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Jarrid Rector-Brooks
Mila, Université de Montréal
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ABSTRACT

Amortized inference is the task of training a parametric model, such as a neu-
ral network, to approximate a distribution with a given unnormalized density
where exact sampling is intractable. When sampling is implemented as a se-
quential decision-making process, reinforcement learning (RL) methods, such as
generative flow networks, can be used to train the sampling policy. Off-policy
RL training facilitates the discovery of diverse, high-reward candidates, but ex-
isting methods still face challenges in efficient exploration. We propose to use
an adaptive training distribution (the Teacher) to guide the training of the pri-
mary amortized sampler (the Student). The Teacher, an auxiliary behavior model,
is trained to sample high-loss regions of the Student and can generalize across
unexplored modes, thereby enhancing mode coverage by providing an efficient
training curriculum. We validate the effectiveness of this approach in a synthetic
environment designed to present an exploration challenge, two diffusion-based
sampling tasks, and four biochemical discovery tasks demonstrating its ability
to improve sample efficiency and mode coverage. Source code is available at
https://github.com/alstn12088/adaptive-teacher.

1 INTRODUCTION

Sampling from a complex distribution given its unnormalized density function is a fundamental
problem in machine learning (Hinton, 2002; LeCun et al., 2006) and scientific discovery (Dellago
et al., 1998; Noé et al., 2019). Amortized inference methods aim to fit a generative model that
samples from a target distribution, possibly by a sequence of stochastic generation steps which is
beneficial because it allows reusing a shared computational module for inference across multiple
data points, as opposed to performing inference independently for each data point (Margossian &
Blei, 2024). However, unlike for generative models trained from data, samples from the ground
truth distribution may not be available. Multi-step sampling from an unnormalized density function
with amortized inference can be achieved with reinforcement learning (RL) methods but raises the
challenge of exploration – specifically, the ability to discover new modes of the target distribution
during training. This is due to the intractable size of the sample space and the fact that only sampling
from the generator itself would be oblivious to modes that the generator misses.

Just as with generative models trained on data, it is often more natural and beneficial to approx-
imate the generation of objects as a sequence of decisions made by a policy rather than using a
single parametric family, due to the multi-modal expressivity of hierarchical inference (e.g., diffu-
sion probabilistic models (Ho et al., 2020)). Sequential decision algorithms for amortized inference
are unified by the theory of generative flow networks (GFlowNets; Bengio et al., 2021), which are
a collection of off-policy RL methods (Tiapkin et al., 2024; Deleu et al., 2024). GFlowNets have
been used for such amortized inference problems as natural-language and biological sequence de-
sign by token-by-token sequence generation (Jain et al., 2022; Shen et al., 2023; Hu et al., 2024),
Bayesian inference over data structures (Deleu et al., 2022), molecular design by incremental addi-
tion of atoms or fragments (Bengio et al., 2021; Jain et al., 2023), or image refinement by a diffusion
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Figure 1: Training an amortized sampler (Student) with an adaptive Teacher. Left: The behavior policy mixes
Student, Teacher, and replay buffer policies to generate trajectories that train Student and store experiences.
Teacher is updated based on Student’s loss. Right: Student and Teacher distributions co-evolve, with Teacher
targeting uncovered modes until Student converges to the target distribution.

process in continuous space (Venkatraman et al., 2024), inter alia. GFlowNets have shown success
in the sequential sampling problems at scale due to their advantageous off-policy training ability
(Malkin et al., 2023).

The prudent selection of training data is crucial to the success of such RL methods to model the
full distribution faithfully, akin to the problem of active learning in supervised problems: to max-
imize sample efficiency, the most informative samples should be selected for training. To explore
the full distribution, some applications of GFlowNets have either used exploration techniques bor-
rowed from RL, such as noisy exploration (first used by Bengio et al., 2021), (prioritized) replay
buffers (Deleu et al., 2022; Schaul, 2016; Vemgal et al., 2023), and delayed updates (Lau et al.,
2023). Others have employed search techniques in the target space: MCMC and local search (Kim
et al., 2024d;b; Sendera et al., 2024; Phillips & Cipcigan, 2024), genetic algorithms (Kim et al.,
2024a), and exploiting samples from the target distribution (Zhang et al., 2022; Hu et al., 2023)
when available.

However, challenges in mode coverage remain. All of the forementioned methods promote explo-
ration through perturbation of the policy, e.g., replaying the samples (Vemgal et al., 2023), augment-
ing the reward function (Pan et al., 2023b), and local search starting from generated samples (Kim
et al., 2024d). These exploration methods focus on capturing the modes that are already near those
generated by the current policy and can hardly capture the ones sufficiently separated from the al-
ready explored modes.

In this paper, we propose to explicitly explore the regions of high loss by introducing a Teacher
model that guides the training of the primary, or Student sampler (Fig. 1). Here, we believe that
trajectories with high loss are particularly informative for mode coverage, as they are likely to lead
to regions of the target distribution that are either undersampled (dropped modes) or oversampled
(collapsed modes). The Teacher is an adaptive behavior policy that is trained to sample target space
regions where the Student model receives a high loss. In turn, the Student model is trained on
samples from the Teacher model.

Our approach can be seen as amortizing an ideal prioritized experience replay (PER; Schaul, 2016)
which samples high-loss objects from the entire sample space, instead of the finite-size replay buffer.
Compared to (non-ideal) PER, the Teacher model has the potential to generalize across the high-loss
regions of the Student, without regard for whether they have previously been sampled or discovered.
In contrast, prioritized replay requires the poorly captured modes to have already been visited in
order for the model to learn from them.

We test our method on a diverse set of domains where GFlowNets have been used, including dis-
crete tasks (biological sequence design and molecular design) and continuous tasks (diffusion-based
sampling benchmarks). Comprehensive experiments demonstrate that our algorithm is effective in
improving mode coverage and training efficiency across all tasks.

2 PRELIMINARIES

We give a summary of GFlowNets as algorithms for amortized sampling by sequential decision
making. For simplicity, this exposition is about discrete space, where GFlowNets were originally
defined (Bengio et al., 2021), but GFlowNets have been extended to the case of continuous variables
(Lahlou et al., 2023), which is conceptually similar. The reader is directed to Bengio et al. (2023) for
an extended overview, Malkin et al. (2023) for an introduction focused on connections to hierarchical
variational inference, and to Deleu et al. (2024) for a maximum-entropy RL point of view.
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GFlowNets are policies in deterministic Markov decision processes (MDPs), trained so as to sample
from a distribution over terminal states whose mass function is proportional to a given reward. The
MDP is assumed to be represented as a finite directed acyclic graph 𝐺 = (S,A), where S is the
set of states and (𝑠 → 𝑠′) ∈ A if there is a possible action to be taken at state 𝑠 leading to state 𝑠′.
A policy is then the same as a collection of distributions 𝑃𝐹 (· | 𝑠) over the children1 of every state
𝑠 that has at least one child. As in other deep RL methods, the policy could be a neural network
𝑃𝐹 (𝑠′ | 𝑠; 𝜃) taking a representation of the state 𝑠 as input and outputting the logits of a distribution
over children 𝑠′. We will sometimes leave out the 𝜃 as implicit to lighten notation.

We assume the existence of a unique state 𝑠0 ∈ S, called the initial state that is not the child of any
state. Conversely, states without children are called terminal, and the set of terminal states is denoted
X. A policy 𝑃𝐹 induces a distribution over complete trajectories – sequences 𝜏 = 𝑠0 → 𝑠1 → · · · →
𝑠𝑛 with 𝑠𝑛 ∈ X – which can be sampled by starting at 𝑠0 and iteratively transitioning to child states
sampled according to 𝑃𝐹 until a terminal state is reached. This in turn a terminating distribution 𝑃⊤

𝐹
over X, which is the marginal distribution over the final states of trajectories sampled in this way.
To be precise,

𝑃⊤𝐹 (𝑥) =
∑︁
𝜏⇝𝑥

𝑃𝐹 (𝜏), 𝑃𝐹 (𝜏 = (𝑠0 → · · · → 𝑠𝑛)) :=
𝑛−1∏
𝑖=0

𝑃𝐹 (𝑠𝑖+1 | 𝑠𝑖), (1)

where 𝑥 ∈ X and 𝜏 ⇝ 𝑥 indicates that the sum is restricted to trajectories 𝜏 whose last state is 𝑥.

Let 𝑅 : X → R>0 be a function on the terminal states, called the reward function, and set 𝑍 :=∑
𝑥∈X 𝑅(𝑥) as the normalization constant. We would like to train 𝑃𝐹 so as to make 𝑃⊤

𝐹
(𝑥) = 𝑅(𝑥)/𝑍

for all 𝑥 ∈ X, i.e., to make 𝑃𝐹 sample terminal states with probability proportional to the reward.

Because the sum in (1) may be intractably large (if many trajectories could lead to the same 𝑥),
achieving this requires introducing auxiliary objects into the optimization. One popular option is
to use the trajectory balance (TB) objective (Malkin et al., 2022). To train a model with TB, one
introduces an additional backward policy 𝑃𝐵 (· | ·), which is a collection of distributions over the
parents of every noninitial state (i.e., a policy on the reverse MDP, which can be either fixed – as in
our case – or learned), as well as an estimate of the total reward 𝑍𝜃 (usually parametrized in the log
domain, making log 𝑍𝜃 a learnable parameter). We define the TB discrepancy for a trajectory 𝜏 with
final state 𝑥 by

𝛿(𝜏; 𝜃) := [log 𝑅(𝑥) + log 𝑃𝐵 (𝜏 | 𝑥)]︸                            ︷︷                            ︸
backward flow

− [log 𝑍𝜃 + log 𝑃𝐹 (𝜏; 𝜃)]︸                        ︷︷                        ︸
forward flow

, (2)

where 𝑃𝐵 (𝜏 | 𝑥; 𝜃) is defined analogously to (1), by

𝑃𝐵 (𝜏 = (𝑠0 → · · · → 𝑠𝑛) | 𝑥) =
𝑛−1∏
𝑖=0

𝑃𝐵 (𝑠𝑖 | 𝑠𝑖+1). (3)

It can be shown that if 𝛿(𝜏; 𝜃) = 0 for all trajectories 𝜏, then 𝑍𝜃 = 𝑍 and 𝑃⊤
𝐹
(𝑥) = 𝑅(𝑥)/𝑍

for all 𝑥, meaning that 𝑃𝐹 solves the sampling problem. Intuitively, this is the case because the
reward distribution and 𝑃𝐵 would then determine the same distribution over trajectories as 𝑃𝐹 , but
factorized in reverse order. One thus attempts to enforce this by minimizing a loss, such as 𝛿(𝜏; 𝜃)2,
on trajectories 𝜏 sampled from some behaviour policy 𝜋. (If 𝜋 is the current policy 𝑃𝐹 itself, the
optimization is said to be on-policy, otherwise off-policy.)

We note that there exist other training procedures that use learned estimators and loss functions as-
sociated with individual states or transitions, rather than full trajectories, such as detailed balance
(DB; Bengio et al., 2023) and subtrajectory balance (SubTB; Madan et al., 2023), which all have
advantages under certain conditions. This paper mostly focuses on TB due to its simplicity and pop-
ularity as a default choice in the literature; we investigate DB in Appendix F to show our method’s
flexibility over objective functions.

1If (𝑠→ 𝑠′) ∈ A, then 𝑠′ is a child of 𝑠; the converse relation is called parent.
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3 THE TEACHER: AN ADAPTIVE TRAINING DISTRIBUTION

In this section, we introduce the Teacher, which is a secondary GFlowNet designed to enhance the
efficiency of off-policy training for the primary, or Student, GFlowNet. The two GFlowNets share
the same state and action space, but have different rewards.

The Teacher’s role is to generate an adaptive training distribution for the Student, aiming to sample
trajectories that yield high loss for the Student. Intuitively, samples with high loss tend to be less
(or never) visited by the Student, implying high probability of the samples being in the unexplored
modes. To this end, we train the Teacher with GFlowNet objective for amortization of sampling
trajectories with high loss. Note that the Student’s target distribution does not depend on the Teacher,
but the Teacher’s target distribution depends on the Student.

We henceforth denote the parameters of the Student GFlowNet by 𝜃 and those of the Teacher by 𝜙.

3.1 REWARD DESIGN FOR TEACHER

We define the reward function for the Teacher using the TB loss of the Student, 𝛿(𝜏; 𝜃)2. In basic
form, we could define the Teacher’s reward as

log 𝑅basic
Teacher (𝑥; 𝜃) = E𝑃𝐵 (𝜏 |𝑥;𝜃 )

[
log

(
𝛿 (𝜏; 𝜃)2

)]
. (4)

In Eq. (4), the Student’s loss is marginalized over trajectories 𝜏 in the log domain over the backward
policy 𝑃𝐵 (𝜏 | 𝑥; 𝜃) of the Student, given a terminal state 𝑥. This is because we aim to train the
Teacher as a sampler of terminal states, although what we obtain when training the Student is a
trajectory-level error 𝛿(𝜏; 𝜃), which we need to convert into a function of the terminal state 𝑥 only to
form the Teacher’s reward. Having the Teacher model terminal states 𝑥 rather than full trajectories
𝜏 is motivated by the desire to obtain full mode coverage in the space of terminal states, but not
necessarily in the space of trajectories that lead to these terminal states. In practice, this expectation
is estimated using Monte Carlo sampling with a single sample 𝜏 ∼ 𝑃𝐵 (𝜏 | 𝑥; 𝜃), relying on the fact
that stochastic gradient descent training of the Teacher will automatically average out the variability
resulting from this sampling. In fact, this gives an unbiased estimator of the gradient if training with
the full expectation (see, e.g., Deleu et al., 2022; Bengio et al., 2023).

We propose two modifications to (4) to facilitate mode discovery.

Favoring undersampled regions. First, we hypothesize that because the Teacher should encour-
age the Student to discover unvisited modes, it should favor regions of the state space where the
target density exceeds the Student’s sampling probability. To this end, we increase the weight of
the Teacher’s reward for states where the backward flow exceeds the forward flow (cf. (2)), while
adding a smoothing constant 𝜖 :

log 𝑅
weighted
Teacher (𝑥; 𝜃) = E𝑃𝐵 (𝜏 |𝑥;𝜃 )

[
log

(
𝜖 +

(
1 + 𝐶I𝛿 (𝜏;𝜃 )>0

)
𝛿 (𝜏; 𝜃)2

)]
, (5)

The weighted term (1 + 𝐶I𝛿 (𝜏;𝜃 )>0) gives additional weight when the TB discrepancy is positive,
which indicates the Student is undersampling a high-rewarded terminal sample. Here, 𝐶 > 0 repre-
sents the weighting constant, which we set to 𝐶 = 19 for every task; see Appendix E.3 for ablation
study on our choice of 𝐶.

Reward mixing. To ensure the Teacher covers the missing modes (the high-reward regions that
the Student missed), it is important to focus the Teacher’s search space more on the high-reward
regions than the low-reward ones. This approach helps target both high-loss and high-reward areas
effectively. To achieve this, we propose to mix the reward (5), which is based on the Student’s loss,
with the Student’s log reward:

log 𝑅Teacher (𝑥) := log 𝑅
weighted
Teacher (𝑥) + 𝛼 log 𝑅(𝑥). (6)

This approach encourages the Teacher to sample regions with both high loss and high reward. Here
the mixing constant 𝛼 is a hyperparameter that trades off between high loss and high reward; see
Appendix E.4 for analysis of the effect of the choice of 𝛼.
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Algorithm 1 Teacher-Student Training of GFlowNets
1: Qbuffer ← ∅ ⊲ Initialize replay buffer with queue structure
2: for 𝑡 = 1, . . . , 𝑇 do ⊲ Iteration of training rounds

3: Select behavior policy 𝑃𝛽 (𝜏) =

𝑃𝐹 (𝜏; 𝜃), if select Student
𝑃𝐹 (𝜏; 𝜙), if select Teacher
𝑃𝐵 (𝜏 |𝑥)𝑃(𝑥 |Qbuffer), if select Prioritized Buffer.

4: Sample trajectories 𝜏1, . . . , 𝜏𝐵 ∼ 𝑃𝛽 (𝜏). ⊲ Exploration
5: (Optional) Refine trajectories using local search.
6: Compute rewards: 𝑅(𝑥1), . . . , 𝑅(𝑥𝐵).
7: Compute TB discrepancy of Student: 𝛿(𝜏1; 𝜃), . . . , 𝛿(𝜏𝐵; 𝜃).
8: Compute 𝑅Teacher (𝑥1), . . . , 𝑅Teacher (𝑥𝐵) using {𝑅(𝑥𝑖)}𝐵𝑖=1 and {𝛿(𝜏𝑖 ; 𝜃)}𝐵𝑖=1.
9: Compute TB discrepancy of Teacher: 𝛿(𝜏1; 𝜙), . . . , 𝛿(𝜏𝐵; 𝜙).

10: Update Student parameters: 𝜃 ← Optimizer
(

1
𝐵

∑𝐵
𝑖=1 𝛿(𝜏𝑖 ; 𝜃)

2
)

⊲ Student training

11: Update Teacher parameters: 𝜙← Optimizer
(

1
𝐵

∑𝐵
𝑖=1 𝛿(𝜏𝑖 ; 𝜙)

2
)

⊲ Teacher training

12: Add experiences to buffer: Qbuffer ← Qbuffer ∪ {𝑥𝑖 , 𝑅(𝑥𝑖), 𝑅Teacher (𝑥𝑖)}𝐵𝑖=1
13: end for

3.2 JOINTLY TRAINING TEACHER AND STUDENT

Using the 𝑅Teacher (𝑥; 𝜃), the training process is a joint optimization of the Teacher parameters 𝜙 and
the Student parameters 𝜃 to jointly minimize the following loss functions:

LStudent (𝜏; 𝜃) = 𝛿(𝜏; 𝜃)2 =

(
log

𝑍𝜃𝑃𝐹 (𝜏; 𝜃)
𝑅(𝑥)𝑃𝐵 (𝜏 | 𝑥)

)2
, (7)

LTeacher (𝜏; 𝜙) = 𝛿Teacher (𝜏; 𝜙)2 =

(
log

𝑍𝜙𝑃𝐹 (𝜏; 𝜙)
𝑅Teacher (𝑥; 𝜃)𝑃𝐵 (𝜏 | 𝑥)

)2
, (8)

Notice that (7) is the loss for regular TB training of the Student, while (8) relies on the Student’s
loss to provide a reward for the Teacher via (6).

To simplify the training process, we adopt in our experiments a fixed backward policy 𝑃𝐵 (𝜏 | 𝑥),
without trainable parameters, which is used by both the Teacher and the Student.

Behavior policy for joint optimization. Algorithm 1 describes the Teacher-Student training pro-
cedure, which simultaneously minimizes the loss functions of both the Teacher and the Student. In
line 3, we select the behavior policy by choosing either the Student, the Teacher, or a prioritized
buffer, ensuring that all three are sufficiently utilized (see Appendix C for details on how they are
chosen). Given a terminal state 𝑥 sampled from 𝑃(𝑥 | 𝑄buffer), we then generate a trajectory 𝜏 us-
ing the backward policy 𝑃𝐵 (𝜏 | 𝑥). This approach is similar to previous works (Shen et al., 2023;
Sendera et al., 2024), which store only the terminal states 𝑥 in the buffer and sample trajectories 𝜏
using 𝑃𝐵.

The behavior policy can produce an adaptive distribution of trajectories 𝜏 with respect to the Stu-
dent’s learning state 𝜃 because the Teacher iteratively focuses on high-loss trajectories of the Student
during training. This adaptivity is hypothesised to result in highly effective training for the Student.

Existence of a stationary point of training process. The joint optimization for the parameters 𝜙
and 𝜃 over the support of 𝑃𝛽 (𝜏) has a stationary point where the Student GFlowNet becomes an exact
sampler and the Teacher GFlowNet samples proportional to 𝜖𝑅(𝑥)𝛼; see Prop. 1 in Appendix B.

3.3 MITIGATING NON-STATIONARITY WITH LOCAL SEARCH

Joint optimization of the parameters 𝜙, 𝜃 with a non-stationary target 𝑅Teacher (𝑥; 𝜃) poses significant
challenges as the Teacher’s reward is nonstationary, evolving as the Student learns. To address
this issue, we use a local search method (Line 5) that locally optimizes 𝑅Teacher (𝑥; 𝜃) based on the
Teacher’s samples. We expect the dynamic nature of 𝑅Teacher (𝑥; 𝜃) to be effectively managed by
such search, as the Teacher’s main role is to generalize to modes poorly modeled by the Student,
while the search helps the Teacher track the local changes in the Student’s loss landscape.

Local search using a kernel defined by the policies – first used by Zhang et al. (2022); Hu et al.
(2023) and extensively studied by Kim et al. (2024d) – involves iteratively backtracking trajectories
and reconstructing them to produce new samples. The method consists of the following steps:
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1. Backtracking: Starting from a terminal state 𝑥, we backtrack to an intermediate state 𝑠 using the
backward policy 𝑃𝐵, denoted as (𝑥 d . . . d 𝑠).

2. Reconstruction: From the intermediate state 𝑠, we reconstruct a new terminal state 𝑥′ using the
Teacher’s forward policy 𝑃𝐹 , represented as (𝑠→ . . .→ 𝑥′).

3. Accept or reject: We accept the new sample 𝑥′ in place of 𝑥 with acceptance probability 𝐴.

The acceptance probability 𝐴 can be determined using either a stochastic Metropolis-Hastings (MH)
approach or a deterministic ascent criterion (see Kim et al. (2024d) for details). This process is re-
peated iteratively to progressively improve the samples so that their reward better matches (with
MH) or locally maximizes (with the deterministic ascent version) the target reward function. Ul-
timately, we use the enhanced sample 𝑥′ to train both the Teacher and the Student by generating
trajectories 𝜏 ∼ 𝑃𝐵 (𝜏 | 𝑥′) and taking gradient steps on the losses (7) and (8).

4 RELATED WORK

GFlowNets. GFlowNets were originally introduced by Bengio et al. (2021) and extensively ex-
tended by Bengio et al. (2023). They aim to develop a sequential decision-making policy with a
form of deep reinforcement learning that aims at sampling from the unnormalized density associ-
ated with a positive reward function. Aiming to improve credit assignment over long trajectories,
Malkin et al. (2022) introduced the trajectory balance (TB) objective mainly used in this paper.
Building on this, Madan et al. (2023) introduced a mixing scheme that combines losses associated
with subtrajectories, trading off the lower variance of DB with the lower bias of TB, Pan et al.
(2023a) studied inductive biases that use partial reward information, and Jang et al. (2024b) ex-
tended this idea to learnable reward shaping schemes. Shen et al. (2023) and Jang et al. (2024a)
studied auxiliary losses for better training of the backward policy.

Orthogonal to those studies, other works focus on improving off-policy training. Deleu et al. (2022);
Shen et al. (2023); Vemgal et al. (2023) studied the use of replay buffers in GFlowNets to enhance
sample efficiency. Kim et al. (2024d;a;b); Sendera et al. (2024) investigated local search methods to
guide GFlowNets toward high-reward regions. Kim et al. (2024c) proposed to adjust the exploration-
exploitation trade-off via amortized conditioning on reward temperature. Similarly, Lau et al. (2024)
introduced a method that mixes Deep Q-Networks (Mnih, 2013) (exploitation) with GFlowNets
(exploration) to balance the exploration-exploitation trade-off. Our proposed method is also an off-
policy training approach for GFlowNets. In contrast to the methods above, which use off-policy
training to focus GFlowNets on high-reward regions, our method aims to address missing modes
and underexplored regions. Note that the aforementioned reward-seeking off-policy methods are
complementary to our approach; for example, local search with a Teacher is studied in §5.1.

While the above algorithmic work mostly concerns discrete space, Lahlou et al. (2023) intro-
duced the theory of GFlowNets in continuous space, leading to subsequent work on diffusion sam-
plers (Zhang et al., 2024; Sendera et al., 2024), posterior sampling under diffusion priors (Venka-
traman et al., 2024), and applications to molecular dynamics (Seong et al., 2024). Our proposed
algorithms are effective in both discrete and continuous space (§5.2).

Adaptive training distributions. Adaptive training distributions are essential techniques in deep
learning, ensuring that the training data evolves appropriately during model training. For instance,
curriculum learning methods (Bengio et al., 2009) schedule the difficulty of training tasks by gradu-
ally increasing from easy to hard, thereby facilitating more efficient model training. These methods
are also widely applied in reinforcement learning, e.g., Narvekar et al. (2020).

Active learning (Gal et al., 2017), which is usually built for supervised learning, also falls into
this category, where the training dataset actively changes to discover better strategies. Especially,
uncertainty sampling-based methods (Sener & Savarese, 2018; Yoo & Kweon, 2019; Kirsch et al.,
2019; Ash et al., 2020) that prioritize sampling data points having high predictive uncertainty of the
classifier are relevant to our idea. The key difference is that our method is built for reinforcement
learning, where we do not rely on the predictive uncertainty of a classifier but on the loss value
defined by the compositional policy.

Our work is also relevant to few-shot experimental design (Wang et al., 2024), as our Teacher plays
the similar role as the entropy-regularized adversary that generates tasks.
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Table 1: Evaluation results on deceptive grid worlds with dimension 𝑑 and grid length 𝐻. The number of modes
discovered (# modes) and empirical 𝐿1 distance between target and sampled distributions are reported as mean
±standard deviation over five runs. The 𝐿1 distances are scaled appropriately for readability.
Grid config. → 𝑑 = 2, 𝐻 = 128 𝑑 = 2, 𝐻 = 256 𝑑 = 4, 𝐻 = 16 𝑑 = 4, 𝐻 = 32

Algorithm ↓Metric→ # modes (↑) 𝐿1 × 10−5 (↓) # modes (↑) 𝐿1 × 10−5 (↓) # modes (↑) 𝐿1 × 10−5 (↓) # modes (↑) 𝐿1 × 10−6 (↓)
TB (on-policy→) 645.4 ± 41.5 2.20 ± 0.58 733.6 ± 25.1 1.74 ± 0.04 6.6 ± 2.5 1.027 ± 0.012 16.6 ± 4.8 1.635 ± 0.000
+ 𝜖-expl. 555.2 ± 66.2 3.59 ± 0.66 672.6 ± 16.3 1.75 ± 0.02 6.6 ± 4.2 1.030 ± 0.006 24.2 ± 3.2 1.634 ± 0.000
+ GAFN 675.4 ± 0.5 1.66 ± 0.11 1044.8 ± 276.4 1.55 ± 0.17 11.8 ± 3.9 1.057 ± 0.022 24.6 ± 7.4 1.664 ± 0.002
+ PRT 676.0 ± 0.0 4.54 ± 0.14 2165.2 ± 64.5 1.55 ± 0.05 38.8 ± 10.0 1.097 ± 0.006 120.4 ± 19.1 1.648 ± 0.001
+ PER 669.0 ± 3.8 4.88 ± 0.44 2055.2 ± 56.3 1.71 ± 0.08 16.0 ± 2.8 1.129 ± 0.034 46.6 ± 14.6 1.639 ± 0.001

+ Teacher (ours) 676.0 ± 0.0 2.13 ± 0.18 2452.6 ± 21.7 0.94 ± 0.03 51.4 ± 4.0 1.019 ± 0.016 246.6 ± 14.7 1.634 ± 0.001

Target distr. Teacher (ours) PER PRT GAFN 𝜖-expl. On policy

Figure 2: Empirical distribution plots of 105 test samples from policies on the (𝑑 = 2, 𝐻 = 256) grid.

5 EXPERIMENTS

This section provides empirical validation of our method. Our primary goal is to demonstrate that
our approach is beneficial over other off-policy training methods for trajectory balance (TB), a repre-
sentative learning objective for amortized samplers. We also aim to show that our method can effec-
tively be integrated with existing off-policy search methods, such as local search and replay buffer
techniques. We benchmark our approach on three major tasks: two discrete tasks (§5.1 and 5.3) and
one continuous task (§5.2). We also include three ablation studies and a pilot experiment on inte-
grating local search in Appendix E. Additionally, we tested the versatility of our method by adopting
another training objective, detailed balance (DB; Bengio et al., 2023) in Appendix F.

5.1 DECEPTIVE GRID WORLD

Setting. The deceptive grid world is a synthetic environment modified from the grid task intro-
duced by Bengio et al. (2021). It consists of a 𝑑-dimensional hypercube of side length 𝐻, resulting
in a search space of size O(𝐻𝑑). The agent starts from the origin (position 0) and can only move
in directions that increase a coordinate by 1 or terminate to receive the reward. The reward of each
terminal state 𝑥 = (𝑥1, . . . , 𝑥𝑑) is given by

𝑅(𝑥) = 𝑅0 + 𝑅1

𝑑∏
𝑖=1

I
[��� 𝑥𝑖

𝐻 − 1
− 0.5

��� < 0.1
]
+ 𝑅2

𝑑∏
𝑖=1

I
[��� 𝑥𝑖

𝐻 − 1
− 0.5

��� ∈ (0.3, 0.4)] . (9)

The modes with the highest rewards (𝑅2 + 𝑅0) are surrounded by walls with low rewards (𝑅0). In
between them are deceptive regions offering relatively high rewards (𝑅1 + 𝑅0), which can lure the
agent into getting trapped. We set 𝑅0 = 10−5, 𝑅1 = 0.1, and 𝑅2 = 2. Following previous works,
we use the number of modes discovered and the empirical 𝐿1 distance from the target distribution
as evaluation metrics. See Appendix D.1 for more details about the settings.

Baselines. We compare our method with on-policy TB and TB with off-policy exploration meth-
ods, such as 𝜖-exploration (Bengio et al., 2021), and GAFN (Pan et al., 2023b), along with a baseline
using a replay buffer prioritizing rewards (PRT) or Teacher rewards inspired by Prioritized Experi-
ence Replay (PER; Schaul, 2016). PER can be seen as a non-amortized version of our method.

Results. Table 1 summarizes the results. TB with Teacher consistently outperforms baselines. The
significant margin in the number of modes discovered in the larger-scale setting indicates that the
Teacher effectively guides the Student to visit undiscovered modes. Please refer to Appendix E.1
for comprehensive results.

Effects of local search. We assess the local search (LS) effect (§3.3) on a (𝑑 = 4, 𝐻 = 32)
grid. The Teacher’s local search uses the Teacher’s reward 𝑅Teacher for acceptance, compared to two
baselines – on-policy TB and TB with PER – which use the Student’s reward 𝑅. Furthermore, local
search accelerates mode discovery, likely by reducing the sensitivity to nonstationarity in Teacher
learning (See Appendix E.5).
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Table 2: Evaluation on multimodal continuous sampling tasks. Log-partition function estimation errors (ev-
idence lower bound (ELBO), importance sampled ELBO (ELBO-IS), evidence upper bound (EUBO)) and
2-Wasserstein distances (𝑊2

2 ) to target samples are reported as mean±std over five runs. We compare MCMC
methods (SMC, GGNS), a differentiable simulation method (PIS), and GFlowNets trained using the TB objec-
tive with various off-policy strategies, such as loss prioritized replay (PER) and reward prioritized replay (PRT).

Energy→ 25GMM (𝑑 = 2, log 𝑍 = 0, 𝑊2
2 = 0.29) Manywell (𝑑 = 32, log 𝑍 = 164.6956753, 𝑊2

2 = 5.36)

Algorithm ↓Metric→ ELBO (↑) ELBO-IS (↑) EUBO (↓) 𝑊2
2 (↓) ELBO (↑) ELBO-IS (↑) EUBO (↓) 𝑊2

2 (↓)
SMC - 0.569±0.010 0.86±0.10 149.706±1.078 8.28±0.32

GGNS - 0.016±0.042 1.19±0.17 164.404±0.454 6.51±0.32

PIS -1.192±0.177 -1.192±0.176 26.733±5.107 4.95±0.73 160.516±1.025 162.017±0.980 581.464±240.916 6.15±0.01

TB (on-policy→) -1.105±0.007 -1.008±0.009 18.321±0.932 4.64±0.01 161.048±0.036 162.019±0.645 427.850±80.082 6.15±0.01

+ 𝜖-expl. -1.056±0.117 -0.956±0.118 15.135±1.861 4.58±0.08 161.064±0.036 162.008±0.062 355.787±4.761 6.15±4.761

+ PRT -0.750±0.138 -0.640±0.144 12.103±2.273 4.28±0.59 161.071±0.085 161.998±0.111 379.623±77.409 6.14±0.03

+ PER -0.282±0.158 -0.147±0.162 1.833±2.366 1.87±1.23 161.537±0.186 162.582±0.268 210.440±6.888 5.91±0.08

+ Teacher (ours) -0.137±0.004 -0.005±0.007 0.115±0.009 0.86±0.07 163.484±0.049 164.676±0.048 165.800±0.045 5.46±0.01

Target distr. Teacher (ours) PER PRT 𝜖-expl. On policy

Figure 3: Samples from trained models on the Manywell task (projected onto the first two dimensions).

Goal distr. Student (1/5) Teacher (1/5) Goal distr. Student (2/5) Teacher (2/5)

Figure 4: KDE plots for 25GMM (left three) and Manywell (right three) at intermediate states of training.
The Student (ratio) indicates the fraction of total training steps completed. The Teacher adaptively adjusts the
training distribution in response to the modes that the Student is missing.

5.2 DIFFUSION SAMPLING

Setting. The task of learning a diffusion sampler is to invert a diffusion process in order to sample
the target density function. These experiments largely follow the setup of Sendera et al. (2024).
Here, we aim to model a distribution over trajectories 𝜏 = (0 = 𝑥0 → 𝑥Δ𝑡 → 𝑥2Δ𝑡 → . . . → 𝑥1)
(with Δ𝑡 = 1

𝑇
; for us, 𝑇 = 100), so that 𝑥1 is distributed according to an unnormalized density

function 𝑝(𝑥1) ∝ 𝑅(𝑥1) = 𝑒−E(𝑥1 ) . The transitions are parametrized as to the Euler-Maruyama dis-
cretization of a neural stochastic differential equation (Tzen & Raginsky, 2019): the sampler begins
at the initial state (0, 𝑡 = 0), and the transition from 𝑥𝑡 to 𝑥𝑡+Δ𝑡 is sampled from an appropriately
scaled Gaussian with mean given by a trained model taking 𝑥𝑡 and 𝑡 as input. The detailed setting
and policy parametrization are described in Appendix D.2.

The main challenge in this task to capture the multimodality of 𝑅(𝑥1) without having access to sam-
ples from target distribution during training, which is difficult when there are many well-separated
modes. It is not possible to apply the forward KL (i.e., log-likelihood variational bound) objectives
typically used for diffusion models (Song et al., 2021), since target distribution datapoints are not
available; thus exploration is crucial to mode discovery.

In this work, we benchmark diffusion samplers on two established tasks in the diffusion sampling
literature: a 2-dimensional Gaussian mixture with 25 modes (25GMM) and a 32-dimensional Many-
well distribution. When performing off-policy exploration, we assume a black-box property for the
energy function E, where ∇E is not accessible, similar to settings in reinforcement learning. This as-
sumption is meant to mimic a common setting in scientific discovery, where we may have black-box
energies requiring expensive simulations to compute; we note that for these tasks, effective methods
that use the energy gradient exist (see Sendera et al. (2024)).

Baselines. We consider two representative MCMC baselines: Sequential Monte Carlo (SMC) and
the state-of-the-art GGNS (Lemos et al., 2024). We also include the simulation-based continuous

8



Published as a conference paper at ICLR 2025

Figure 5: Training graphs for molecule design (QM9, sEH) and biological sequence design
(TFbind8, L14-RNA1) tasks. Mean and standard deviation over five runs are shown.

stochastic control method Path Integral Sampler (PIS; Zhang & Chen, 2022). The major base-
lines are off-policy training methods based on trajectory balance (TB). We include on-policy TB in
continuous space and the 𝜖-exploration method introduced by Malkin et al. (2023); Lahlou et al.
(2023), which adds additional Gaussian noise at least policy sampling step during training, as main
baselines. Additionally, we compare with two replay buffer methods combined with TB: one that
prioritizes reward (PRT) as studied by Sendera et al. (2024), and another that prioritizes loss (PER)
(Schaul, 2016). The gradient-based local search introduced by Sendera et al. (2024), while effective,
is excluded as it requires access to ∇E(𝑥) for the search; but we also study potential integration of
the Teacher with these techniques in Appendix E.5.

Results. As shown in Table 2, on-policy TB and PIS yield similar performance, consistent with
the fact that they have identical expected gradients (Malkin et al., 2023; Lahlou et al., 2023). This
suggests that TB could benefit from additional off-policy methods for improvement. Indeed, the
𝜖-exploration techniques improve slightly over on-policy methods. PRT provides larger benefits on
25GMM but shows no meaningful benefits on Manywell. PER offers significant improvements over
on-policy methods compared to others. Our method, Teacher, achieves the highest results across
all metrics, including the Evidence Lower Bound (ELBO), Importance-Sampled ELBO (ELBO-IS),
Evidence Upper Bound (EUBO) (see Appendix D for detailed definitions of those metrics). Espe-
cially in EUBO, a metric suggested by Blessing et al. (2024) to measure mode coverage, baseline
methods face significant challenges. This indicates that existing methods struggle to perform proper
exploration across modes, as confirmed by the sample plots in Fig. 3. Our method offers clear
advantages on EUBO metrics.

In Fig. 4, we depict the training dynamics of the Teacher and Student by plotting kernel density
estimates of their samples midway through training. This figure illustrates the mechanism by which
the Teacher promotes mode discovery by the Student. As the Student struggles to find some modes,
especially those with lower rewards than others, the Teacher puts high probability on them, encour-
aging the Student to reduce its loss in those regions of the space.

9



Published as a conference paper at ICLR 2025

5.3 BIOLOGICAL AND CHEMICAL DISCOVERY

Setting. GFlowNets have been used to generate biological and chemical structures by sequentially
adding predefined substructures. In molecules, the actions add atoms or fragments; in biological
sequences, nucleotides or amino acids. We aim to match a target probability distribution over struc-
tures given by some proxy reward model. Following Shen et al. (2023), we benchmark the number of
discovered modes, as well as probabilistic metrics like ELBO and EUBO. We study four biological
and chemical discovery problems, following Shen et al. (2023); Kim et al. (2024d):

• QM9. The objects being sampled are small molecular graphs. Molecules are generated using
12 building blocks with 2 stems, and each molecule contains 5 blocks. The reward function is a
HOMO-LUMO gap on the target transcription factor, which is obtained via a pre-trained MXMNet
proxy from Zhang et al. (2020). We use a reward exponent of 5. We define modes as the top 0.5%
quantile of 𝑅(𝑥).

• sEH. The generated objects are molecular graphs. Molecules are built using 18 blocks with 2
stems and 6 blocks per molecule. The reward function is a binding affinity to soluble epoxide
hydrolase (sEH), which is provided by the pre-trained proxy model from Bengio et al. (2021). We
use a reward exponent of 6. We define modes as the top 0.01% quantile of 𝑅(𝑥), with filtering to
exclude candidates too similar based on Tanimoto similarity, following Kim et al. (2024c).

• TFbind8. The generated objects are DNA sequences with 8 nucleotides. The reward function is
a binding affinity to a human transcription factor (Barrera et al., 2016), which is obtained via a
pre-trained proxy model provided by Trabucco et al. (2022). We use a reward exponent of 3. We
use a pre-defined set of modes provided by Shen et al. (2023).

• L14-RNA1. The generated objects are RNA sequences of length 14. The reward function is a
binding affinity to a human transcription factor, which is obtained via a pre-trained proxy model
from Sinai et al. (2020). We use a reward exponent of 8. We define modes as the top 0.01%
quantile of 𝑅(𝑥), with diversity filtering whose threshold is 1 unit of Levenstein distance, also
following Kim et al. (2024c).

Detailed training and hyperparameter settings for each task can be found in Appendix D.3.

Baselines. We compare our method with on-policy TB, 𝜖-exploration, and the PRT replay buffer
method designed for biochemical tasks (Shen et al., 2023). Additionally, we evaluate it against
a loss-prioritized replay buffer (PER) (Schaul, 2016). Since the local search method (Kim et al.,
2024d) targets reward exploitation with a different purpose to ours, a separate analysis of its com-
plementarity to our method is presented in Appendix E.5.

Results. As shown in Fig. 5, the Teacher method improves mode discovery when combined with
both PER and PRT buffers, outperforming on-policy methods on every task. Similar trends are
observed across other metrics, with faster convergence under the Teacher method. For TFbind8, our
method’s dominance is particularly evident for mode coverage metrics like EUBO and the number
of modes, although ELBO remains comparable to using PER or PRT. In the largest task, L14-RNA1,
the Teacher method surpasses PER and PRT in ELBO, EUBO, and the number of modes.

We draw special attention to the comparison between PER and PRT. While the differences are min-
imal in the first three tasks (QM9, TFbind8, sEH), in the larger-scale tasks, loss-prioritizing with
PER shows a clear advantage. This suggests that loss information is more important for exploration
in large-scale tasks, where the Teacher method with PER achieves the best overall performance.

6 DISCUSSION

We have introduced a Teacher that adaptively generates states for training a Student amortized
sampler. The Teacher favors states for which the Student has high loss and thus promotes the
discovery of new modes.

This approach paves the way for numerous future research directions. For example, an adaptive
Teacher could be applied to amortize intractable inference in large language models (LLMs) (Hu
et al., 2024) and diffusion models (Venkatraman et al., 2024), or to enhance exploration in au-
tomatic red-teaming for LLMs (Lee et al., 2024). Applying our method to probabilistic models
such as amortized Bayesian causal discovery (Deleu et al., 2022; 2023; Nishikawa-Toomey et al.,
2022) and amortized inference in graphical models (Falet et al., 2024) are also promising directions.
Methodologically, the concept of using amortized prioritized experience replay (PER) as a Teacher
can be extended to train general agent-based systems, not only amortized samplers.
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Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. Uncertainty in
Artificial Intelligence (UAI), 2022.

Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Char-
lin, and Yoshua Bengio. Joint Bayesian inference of graphical structure and parameters with a
single generative flow network. Neural Information Processing Systems (NeurIPS), 2023.

Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete prob-
abilistic inference as control in multi-path environments. Uncertainty in Artificial Intelligence
(UAI), 2024.

Christoph Dellago, Peter G Bolhuis, and David Chandler. Efficient transition path sampling: Ap-
plication to lennard-jones cluster rearrangements. The Journal of chemical physics, 108(22):
9236–9245, 1998.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
International Conference on Learning Representations (ICLR), 2023.
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A LIMITATIONS

The primary limitation of the adaptive Teacher is the added complexity in training, as the Teacher’s
policy network must be trained in addition to the Student’s. This introduces a trade-off between
increased training complexity and enhanced mode-seeking capabilities. While we believe that the
ability to discover multiple modes outweighs the additional complexity, it is important to apply
this technique judiciously. For tasks where the reward is unimodal or that do not require extensive
exploration, using a Teacher may not be necessary. However, in scenarios where the model tends to
collapse to specific modes of the multimodal target distribution, employing a Teacher is a beneficial
choice.

Additionally, since the Student struggles to cover entire modes on its own, in significantly larger
search spaces the Teacher may also have difficulty covering the full range of modes that the Student
fails to discover, potentially collapsing into specific modes. In such large-scale settings, we expect
that a multi-agent Teacher system—with multiple agents collaboratively covering the space—could
be a beneficial direction for future work to mitigate this limitation.

B THEORETICAL ANALYSIS OF STATIONARY DISTRIBUTIONS

Proposition 1. Let the behavior policy 𝑃𝛽 (𝜏) be a distribution over trajectories 𝜏 ∈ T that satisfies
full support.

If the parameters 𝜃∗ and 𝜙∗ of the Student and Teacher policies, respectively, jointly optimize the
objective functions to 0 in expectation over 𝑃𝛽 (𝜏), then:

(a) The marginal distribution of the Student policy over terminal states satisfies

𝑃⊤𝐹 (𝑥; 𝜃∗) ∝ 𝑅(𝑥),
(b) The marginal distribution of the Teacher policy over terminal states satisfies

𝑃⊤𝐹 (𝑥; 𝜙∗) ∝ 𝑅(𝑥)𝛼,
where:

• 𝑅(𝑥) is the reward function,
• 𝜖 > 0 is an offset constant introduced in (5),
• 𝛼 > 0 is the mixing constant for the Teacher introduced in (6).

Proof. According to the trajectory balance training theorem (Malkin et al., 2022), the Student policy
achieves optimal loss (i.e., LTB (𝜏; 𝜃∗) = 0 for all 𝜏) if and only if its marginal distribution over
terminal states 𝑝(𝑥, 𝜃∗) ∝ 𝑅(𝑥).
Suppose now that the Student policy has reached this optimum. Then the reward for the Teacher is

log �̃�Teacher (𝑥; 𝜃∗) = E𝑃𝐵 (𝜏 |𝑥;𝜃∗ )
[
log

(
𝜖 +

(
1 + 𝐶 · I𝛿 (𝜏;𝜃∗ )>0

)
𝛿(𝜏; 𝜃∗)2

)]
+ 𝛼 log 𝑅(𝑥)

= E𝑃𝐵 (𝜏 |𝑥;𝜃∗ ) [log(𝜖)] + 𝛼 log 𝑅(𝑥)
= log(𝜖) + 𝛼 log 𝑅(𝑥)
= log(𝜖𝑅(𝑥)𝛼). (10)

Again by the TB training theorem, the loss is minimized if and only if the marginal distribution of
the Student policy over terminal states is proportional to 𝜖𝑅(·)𝛼, equivalently, to 𝑅(·)𝛼.

□
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C DETAILED IMPLEMENTATION

For all tasks, we set 𝛼 = 0.5 except for the exploration-intensive deceptive grid world tasks, where
we use 𝛼 = 0.0. 𝐶 is set to 19 for all tasks. Our hyperparameter analysis is provided in Ap-
pendix E.4. In a diffusion sampling task, to concentrate the teacher on high-reward regions within
a vast continuous space, we limit the teacher’s training set to samples where 𝑥 > 𝑟threshold. Here,
𝑟threshold is the 90th percentile reward from the untrained student’s samples.

For neural networks, we use identical architectures for both the Student and Teacher models. Specif-
ically, for the GFN architecture design, we match the architectures used by each baseline for every
task. Detailed descriptions are provided in Appendix D.

Regarding the replay buffer, we adhere to existing implementations for each task and follow pri-
oritized replay rules. In grid world and diffusion sampling tasks, we use rank-based priority as
introduced by Tripp et al. (2020) and Sendera et al. (2024). For biochemical tasks, we employ
portion-wise priority as proposed by Shen et al. (2023). Additionally, we implemented two variants
of a loss-prioritized buffer: one prioritizes based on TB loss, and the other uses 𝑅Teacher as the prior-
ity, serving a similar purpose. We analyze the performance differences between these variants and
refer to the use of 𝑅Teacher as “PER.”

When selecting the behavior policy during training, we periodically choose among the Student,
Teacher, and buffer in specific proportions: a ratio of 1:1:0 for Grid World tasks, 3:1:2 for Diffusion
Sampler tasks, and 2:1:3 for Biochemical tasks. In the diffusion sampler, we use PER for the replay
buffer. For the biochemical task, we benchmark the teacher using both PER (referred to as PER +
Teacher) and a reward-prioritized buffer (referred to as PRT + Teacher).

A higher Student ratio encourages exploitation, a higher Teacher ratio promotes exploration, and a
larger buffer enhances sample efficiency until reaching the replay ratio barrier (D’Oro et al., 2023).

In deceptive grid world tasks, exploration is crucial, so we assign a higher Teacher ratio. For dif-
fusion sampling tasks, using a prioritized replay buffer with Teacher rewards yields strong perfor-
mance. Blending this approach slightly with the Teacher enhances both performance and conver-
gence speed, achieving mode coverage for both EUBO and ELBO. In biochemical tasks, sample
efficiency is critical. Therefore, existing tasks are set to be on-policy with a buffer ratio of 1:1. We
adjust the proportions to favor on-policy learning by setting the Student-to-teacher ratio to 2:1, as
biochemical tasks require some level of exploitation, as reported by Shen et al. (2023).

Other implementation details and hyperparameters are maintained as in each task’s experimental
setting.

D DETAILED EXPERIMENTAL SETTING

D.1 DECEPTIVE GRID WORLD

Table 3: The total number of terminal states
(|X|) and modes (|M|) for each grid setting,
where 𝑑 is the dimension and 𝐻 is the hori-
zon of the hypergrid.

|X| |M|
𝑑 = 2, 𝐻 = 128 16383 676
𝑑 = 2, 𝐻 = 256 65535 2601
𝑑 = 4, 𝐻 = 16 64125 81
𝑑 = 4, 𝐻 = 32 1042685 1296

Evaluation metrics. Following Bengio et al. (2021),
we use the number of modes discovered and the em-
pirical 𝐿1 distance from target distribution as evalua-
tion metrics. We define the modes as 𝑥’s with 𝑅(𝑥) =
𝑅2 + 𝑅0. The exact size of the search space |X| is
(𝐻 − 1)𝑑 + 𝑑 (𝐻 − 1), with 𝑑 and 𝐻 representing the di-
mension and horizon of the hypergrid, respectively. |X|
and the total number of modes |M| for each grid setting
are reported in Table 3. The 𝐿1 distance is calculated
by 1

|X |
∑

𝑥∈X [|𝑝𝜃 (𝑥) − 𝑅(𝑥)/𝑍 |], where 𝑍 =
∑

𝑥 𝑅(𝑥),
which is known in this synthetic task. Unlike previous
works (Bengio et al., 2021; Malkin et al., 2022) where a
portion of the final training samples was used to approximate the expectation, we generate 105 new
samples from policy to calculate 𝑝𝜃 (𝑥) for evaluation. We use one sample for only one gradient step
by default, i.e., update-to-data (UTD) ratio (Chen et al., 2021) is 1, except for the case using replay
buffer, where the ratio increases to 2.

Hyperparameters. Following Bengio et al. (2021); Malkin et al. (2022), we use a two-layer MLP
with 256 hidden units for the parameterized policy 𝑃𝐹 (·; 𝜃) along with a learnable parameter for
log 𝑍𝜃 . We train them using the Adam optimizer with a learning rate of 10−3 for policy and 10−1 for
log 𝑍𝜃 . The backward policy 𝑃𝐵 is fixed as a uniform random policy. When using a replay buffer,
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its size is dynamically set to ⌊0.1|X|⌋. The total reward call budget is capped at 96,000, except for
(𝑑 = 4, 𝐻 = 32), which is increased to 384,000, considering the significantly larger search space.
We use a batch size of 16. The total number of gradient steps equals the number of reward calls
divided by the batch size, and this number doubles when the replay buffer is used.

Baseline implementations. In our experiments, we set 𝜖 for 𝜖-exploration to 0.01, as this value
yielded the lowest 𝐿1 error among the tested options {0.001, 0.003, 0.01, 0.03, 0.1} in the setting
where 𝑑 = 2 and 𝐻 = 128. Similarly, for GAFN (Pan et al., 2023b), we set the intrinsic reward scale
to 0.01, which also resulted in the lowest 𝐿1 error among the values {1.0, 0.1, 0.01, 0.001} under
the same conditions. For PRT and PER, we use the same buffer size and prioritization scheme as
above. Note that, unlike the original PER for value-based RL, the buffer we used contains only a
terminal 𝑥 rather than all state transitions. From a sampled 𝑥, the trajectory can be constructed by
backward generation using 𝑃𝐵. We also explore the integration of a transition-based replay buffer
with the detailed balance objective in Appendix F.

D.2 DIFFUSION SAMPLING

In our diffusion sampler, we primarily adhere to the settings of Sendera et al. (2024), which in turn
build upon those of Zhang & Chen (2022).

Tasks. We benchmark the following two tasks:

Gaussian Mixture Model with 25 Modes (25GMM). The 25GMM consists of a two-dimensional
Gaussian mixture with 25 modes, each having a variance of 0.3. The mode centers are positioned
on the grid {−10,−5, 0, 5, 10} × {−10,−5, 0, 5, 10}.
Manywell (Noé et al., 2019). The Manywell is a 32-dimensional distribution formed as the prod-
uct of 16 identical two-dimensional double-well distributions. Each component is defined by the
potential function

𝜇(𝑥1, 𝑥2) = exp
(
−𝑥4

1 + 6𝑥2
1 + 0.5𝑥1 − 0.5𝑥2

2

)
. (11)

Evaluation metrics. We measure evidence lower bound (ELBO), importance sampled ELBO
(ELBO-IS), and evidence upper bound (EUBO).

For estimating ELBO, we draw 𝑀 samples from current policy and take average value of estimated
log 𝑍 , which is log 𝑅(·) + log 𝑃𝐵 (·) − log 𝑃𝐹 (·) as follows:

ELBO ≈ 1
𝑀

𝑀∑︁
𝑖=1
(log 𝑅(𝑥𝑖1) + log 𝑃𝐵 (𝜏𝑖 |𝑥𝑖1) − log 𝑃𝐹 (𝜏𝑖; 𝜃)), 𝜏𝑖 ∼ 𝑃𝐹 (𝜏; 𝜃), 𝜏𝑖 ⇝ 𝑥𝑖1, (12)

where 𝜏𝑖 ⇝ 𝑥𝑖1 means that 𝑥𝑖1 is the final state of 𝜏𝑖 .

Calculation of ELBO-IS is similar to ELBO:

ELBO-IS ≈ log
1
𝑀

𝑀∑︁
𝑖=1

exp(log 𝑅(𝑥𝑖1) + log 𝑃𝐵 (𝜏𝑖 |𝑥𝑖1) − log 𝑃𝐹 (𝜏𝑖; 𝜃)), 𝜏𝑖 ∼ 𝑃𝐹 (𝜏; 𝜃), 𝜏𝑖 ⇝ 𝑥𝑖1.

(13)
EUBO was introduced as a metric that measures mode coverage by Blessing et al. (2024). To
calculate EUBO, we sample 𝑀 samples from the target distribution and take the average of their
variational log-likelihood bounds as follows:

EUBO ≈ 1
𝑀

𝑀∑︁
𝑖=1
(log 𝑅(𝑥𝑖1) + log 𝑃𝐵 (𝜏𝑖 |𝑥𝑖1) − log 𝑃𝐹 (𝜏𝑖; 𝜃)) 𝑥𝑖1 ∼ 𝑃∗ (𝑥1), 𝜏𝑖 ∼ 𝑃𝐵 (𝜏 | 𝑥𝑖1). (14)

Forward and backward transition modeling. The diffusion sampler models discretized SDE
trajectories 𝜏 = (𝑥0 → 𝑥Δ𝑡 → . . . → 𝑥1), starting from 𝑥0 = (0, 𝑡 = 0). Here, Δ𝑡 = 1/𝑇 , where 𝑇 is
the number of discrete time steps.

The forward policy 𝑃𝐹 (𝑥𝑡+Δ𝑡 | 𝑥𝑡 ; 𝜃) is modeled as a Gaussian distribution with mean 𝑥𝑡 +
𝑢(𝑥𝑡 , 𝑡; 𝜃)Δ𝑡 and covariance 𝜎2Δ𝑡 I:

𝑃𝐹 (𝑥𝑡+Δ𝑡 | 𝑥𝑡 ; 𝜃) = N
(
𝑥𝑡+Δ𝑡 ; 𝑥𝑡 + 𝑢(𝑥𝑡 , 𝑡; 𝜃)Δ𝑡, 𝜎2Δ𝑡 I

)
. (15)
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Here, 𝑢(𝑥𝑡 , 𝑡; 𝜃) is the learnable score function, 𝜎 is the standard deviation, and I denotes the identity
matrix to ensure isotropic covariance.

The backward policy 𝑃𝐵 (𝑥𝑡−Δ𝑡 | 𝑥𝑡 ) is defined as a discretized Brownian bridge with noise rate 𝜎:

𝑃𝐵 (𝑥𝑡−Δ𝑡 | 𝑥𝑡 ) = N
(
𝑥𝑡−Δ𝑡 ;

𝑡 − Δ𝑡
𝑡

𝑥𝑡 ,
𝑡 − Δ𝑡

𝑡
𝜎2Δ𝑡 I

)
. (16)

The densities of the distributions over complete forward and backward trajectories are given by:

𝑃𝐹 (𝜏; 𝜃) =
𝑇−1∏
𝑖=0

𝑃𝐹 (𝑥 (𝑖+1)Δ𝑡 | 𝑥𝑖Δ𝑡 ; 𝜃), 𝑃𝐵 (𝜏 | 𝑥1) =
𝑇−1∏
𝑖=1

𝑃𝐵 (𝑥𝑖Δ𝑡 | 𝑥 (𝑖+1)Δ𝑡 ). (17)

The diffusion policy parameter 𝜃 is trained using the TB loss.

Hyperparameters. We set 𝜎2 = 5.0 for 25GMM and 𝜎 = 1.0 for Manywell, with the number
of time steps 𝑇 = 100, following Sendera et al. (2024). We employ the same architecture as Zhang
& Chen (2022) and Sendera et al. (2024), increasing the hidden dimension from 64 to 256 for
Manywell to accommodate the 32-dimensional tasks, and apply this adjustment to all baselines. For
replay buffer capacity, we set it to 5,000 for the 25GMM task and 20,000 for the Manywell task. All
learning hyperparameters remain identical to those in Sendera et al. (2024). For evaluation, we set
the number of samples to 𝑀 = 2, 000.

D.3 BIOLOGICAL AND CHEMICAL DISCOVERY

For biochemical design tasks, we mostly follow the setting of Shen et al. (2023). For all tasks, we use
a prepend-append MDP (PA-MDP), where the action is defined as adding a token at the beginning or
the end of a partial sequence. This MDP formulation makes it possible to have multiple trajectories
associated with the same design configuration 𝑥.

Hyperparameters. For training GFlowNets, we use similar setting proposed by prior works (Shen
et al., 2023; Kim et al., 2024d). We use Adam optimizer (Kingma & Ba, 2015) with learning rate
10−2 for log 𝑍𝜃 , 10−4 for forward policy, 5×10−4 for teacher policy. To parametrize forward policy,
we adopt relative edge flow policy parametrization mapping (SSR) from Shen et al. (2023). For
QM9 and sEH tasks, we employ a two-layer architecture with 1024 hidden units, while for the other
tasks, we choose to use a two-layer architecture with 128 hidden units. We initialize log 𝑍𝜃 to 5.0
for all methods. For backward policy, we use a fixed uniform policy. In terms of reward exponent,
we use a value of 20 for both QM9 and TFbind8. For sEH and L14-RNA1, we use relatively higher
values, 200 and 40, respectively.

Evaluation metrics. For evaluation, we compute the number of modes using all the samples col-
lected over the course of training. What we count as a mode should have a high reward. Unlike
with other designs, we define “mode” as a configuration whose reward is above a certain threshold.
This is different from previously used metrics of mode counting to assess diversity. For QM9 and
TFbind8, we use a default mode set suggested by (Shen et al., 2023). For sEH, we set the reward
threshold as the top 0.01% of X in terms of the reward and the diversity threshold as 0.4 Tanimoto
diversity. For L14-RNA1, we set the reward threshold as the top 0.01% of X in terms of the reward
and the diversity threshold as 1 unit of Levenstein distance. We also report ELBO and EUBO which
are described in Appendix D.2. We generate 𝑀 = 2, 048 samples from both the trained policy and
the target distribution for the ELBO and EUBO calculation. To sample from the target distribu-
tion, we evaluate all possible configurations and sample them proportionally to their reward. As the
number of possible configurations is enormously large for sEH and L14-RNA1 tasks, we use the
Gumbel-max trick (Gumbel, 1954) for sampling from the discrete probability distribution.
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Figure 6: Evolution of evaluation metrics for each method in deceptive grid world task. The mean
value with standard deviation is depicted from five independent runs.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EXTENDED EXPERIMENTAL RESULTS OF DECEPTIVE GRID WORLD

Fig. 6 shows the changes in two evaluation metrics during training: the number of modes discovered
and the empirical 𝐿1 distance between the target and sampled distributions. The results indicate that
Teacher is highly effective at discovering modes and also generally performs well in terms of the 𝐿1
distance. In contrast, while PER and PRT improve mode discovery, they tend to slightly worsen 𝐿1
performance. We believe this is because the replay buffer provides a regularizing signal that prevents
mode collapse, making the policy learning process more challenging compared to using purely on-
policy methods without regularization. This leads to slight underfitting. On the other hand, on-policy
methods can easily overfit to the target distribution (but into specific modes), resulting in descent
𝐿1 performance. However, without off-policy regularization, they tend to drop modes and fail to
cover all modes in the target distribution. Teacher achieves high performance in both 𝐿1 and mode
coverage, indicating that it not only offers off-policy regularization to ensure comprehensive mode
coverage but also provides efficient curricula for faster convergence to the target distribution, leading
to strong performance across both metrics.
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Table 4: The effect of number of Monte Carlo samples (𝑁MC) in deceptive grid world task.

Grid config. → 𝑑 = 2, 𝐻 = 256 𝑑 = 4, 𝐻 = 32

Algorithm ↓Metric→ # modes (↑) 𝐿1 × 10−5 (↓) # modes (↑) 𝐿1 × 10−6 (↓)
𝑁MC = 1 (default) 2452.6 ± 21.7 0.94 ± 0.03 246.6 ± 14.7 1.634 ± 0.001
𝑁MC = 3 2489.6 ± 15.8 0.96 ± 0.07 234.6 ± 14.2 1.635 ± 0.000
𝑁MC = 5 2490.4 ± 30.3 0.94 ± 0.06 230.8 ± 3.4 1.634 ± 0.000
𝑁MC = 10 2492.0 ± 26.3 0.96 ± 0.05 239.0 ± 11.8 1.634 ± 0.000

Table 5: Ablation study on 𝐶 in deceptive grid world task.

Grid config. → 𝑑 = 2, 𝐻 = 256 𝑑 = 4, 𝐻 = 32

Algorithm ↓Metric→ # modes (↑) 𝐿1 × 10−5 (↓) # modes (↑) 𝐿1 × 10−6 (↓)
𝐶 = 0 2469.4 ± 29.7 1.06 ± 0.08 253.2 ± 11.3 1.634 ± 0.000
𝐶 = 9 2454.2 ± 18.7 0.95 ± 0.02 256.0 ± 15.4 1.635 ± 0.000
𝐶 = 19 (default) 2452.6 ± 21.7 0.94 ± 0.03 246.6 ± 14.7 1.634 ± 0.001
𝐶 = 29 2465.2 ± 30.6 0.94 ± 0.04 243.4 ± 8.5 1.634 ± 0.000

E.2 STUDY ON MONTE CARLO APPROXIMATION FOR 𝑅TEACHER

We use Monte Carlo estimate with a single trajectory to approximate the expectation in Eq. (4) and
Eq. (5). To validate that this single-sample approximation is reasonable, we test our algorithm in the
deceptive grid world task with an increased number of samples, ranging from 3 to 10. We do not use
the replay buffer in this analysis. As described in Appendix E.1, the performance is not significantly
affected by 𝑁MC. This suggests that using a Monte Carlo approximation with a sample size of 1 to
estimate the stochastic reward 𝑅Teacher was reasonable.

E.3 ABLATION STUDY ON THE CHOICE OF 𝐶 VALUE

We set the hyperparameter 𝐶 in Eq. (5) to 19 across all experiments without an extensive hyperpa-
rameter search. To evaluate this choice, we perform an ablation study on the deceptive grid world
task, testing alternative values of 0, 9, and 29. Note that the replay buffer is not used for this analysis.
The results are summarized in Table 5. Although the effect on the number of modes discovered is
somewhat mixed, 𝐶 = 0 performs slightly worse than the other values regarding the empirical 𝐿1
error, supporting our hypothesis that focusing more on undersampled regions is beneficial. We also
found that the results are not highly sensitive to the choice of 𝐶.
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E.4 STUDY ON 𝛼 OF REWARD MIXING

We introduce 𝛼 to mix the reward based on the Student’s loss and Student’s log reward to help
Teacher target both high-loss and high-reward areas effectively. In this section, we investigate the
effect of 𝛼 on the performance of our method.

Table 6: Mixing component study on deceptive grid world task

Grid config. → 𝑑 = 2, 𝐻 = 256 𝑑 = 4, 𝐻 = 32

Algorithm ↓Metric→ # modes (↑) 𝐿1 × 10−5 (↓) # modes (↑) 𝐿1 × 10−6 (↓)
𝛼 = 0.0 2452.6 ± 21.7 0.94 ± 0.03 246.6 ± 14.7 1.634 ± 0.001
𝛼 = 0.5 2415.2 ± 262.8 0.90 ± 0.11 85.6 ± 8.5 1.634 ± 0.000

Deceptive grid world. Table 6 shows that reward mixing with 𝛼 = 0.5 degrades performances for
mode seeking in high dimensional tasks as deceptive grid world task is exploration intensive task;
teacher solely focusing on high loss region is more beneficial. Still mixing with 𝛼 = 0.5 outperforms
other baselines.

Table 7: Mixing component study on diffusion sampler task
Energy→ 25GMM (𝑑 = 2, log 𝑍 = 0) Manywell (𝑑 = 32, log 𝑍 = 164.696)

Algorithm ↓Metric→ ELBO (↑) ELBO-IS (↑) EUBO (↓) ELBO (↑) ELBO-IS (↑) EUBO (↓)
𝛼 = 0.0 -0.144±0.001 -0.009±0.006 0.122±0.010 163.447±0.063 164.694±0.060 166.024±0.001

𝛼 = 0.5 -0.137±0.004 -0.005±0.007 0.115±0.009 163.484±0.049 164.676±0.048 165.800±0.045

Diffusion sampling. As shown in Table 7, mixing with 𝛼 = 0.5 shows slightly better performance,
though both achieve significantly higher sampling efficiency compared to the baselines. Both 𝛼 =
0.0 and 𝛼 = 0.5 come close to reaching the target log 𝑍 .

Figure 7: Training graph for TFbind8 task by varying 𝛼 of reward mixing.
Mean value with standard deviation is depicted five independent runs.

Biological and Chemical Discovery (TFbind8). As shown in Fig. 7, mixing with 𝛼 = 0.5 yields
significantly better performance in TFbind8 task. This highlights the importance of having the
teacher focus on both high-loss and high-reward areas.
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Figure 8: Evolution of evaluation metrics with or without the local search in deceptive grid worlds (𝑑 =

4, 𝐻 = 32). The mean value with standard deviation is depicted from five independent runs.

Table 8: Comparison with local search (LS) (Sendera et al., 2024) on Manywell

Energy→ Manywell (𝑑 = 32, log 𝑍 = 164.696)

Algorithm ↓ ELBO (↑) ELBO-IS (↑) EUBO (↓)
PER 161.537±0.186 162.582±0.268 210.440±6.888

PER + LS 163.308±0.189 164.508±0.168 168.953±3.209

Teacher 163.484±0.049 164.676±0.048 165.800±0.045

Teacher + LS 163.472±0.086 164.685±0.063 165.787±0.044

E.5 TEACHER WITH LOCAL SEARCH

Local search is a useful technique to improve the sampling quality of GFlowNets (Hu et al., 2023;
Kim et al., 2024d). In this section, we investigate the possible integration of local search and Teacher
and compare it with existing local search integrated solely on Student.

Deceptive grid world. We tested the backtracking-and-reconstruction local search method intro-
duced in §3.3 in the deceptive grid world, using grid configurations of (𝑑 = 2, 𝐻 = 256) and
(𝑑 = 4, 𝐻 = 32). Four iterative local searches were performed every 16th training batch. The back-
tracking ratio is 0.5, meaning the last half of a trajectory is destroyed and reconstructed by policy.
We applied a deterministic acceptance rule, accepting a new trajectory if it had a higher 𝑅Teacher.
For comparison, we used two baselines: on-policy TB and TB with PER, both using the same local
search but using the task reward 𝑅 to determine the acceptance.

The experimental results extending is illustrated in Fig. 8. Teacher with PER outperforms both PER
and on-policy TB with a large margin in terms of mode coverage, regardless of whether local search
is applied. When combined with local search, Teacher achieves the best results in both the number
of modes discovered and the empirical 𝐿1 distance. We believe this performance gain is largely due
to the reduction of non-stationarity §3.3, though isolating the exact contribution is complex and left
for future work.

Diffusion sampling. We utilize the Manywell task to compare the effect of local search on the
Teacher model. Specifically, we employ parallel local search methods (Sendera et al., 2024) that
leverage Metropolis-Hastings-guided Langevin dynamics (MALA) on samples from the replay
buffer to refine sample quality. As shown in the Table 8, by integrating this local search with Priori-
tized Experience Replay (PER), we observe significant performance improvements.

Remarkably, the Teacher model—even without local search—still outperforms these results. This
is notable because the Teacher’s exploration does not require gradient information of the energy
function, whereas MALA relies on such gradient information. Since the Teacher rapidly achieves
optimal sampling quality on the Manywell task, we observe not much improvement when applying
local search to the Teacher in the diffusion sampling task.
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Figure 9: Training graph for TFbind8 task by integrating local search (Kim
et al., 2024d). Mean value with standard deviation is depicted five independent
runs.

Biological and Chemical Discovery. We utilize the TFbind8 task to compare the effect of local
search on the Teacher model. Specifically, we employ the local search method suggested by (Kim
et al., 2024d), which involves backtracking and reconstructing sequences using the forward and
backward policies of GFlowNets. The decision to accept adjusted samples is based on whether
𝑅(𝑥′) > 𝑅(𝑥), where 𝑥′ is the new sample. For the Teacher model, as described in §3.3, we perform
local search to mitigate non-stationary in the student and to optimize 𝑅teacher (𝑥). For both the Student
and Teacher models, we employ Prioritized Experience Replay (PER).

We visualize the results in Fig. 9. As shown in the figure, the Teacher model without local search
still outperforms the Student model with local search. This demonstrates that the exploration capa-
bility of the Teacher model is far more efficient than conducting local search with the current policy.
Moreover, we observe that integrating local search with the Teacher model leads to further improve-
ment in terms of EUBO, highlighting the synergistic effect of combining the Teacher model with
local search.
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Figure 10: Illustration of the distribution dynamics between the Teacher and Student models, along with their
stationary distributions. The Student (ratio) represents the fraction of completed training steps.
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Figure 11: Illustration of the distribution dynamics between the Teacher and Student models, along with their
stationary distributions. The Student (ratio) represents the fraction of completed training steps.

E.6 2D PLOTS OF TEACHER AND STUDENT OVER TRAINING

This section presents the distributions of the Teacher and Student models during training. For this
visualization, we set the mixing component 𝛼 = 0, meaning the Teacher’s major objective is to
explore the Student’s loss regions. As shown in Fig. 10 and Fig. 11, the Teacher effectively identi-
fies the Student’s missing modes, providing a suitable training distribution throughout the epochs,
ultimately enabling the Student to discover all the modes successfully.
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Table 9: Evaluation results of DB algorithms on deceptive grid worlds with dimension 𝑑 and grid length 𝐻.
Mean and standard deviation from 5 independent runs are reported. The bold is applied to the best mean value
among DB-based methods.
Grid config. → 𝑑 = 2, 𝐻 = 128 𝑑 = 2, 𝐻 = 256 𝑑 = 4, 𝐻 = 16 𝑑 = 4, 𝐻 = 32

Algorithm ↓Metric→ # modes (↑) 𝐿1 × 10−5 (↓) # modes (↑) 𝐿1 × 10−5 (↓) # modes (↑) 𝐿1 × 10−5 (↓) # modes (↑) 𝐿1 × 10−6 (↓)
TB (on-policy→) 645.4 ± 41.5 2.20 ± 0.58 733.6 ± 25.1 1.74 ± 0.04 6.6 ± 2.5 1.027 ± 0.012 16.6 ± 4.8 1.635 ± 0.000
+ Teacher 676.0 ± 0.0 2.13 ± 0.18 2452.6 ± 21.7 0.94 ± 0.03 51.4 ± 4.0 1.019 ± 0.016 246.6 ± 14.7 1.634 ± 0.001

DB (on-policy→) 644.0 ± 13.3 4.57 ± 0.12 1025.4 ± 132.8 1.69 ± 0.03 1.8 ± 1.7 1.003 ± 0.009 6.8 ± 2.9 1.634 ± 0.000
+ 𝜖-expl. 578.2 ± 25.9 5.23 ± 0.07 814.6 ± 23.4 1.75 ± 0.03 2.4 ± 0.8 1.010 ± 0.004 25.2 ± 2.6 1.635 ± 0.000
+ PER* 316.6 ± 166.5 6.01 ± 0.62 899.4 ± 241.7 1.75 ± 0.03 2.6 ± 1.0 1.005 ± 0.012 17.2 ± 12.5 1.634 ± 0.000
+ Teacher 675.4 ± 0.5 4.42 ± 0.15 1817.6 ± 49.8 1.59 ± 0.01 58.2 ± 5.1 1.009 ± 0.007 345.2 ± 41.2 1.632 ± 0.004

F TEACHER FOR DETAILED BALANCE

In this section, we extend the proposed idea in §3 to detailed balance (DB; Bengio et al., 2023),
another GFlowNet learning objective.

F.1 DETAILED BALANCE AND TEACHER’S REWARD FOR DB

The general problem settings, including MDP formulation and reward function, are the same as §2.
Unlike TB, which requires parameterizing 𝑍𝜃 , DB parameterizes the state flow function 𝐹 (𝑠; 𝜃) for
each state, along with 𝑃𝐹 and 𝑃𝐵. Note that 𝐹 (𝑥; 𝜃) = 𝑅(𝑥) for every terminal state 𝑥 ∈ X, and
the initial state flow 𝐹 (𝑠0) is an estimate of the total reward. The detailed balance discrepancy is
defined for any transition of states (𝑠, 𝑎, 𝑠′) as

𝛿DB (𝑠, 𝑎, 𝑠′; 𝜃) := [log 𝐹 (𝑠′; 𝜃) + log 𝑃𝐵 (𝑠 | 𝑠′; 𝜃)]︸                                     ︷︷                                     ︸
backward edge flow

− [log 𝐹 (𝑠; 𝜃) + log 𝑃𝐹 (𝑠′ | 𝑠; 𝜃)]︸                                    ︷︷                                    ︸
forward edge flow

. (18)

Same as TB, when 𝛿DB (𝑠, 𝑎, 𝑠′; 𝜃) = 0 for all (𝑠, 𝑎, 𝑠′), then 𝑃⊤
𝐹
(𝑥) = 𝑅(𝑥)/𝑍 is achieved for all 𝑥,

where 𝑃⊤
𝐹

defined as Eq. (1). We can naturally define a DB loss as 𝛿DB (𝑠, 𝑎, 𝑠′; 𝜃)2 on each transition
(𝑠, 𝑎, 𝑠′) sampled from a behavior policy 𝜋. For more formal derivation, please refer to Bengio et al.
(2023).

Analogous to Eq. (4) and Eq. (5), we define the basic form as and the re-weighted version of
Teacher’s reward for DB. The basic form is

log 𝑅basic
Teacher-DB (𝑥; 𝜃) = E𝑃𝐵 (𝜏 |𝑥 )

log ©«
∑︁

(𝑠,𝑎,𝑠′ ) ∈𝜏
𝛿DB (𝑠, 𝑎, 𝑠′; 𝜃)2ª®¬

 , (19)

and the re-weighted version is

log 𝑅
weighted
Teacher-DB (𝑥; 𝜃) = E𝑃𝐵 (𝜏 |𝑥;𝜃 )

log ©«𝜖 +
∑︁

(𝑠,𝑎,𝑠′ ) ∈𝜏

(
1 + 𝐶I𝛿DB (𝑠,𝑎,𝑠′;𝜃 )>0

)
𝛿DB (𝑠, 𝑎, 𝑠′; 𝜃)2

ª®¬
 ,
(20)

where we approximate the expectation using a single trajectory.

The reward mixing in Eq. (6) is not directly available in the DB case since it entails a non-trivial
credit assignment problem. Thus, we set 𝑅Teacher-DB = 𝑅

weighted
Teacher-DB.

The overall training procedure is similar to §3.2 and Algorithm 1, except we use DB loss for both
Student and Teacher training. For a given transition (𝑠, 𝑎, 𝑠′) ∼ 𝜋, the DB-loss functions are defined
by

LStudent-DB (𝑠, 𝑎, 𝑠′; 𝜃) = 𝛿DB (𝑠, 𝑎, 𝑠′; 𝜃)2 =

(
log

𝐹 (𝑠; 𝜃)𝑃𝐹 (𝑠′ | 𝑠; 𝜃)
𝐹 (𝑠′; 𝜃)𝑃𝐵 (𝑠 | 𝑠′)

)2
, (21)

LTeacher-DB (𝑠, 𝑎, 𝑠′; 𝜙) = 𝛿Teacher-DB (𝑠, 𝑎, 𝑠′; 𝜙)2 =

(
log

𝐹 (𝑠; 𝜙)𝑃𝐹 (𝑠′ | 𝑠; 𝜙)
𝐹 (𝑠′; 𝜙)𝑃𝐵 (𝑠 | 𝑠′)

)2
, (22)

where 𝐹 (𝑥; 𝜃) = 𝑅(𝑥) and 𝐹 (𝑥; 𝜙) = 𝑅Teacher-DB.
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F.2 EXPERIMENTS IN DECEPTIVE GRID WORLD

We use the same experimental settings as §5.1. We incorporate a transition-based replay buffer,
meaning that we save all state transitions along the trajectory rather than saving only the terminal
state 𝑥 as in the TB case. This allows a closer implementation of the original PER, where the
prioritization is performed with a TD error for each transition. To distinguish the PER used in §5.1,
we call the transition-based PER as PER*. Regarding the baselines, we do not benchmark PRT as it
is not trivial to assign an episodic reward at the terminal state to each transition. We omit the GAFN
since its source code only supports the TB algorithm. We also include TB, TB with Teacher for
reference.

The result is summarized in Table 9. Similar to the TB case (Table 1), Teacher provides a significant
improvement over baselines for DB. This confirms that our method offers flexibility across different
GFlowNets objective functions.

G SCALING EXPERIMENTS

In this section, we demonstrate the scalability of our method. We first test it on larger-scale tasks on
Deceptive Gridworlds, to show that its effectiveness remains consistent as the scale increases. Then
we apply our method to a real-world task of prompt sampling on large language models (LLMs),
where we discover desirable prompt sentences that require effective exploration of the combinatori-
ally large language search space.

Table 10: Evaluation results on large-scale deceptive grid worlds with dimension 𝑑 and grid length 𝐻. The mean
and standard deviation of the number of modes discovered (# modes) from 3 independent runs are reported.
Due to the computational expense of obtaining the exact target distribution in large-scale problems, 𝐿1 distance
is excluded from the analysis. The best mean values are highlighted in bold, while the second-best are marked
with an underline.

Grid config. → 𝑑 = 4, 𝐻 = 64 𝑑 = 4, 𝐻 = 128 𝑑 = 6, 𝐻 = 32 𝑑 = 6, 𝐻 = 64

Num. terminal states |X| → 1.68 × 107 2.68 × 108 1.06 × 109 6.85 × 1010

TB (on-policy→) 24.0 ± 5.7 228.7 ± 38.1 0.3 ± 0.5 3.7 ± 2.6
+ 𝜖-expl. 49.7 ± 17.2 866.7 ± 154.4 0.7 ± 0.5 11.3 ± 4.0
+ GAFN 42.0 ± 6.5 180.0 ± 51.9 1.3 ± 1.2 4.0 ± 2.2
+ PRT 119.3 ± 16.0 222.7 ± 11.6 6.7 ± 0.5 7.3 ± 0.9
+ PER 70.7 ± 12.3 164.3 ± 23.7 2.0 ± 1.4 5.3 ± 0.9
+ Teacher (ours) 299.0 ± 10.7 728.0 ± 192.0 9.7 ± 3.4 21.3 ± 6.0

G.1 LARGE-SCALE EXPERIMENT ON DECEPTIVE HYPERGRIDS

We evaluate our algorithm on larger-scale settings of deceptive grid worlds. Details of the grid
configurations and the total number of terminal states (representing the size of the search space) are
provided in Table 10. We use the same experimental settings we used for the grid with (𝑑 = 4, 𝐻 =
32), which are described in Appendix D.1. Note that we omit 𝐿1 distance from our metrics, as
calculating the exact target distribution is computationally infeasible for these large-scale problems.

As shown in the results Table 10, our algorithm generally outperforms other baselines even in envi-
ronments with a much larger search space. We conjecture the strong performance of 𝜖-exploration
in the (𝑑 = 4, 𝐻 = 128) configuration is because, when 𝐻 is large, clusters of adjacent high-reward
states are large. In such cases, the random, brittle actions from 𝜖-exploration can be advantageous
in discovering multiple adjacent modes within the same region.

G.2 SAMPLING LLM ATTACK PROMPTS

We benchmark our off-policy training method on the automated red-teaming task using GFlowNets,
following the approach of Lee et al. (2024). In this task, the problem is formulated as inference
over prompt sequences proportional to a target reward, which is computed by a toxicity classifier
evaluated on the response the prompt induces from a fixed victim model. We adhere to the same
settings, baselines, evaluation model, and model architecture as the mentioned work. Specifically,
we fine-tune GPT-2 as a GFlowNet policy to serve as the attack model.

Setting. The log-reward is defined as a weighted mixture of the log-likelihood of the language
model and the toxicity score of the prompt. Toxicity is evaluated by a classifier that measures how
likely the prompt is to induce toxic outputs from the victim model.
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(a) vs. All baselines (b) vs. GFN methods

Figure 12: Percentage of toxic prompts (y-axis) versus prompt diversity (x-axis, measured as 1−cosine similar-
ity) for attack methods on GPT-2.

Baselines. We compare our method with several baselines: In-Context Learning (ICL), Supervised
Fine-Tuning (SFT), REINFORCE, and Proximal Policy Optimization (PPO) with a novelty reward
as suggested by Hong et al. (2024). We also include the GFlowNet attacker proposed by Lee et al.
(2024), which is the state-of-the-art method leveraging a GFlowNet sampler with sophisticated off-
policy techniques using a replay buffer.

Implementation. We implement a teacher network over the GFlowNet attacker. While the origi-
nal GFlowNet attacker uses on-policy updates and a 1:1 ratio in the replay buffer, we use Teacher,
Student (on-policy), and replay buffer trajectories in a 2:1:3 ratio. We aim to observe whether this
adjustment provides any benefits over the baseline. We reproduce the GFN attacker results with
𝛽 ∈ 0.06, 0.07, 0.08, where 𝛽 is the temperature parameter for the toxicity reward. For our teacher
method, we test with 𝛽 ∈ 0.02, 0.05. For other baseline results, we directly use the data reported in
the figures by Lee et al. (2024).

Results. As shown in Fig. 12a, the teacher network achieves slightly higher diversity and success
rates compared to the state-of-the-art GFlowNet attacker. Other baselines fail to produce both di-
verse and toxic prompts: REINFORCE leads to mode collapse, and ICL and SFT do not generate
meaningful toxic prompts (see Lee et al. (2024) for a more detailed analysis of these baselines). The
GFlowNet attacker provides well-balanced results, achieving high toxicity in successful prompt sen-
tences with diversity. Our Teacher network offers a slight improvement over the basleine GFlowNet
attacker method (see Fig. 12b), demonstrating that our approach can be flexibly applied to real-world
tasks. Notably, even when using a lower 𝛽 (indicating a peaky toxicity reward) than the GFlowNet
attacker, the diversity achieved is higher. This suggests that the teacher encourages exploration into
missing modes to enhance diversity.

These findings show the potential applicability of the teacher concept in large language model rea-
soning tasks where amortized inference using off-policy RL has been applied, including automated
red-teaming, infilling, chain-of-thought reasoning, and planning (as studied in Hu et al., 2024; Song
et al., 2024; Yu et al., 2024).
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