for data generation, model evaluation, and analysis. This will enable other
researchers to verify our results, build upon our work, and use OCTOPUS to evaluate their own
text-to-SQL systems.

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, et al. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, et al. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Shuaichen Chang, Jun Wang, Mingwen Dong, et al. Dr.spider: A diagnostic evaluation benchmark
towards text-to-SQL robustness. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=Wc5bmZZU9cy.

Naihao Deng, Shuaichen Chang, Peng Shi, Tao Yu, and Rui Zhang. Prefix-to-sql: Text-to-sql genera-
tion from incomplete user questions, 2021. URL https://arxiv.org/abs/2109.13066.

Qingxiu Dong, Lei Li, Damai Dai, et al. A survey for in-context learning. ArXiv, abs/2301.00234,
2023. URL https://api.semanticscholar.org/CorpusID:263886074.

Alexander R. Fabbri, Wojciech Kryściński, et al. SummEval: Re-evaluating summarization eval-
uation. Transactions of the Association for Computational Linguistics, 9:391–409, 2021. doi:
10.1162/tacl a 00373. URL https://aclanthology.org/2021.tacl-1.24.

Ju Fan, Zihui Gu, Songyue Zhang, et al. Combining small language models and large language
models for zero-shot nl2sql. Proc. VLDB Endow., 17(11):2750–2763, August 2024. ISSN 2150-
8097. doi: 10.14778/3681954.3681960. URL https://doi.org/10.14778/3681954.
3681960.

Han Fu, Chang Liu, Bin Wu, et al. Catsql: Towards real world natural language to sql ap-
plications. Proc. VLDB Endow., 16(6):1534–1547, February 2023. ISSN 2150-8097. doi:
10.14778/3583140.3583165. URL https://doi.org/10.14778/3583140.3583165.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=Wc5bmZZU9cy
https://arxiv.org/abs/2109.13066
https://api.semanticscholar.org/CorpusID:263886074
https://aclanthology.org/2021.tacl-1.24
https://doi.org/10.14778/3681954.3681960
https://doi.org/10.14778/3681954.3681960
https://doi.org/10.14778/3583140.3583165

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145, May 2024. ISSN 2150-8097. doi: 10.14778/3641204.3641221. URL https:
//doi.org/10.14778/3641204.3641221.

Orest Gkini, Theofilos Belmpas, Georgia Koutrika, and Yannis Ioannidis. An in-depth benchmark-
ing of text-to-sql systems. In Proceedings of the 2021 International Conference on Manage-
ment of Data, SIGMOD ’21, pp. 632–644, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 9781450383431. doi: 10.1145/3448016.3452836. URL https:
//doi.org/10.1145/3448016.3452836.

Zihui Gu, Ju Fan, Nan Tang, et al. Few-shot text-to-sql translation using structure and content
prompt learning. Proc. ACM Manag. Data, 1(2), June 2023. doi: 10.1145/3589292. URL
https://doi.org/10.1145/3589292.

Jiaqi Guo, Zecheng Zhan, Yan Gao, et al. Towards complex text-to-SQL in cross-domain database
with intermediate representation. In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.),
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4524–4535, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1444. URL https://aclanthology.org/P19-1444.

Jiaqi Guo, Ziliang Si, Yu Wang, et al. Chase: A large-scale and pragmatic Chinese dataset for cross-
database context-dependent text-to-SQL. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 2316–2331, Online, August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.180. URL https://aclanthology.org/2021.
acl-long.180.

George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for
text-to-sql. The VLDB Journal, 32(4):905–936, January 2023. ISSN 1066-8888. doi: 10.1007/
s00778-022-00776-8. URL https://doi.org/10.1007/s00778-022-00776-8.

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. Natural language to sql: where
are we today? Proc. VLDB Endow., 13(10):1737–1750, June 2020. ISSN 2150-8097. doi:
10.14778/3401960.3401970. URL https://doi.org/10.14778/3401960.3401970.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. KaggleDBQA: Realistic evaluation
of text-to-SQL parsers. In Proceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 2261–2273, Online, August 2021. Association for Computational
Linguistics. URL https://aclanthology.org/2021.acl-long.176.

Boyan Li, Yuyu Luo, Chengliang Chai, et al. The dawn of natural language to sql: Are we fully
ready? Proc. VLDB Endow., 17(11):3318–3331, August 2024a. ISSN 2150-8097. doi: 10.14778/
3681954.3682003. URL https://doi.org/10.14778/3681954.3682003.

Jinyang Li, Binyuan Hui, Ge Qu, et al. Can llm already serve as a database interface? a big
bench for large-scale database grounded text-to-sqls. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024b.
Curran Associates Inc.

Yen-Ting Lin and Yun-Nung Chen. LLM-eval: Unified multi-dimensional automatic evaluation for
open-domain conversations with large language models. In Yun-Nung Chen and Abhinav Rastogi
(eds.), Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023), pp.
47–58, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.nlp4convai-1.5. URL https://aclanthology.org/2023.nlp4convai-1.
5.

Yang Liu, Dan Iter, et al. G-eval: NLG evaluation using gpt-4 with better human alignment.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 2511–2522, Singapore, December

11

https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.1145/3448016.3452836
https://doi.org/10.1145/3448016.3452836
https://doi.org/10.1145/3589292
https://aclanthology.org/P19-1444
https://aclanthology.org/2021.acl-long.180
https://aclanthology.org/2021.acl-long.180
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.14778/3401960.3401970
https://aclanthology.org/2021.acl-long.176
https://doi.org/10.14778/3681954.3682003
https://aclanthology.org/2023.nlp4convai-1.5
https://aclanthology.org/2023.nlp4convai-1.5

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.153. URL
https://aclanthology.org/2023.emnlp-main.153.

Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, et al. Towards robustness of text-to-SQL models against
natural and realistic adversarial table perturbation. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2007–2022, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
142. URL https://aclanthology.org/2022.acl-long.142.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, et al. Code llama: Open foundation models for
code, 2024.

Jaydeep Sen, Chuan Lei, Abdul Quamar, et al. Athena++: natural language querying for complex
nested sql queries. Proc. VLDB Endow., 13(12):2747–2759, July 2020. ISSN 2150-8097. doi:
10.14778/3407790.3407858. URL https://doi.org/10.14778/3407790.3407858.

Liane Vogel and Carsten Binnig. Wikidbs: A corpus of relational databases from wikidata. In Joint
Proceedings of Workshops at the 49th International Conference on Very Large Data Bases (VLDB
2023), Vancouver, Canada, August 28 - September 1, 2023, volume 3462 of CEUR Workshop
Proceedings. CEUR-WS.org, 2023. URL https://ceur-ws.org/Vol-3462/TADA3.
pdf.

Bing Wang, Yan Gao, Zhoujun Li, et al. Know what I don’t know: Handling ambiguous and un-
known questions for text-to-SQL. In Findings of the Association for Computational Linguistics:
ACL 2023, pp. 5701–5714, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.352. URL https://aclanthology.org/2023.
findings-acl.352.

Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. Chain-of-thought prompting elicits reasoning in
large language models. In Proceedings of the 36th International Conference on Neural Informa-
tion Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN
9781713871088.

Kun Wu, Lijie Wang, Zhenghua Li, et al. Data augmentation with hierarchical SQL-to-question gen-
eration for cross-domain text-to-SQL parsing. In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 8974–8983, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.707. URL https://aclanthology.org/2021.emnlp-main.707.

Tong Wu, Guandao Yang, Zhibing Li, et al. Gpt-4v(ision) is a human-aligned evaluator for text-to-3d
generation. In CVPR, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, et al. WizardLM: Empowering large pre-trained language
models to follow complex instructions. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=CfXh93NDgH.

Tao Yu, Rui Zhang, Kai Yang, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-SQL task. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 3911–3921, Brussels, Bel-
gium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
D18-1425. URL https://aclanthology.org/D18-1425.

Tao Yu, Rui Zhang, Heyang Er, et al. CoSQL: A conversational text-to-SQL challenge towards
cross-domain natural language interfaces to databases. In Kentaro Inui, Jing Jiang, Vincent Ng,
and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pp. 1962–1979, Hong Kong, China, November 2019a. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1204. URL https://aclanthology.
org/D19-1204.

Tao Yu, Rui Zhang, Michihiro Yasunaga, et al. SParC: Cross-domain semantic parsing in context.
In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual

12

https://aclanthology.org/2023.emnlp-main.153
https://aclanthology.org/2022.acl-long.142
https://doi.org/10.14778/3407790.3407858
https://ceur-ws.org/Vol-3462/TADA3.pdf
https://ceur-ws.org/Vol-3462/TADA3.pdf
https://aclanthology.org/2023.findings-acl.352
https://aclanthology.org/2023.findings-acl.352
https://aclanthology.org/2021.emnlp-main.707
https://openreview.net/forum?id=CfXh93NDgH
https://aclanthology.org/D18-1425
https://aclanthology.org/D19-1204
https://aclanthology.org/D19-1204

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Meeting of the Association for Computational Linguistics, pp. 4511–4523, Florence, Italy, July
2019b. Association for Computational Linguistics. doi: 10.18653/v1/P19-1443. URL https:
//aclanthology.org/P19-1443.

Bin Zhang, Yuxiao Ye, Guoqing Du, et al. Benchmarking the text-to-sql capability of large language
models: A comprehensive evaluation, 2024a. URL https://arxiv.org/abs/2403.
02951.

Yi Zhang, Jan Deriu, Katsogiannis-Meimarakis, et al. Sciencebenchmark: A complex real-world
benchmark for evaluating natural language to sql systems. Proc. VLDB Endow., 17(4):685–698,
March 2024b. ISSN 2150-8097. doi: 10.14778/3636218.3636225. URL https://doi.org/
10.14778/3636218.3636225.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

APPENDIX

A THE DETAILED DEFINITIONS OF FIRST-LEVEL AND SECOND-LEVEL
METRICS

The detailed definitions of the first-level and second-level metrics not mentioned in the main paper
are illustrated below.

Table 5: Definition of external knowledge categories.

Primary Category Secondary Category Definition

Database Internal Knowledge Table Definition Descriptions of the meaning of an entire table
in the database

Field Description Descriptions of the meanings of field names in
a table

Value Description Detailed descriptions of database values, in-
cluding value types, ranges, and categories

Database External Knowledge Concept Description Detailed explanations of relevant noun con-
cepts in a specific domain

Calculation Description Calculations and formulas associated with
database fields

Relation Description Entity relationship descriptions for fields and
values, such as inclusion and composition

Constant Definition Constants and statistical data values related to
specific domains

Abbreviation/Alias Descriptions of abbreviations and aliases for
specific domains

Database Complexity. We focus on the complexity of the data model when considering the con-
cept of database complexity. A data model with lengthy field names and complex foreign key as-
sociations will increase the difficulty of extracting relevant table information and generating JOIN
clauses for text-to-SQL system based on user questions. In order to test the understanding and infor-
mation extraction capabilities of a text-to-SQL system on complex database structures, we further
decompose database complexity metric into three second-level metrics, containing field naming
complexity, table similarity, and table coupling degree from perspective of increasing the difficulty
of SQL generation.

• Field Naming Complexity. This metric requires the benchmark dataset to contain diverse
and complex field naming method. We expect the benchmark to contain databases with
different field naming styles including English, Chinese, and Abbreviation. Meanwhile,

13

https://aclanthology.org/P19-1443
https://aclanthology.org/P19-1443
https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/2403.02951
https://doi.org/10.14778/3636218.3636225
https://doi.org/10.14778/3636218.3636225

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

we expect the database field names to be as long as possible to test if the LLM based on
probability can output the field name accurately and stably.

• Table Similarity. Table similarity is defined as the overlapping degree of the set of fields
of two tables. The higher the overlapping degree of two tables, the closer their seman-
tic meanings are and the harder for LLMs to distinguish them. This metric requires the
databases in our benchmark to contain tables with high similarity as many as possible. It
is designed to examine the text-to-SQL system’s ability of retrieval for relevant tables and
columns.

• Table Coupling Degree. We defined the table coupling degree of a database as the density
of database graph where tables are treated as nodes and foreign key constraints are regarded
as edges. Higher table coupling degree means that querying the same information needs
more JOIN operations in one SQL, which is a key challenge in the text-to-SQL translation
process. This metric requires the benchmark to contain the databases with higher table
coupling degree to inspect the ability of JOIN clause generation for complex SQL.

Gold SQL Complexity. Gold SQLs are correct SQL statements corresponding to user questions,
which should be predicted by text-to-SQL models. We measure the gold SQL complexity from the
following two perspectives: SQL structural complexity and SQL operation diversity. We design
this metric to concentrate on assessment of text-to-SQL system’s ability for SQL generation part.

• SQL structural complexity. We utilize the depth and width of the AST(Abstract Syntax
Tree) of SQL statements to assess the SQL structural complexity. A deeper AST structure
often indicates that the SQL statement has a higher level of nested structure, meanwhile, a
wider AST structure implies that the SQL statement has a greater number of clauses, which
poses a great challenge for SQL generation. We set this metric to guide our benchmark to
contain more deeper and wider SQL samples to test text-to-SQL system’s ability in aspect
of generating complex SQLs.

• SQL operation diversity. To enhance the comprehensiveness of our benchmark, it is im-
perative to include SQL samples that not only exhibit more intricate structures, but also
encompass a broader array of SQL operations, including diverse keywords, functions, and
additional syntactic elements. We aim for our benchmark to encompass as wide a range of
SQL syntactic operations as possible to assess the text-to-SQL model’s comprehension of
SQL syntax.

Natural Language(NL) Question Diversity. Natural language questions are proposed by users
and treated as input by text-to-SQL systems. Most text-to-SQL systems do not format questions
input by users, thus natural language questions containing different kinds of forms and variations.
Taking the impact of natural language questions on accuracy for text-to-SQL systems into consider-
ation, we depict the natural language question diversity into two fine-grained metrics: Diversity in
NL Questioning Ways and Ambiguity of NL Questions.

• Diversity in NL Questioning Ways. This second-level metric concentrates on the different
ways of natural language questions being asked regardless of information it contains. For
example, we regard “What are the maximum and minimum budget of the departments?”
and “List the maximum and minimum budget of the departments?” as two different ques-
tioning ways but querying the same information. In our benchmark, we change the ques-
tioning ways of users’ queries to test if the accuracy of text-to-SQL system will decline
under different circumstances.

• Ambiguity of NL Questions. Due to the fact that users of text-to-SQL systems are usu-
ally not expert in database systems and SQL syntax, questions proposed by them could
be ambiguous and vague, including synonyms and implications. This metric is designed
to simulate ambiguous natural language questions by categorizing different types of such
questions as encountered in real-world scenarios, in order to evaluate the capability of text-
to-SQL systems to respond accurately to these questions.

Logical Reasoning Complexity. A complex SQL statement frequently involves intricate logical
reasoning steps, which can be decomposed into a sequence of simpler SQL query statements in

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

order. We define a logical clause in a complex SQL query, such as JOIN, GROUP BY, SORT, or
SUBQUERY clauses, which can be dismantled to obtain an intermediate result, as a constituent step
in the logical reasoning process. Logical reasoning complexity means the number of logical reason-
ing steps required to generate one complex SQL statement. Our benchmark introduces this metric
and constructs question-SQL pairs with high logical reasoning complexity to test the reasoning ca-
pabilities of text-to-SQL systems.

External Knowledge Complexity. Real-world databases cover multiple domains and different
definitions. Incorporating descriptions of databases and domain-specific knowledge is essential for
text-to-SQL systems to generate executable and accurate SQL queries. For example, considering
a situation where a financial database contains one table Transactions(ID, Revenue, Cost, Date)
and a user question is ”Calculate the total profit for all transactions.”, the text-to-SQL system must
comprehend the calculation of profit corresponding to the equation Profit=Revenue-Cost to generate
the correct SQL ”SELECT SUM(Revenue - Cost) AS TotalProfit FROM Transactions”. Based on
the analysis of user problems that may occur in real scenarios and the integration of other related
research on external knowledge, we summarize and classify the external knowledge that text-to-sql
system may need to generate correct SQLs, as detailed in Table 5. In our paper, we consider that the
external knowledge can be divided into two main categories based on the relevance to the database,
one is the internal knowledge of the database which is database-specific, the other is knowledge
external to the database the database which contains common sense and domain-specific knowledge.
We further split these two kinds into more fine-grained categories. We set the variety and number of
external knowledge required for generating gold SQLs as the second-level metrics to form a subset
dataset containing various user questions related to external knowledge for testing the text-to-SQL
systems’ ability to retrive and understand external knowledge.

Confusion Question Testing. In real-world scenarios, user questions are diverse and may in-
clude some distracting questions. We have defined four types of confusion questions referring to
the Dr.spider benchmark (Chang et al., 2023): Everyday Conversations (Non-SQL Q&A), Am-
biguous Questions (one question corresponding two or more correct SQLs), Unanswerable Ques-
tions(querying information outside the database), and Unsupported Questions(querying operations
not supported by SQL statements such as plotting figures). We introduce these confusing ques-
tions to test the ability of the text-to-SQL system to identify and process questions that cannot be
answered.

Perturbation Testing. A robust text-to-SQL system must exhibit resilience against potential vari-
ations that may arise during the course of user interaction. To evaluate the robustness of the text-
to-SQL systems, we stimulate two real-world common kinds of perturbations in our benchmark:
Perturbations to the database and Perturbations to natural language questions. It is common for
database tables, fields, and records to be updated in enterprise applications, and user questions may
also contain replacement changes. We aim to simulate these two types of perturbation through
constructing samples to measure how robust a text-to-SQL system is.

A.1 DEFINITION OF EXTERNAL KNOWLEDGE CATEGORIES

We further divide external knowledge into two categories: Database Internal Knowledge and
Database External Knowledge.

Database internal knowledge refers to specific information about databases that cannot be accessed
or obtained through a standard connection to the database system. In real applications, database ad-
ministrators often use abbreviations to name tables and columns (also called fields) for convenience.
These tables and fields are frequently not well-documented within the database, making it challeng-
ing for text-to-SQL systems to comprehend the database structure. Although we can obtain the data
types and sample values of fields through the database system, the specific meanings represented
by these values (e.g., ’F’ representing ’female’) are difficult for text-to-SQL systems to understand.
Therefore, text-to-SQL systems need to combine detailed descriptions for the specific database in-
cluding table definition, field description and value description as external knowledge to generate
the correct SQL statement. This kind of external knowledge varies with different databases.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Database external knowledge refers to the external information independent of the specific database,
which is often common sense or domain knowledge. We further divide database external knowledge
into 5 secondary categories: Concept Description, Calculation Description, Relation Descrip-
tion, Constant Definition and Abbreviation/Alias. The definitions of these categories are listed in
the Table 5. Let us give a concrete example for each category to make it easier to understand. For
example, DPD, short for Days Past Due (Abbreviation/Alias), indicates how many days have passed
since the due date of the loan or credit card payment (Concept Description). Profit equals revenue
minus cost, which is a simple example of calculation description. Relation description involves
inclusive and non-inclusive relationships, such as “China belongs to an Asian country”. Constant
definition describes the specific values not included in the database corresponding to the concept.
π = 3.1415926 is a simple example for this category. In our samples related to external knowl-
edge in the dataset, we have detailed annotations of the involved external knowledge descriptions
and classifications. It is worth noting that a single sample may involve multiple entries of external
knowledge.

A.2 THE DEFINITIONS OF CATEGORIES FOR NL DIVERSITY

We summarize and define the types of possible variations on user questions in practical text-to-SQL
systems in Table 7. These types are used to guide the generation of test samples for NL diversity.
We paraphrase the original questions of question-SQL pairs to rewritten questions with the help of
GPT-4. A rewritten question can involve multiple types of NL variations. All rewritten questions
are annotated with types and descriptions of each included variation .

B THE COLLECTION OF UNIQUE CHARACTERISTICS FOR DIFFERENT SQL
DIALECTS

We analyze and collect 21 unique characteristics for on SQL functions for five prevalent SQL di-
alects, including SQL Standard, PostgreSQL, SQL Server, MySQl and Oracle. For each SQL func-
tion in Table 8, we list the corresponding unique SQL keywords or functions for each SQL dialect,
where the symbol “–”indicates no corresponding keywords. Based on functions mentioned in Ta-
ble 8, we generate a total of 177 question-SQL pairs, covering these functions across four database
systems.

C THE COST ANALYSIS OF DATA GENERATION PIPELINE

In our data generation pipeline, only the question generation and question-SQL pair selection parts
use the OpenAI gpt-4-turbo API, incurring API usage fees. Though batching multiple SQLs or
question-SQL pairs into one prompt, generating a question and scoring a question-SQL pair cost
0.01$ and 0.006$ respectively on average. Therefore, the cost of our data generation pipeline is
only 0.016$ for each question-SQL pair on average, which is much lower than the cost of manual
generation with intensive human labor.

D THE STATISTICS OF THE DISTRIBUTION OF SQL KEYWORDS AND
FUNCTIONS

We conduct a statistical analysis of the keywords and functions in the SQL statements we generated.
We create the following visual word cloud in Figure 3 based on the frequency of keywords and
functions. We categorize all the keywords and functions into the following eight categories:

Basic comparison and logical operators. =, ̸=, >,<,≥,≤, <>, ||,+,−,×, /, OR, AND, IS,
NOT

Data aggregation functions. COUNT(), AVG(), SUM(), MIN(), MAX(), GROUP CONCAT(),
GREATEST()

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 3: SQL keyword and function distribution

Date and time handling functions. TIMESTAMP(), MINUTE(), DATE SUB(), EXTRACT(),
DAY(), DATEDIFF(), DATE(), CURRENT TIMESTAMP, CURRENT DATE, CURDATE(), IN-
TERVAL(), YEAR(), LOCALTIMESTAMP

String handling functions and pattern matching. LIKE, POSITION(), LENGTH(), CON-
CAT(), TRIM(), SUBSTRING(), CHARACTER LENGTH(), OCTET LENGTH()

Conditional statements and data type handling. IN(), COALESCE(), CASE, BETWEEN

Mathematical operators and functions. FLOOR(), ABS(), SIGN()

Encryption and encoding functions. DECODE()

Other miscellaneous functions. USER()

Figure 4: Overview of the pipeline for automatic multi-turn dialogues generation

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E THE DETAIL OF PROMPTS

E.1 PROMPT FOR QUESTION-SQL PAIR SELECTION

The prompt for question-SQL pair selection is composed of three parts: criteria prompt,
one shot prompt and rate qa prompt. Criteria prompt outlines the specific scoring criteria, includ-
ing question quality, SQL quality, consistency, significance. One shot prompt, containing a sample
question-SQL pair and the corresponding scores, is used to standardize the output format of the
LLM. Rate qa prompt involves question-SQL pairs to be scored and scoring instructions. The final
prompt for the LLM input is shown in the Figure 6.

E.2 QUESTION GENERATION PROMPT

Question generation for specific SQL consists of three steps: rough translation to convert SQL
clauses into spoken English, clause translation to prepare hints and final translation which combines
the results of rough translation and clause translation to obtain the final corresponding question.
Figure 8 shows the detailed prompt for each translation step.

E.3 PROMPT FOR TESTING SQL GENERATION

The prompt for testing SQL generation consists of three main components: base prompt, exter-
nal knowledge prompt, and sql dialect prompt. The base prompt instructs the model to generate
SQL queries based on provided SQL tables and user requests, returning the results as a list. The ex-
ternal knowledge prompt extends this by incorporating additional context from external knowledge
sources to enhance the relevance of the generated queries. The sql dialect prompt further specifies
that each generated SQL must conform to a particular SQL dialect, using predefined functions and
database system types. The final prompt used as input to the LLM is illustrated in Figure 7.

F MULTI-TURN DIALOGUE GENERATION PIPELINE

Figure 4 shows the generation pipeline for multi-turn dialogues. The pipeline for automatic multi-
turn dialogue generation starts with a target SQL query and a database schema, generating interac-
tions through a large language model (LLM) using thematic relations and multiple Q&A types.
These interactions are randomly combined to create diverse dialogue scenarios. The generated
Q&As are then verified and refined by checking categorization, refining expressions, and scoring
the results. Only those with high scores (e.g., score > 9) are deemed valid, resulting in a set of co-
herent and accurate multi-turn dialogues that reflect the original SQL queries and database schema.

G ERROR ANALYSIS ON TEST SAMPLES FOR LOGICAL REASONING

In our experimental results, we discover that all models perform poorly on the test set for logical
reasoning, even the state-of-the-art GPT-4 model achieves only about 16% accuracy. The test set for
logical reasoning is comprised of 31 complex question-SQL pairs which involves multiple difficult
logical reasoning steps including sub-query, group-by, sort and join operations. Figure 9 shows
an example of test set for logical reasoning, which needs three logical reasoning steps for LLM to
correctly generate the gold SQL. It requires the text-to-SQL model to have a deep understanding of
the database, stable SQL generation capabilities, and strong logical reasoning abilities. We analyze
the results of LLMs in our experiments on these complex questions, and observe that the majority
of errors are due to the execution of generated SQL statements, with logical errors accounting for
only a minority. This indicates that the current text-to-SQL model has significant limitations in its
capability to generate complex SQL statements that involve intricate logical reasoning steps.

H EVALUATION OF GENERATED DATA QUALITY

Due to the fact that the sampling rules for generating SQL cannot fully cover all potential cases
that may lead to semantic issues, which may result in the generation of nonsensical SQL queries, we

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Correlation and Significance Levels

Metric Pearson Spearman Kendall

Correlation P-value Correlation P-value Correlation P-value

question quality 0.561 1.18e-9 0.514 4.36e-8 0.424 3.55e-8
SQL quality 0.873 1.90e-32 0.875 9.29e-33 0.778 5.30e-24
consistency 0.903 6.12e-38 0.851 3.01e-29 0.712 2.95e-22
significance 0.788 1.97e-22 0.770 6.72e-21 0.628 5.70e-15

adopted a strategy of using GPT-4 to evaluate and filter the generated question-answer pairs to ensure
high-quality outputs. The idea of using large models for evaluation originates from previous work
that employed large models to assess the quality of conversations and text-to-3D data, including G-
EVAL (Liu et al., 2023), SummEval (Fabbri et al., 2021) and GPTEval3D (Wu et al., 2024), which
is known as LLM-eval research filed. We follow the statistical tests in these papers to verify the
alignment between GPT-4 and human experts on assessing generated text-to-SQL data. We collected
5 SQL experts to score one hundred randomly selected samples (including both high-quality and
low quality data samples), according to the same scoring criteria provided to GPT-4. We introduce a
cross-validation method in the scoring process. Each sample will be evaluated by two experts. If the
score difference is less than 20, the average of the two scores will be taken as the final score. If the
score difference exceeds 20, the experts will re-evaluate the sample through consultation until the
score difference is reduced to less than 20. Finally, following the method of analysis used in previous
work, we calculated Pearson, Spearman, and Kendall’s Tau correlation coefficients along with their
corresponding p-values for the scores given by GPT-4 and human experts. The final statistical
analysis results are presented in Table 6. All the correlation coefficients and p-values mentioned
above indicate that the human expert scores and GPT-4 scores have a strong positive correlation
across all four scoring dimensions. This demonstrates the effectiveness of GPT-4’s quality scoring
and its consistency with human evaluations. We then analyzed the results of the high-quality and
low-quality datasets selected by GPT-4 and human experts. Among these 100 random samples, 89%
of the results from GPT-4 were consistent with those of human experts. Only 2% (2 out of 100) of
the samples that humans deemed low quality were mistakenly identified as high quality by GPT-4.
Additionally, 9% (9 out of 100) of the high-quality data samples were misclassified as low quality
by GPT-4. This suggests that GPT-4 may apply stricter criteria than human experts. However, this
does not compromise the overall quality of the final dataset.

I LICENSES FOR OPEN-SOURCE DATABASES

The databases in our benchmark are all in accordance with one of following licenses:

Public Domain Public Domain Mark
A public domain license refers to a legal designation that allows intellectual property, such as cre-
ative works or inventions, to be freely used, shared, and built upon by anyone without restrictions.
When a work is in the public domain, it is no longer protected by copyright, patent, or trademark
laws.

CC-BY Creative Commons Attribution 4.0 International
This license is one of the open Creative Commons licenses and allows users to share and adapt the
dataset so long as they give credit to the creator.

CC-BY-SA Creative Commons Attribution-ShareAlike 4.0 International
This license is one of the open Creative Commons licenses and allows users to share and adapt the
dataset so long as they give credit to the creator and distribute any additions, transformations, or
changes to the dataset under this license.

GPL General Public License
The GPL was created by the Free Software Foundation (FSF) and is also known as the GNU GPL,
as it is used by the GNU Project. And it allows users to use, study, share, and modify the software
under certain terms and conditions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

CPOL Code Project Open License
It is a software license that is often used for articles, tutorials, and sample code shared on The Code
Project website. The CPOL is intended to be a more permissive license, allowing developers to use,
modify, and distribute the software without many of the restrictions imposed by other licenses like
the GPL.

CC0 Creative Commons Zero
It is a public domain dedication tool created by Creative Commons. It allows creators to waive all
their copyright and related rights in a work, effectively placing it in the public domain. This means
that anyone can freely use, share, modify, and build upon the work without seeking permission or
providing attribution to the original creator.

J GENERATIVE AI USAGE STATEMENT

We utilized a large language model (LLM) to assist in the preparation of this paper. The LLM’s role
was strictly limited to improving grammar, clarity, fluency, and overall readability. It is important to
distinguish this use from the application of LLMs as a core component of our research methodology.
The utilization of GPT-4 for the automatic generation of questions and the filtering of question-SQL
pairs, as part of the OCTOPUS benchmark creation pipeline, is a central aspect of our technical
contribution and is described in detail in Section 4. We meticulously reviewed, revised, and edited
all text to ensure it accurately reflects our research and findings. Full responsibility for the scientific
content, claims, and final wording of this paper rests entirely with the human authors.

Figure 5: Depth and width distribution of SQLs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: The definitions and examples of NL diversity categories.

Type Definition Question Paraphrases Description

keyword
synonym

Use synonyms of key-
words in SQL to rewrite
the question.

Find the code of air-
port that has the highest
number of flights.

Show me the code for
the airport that currently
has the most flights.

find and show are both
synonyms for select

keyword
implicit

Use the implicit ex-
pression of keywords in
SQL to rewrite the ques-
tion.

Arrange the test scores
in descending order,
who is ranked 5th?

Who is the student with
fifth place in the exam?

fifth place implies order
by desc

operator
synonym

Use synonyms of opera-
tor or function in SQL to
rewrite the question.

What is the code of air-
port that has the highest
number of flights?

Show me the code for
the airport that currently
has the most flights.

the most is synonyms
for max()

operator
implicit

Use implicit expression
of operator or function
in SQL to rewrite the
question.

Show the name and
theme for all concerts
and the number of
singers in each concert.

List the names and
themes for all concerts
and how many singers
are in each.

how many implicts
count()

column syn-
onym

Use synonyms for
columns in database
tables to rewrite the
question.

List the name of teach-
ers whose hometown is
not Little Lever Urban
District.

Find the name of teach-
ers who were not born in
Little Lever Urban Dis-
trict.

born in is synonym of
hometown

column im-
plicit

Use implicit expression
of columns in database
tables to rewrite the
question.

Show the name of teach-
ers aged either 32 or 33?

Which teachers are aged
either 32 or 33.

which implicit name

column
attribute

Use attributes of
columns in database
tables to rewrite the
question.

What is the name of
the conductor who has
worked the greatest
number of year?

Who has worked the
longest as conductor?

longest represents an at-
tribute of year

column
value

Use value of columns
in database tables to
rewrite the question.

What are the ids of
the students who do not
own cats as pets?

Find the IDs of students
who don’t own cats.

cats is a value in the pets
column

column sub-
set

Use subset of columns
in database tables to
rewrite the question.

how many dogs are
there?

how many puppies are
there.

puppy refers to the col-
umn dog

column
shuffling

Rewrite the question by
shuffling the order of the
columns in the returned
database table

List students’ names,
grades, and classes.

List students’ grades,
names, and classes.

Shuffle the order in
which columns are
returned

column ab-
breviation

Use abbreviation of
columns in database
tables to rewrite the
question.

What is China’s GDP in
2023?

What is Gross Domes-
tic Product of China in
2023

find and show are both
synonyms for select

grammar
conversion

change the question by
changing the sentence
pattern, such as chang-
ing the question method,
etc.

Find all technical de-
partment employees
whose salary is higher
than 5000.

Find all technical de-
partment employees
with a salary higher
than 5,000.

Two sentences have
the same semantics but
different grammatical
structures

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: SQL function/method comparison across different database systems.

Method/Function SQL Standard PostgreSQL SQL Server MySQL Oracle

String Length CHARACTER LENGTH CHARACTER LENGTH
CHAR LENGTH
LENGTH (all equivalent)

LEN CHARACTER LENGTH
CHAR LENGTH

CHARACTER LENGTH
CHAR LENGTH
LENGTH

Substring SUBSTRING SUBSTRING SUBSTRING SUBSTRING SUBSTR

Trim Whites-
pace

TRIM TRIM LTRIM
RTRIM

TRIM TRIM

Local Times-
tamp

LOCALTIMESTAMP LOCALTIMESTAMP
CURRENT TIME

CURRENT TIMESTAMP
GETDATE()
SYSDATETIME

LOCALTIMESTAMP
NOW
CURTIME()

LOCALTIMESTAMP
SYSTIMESTAMP

String Concate-
nation

string1 | string2 – string1 + string2 CONCAT() string1 | string2

Null Handling – COALESCE ISNULL IFNULL NVL

Date Truncation – DATE TRUNC N/A DATEFORMAT TRUNC

String Search – POSITION CHARINDEX LOCATE INSTR

Time Difference – AGE+EXTRACT DATEDIFF DATEDIFF +/- INTERVAL

Paging Query – LIMIT
FETCH

FETCH LIMIT
FETCH

FETCH

Simple Condi-
tional Control

– – IIF – DECODE

Flashback
Query

– – – – TIME

Group Dedu-
plication/Field
Deduplication

– DISTINCT ON – – –

Sampling – TABLESAMPLE TABLESAMPLE ORDER BY RAND() SAMPLE(PERCENTAGE)

Value Retrieval
by Index

– – CHOOSE ELT –

String Regex
Match and Split

– REGEXP SPLIT TO TABLE
STRING TO ARRAY
REGEXP MATCHES (rec-
ommended)

STRING SPLIT REGEXP SUBSTR REGEXP SUBSTR

String Byte
Length

OCTET LENGTH OCTET LENGTH DATALENGTH LENGTH LENGTHB

Multi-group
String Concate-
nation

– STRING AGG STRING AGG GROUP CONCAT LISTAGG

Float Truncation – TRUNC FLOOR TRUNCATE TRUNC

Array
Merge/Collection
Generation

– – – – COLLECT

Full Join – FULL JOIN FULL JOIN LEFT JOIN + UNION +
RIGHT JOIN

FULL JOIN

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

criteria_prompt

Based on the following question-SQL pair, rate 'question_quality',
'SQL_quality', 'consistency', and 'significance’ on a scale from 0 to 100.
The scores should closely align with the following expectations:
- 'question_quality' should reflect the clarity and fluency of the

question and how relevant it is to potential users.\n
- 'SQL_quality' should reflect the correctness of the SQL query in

terms of syntax and its ability to retrieve the correct data as per the
question.\n

- 'consistency' should reflect how closely the SQL query matches the
intention of the question.\n

- 'significance' should reflect how likely the query is to be posed by
real users and how informative and meaningful the results of the
SQL query are.\n

rate_qa_prompt

Below are all the question-SQL pairs that need to be evaluated.
Each question-SQL is given in the form of a 2-tuple like (question, SQL)
in a list.\n
Please evaluate each question-SQL pair separately and add in
response list with no key.\n
Fill in the rationale field in the json in a short language\n
f"{question_sql_list}"

final_prompt

Question1:
Here is the question-SQL pair:\n
Question: What is the average number of Mubi users who love
movies directed by Stanley Kubrick?\n
SQL: SELECT AVG(movie_popularity) FROM movies WHERE
director_name = 'Stanley Kubrick'\n\n
Use the information provided to assign scores that align with the
specified expectations.
Give me the score and reason and insert into json format
Answer1 :
 """{ "question_quality": …,
 "SQL_quality": …,
 "consistency":…
 "significance": …}"""

One-shot

criteria_prompt

rate_qa_prompt

Figure 6: Prompt for question-SQL pair selection

ICL prompt

Given the following SQL tables, your job is to write queries given a user’s request. {Create_DDL_sql}
Write a SQL query for each question in the following question list: {question_list}
Only return the generated SQLs in a list object like [generated_sql1,generated_sql2,generated_sql3,generated_sql4,...]

Base prompt

Given the following SQL tables, your job is to write queries given a user’s request. {Create_DDL_sql}
Write a SQL query for each question in the following question list: {question_list}
External knowledge: {external_knowledge_description_list}
Only return the generated SQLs in a list object like [generated_sql1,generated_sql2,generated_sql3,generated_sql4,...]

Prompt with external knowledge

Given the following SQL tables, your job is to write queries given a user’s request. {Create_DDL_sql}
Write a SQL query for each question in the following question list: {question_list}
Each SQL must be corresponding to the database system in order in the list {type_list}
and use the function in order in the list {function_list}
Only return the generated SQLs in a list object like [generated_sql1,generated_sql2,generated_sql3,generated_sql4,...].

Prompt for specific SQL dialect

Figure 7: Prompt for SQL generation in experiments

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Rough translation prompt

Translate the sentences provided into spoken English, not contain any special symbols except commas and periods.
Only returns the translated sentences, do not generate any other content, such as "The caluse is: ...".
If you have trouble doing it or hold that nothing need to be changed, just return the original sentences.
The returned sentences is either the translated sentences or the original sentences, but we encourage you to translate the
sentences even if the changes are minor.
The sentences is: {sentences}
Make sure to return the result in JSON format: {"sentence1":"","sentence2":"", ...}

Clause translation prompt with few-shot

You are a language expert. You need to translate the sql clauses provided and then return the colloquial result.
Here is some examples: {examples}
You need to translate the sql clauses provided and then return the colloquial result.
Do not generate any other content, such as "The paragraph means: ", just the result.
If you can't translate the sql clauses, return the clauses provided, don't reply content as such 'The SQL clauses is not valid.
Please provide a valid SQL clauses.’.
The sql clauses is: {clauses}
Make sure to return the result in JSON format: {"sentence1":"","sentence2":"", ...}

Final translation prompt

You are a sql to question translation expert. You need to translate the sql provided and then return the coresponding
question easy to understand.
…
Here is some examples: {random_selection_examples}
You need to translate the sql provided and then return coresponding question.
Because sometimes SQL is too complex to understand, or even contains errors, we will also provide a simplified version(a
clause list, contains main information about the sql) for reference.
In addition, we will also provide some tips to introduce the meaning of this sql, and what the generated question is mostly
about.
…
We will provide the descriptions of the columns in SQL, which you can take as reference: {columns info}
The original sql is: {original_sql}
The simplified version is: {simplified_version}
The hints are: {hints}
Make sure to return the result in JSON format: {"question":" coresponding question to the sql provided"}

Figure 8: Prompt for question generation

An example of test set for logical reasoning

Query the customer with the highest average
overdue days under married status, whose latest
loan was applied on a weekend, and provide the
customer's gender and total income.

question

SELECT app.NAME_FAMILY_STATUS,
app.CODE_GENDER, app.AMT_INCOME_TOTAL,
app.SK_ID_CURR, MAX(average_days_overdue)
AS max_avg_overdue FROM
(SELECT bureau.SK_ID_CURR,
AVG(bureau.CREDIT_DAY_OVERDUE) AS
average_days_overdue FROM bureau GROUP
BY bureau.SK_ID_CURR) AS sub_bureau
JOIN application_train AS app ON
sub_bureau.SK_ID_CURR = app.SK_ID_CURR
WHERE app.NAME_FAMILY_STATUS = 'Married'
AND WEEKDAY_APPR_PROCESS_START IN
('Saturday', 'Sunday’) GROUP BY
app.SK_ID_CURR, app.NAME_FAMILY_STATUS,
app.CODE_GENDER, app.AMT_INCOME_TOTAL
ORDER BY max_avg_overdue DESC LIMIT 1;

Gold SQL

1. Calculate Average Overdue Days
First, we need to calculate the average overdue days for each
customer in the bureau table. This can be achieved with the
following subquery:

SELECT bureau.SK_ID_CURR,
AVG(bureau.CREDIT_DAY_OVERDUE) AS
average_days_overdueFROM bureauGROUP BY
bureau.SK_ID_CURR

2. Filter and Join Tables
We need to join the results of the above subquery with the
application_train table and filter based on marital status and
loan application date:

- Marital status is 'Married': app.NAME_FAMILY_STATUS =
'Married’
- Loan application date is on the weekend:
WEEKDAY_APPR_PROCESS_START IN ('Saturday', 'Sunday’)

3. Group and Sort
After joining and filtering, we need to group by customer ID,
marital status, gender, and total income, and find the customer
with the highest average overdue days.

Logical Reasoning Steps

Figure 9: An example illustration of test set for logical reasoning

24

	Introduction
	Related Work
	Benchmark Design
	Benchmark construction
	Database Collection
	Dataset Construction
	Data Statistics
	Cost Analysis of Data Generation

	Experiments
	Baseline Models
	Evaluation Metrics
	Experimental Settings
	Accuracy Analysis
	Robustness Analysis
	Interactivity Analysis
	Generalization Analysis

	Conclusion
	Ethics Statement
	Reproducibility Statement
	The detailed definitions of first-level and second-level metrics
	Definition of external knowledge categories
	The definitions of categories for NL diversity

	The collection of unique characteristics for different SQL dialects
	The cost analysis of data generation pipeline
	The statistics of the distribution of SQL keywords and functions
	The Detail of Prompts
	Prompt for question-SQL pair selection
	Question generation prompt
	Prompt for Testing SQL Generation

	Multi-turn dialogue generation pipeline
	Error Analysis on Test Samples for Logical Reasoning
	Evaluation of Generated Data Quality
	Licenses for Open-source Databases
	Generative AI Usage Statement

