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Abstract

Group fairness requires that different protected groups, characterized by a given sensitive
attribute, receive equal outcomes overall. Typically, the level of group fairness is measured
by the statistical gap between predictions from different protected groups. In this study, we
reveal an implicit property of existing group fairness measures, which provides an insight into
how the group-fair models behave. Then, we develop a new group-fair constraint based on this
implicit property to learn group-fair models. To do so, we first introduce a notable theoretical
observation: every group-fair model has an implicitly corresponding transport map between
the input spaces of each protected group. Based on this observation, we introduce a new group
fairness measure termed Matched Demographic Parity (MDP), which quantifies the averaged
gap between predictions of two individuals (from different protected groups) matched by a
given transport map. Then, we prove that any transport map can be used in MDP to learn
group-fair models, and develop a novel algorithm called Fairness Through Matching (FTM),
which learns a group-fair model using MDP constraint with an user-specified transport map.
We specifically propose two favorable types of transport maps for MDP, based on the optimal
transport theory, and discuss their advantages. Experiments reveal that FTM successfully
trains group-fair models with certain desirable properties by choosing the transport map
accordingly.

1 Introduction

Artificial Intelligence (AI) technologies based on machine learning algorithms have become increasingly
prevalent as crucial decision-making tools across diverse areas, including credit scoring, criminal risk assessment,
and college admissions. However, when observed data contains unfair biases, the resulting trained models may
produce discriminatory decisions (Calders et al., 2009; Feldman et al., 2015; Angwin et al., 2016; Barocas
& Selbst, 2016; Chouldechova, 2016; Kleinberg et al., 2018; Mehrabi et al., 2019; Zhou et al., 2021). For
instance, several cases of unfair preferences favoring specific groups, such as white individuals or males, have
been reported (Angwin et al., 2016; Ingold & Soper, 2016; Dua & Graff, 2017). To address these issues, there
is a growing trend in non-discrimination laws that calls for the consideration of fair models (Hellman, 2019).

Under this social circumstance, ensuring algorithmic fairness in AI-based decision-making has become a
crucial mission. Among several notions of algorithmic fairness, the notion of group fairness is the most
explored one, which requires that certain statistics of each protected group should be similar. For example,
the ratio of positive predictions should be similar across each protected group (Calders et al., 2009; Barocas
& Selbst, 2016; Zafar et al., 2017; Donini et al., 2018; Agarwal et al., 2018).

Various algorithms have been proposed to learn models achieving group fairness. Existing methods for
group fairness are roughly categorized into: pre-processing, in-processing and post-processing. Pre-processing
approaches (Zemel et al., 2013; Feldman et al., 2015; Webster et al., 2018; Xu et al., 2018; Madras et al., 2018;
Creager et al., 2019; Kim et al., 2022a) aim to debias a given dataset, typically by learning fair representations
whose distribution is independent of a given sensitive attribute. The debiased data (or fair representation) is
then used to learn models. In-processing approaches (Kamishima et al., 2012; Goh et al., 2016; Zafar et al.,
2017; Agarwal et al., 2018; Wu et al., 2019; Cotter et al., 2019; Celis et al., 2019; Zafar et al., 2019; Jiang
et al., 2020a; Kim et al., 2022b) train models by minimizing a given objective function under a specified
group fairness constraint. Post-processing approaches (Kamiran et al., 2012; Hardt et al., 2016b; Fish et al.,

1



Under review as submission to TMLR

2016; Corbett-Davies et al., 2017; Pleiss et al., 2017; Chzhen et al., 2019; Wei et al., 2020; Jiang et al., 2020a)
transform given prediction scores, typically provided by an unfair model, to satisfy a certain fairness level.

Most group-fair algorithms correspond to specific group fairness measures, typically defined by explicit
quantities such as prediction scores and sensitive attributes. For example, demographic parity (Calders et al.,
2009; Feldman et al., 2015; Angwin et al., 2016) considers the gap between two protected groups in terms of
the positive prediction ratio. A shortcoming of such measures is that they only concern statistical disparities
without accounting for implicit mechanisms about how a given model achieves group fairness.

As a result, models can achieve high levels of group fairness in very undesirable ways (see Section C of
Appendix for example). Dwork et al. (2012) also noted that focusing solely on group fairness can lead to
issues such as subset targeting and the self-fulfilling prophecy. These observations serve as the motivation of
this study. Moreover, our empirical investigations on real-world datasets reveal that unfairness on subsets can
be observed in group-fair models learned by existing algorithms, which are designed to achieve group fairness
solely (see Section 5).

In this paper, we first propose a new group fairness measure that reveals implicit behaviors of group-fair
models. Based on the proposed measure, we develop an in-processing algorithm to learn group-fair models
with less undesirable properties (e.g., unfairness on subsets), that cannot be explored or controlled by existing
fairness measures.

To do so, we begin by introducing a notable mathematical finding: every group-fair model implicitly corresponds
to a transport map, which moves the measure of one protected group to another. Building on this observation,
we propose a new measure for group fairness called Matched Demographic Parity (MDP), which quantifies
the averaged gap between predictions of two individuals from different protected groups matched by a given
transport map. We further prove that the reverse of this finding also holds, meaning that any transport map
can be used in MDP to learn group-fair models. Finally, we develop an algorithm called Fairness Through
Matching (FTM), designed to learn group-fair models under a fairness constraint based on MDP with a given
transport map. FTM can provide group-fair models having specific desirable properties (e.g., higher fairness
on subsets) by selecting a transport map accordingly. Note that it is not designed to achieve the optimal
fairness-prediction trade-off, rather, the focus is on mitigating undesirable properties when achieving group
fairness (e.g., unfairness on subsets). However, existing algorithms focusing solely on group fairness may lack
this flexibility.

In fact, FTM with a transport map that is not carefully selected could result in unreasonable group-fair
models, even though group fairness is guaranteed. Hence, the key to effectively using FTM lies in selecting a
good transport map. To this end, we propose two specific choices for the transport map: one is the optimal
transport (OT) map in the input space, and the other is the OT map in the product space of input and
output. Each is designed to achieve specific goals. For example, the former achieves higher fairness levels on
subsets, while the latter yields better prediction performance and achieves higher levels of equalized odds
compared to the former. Experiments on real benchmark datasets support our theoretical findings, showing
that FTM successfully learns group-fair models with more desirable properties, than those learned by existing
algorithms for group fairness.

Main contributions

1. We introduce a notable mathematical observation that every group-fair model has an implicit
transport map. Based on this finding, we present a novel measure of group fairness called Matched
Demographic Parity (MDP).

2. We prove that any transport map can be used in MDP to learn group-fair models. Subsequently, we
devise a novel algorithm called Fairness Through Matching (FTM), designed to find a group-fair
model using a constraint based on MDP with a given transport map. We propose two favorable
transport maps designed for specific purposes.

3. Experiments on benchmark datasets illustrate that FTM successfully learns group-fair models, and
examine the advantages of the two transport maps in learning more desirable group-fair models,
compared to those learned by existing algorithms that focus solely on achieving group fairness,
without sacrificing fairness-prediction trade-off much.
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2 Preliminaries

2.1 Notations & Problem setting

In this section, we outline the mathematical notations used throughout this paper. We focus on binary
classification in this study. We denote X ∈ X ⊂ Rd and Y ∈ Y = {0, 1} as the d-dimensional input vector and the
binary label, respectively. Whenever necessary, we split the domain of X with respect to S to write Xs as the
domain of X∣S = s. For given s ∈ {0, 1}, we let s′ = 1−s. Assuming the pre-defined sensitive attribute is binary,
we denote S ∈ {0, 1} as the binary sensitive attribute. For a given s ∈ {0, 1}, the realization of S, we write
s′ = 1 − s. For the probability distributions of these variables, let P and PX represent the joint distribution
of (X, Y, S) and the marginal distribution of X, respectively. Furthermore, let Ps = PX∣S=s, s ∈ {0, 1} be
the conditional distributions of X given S = s. We write E and Es as the corresponding expectations of P
and Ps, respectively. For observed data, denote D = {(xi, yi, si)}n

i=1 as the training dataset, consisting of n
independent copies of the random tuple (X, Y, S) ∼ P.

We denote the classification model as f = f(⋅, s), s ∈ {0, 1}, which is an estimator of Ps(Y = 1∣X = ⋅), belonging
to a given hypothesis class F ⊂ {f ∶ X × {0, 1} → [0, 1]}. Note that the output of f is restricted to the interval
[0, 1], making f bounded. For simplicity, we sometimes write f(⋅, s) = fs(⋅) whenever necessary. For given f
and s ∈ {0, 1}, we denote Pfs the conditional distribution of f(X, s) given S = s. Furthermore, let Cfs be
the classification rule based on f(⋅, s), i.e., Cfs(⋅) = I(f(⋅, s) ≥ τ) where τ is a specific threshold (typically,
τ = 0.5).

2.2 Measures for group fairness & Definition of group-fair model

In the context of group fairness, various measures have been introduced to quantify the gap between
predictions of each protected group specified by a given sensitive attribute. The original measure for DP,
∆DP(f) ∶= ∣P(Cf0(X) = 1∣S = 0) − P(Cf1(X) = 1∣S = 1)∣ , has been initially considered in various studies
(Calders et al., 2009; Feldman et al., 2015; Donini et al., 2018; Agarwal et al., 2019; Zafar et al., 2019). Its
relaxed version, ∆DP(f) ∶= ∣E(f0(X))∣S = 0) −E(f1(X))∣S = 1)∣ , has also been explored popularly (Madras
et al., 2018; Chuang & Mroueh, 2021; Kim et al., 2022a).

However, ∆DP(f) has a limitation as it relies on a specific threshold τ (Silvia et al., 2020). To overcome
this issue, the concept of strong DP (which requires similarity in the distributions of preditive values
of each protected group) with several measures for quantifying the discrepancy between Pf0 and Pf1

have been considered (Jiang et al., 2020b; Chzhen et al., 2020; Silvia et al., 2020; Barata et al., 2021).
∆WDP(f) ∶= W(Pf0 ,Pf1), ∆TVDP(f) ∶= TV(Pf0 ,Pf1), and ∆KSDP(f) ∶= KS(Pf0 ,Pf1) are the examples
of the measure for strong DP, where W, TV, and KS represent the Wasserstein distance, the Total Variation,
and the Kolmogorov-Smirnov distance, respectively. For given two probability distributions Q1 and Q2, the
three distributional distances are defined as follows. The (1-)Wasserstein distance is defined as W(Q1,Q2) ∶=
infγ∈Γ(Q1,Q2)E(x,y)∼γ∥x − y∥1, where Γ(Q1,Q2) is the set of joint probability distributions of marginals Q1
and Q2. The Total Variation is defined as TV(Q1,Q2) ∶= supA∈A ∣Q1(A) −Q2(A)∣, where A is the collection
of measurable sets. The Kolmogorov-Sminov distance is defined as KS(Q1,Q2) ∶= supx∈R ∣FQ1(x) − FQ2(x)∣,
where FQ(x) ∶= Q(X ≤ x) is the cumulative distribution function of Q.

Let ∆ = ∆(f) be a given measure of fairness. A given model f is said to be group-fair (with level ϵ) if it
satisfies ∆(f) ≤ ϵ. Furthermore, if ∆(f) = 0, we say f is perfectly group-fair (with respect to ∆).

2.3 Optimal transport

The concept of the Optimal Transport (OT) provides an approach for geometric comparison between two
probability measures. For given two probability measures Q1 and Q2, a map T from Supp(Q1) to Supp(Q2)
is called a transport map from Q1 to Q2 if the push-forward measure T#Q1 is equal to Q2 (Villani, 2008).
Here, the push-forward measure is defined by T#Q1(A) = Q1(T−1(A)) for any measurable set A, i.e., T#Q1
is the measure of T(X), X ∼ Q1. The OT map is the optimal choice among all transport maps from a source
distribution Q1 to a target distribution Q2. In this context, ‘optimal’ means minimizing transport cost, such
as Lp distance in Euclidean space.
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Monge (1781) originally formulates the OT problem: for given source and target distributions Q1,Q2 in Rd and
a cost function c (e.g., L2 distance), the OT map from Q1 to Q2 solves minT∶T#Q1=Q2 EX∼Q1 (c (X, T(X))) .
If both Q1 and Q2 are discrete with an identical number of support, a one-to-one mapping exists. For the
case when Q1 and Q2 are discrete but have different numbers of supports, Kantorovich relaxed the Monge
problem by seeking the optimal coupling between two distributions (Kantorovich, 2006). The Kantorovich
problem is formulated as infπ∈Π(Q1,Q2)EX,Y∼π (c(X, Y)) where Π(Q1,Q2) is the set of all joint measures of
Q1 and Q2. Note that the problem can be also applied to the case of Q1 and Q2 with an identical number of
support. See Section D of Appendix for more details about the Kantorovich problem.

Various feasible estimators have been developed (Cuturi, 2013; Genevay et al., 2016), and applied to diverse
tasks such as domain adaptation (Damodaran et al., 2018; Forrow et al., 2019) and computer vision (Su et al.,
2015; Li et al., 2015; Salimans et al., 2018), to name a few.

2.4 Related works

Algorithmic fairness Group fairness is a fairness notion aimed at preventing discriminatory predictions
for protected (demographic) groups divided by pre-defined sensitive attributes. Among various notions of
group fairness, Demographic Parity (DP) (Calders et al., 2009; Feldman et al., 2015; Agarwal et al., 2019;
Jiang et al., 2020b; Chzhen et al., 2020) quantifies the statistical gap in predictions between two different
protected groups. Other measures, including Equal opportunity (Eqopp) and Equalized Odds (EO), consider
protected groups conditioned on both the label and the sensitive attribute (Hardt et al., 2016a). Various
algorithms have been developed to learn group-fair model with respect to these group fairness notions (Zafar
et al., 2017; Donini et al., 2018; Agarwal et al., 2018; Madras et al., 2018; Zafar et al., 2019; Chuang &
Mroueh, 2021; Kim et al., 2022a).

Individual fairness, initially introduced by Dwork et al. (2012), is another fairness notion based on the
philosophy of treating similar individuals similarly. It is noteworthy that Dwork et al. (2012) highlighted that
focusing solely on group fairness is not always a complete answer, pointing out issues such as subset targeting
and the self-fulfilling prophecy. Subsequent researches (Yona & Rothblum, 2018; Yurochkin et al., 2020;
Yurochkin & Sun, 2021; Petersen et al., 2021) have been studied in both theories and methodologies. However,
individual fairness has two bottlenecks: (i) it strongly depends on the choice of the similarity metric, which
hinders its practical applicability, and (ii) by itself, it does not ensure group fairness when the distributions
of protected groups differ significantly. See Section 3.3 for comparison between individual fairness and our
proposed framework.

Counterfactual fairness, which requires treating a counterfactual individual similarly to the original individual,
has been studied by Kusner et al. (2017); Chiappa & Gillam (2018); von Kügelgen et al. (2022); Nilforoshan
et al. (2022). Its application, however, is limited since it requires causal models, which are difficult to obtain
only with observed data. Instead of using graphical models to define counterfactuals, this paper suggests
using a transport map from Xs to Xs′ having certain desirable properties. See Proposition 4.3 in Section 4.1
for the relationship between counterfactual fairness and our proposed algorithm.

See Section B of Appendix for a short introduction to other fairness notions including subgroup fairness and
equal treatment.

Fair representation learning (FRL) FRL algorithm aims at searching a fair representation space (Zemel
et al., 2013), in the sense that the conditional distributions of the encoded representation with respect to
the sensitive attribute are similar. After learning the fair representation, FRL constructs a fair model by
applying a supervised learning algorithm to the fair representation space. Initiated by Edwards & Storkey
(2016), various FRL algorithms have been developed (Madras et al., 2018; Zhang et al., 2018) motivated by
the adversarial-learning technique used in GAN (Goodfellow et al., 2014). See Section 3.3 for the comparison
between FRL and our proposed framework.

Applications of the OT map to algorithmic fairness Several studies, including Gordaliza et al. (2019);
Jiang et al. (2020b); Chzhen et al. (2020); Silvia et al. (2020); Buyl & Bie (2022), have employed the OT
map for algorithmic fairness. Gordaliza et al. (2019) introduced a fair representation learning method that
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aligns inputs from different protected groups using the OT map. Jiang et al. (2020b); Chzhen et al. (2020);
Silvia et al. (2020) proposed aligning prediction scores from different protected groups using the OT map
or OT-based barycenter. Buyl & Bie (2022) developed a method that projects prediction scores onto a fair
space by optimizing the projection through minimizing the transport cost calculated on all pairs of inputs.

Most of these algorithms (e.g., Jiang et al. (2020b); Chzhen et al. (2020); Silvia et al. (2020)) focus on
applying the OT map in the prediction space, i.e., aligning two conditional distributions (distributions of
Ŷ ∣S = s, s ∈ {0, 1}). These methods fundamentally differ from our proposed approach, which focuses on
applying the OT map in the input space. On the other hand, Gordaliza et al. (2019) and our approach are
particularly similar in the sense that both apply the OT map on the input space. See the detailed comparison
between Gordaliza et al. (2019) and our approach in Section 3.3.

It is worth noting that our proposed algorithm becomes the first to define a group fairness measure based on
the transport map in the input space and to propose reasonable choices for the transport map.

3 Learning group-fair model through matching

The goal of this section is to explore and specify the correspondence between group-fair models and transport
maps. In Section 3.1, we show that every group-fair model has a corresponding implicit transport
map in the input space that matches two individuals from different protected groups. We then introduce
a new fairness measure based on the correspondence. In Section 3.2, we show the reverse, i.e., any given
transport map can be used to learn a group-fair model, then present our proposed algorithm for
learning group-fair models under a fairness constraint based on a given transport map.

3.1 Matched Demographic Parity (MDP)

Proposition 3.1 below shows that for a given perfectly group-fair model f (i.e., Pf0 = Pf1 or equivalently
∆ = 0), there exists an implicit transport map in the input space that matches two individuals from different
protected groups. Its proof is in Section A of Appendix. Throughout this section, we assume a condition
(C): Ps, s = 0, 1, are absolutely continuous with respect to the Lebesgue measure. This regularity condition
is assumed to simplify the discussion, since it guarantees the existence of transport maps between two
distributions. See Proposition A.2 in Section A of Appendix, which presents a similar result for the case
where Ps, s = 0, 1 are discrete. Let T trans

s be the set of all transport maps from Ps to Ps′ .

Proposition 3.1 (Fair model ⇒ Transport map: perfect fairness case). For any perfectly group-fair model f,
i.e., Pf0 = Pf1 , there exists a transport map Ts ∈ T trans

s satisfying f (X, s) = f (Ts(X), s′) , a.e.

The key implication of this mathematical proposition is that all perfectly group-fair models are not the same
and the differences can be identified by the corresponding transport maps. We can also define a transport
map for a not-perfectly group-fair model (i.e., ∆ > 0) similarly, by using a novel fairness measure termed
Matched Demographic Parity (MDP).
Definition 3.2 (Matched Demographic Parity). For a given model f ∈ F and a transport map Ts ∈ T trans

s ,
the measure for MDP is defined as

∆MDP(f, Ts) ∶= Es ∣f(X, s) − f(Ts(X), s′)∣ . (1)

The idea behind MDP is that two individuals from different protected groups are matched by Ts, and
∆MDP(f, Ts) quantifies the similarity between the predictions of these two matched individuals. Subsequently,
Theorem 3.3 below presents a relaxed version of Proposition 3.1, showing that any approximately group-fair
model f has a transport map Ts such that ∆MDP(f, Ts) is small. Refer to Section A of Appendix for the
proof of Theorem 3.3. See Figure 1 for the illustration of MDP.
Theorem 3.3 (Fair model ⇒ Transport map: relaxed fairness case). Fix a fairness level δ ≥ 0. For any
given group-fair model f such that ∆TVDP(f) ≤ δ, there exists a transport map Ts ∈ T trans

s satisfying
∆MDP(f, Ts) ≤ 2δ.
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Figure 1: Simplified illustration of MDP. Once two individuals A and B are matched (↔), a model treats the
pair of matched individuals A and B similarly (as well as other pairs). This implicit mechanism contributes
to making the model fair.
We define the fair matching function of a given f as the transport map that attains the infimum of equation
(1), as formulated in Definition 3.4 below. The term ‘fair’ is used because MDP is minimized by this transport
map. Through investigating the fair matching function, we can understand the mechanism behind how a
group-fair model behaves. That is, the fair matching function specifically reveals which pairs of individuals
from two protected groups are treated similarly by the group-fair model.
Definition 3.4 (Fair matching function of f). For a given f, denote Tf

s ∶= arg minTs∈T trans
s

∆MDP(f, Ts), s ∈
{0, 1}. For ŝ ∶= arg mins∈{0,1}∆MDP(f, Tf

s ), the fair matching function of f is defined as Tf ∶= Tf
ŝ .

Note that the existence of this fair matching function is guaranteed by Briener’s theorem (Villani, 2008;
Hütter & Rigollet, 2021). To be specific, since Ps, s ∈ {0, 1} are absolutely continuous by (C), and the cost
function in MDP, i.e., c(x, y) ∶= ∣f(x, s) − f(y, s′)∣, is lower semi-continous and bounded from below, the
minimizer of ∆MDP(f, Ts) uniquely exists.

Practical computation of the fair matching function In practice, we estimate the fair matching
function using the observed data D = {(xi, yi, si)}n

i=1. Let D0 = {xi ∶ si = 0} = {x(0)i }
n0
i=1 and D1 = {xj ∶ sj =

1} = {x(1)j }
n1
j=1 be the set of inputs divided by the sensitive attribute, where n0 + n1 = n. We here introduce

practical methods for computing the fair matching function in Definition 3.4, considering two cases:

(1) Case of n0 = n1: When the sizes of two protected groups are equal (n0 = n1), we can easily find the fair
matching function by quantile matching. We first sort the scores in {fs(x)}x∈Ds for each group s ∈ {0, 1}.
Then, we match the individuals having the same rank (i.e., quantile) in each set, thereby obtaining the fair
matching function of f. Its transport cost is then subsequently computed by the mean distance between
two matched individuals. This straightforward procedure is theoretically guaranteed by the definition of
1-Wasserstein distance, which is calculated by quantile matching (Rachev & Rüschendorf, 1998; Chzhen
et al., 2020; Jiang et al., 2020b). We formally present this procedure in Proposition 3.5 below. Its proof is
provided in Section A of Appendix. Let Fs represents the cumulative distribution function of fs(x), x ∈ Ds.
For technical simplicity, we assume that there is no tie in {fs(x) ∶ x ∈ Ds}.
Proposition 3.5. Let Tf be the fair matching function of f on D0 and D1 (where the empirical distributions
with respect to D0 and D1 are used in Definition 3.4). Then, the matched individual Tf(x) of any x ∈ Ds is
obtained by Tf(x) = f−1

s′ ○ F −1
s′ ○ Fs ○ fs(x).

(2) Case of n0 ≠ n1: When the sizes differ, we can consider a stochastic fair matching function (a stochastic
transport map that minimizes ∆MDP), which matches individuals with probability, not deterministically. In
fact, a stochastic transport map corresponds to a joint distribution between two protected groups, i.e., a
stochastic transport map is defined by a given joint distribution, as follows:

Denote Q as a joint distribution between D0 and D1, and let X0 and X1 be the random variables following the
empirical distributions on D0 and D1, respectively. For a given joint distribution Q, the stochastic transport
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map Ts (corresponding to the Q) is defined by Ts(x(s)i ) = x(s
′)

j with probability Q(Xs = x(s)i , Xs′ = x(s
′)

j ).
Once we find the stochastic fair matching function, the stochastic transport map (i.e., joint distribu-
tion Q) minimizing ∆MDP(f,Q) = E(X0,X1)∼Q∣f(X0, 0) − f(X1, 1)∣, we can compute its transport cost as
E(X0,X1)∼Q∥X0 −X1∥2. Note that the minimization of ∆MDP with respect to the stochastic transport map is
technically equivalent to solving the Kantorovich problem, which can be easily solved by the use of linear
programming. See Section A and Section D for more details about the stochastic transport map and the
Kantorovich problem, respectively.

Alternatively, in practice, we can apply a mini-batch sampling technique: We sample two random mini-batches
D̃0 ⊂ D0 and D̃1 ⊂ D1 with identical size m. Then, we follow the process in ‘(1) Case of n0 = n1’ above. The
transport cost of fair matching function can be then estimated by the average of transport costs computed on
many random mini-batches. See Remark A.3 in Section A for the validity of this mini-batch technique.

Remark 3.6 (Usage of the transport cost of the fair matching function). Furthermore, the transport cost of
the fair matching function can serve as a measure to assess whether a given group-fair model is desirable. For
example, when choosing a model between two group-fair models with similar levels of group fairness or/and
prediction accuracies, the model with the lower transport cost would be preferred. In Section 5.3.2, we compare
transport costs of fair matching functions for two different group-fair models, using the mini-batch technique.

3.2 Fairness Through Matching (FTM): learning a group-fair model with a given transport map

The goal of this section is to formulate our proposed algorithm. Before introducing our proposed algorithm,
we provide a theoretical support, which shows that a group-fair model can be constructed by MDP using any
transport map.

Theorem 3.7 below, which is the reverse of Theorem 3.3, shows that any transport map in the input space
can construct a group-fair model. That is, for a given transport map, if a model provides similar predictions
for two individuals who are matched by the transport map, then it is group-fair. The proof is given in Section
A of Appendix.

Theorem 3.7 (Transport map ⇒ Group-fair model). For a given Ts ∈ T trans
s , if ∆MDP(f, Ts) ≤ δ, then we

have ∆WDP(f) ≤ δ and ∆DP(f) ≤ δ.

Again, it is remarkable that a group-fair model and its corresponding transport map are closely related,
i.e., every group-fair model has its corresponding implicit transport map, and vice versa. This
finding can be mathematically expressed as follows. Let ∆ be a given (existing) fairness measure, and define
F∆(δ) ∶= {f ∈ F ∶ ∆(f) ≤ δ} as the set of group-fair models of level δ (with respect to ∆). Similarly, for
MDP, define F∆MDP(Ts, δ) ∶= {f ∈ F ∶ ∆MDP(f, Ts) ≤ δ}. Then, following from Theorem 3.3 and 3.7, we
know that the three measures (i.e., TVDP, WDP, and MDP) are closely related: F∆TVDP(δ) ⊆ ∪Ts∈T trans

s
{f ∶

∆MDP(f, Ts) ≤ 2δ} ⊆ F∆WDP(2δ).
As discussed in Section 1 as well as previous works (e.g., Dwork et al. (2012)), there exist group-fair
models having undesirable properties such as subset targeting or self-fulfilling prophecy. The advantage of
MDP is that we can screen out such undesirable group-fair models during the learning phase, to consider
desirable group fair models only. And, using MDP achieves this goal by considering group-fair models
whose transport maps have low transport costs. That is, we can search for a group-fair model only on
∪Ts∈T good trans

s
{f ∶ ∆MDP(f, Ts) ≤ 2δ}, where T good trans

s ⊆ T trans
s is the set of good transport maps. See

Section 4 for good transport maps that we specifically propose. Note that this kind of screening is not possible
when using existing group-fair measures.

FTM algorithm Based on Theorem 3.7, we develop a learning algorithm named Fairness Through
Matching (FTM), which learns a group-fair model subject to MDP being small with a given transport
map. FTM consists of two steps. First, we select a (good) transport map. Then, we learn a model under the
MDP constraint with the selected transport map. The objective of FTM is formulated below.
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Once a transport map Ts is selected (see Section 4 for the proposed transport maps), FTM solves the
following objective for a given loss function l (e.g., cross-entropy) and a pre-defined fairness level δ ≥ 0 ∶

fFTM(Ts) ∶= arg min
f∈F

El(Y, f(X, S)) s.t. min
s∈{0,1}

∆MDP(f, Ts) ≤ δ. (2)

Unless there is any confusion, we write fFTM instead of fFTM(Ts) for simplicity. By Theorem 3.7, it is
clear that fFTM is fair (i.e., ∆WDP(fFTM), ∆DP(fFTM) ≤ δ) for any transport map Ts. In practice, we
estimate fFTM with observed data D using mini-batch technique along with a stochastic gradient descent
based algorithm (see Section 4 for details).

3.3 Comparison between existing approaches and FTM

Individual fairness FTM and individual fairness are similar in the sense that they try to treat similar
individuals similarly. A difference is that FTM aims to treat two individuals from different protected groups
similarly, while the individual fairness tries to treat similar individuals similarly regardless of sensitive
attribute (even when it is unknown). That is, similar individuals in FTM could be dissimilar in view of
individual fairness, especially when the two protected groups are significantly different.

A limitation of individual fairness is that group fairness is not guaranteed. FTM can be also understood as a
tool to resolve this limitation by searching higher individually fair ones among group-fair models. Empirical
results support this conjecture that FTM improves individual fairness compared to baseline methods for
group fairness (see Table 5 in Section 5.4.2).

Fair representation learning First, the role of transport map in FTM and the role of aligning two
conditional representation distributions in FRL are different. FTM builds a prediction model in the original
input space, using transport map in the MDP constraint only. In contrast, FRL methods first learn fair
representation by aligning the conditional distributions of representation, and then use the learned fair
representation as input.

Furthermore, the motivations of FTM and FRL also fundamentally differ. FTM is designed to learn group-fair
models with desirable properties (e.g., higher fairness on subsets). In contrast, FRL methods aims to obtain
fair representations which can be used for downstream tasks requiring fairness.

In particular, the FRL method in Gordaliza et al. (2019) and FTM are similar in the sense that both apply
the OT map on the input space. However, Gordaliza et al. (2019) differs from ours as it learns a prediction
model on the (pre-trained) fair representation space obtained by the OT map, while the prediction model of
FTM is defined on the original input space and the OT map is used only in the fairness constraint.

Hence, the prediction model of FTM is not tied with the OT map and thus is more flexible to results in
better prediction accuracy. See Table 6 in Section 5.4.3 for empirical evidence, showing outperformance of
FTM over several FRL methods including Gordaliza et al. (2019).

4 Choice of the transport map in FTM

The implication of Theorems 3.3 and 3.7 is that any transport map corresponds to a group-fair model.
However, a transport map that is not carefully selected can lead to undesirable outcomes, even though group
fairness is achieved by Theorem 3.7 (see Section C of Appendix for an example of a problematic group-fair
model due to an unreasonable transport map). Therefore, we should carefully choose a good transport map
when using FTM, which is the main theme of this section.

Specifically, we propose two favorable choices of the transport map Ts used in FTM. In Section 4.1, we
suggest using the OT map in the input space X , which minimizes the transport cost, resulting in a group-fair
model with a higher fairness level on subsets. In Section 4.2, we propose using the OT map in the product
space X ×Y, to improve prediction performance and the level of equalized odds, when compared to the OT
map in the input space.
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4.1 OT map on X

First, we propose using the OT map for the transport map between the two input spaces, which is the
minimizer of the transport cost on X among all transport maps. For a given Ts ∈ T trans

s , the transport cost of
Ts is defined by Es∥X −Ts(X)∥2. From now on, we call this OT map on X as the marginal OT map.

We explore a benefit of using the marginal OT map (i.e., low transport cost) by showing a theoretical
relationship between the transport cost and fairness on subsets. Many undesirable behaviors of group-fair
models have been recognized and discussed (Dwork et al., 2012; Kearns et al., 2018a; Wachter et al., 2020;
Mougan et al., 2024). Subset fairness, which is a similar concept to subset targeting in Dwork et al. (2012),
is one of such undesirable behaviors. We say that a group-fair model is subset-unfair if it is not group-fair
against a certain subset (e.g., aged over 60s) even if it is group-fair overall. A mathematical definition of
subset fairness can be done as follows.
Definition 4.1 (Subset fairness). Let A be a subset of X . The level of subset fairness over A is defined as

∆DPA(f) ∶= ∣E(f(X, 0)∣S = 0, X ∈ A) −E(f(X, 1)∣S = 1, X ∈ A)∣.

Intuitively, we expect that a group-fair model with a low transport cost would exhibit a high level of subset
fairness. This is because the chance of two matched individuals (from different protected groups) belonging to
the same subset A tends to be higher when the transport cost is smaller. Theorem 4.2 theoretically supports
this conjecture, whose proof is provided in Section A of Appendix.
Theorem 4.2 (Low transport cost benefits subset fairness). Suppose F is the collection of L-Lipschitz
functions. Let A be a given subset in X . Then, for all f satisfying ∆MDP(f, Tf

s ) ≤ δ, we have

∆DPA(f) ≤ L (Es∥X −Tf
s (X)∥2)

1
2 +TV(P0,A,P1,A) +Uδ, (3)

where Ps,A is the distribution of X∣S = s, X ∈ A, and U > 0 is a constant only depending on A and Ps, s = 0, 1.

The first term of RHS, L (Es∥X −Tf
s (X)∥2)

1/2
, implies that using a transport map with a small transport

cost helps improve the level of subset fairness. The uncontrollable term TV(P0,A,P1,A) can be small for
certain subsets. For example, for disjoint sets A1,⋯, AK of A, suppose that Ps is a mixture of uniform
distribution given as Ps(⋅) = ∑K

k=1 pskI(⋅ ∈ Ak) with psk ≥ 0 and ∑K
k=1 psk = 1 (e.g., the histogram). Then,

TV(P0,A,P1,A) becomes zero for all Ak, k ∈ [K]. The last term Uδ becomes small when δ is small.

Connection to counterfactual fairness The concept of FTM is connected to counterfactual fairness. In
fact, under a simple Structural Causal Model (SCM), the transported input using the marginal OT map is
equivalent to the counterfactual input. Particularly, let Xs =X∣S = s for s ∈ {0, 1} and consider an SCM

Xs = µs +AXs + ϵs (4)

for given A ∈ Rd×d, µs ∈ Rd with Gaussian random noise ϵs ∼ N(0, σ2
sD) of a diagonal matrix D ∈ Rd×d and

variance scaler σ2
s . An example DAG (Directed Acyclic Graph) for equation (4) is Figure 2.

XS

ϵs ∼ N(0, σ2
sD)

Figure 2: An example DAG of
the SCM in equation (4).

Let xs be a realization of Xs and assume (Id − A) has its inverse B ∶=
(Id −A)−1, where Id ∈ Rd×d is the identity matrix. Then, its counterfactual
becomes x̃CF

s = Bµs′ + σs′σ
−1
s Id(xs −Bµs) (proved with Proposition 4.3

together in Appendix A). On the other hand, by Lemma A.4 in Appendix
A, the image of xs by the marginal OT map is given as x̃OT

s = Bµs′ +
Ws(xs − Bµs) for some Ws ∈ Rd×d. Proposition 4.3 shows x̃CF

s = x̃OT
s ,

whose proof is referred to Appendix A.
Proposition 4.3 (Counterfactual fairness and the marginal OT map).
For all A having (Id −A)−1, Ws becomes σs′σ

−1
s Id. That is, x̃CF

s = x̃OT
s .

We further present an example in Section C of Appendix showing that a transport map with a high transport
cost can lead to a problematic group-fair model. Moreover, Section 5.2.2 empirically shows that group-fair

9



Under review as submission to TMLR

models learned by FTM with the marginal OT map attain higher fairness levels on various subsets that
are not explicitly considered in the training phase, when compared to group-fair models learned by existing
algorithms.

Estimation of the marginal OT map To estimate the marginal OT map in practice, we sample two
random mini-batches D̃0 = {x(0)i }m

i=1 ⊂ D0 and D̃1 = {x(1)j }m
j=1 ⊂ D1 with an identical size m ≤ n. For given

two empirical distributions on D̃0 and D̃1, the cost matrix between the two is defined by C ∶= [ci,j] ∈ Rm×m
+

where ci,j = ∥x(0)i −x(1)j ∥2. The optimal coupling is then defined by the matrix Γ = [γi,j] ∈ Rm×m
+ , which solves

the following objective:

min
Γ
∥C⊙ Γ∥1 =min

γi,j

ci,jγi,j s.t.
m

∑
i=1

γi,j =
m

∑
j=1

γi,j =
1
m

, γi,j ≥ 0. (5)

Due to the equal sample sizes of D̃s, s ∈ {0, 1}, the optimal coupling has only one non-zero (positive) entry for
each row and column. Then, the marginal OT map for each x(0)i ∈ D̃0 is defined by T0,D̃(x

(0)
i ) = x(1)j 1(γi,j > 0)

and T1,D̃ is defined similarly.

4.2 OT map on X ×Y

One might argue that using the marginal OT map as the fair matching function could degrade the prediction
performance much, since the matchings done by the marginal OT map do not consider the similarity in Y.
As a remedy for this issue, we consider incorporating the label Y into the cost matrix calculation to avoid
substantial degradation in prediction performance.

For this purpose, we define a new cost function on X × Y. Let α be a given positive constant. The new
cost function cα ∶ Rd+1 × Rd+1 → R+ is defined by: cα((x1, y1), (x2, y2)) ∶= ∥x1 − x2∥2 + α∣y1 − y2∣, for given
x1, x2 ∈ Rd and y1, y2 ∈ R. Among all transport maps from the distribution of X, Y ∣S = s to the distribution of
X, Y ∣S = s′, we find the OT map that minimizes the transport cost (i.e., the expected value of cα, where the
expectation is taken over the distribution of X, Y ∣S = s). Once this OT map on X ×Y transports a given pair
of input x ∈ X and y ∈ Y, we focus only on the components corresponding to the input. For example, we select
the first d values from the d + 1 dimensional vector transported by the OT map. This map, which outputs
only the components corresponding to the input, is called the joint OT map. Note that the joint OT map
can be used as a transport map for X, where the transport cost is calculated based on both X and Y.

Clearly, using the new transport cost with a positive α can contribute to the improvement in prediction
accuracy compared to the marginal OT map. This is because, while the marginal OT map does not care
labels when matching individuals, the joint OT map tends to match individuals with the same label as much
as possible when α is sufficiently large.

Not only the prediction accuracy, but also the level of equalized odds (i.e., demographic parities on the
subsets consisting of those with Y = 0 and Y = 1, respectively) can be improved. This is because, FTM with
the joint OT map tends to predict similarly for individuals with the same labels but from different protected
groups, which directly aligns with the concept of equalized odds. Detailed theoretical evidence is presented
as follows: We can decompose ∆MDP(f, Ts) as ∆MDP(f, Ts) = w0Es (∣f(X, s) − f(Ts(X), s′)∣∣Y = 0) +
w1Es (∣f(X, s) − f(Ts(X), s′)∣∣Y = 1) , where wy ∶= P(Y = y∣S = s), y ∈ {0, 1}. Note that by the definition of
the joint OT map, we have for almost all x with respect to the distribution of X∣S = s, P(Y = y∣X = x, S = s) =
P(Y = y∣X = Ts(x), S = s′) for all y ∈ {0, 1} when α →∞. Then, we have that C max{∆TPR(f), ∆FPR(f)} ≤
w0∆TPR(f) + w1∆FPR(f) ≤ ∆MDP(f, Ts), where C = min{w0, w1} is a constant. Here, ∆TPR(f) =
∣E(f0(X)∣Y = 1, S = 0) −E(f1(X)∣Y = 1, S = 1)∣ and ∆FPR(f) = ∣E(f0(X)∣Y = 0, S = 0) −E(f1(X)∣Y = 0, S =
1)∣ are the smooth versions of ∆TPR(f) and ∆FPR(f), respectively. Hence, we can conclude that using the
joint OT map with large α can control EO.

We empirically confirm this conjecture in Section 5.3, by showing that group-fair models learned by FTM
with the joint OT map offer improved prediction accuracies as well as improved levels of equalized odds,
when compared to FTM with the marginal OT map.
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Estimation of the joint OT map We apply a similar technique to the marginal OT map case, starting
by sampling two random mini-batches D̃0 and D̃1 with an identical size m ≤ n. Let y

(0)
i and y

(1)
j be the

corresponding labels of x(0)i ∈ D̃0 and x(1)j ∈ D̃1, respectively. For a given α ≥ 0, we modify the cost matrix as
follows: Cα ∶= [cα

i,j] ∈ Rm×m
+ where cα

i,j = ∥x
(0)
i − x(1)j ∥2 + α∣y(0)i − y

(1)
j ∣. Note that when α = 0, this problem

becomes equivalent to the case of the marginal OT map in equation (5). We similarly calculate the optimal
coupling the matrix by solving the following objective:

min
Γ
∥Cα ⊙ Γ∥1 =min

γi,j

cα
i,jγi,j s.t.

m

∑
i=1

γi,j =
m

∑
j=1

γi,j =
1
m

, γi,j ≥ 0. (6)

Then, the joint OT map for each x(0)i ∈ D̃0 is defined by T0,D̃(x
(0)
i ) = x(1)j 1(γi,j > 0) and T1,D̃ is defined

similarly.

4.3 Empirical algorithm for FTM

In practice, we learn f with a stochastic gradient descent algorithm. For each update, to calculate the expected
loss, we sample a random mini-batch D′ ⊂ D of size n′ ≤ n. Then, we update the solution using the gradient
of the following objective function

L(f) ∶= 1
n′

∑
(xi,yi,si)∈D′

l(yi, f(xi, si)) + λ
1
m
∑

x(s)i ∈D̃s

∣f(x(s)i , s) − f(Ts,D̃(x
(s)
i ), s′)∣ (7)

for any s ∈ {0, 1}, where λ > 0 is the Lagrange multiplier and Ts,D̃ is a pre-specified transport map from D̃s

to D̃s′ (e.g., the marginal OT map from Section 4.1 or the joint OT map from Section 4.2).

5 Experiments

This section presents our experimental results, showing that FTM with the proposed transport maps in
Section 4 empirically works well to learn group-fair models. The key findings throughout this section are
summarized as follows.

● FTM with the marginal OT map successfully learns group-fair models that exhibit (i) competitive
prediction performance (Section 5.2.1) and (ii) higher levels of subset fairness (Section 5.2.2), when
compared to other group-fair models learned by existing baseline algorithms. Beyond subset fairness,
we further evaluate the self-fulfilling prophecy (Dwork et al., 2012) as an additional benefit of low
transport cost (see Table 10 and 11 in Section F of Appendix).
● FTM with the joint OT map has the ability to learn group-fair models with improved prediction

performance as well as improved levels of equalized odds, when compared to FTM with the marginal
OT map (Section 5.3).

5.1 Settings

Datasets We use four real benchmark tabular datasets in our experiments: Adult (Dua & Graff, 2017),
German (Dua & Graff, 2017), Dutch (Van der Laan, 2001), and Bank (Moro et al., 2014). The basic
information about these datasets is provided in Table 1. We randomly partition each dataset into training
and test datasets with the 8:2 ratio. This procedure is repeated 5 times, and we take the average of results on
the test dataset.

Baseline algorithms and implementation details For the baseline algorithms, we consider three most
popular state-of-the-art methods: Reduction (Agarwal et al., 2018), Reg (minimizing cross-entropy + λ∆DP2)
(Donini et al., 2018; Chuang & Mroueh, 2021), and Adv (learning a model which cannot predict the sensitive
attribute) (Zhang et al., 2018). Additionally, we consider the unfair baseline (abbr. Unfair), the ERM model
trained without fairness regularization. For the measure of prediction performance, we use the classification
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Table 1: The description of the real benchmark tabular datasets: Adult, German, Bank, and Dutch. X
denotes the input vector, S denotes the sensitive attribute, Y denotes the target label information, and d
denotes the dimension of X. Train/Test data sizes are the number of samples.

Dataset Variable Description Dataset Variable Description

Adult

X Personal attributes

German

X Personal attributes
S Gender S Gender
Y Outcome over $50k Y High credit score
d 101 d 60

Train data size 30,136 Train data size 800
Test data size 15,086 Test data size 200

Bank

X Personal attributes

Dutch

X Personal attributes
S Binarized age S Gender
Y Subscribing a term deposit Y High-level occupation
d 57 d 58

Train data size 24,390 Train data size 48,336
Test data size 6,098 Test data size 12,084

accuracy (abbr. Acc). For fairness measures, we consider ∆DP, ∆DP and ∆WDP, which are defined in
Section 2.2.

For all algorithms, we employ MLP networks with ReLU activation and two hidden layers, where the hidden
size is equal to the input dimension. We run all algorithms for 200 epochs and report their final performances
on the test dataset. The Adam optimizer (Kingma & Ba, 2014) with the initial learning rate of 0.001 is used.
To obtain the OT map, i.e, to solve the linear program, we utilize the POT library (Flamary et al., 2021).
We utilize several Intel Xeon Silver 4410Y CPU cores and RTX 3090 GPU processors. More implementation
details with Pytorch-style psuedo-code are provided in Section E.2 and E.3 of Appendix.

Figure 3: Fairness-prediction trade-offs: Plots of ∆WDP vs. Acc. (Left to right) Adult, German, Dutch,
Bank. Refer to Figure 8 in Section F of Appendix for other (but not strong) fairness measures.

5.2 FTM with the marginal OT map

This section shows the success of FTM with the marginal OT map, in terms of (i) fairness-prediction trade-off
and (ii) improvement in subset fairness.

5.2.1 Fairness-prediction trade-off

In this section, we empirically verify that learned models by FTM successfully achieves (strong) demographic
parity. For the transport map used in MDP constraint, we choose the marginal OT map. Figure 3 below
clearly shows that FTM successfully learns group-fair models for various fairness levels.

Another main implication is that using the marginal OT map does not hamper prediction performance
much. Figure 3 supports this assertion in terms of fairness-prediction trade-off, that is, FTM is competitive
with the three baselines. In most datasets, the performance of FTM is not significantly worse than that
of the top-performing algorithm (i.e., Reduction). Notably, on German dataset, FTM performs the best,
whereas Reduction fails to learn group-fair models with fairness level under 0.06. Additionally, FTM mostly
outperforms the other two baseline algorithms, Reg and Adv. Hence, we can conclude that FTM is also a
promising algorithm for strong group fairness.
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5.2.2 Improvement in subset fairness

This section highlights the key advantages of using the marginal OT map in terms of subset fairness, which is
theoretically supported by Theorem 4.2. We examine two scenarios for the subset A in Definition 4.1: (1)
random subsets and (2) subsets defined by specific input variables.

Random subsets First, we generate a random subset Dsub of the test data defined as Dsub = {i ∶ v⊺xi ≥ 0},
using a random vector v drawn from the uniform distribution on [−1, 1]d. Then, we calculate ∆DP on Dsub.
Figure 4 presents boxplots of the ∆DP values calculated on 1,000 randomly generated Dsub. Outliers in the
boxplots (points in red boxes) represent the example instances of subset unfairness. For a fair comparison, we
evaluate under a given ∆DP for each dataset: 0.06 for Adult, 0.01 for German, 0.07 for Dutch, and 0.04
for Bank. Notably, FTM consistently has the fewest outliers than all the baselines, indicating that FTM
achieves higher fairness on random subsets.

Figure 4: Fairness on random subsets: Boxplots of the levels of ∆DP on 1,000 randomly generated subsets
Dsub of test datasets. (Left to right) Adult, German, Dutch and Bank. The values presented under the
algorithm name (e.g., 0.0151 for FTM in German) are the standard deviations.

Subsets defined by specific input variables Second, we focus on subsets defined by a specific input
variable. For this scenario, we construct two subsets by binarizing a specific input variable using its median
value. Note that we learn models considering only gender as the sensitive attribute.

Table 2 presents the fairness levels (with respect to gender) in the two subsets of the learned models. We
consider German and Dutch datasets for this analysis. For German dataset, the two subsets are defined by
{x of high age} and {x of low age}. For Dutch dataset, the two subsets are defined by {x who is married}
and {x who is not married}. The results highlight the superiority of FTM in achieving higher fairness in
these specific subsets.

Table 2: Fairness levels on the subsets defined by specific input variables: Bold faced ones highlight the
best results, and underlined ones are the second best ones. Standard errors are reported in Tables 8 and 9
in Section F of Appendix. (Left) The subsets are defined by the input variable ‘age’ on German dataset
under a given ∆DP = 0.045. (Right) The subsets are defined by the input variable ‘marital status’ on Dutch
dataset under a given ∆DP = 0.12.

German Dutch

Measure Subset Reduction Reg Adv FTM ✓ Subset Reduction Reg Adv FTM ✓

∆DP
High age

0.073 0.077 0.048 0.045
Married

0.258 0.372 0.237 0.204
∆DP 0.049 0.029 0.028 0.026 0.182 0.164 0.187 0.152

∆WDP 0.053 0.039 0.042 0.038 0.183 0.172 0.193 0.152

∆DP
Low age

0.118 0.116 0.122 0.077
Not married

0.061 0.131 0.095 0.068
∆DP 0.047 0.050 0.053 0.047 0.045 0.062 0.098 0.036

∆WDP 0.058 0.059 0.061 0.054 0.045 0.072 0.098 0.045

5.3 FTM with the joint OT map

This section shows the effect of using the joint OT map, in terms of (i) prediction accuracy as well as level of
equalized odds (Section 5.3.1), and (ii) the transport cost (Section 5.3.2). For FTM with the joint OT map,

13



Under review as submission to TMLR

we fix α = 100, because the results with α > 100 are almost identical to those with α = 100. In other words,
100 is the minimum value for α where α∣y(0)i − y

(1)
j ∣ fully dominates the transport cost ∥x(0)i − x(1)j ∥2.

5.3.1 Improvement in prediction accuracy and equalized odds

Table 3: Comparison between (i) the marginal OT map and (ii)
the joint OT map in terms of prediction accuracy and level of
equalized odds, with the two fixed fairness level ∆DPs at 0.033
and 0.054.

∆DP = 0.033 Acc (↑) ∆TPR (↓) ∆FPR (↓) ∆EO (↓)

Marginal OT map 0.806 0.052 0.012 0.032
Joint OT map 0.810 0.043 0.013 0.028

∆DP = 0.054 Acc (↑) ∆TPR (↓) ∆FPR (↓) ∆EO (↓)

Marginal OT map 0.826 0.031 0.023 0.027
Joint OT map 0.830 0.021 0.019 0.020

Table 3 shows that FTM with the joint
OT map can provide higher prediction
performance in certain scenarios where
more accurate group-fair models than
FTM with the marginal OT map ex-
ist (e.g., ∆DP ≤ 0.06 in Figure 3).
Furthermore, we observe that the level
of equalized odds can be improved in
these scenarios. To assess the level of
equalized odds, we basically use the dif-
ferences in TPR and FPR, defined as
∆TPR ∶= ∣P(Cf0(X) = 1∣S = 0, Y = 1) −
P(Cf1(X) = 1∣S = 1, Y = 1)∣ and ∆FPR ∶=
∣P(Cf0(X) = 1∣S = 0, Y = 0) −P(Cf1(X) =
1∣S = 1, Y = 0)∣, respectively. Note that ∆TPR is also a measure for equal opportunity. We additionally use an
overall measure defined as ∆EO ∶= 1

2 ∑y=0,1 ∣P(Cf0(X) = 1∣S = 0, Y = y) − P(Cf1(X) = 1∣S = 1, Y = y)∣ , which
is also considered in previous works (Donini et al., 2018; Chuang & Mroueh, 2021)

In addition, we compare the overall fairness-prediction trade-off between FTM using the marginal OT map,
FTM using the joint OT map, and other baseline methods. As shown in Figure 5, FTM with the joint OT
map achieves performance comparable to the best-performing baseline. This result suggests that using FTM
with an appropriate transport map can empirically achieve the optimal trade-off, highlighting the flexibility
of FTM in controlling the fairness-prediction trade-off, by selecting an appropriate transport map.

Figure 5: Fairness-prediction trade-offs: Plots of ∆DP vs. Acc. FTM (joint) = FTM with the joint OT map.
FTM (marginal) = FTM with the marginal OT map. (Left to right) Adult, German, Dutch, Bank.

5.3.2 Increase in transport cost

However, using the joint OT map can result in a higher transport cost (of the fair matching function)
compared to the marginal OT map. To compute the transport cost of the fair matching function, we follow
the mini-batch technique introduced in Section 3.1 with m = 1024 and 100 random mini-batches. The left
panel of Figure 6 illustrates that increasing α can improve prediction accuracy, though this improvement
comes with a higher transport cost, especially when group-fair models more accurate than FTM with the
marginal OT map exist. That is, at ∆DP = 0.025, a point where a group-fair model more accurate than FTM
with the marginal OT map exists (e.g., Reduction in Figure 3), both accuracy and transport cost increase, as
α increases.

In contrast, the right panel of Figure 6 shows that increasing α does not significantly improve prediction
accuracy while still incurring a higher transport cost, when FTM with the marginal OT map is competitive
with other group-fair models in terms of accuracy. That is, at ∆DP = 0.073, a point where the accuracy of
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FTM with the marginal OT map is similar to that of other group-fair models, increasing α does not yield
notably beneficial results.

Figure 6: Transport cost-prediction trade-offs: Trans-
port cost of the fair matching function vs. Acc of FTM
with the joint OT map of α ∈ {0, 1, 5, 10, 50, 100} on
Adult dataset.

Overall, FTM with the joint OT map using an ap-
propriately tuned α could be a desirable solution,
especially when seeking for a group-fair model that
is more accurate than a group-fair model learned
by FTM with the marginal OT map. However, tun-
ing α can be challenging, and compromising subset
fairness would be generally not advisable. Addition-
ally, as discussed in Section 5.2.1, using the marginal
OT map is also competitive with other baselines in
terms of prediction accuracy. Therefore, we basically
recommend using the marginal OT map for FTM,
while considering the joint OT map is particularly
useful when the prediction accuracy of a group-fair
model learned by FTM with the marginal OT map
is suboptimal.

5.4 Further comparisons

To further assess the validity of FTM from various perspectives, we consider the following three scenarios
where FTM can be empirically compared with baseline algorithms: (i) We show the robustness of FTM under
a group imbalance setting (i.e., P(S = 0) << P(S = 1)). (ii) We empirically show that FTM can improve the
level of individual fairness, compared to existing group fairness algorithms. (iii) FTM outperforms several
existing FRL methods, by achieving higher prediction accuracy for a given level of fairness. For these analyses,
we use the marginal OT map in this section for simplicity.

5.4.1 Comparison of stability under imbalance setting

Table 4: Stability under imbalance setting. For fixed
fairness level ∆DP ≈ 0.064, we report the average (Avg),
standard deviation (Std), and coefficient of variation
(CV) of the prediction accuracy (Acc) of learned models
over five random training imbalanced datasets.

Measure Reduction Reg Adv FTM ✓

Avg 0.835 0.836 0.819 0.827
Std 0.003 0.003 0.021 0.002
CV 0.004 0.004 0.026 0.002

We compare the stability of FTM and that of ex-
isting algorithms under an imbalanced setting for
the sensitive attribute. For this purpose, after train-
ing/test data split, we construct an imbalanced train-
ing dataset with a 5:95 ratio (5% for S = 0 and 95%
for S = 1) by randomly sampling data from D0 and
fully using D1. Then, we evaluate the performances
on test dataset, where the models are learned on
this imbalanced training dataset. We use Adult
dataset for this analysis. For a fixed fairness level of
∆DP ≈ 0.064, we calculate the corresponding predic-
tion accuracy. This procedure is repeated five times,
and we calculate the average as well as the standard
deviation.

In Table 4, we present the average, standard deviation, and coefficient of variation (standard deviation /
average) for each algorithm. The results indicate that FTM offers comparable stability to the baselines,
showing that FTM is not particularly unstable under this group imbalance setting.

5.4.2 Comparison in view of individual fairness

As discussed in Section 3.3, as FTM is conceptually similar to the individual fairness, we here additionally
compare FTM to baseline algorithms for group fairness, in view of individual fairness. For the measure of
individual fairness, we use the consistency (Con) from Yurochkin et al. (2020); Yurochkin & Sun (2021), which
is the ratio of consistently predicted labels when we only flip the sensitive variable among the input variables.
Table 5 presents the results, showing that FTM consistently achieves higher individual fairness than baselines.
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Table 5: Comparison in view of individual fairness: Given a fixed ∆DP, the level of individual fairness (i.e.,
Con) and corresponding Acc are reported. The bold faced values are the best values of Con.

Dataset (∆DP) Con (Acc)
Reduction Reg Adv FTM ✓

Adult (≈ 0.08) 0.915 (0.839) 0.902 (0.802) 0.899 (0.829) 0.935 (0.838)

German (≈ 0.06) 0.950 (0.743) 0.932 (0.745) 0.944 (0.672) 0.965 (0.744)

Dutch (≈ 0.17) 0.952 (0.824) 0.914 (0.815) 0.921 (0.778) 0.980 (0.824)

Bank (≈ 0.04) 0.927 (0.885) 0.978 (0.885) 0.911 (0.884) 0.972 (0.885)

5.4.3 Comparison with FRL methods

In this section, we experimentally compare FTM with several existing FRL methods. We consider three
FRL methods as baselines. LAFTR (Madras et al., 2018) and sIPM-LFR (Kim et al., 2022a) are two
representatives using the adversarial learning technique for FRL. As specifically discussed in Section 3.3, the
FRL method of Gordaliza et al. (2019) is similar to FTM, as it utilizes barycentric representation as the fair
representation. Note that fair representations are first obtained (via barycentric mapping for Gordaliza et al.
(2019), and adversarial learning for LAFTR and sIPM-LFR), and then we learn a prediction model on the
fair representation space.

Table 6: Comparison between FTM and FRL methods: Given a fixed ∆DP, the prediction accuracy (Acc) is
reported. The bold faced values are the best values of Acc.

Dataset (∆DP) Acc
LAFTR sIPM-LFR Gordaliza et al. (2019) FTM ✓

Adult (≈ 0.06) 0.823 0.820 0.815 0.835

German (≈ 0.04) 0.721 0.741 0.728 0.743

Dutch (≈ 0.15) 0.810 0.813 0.811 0.820

Bank (≈ 0.02) 0.877 0.878 0.876 0.878

The results are presented in Table 6, showing the superior prediction performance of FTM compared to the
baseline FRL methods. This outperformance of FTM is due to the fact that FRL methods are pre-processing
approaches (i.e., using fair representation as a new input feature for the prediction model), while FTM is an
in-processing approach.

6 Conclusion and discussion

In this paper, we have discussed the existence of implicit transport maps for all group-fair models. Specifically,
we have introduced a novel group fairness measure named MDP. Building upon MDP, we propose a novel
algorithm, FTM, designed for learning group-fair models with high levels of subset fairness. Experimental
results demonstrate that FTM with the marginal OT map effectively produces group-fair models with
improved levels of subset fairness on various subsets compared to baseline models, while maintaining
reasonable prediction performance. Moreover, we have proposed to use the joint OT map to improve the
prediction accuracy and equalized odds of FTM.

We suggest several promising topics for future research: (1) This paper has focused DP (demographic parity)
for simplicity and clarity, but applying FTM to Eqopp (equal opportunity) is straightforward. Specifically, we
only consider instances of Y = 1 when calculating MDP. Expanding FTM to other fairness notions would be
a valuable avenue for future work. (2) The scenario involving multiple sensitive attributes, which is widely
explored in group fairness studies, is another potential direction. In such cases, matching individuals from
more than two protected groups is required for FTM. However, matching multiple individuals from multiple
protected groups is challenging, and so we leave this as a future work. (3) There may be other transport
maps that yield different types of group-fair models, while this paper has only considered two transport maps
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for FTM. Exploring other useful transport maps would be an interesting research direction and is also left for
future investigation.

A key social benefit of the proposed methods is that we are able to train group-fair models with higher
levels of subset fairness without the need to collect and process additional sensitive data. By doing so, the
proposed algorithm is expected to transcend the fairness-privacy trade-off, making it practical for use without
conflicting with data protection laws.

Broader Impact Statement

A broad goal of this study is to caution users of fair AI models, such as social planners and courts, against
solely pursuing group fairness without accounting for the risks of potential discrimination, e.g., subset fairness.
Additionally, it aims to equip them with a tool to enhance these aspects. Even though it is rather technical,
we believe that our work provides a new perspective on algorithmic fairness and could possibly impact
policy-making and regulation in related fields.

Another social impact of our study is that the relationship between the transport maps and group-fair models
may help us form a new concept of fairness that can be easily accepted by society. Our approach explores
the micro-level behavior of a given group-fair model (i.e., how the model matches individuals rather than
simply looking at the statistics), which could enable finding reasonable compromises for seemingly paradoxical
existing concepts of fairness.
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A Proofs of theorems

Let N be the set of natural numbers.
Definition A.1. For s = 0, 1 and any measurable set A ⊆ [0, 1], we denote

f−1
s (A) ∶= {x ∈ Xs ∶ f(x, s) ∈ A}

where Xs as the domain of X∣S = s.

Proposition 3.1 For any perfectly group-fair model f, i.e., Pf0 = Pf1 , there exists a transport map Ts = Ts(f)
satisfying f (X, s) = f (Ts(X), s′) , a.e.

Proof of Proposition 3.1. By letting δ = 0, Theorem 3.3 below implies Es ∣f (X, s) − f (Ts(X), s′)∣ = 0. This
implies that ∣f (X, s) − f (Ts(X), s′)∣ = 0 almost everywhere, which concludes the proof. ◻

Theorem 3.3 Fix a fairness level δ ≥ 0. For any given group-fair model f such that ∆TVDP(f) ≤ δ, there
exists a transport map Ts ∈ T trans

s satisfying ∆MDP(f, Ts) ≤ 2δ.

Proof of Theorem 3.3. Without loss of generality, let s = 0 and s′ = 1. Let F0 ∶ [0, 1] → [0, 1] and F1 ∶ [0, 1] →
[0, 1] denote the cumulative distribution functions (CDFs) of f(X, 0)∣S = 0 and f(X, 1)∣S = 1, respectively.
Note that F0 and F1 have at most countably many discontinuity points.

Define Ds as the set of all discontinuity points of Fs, which is countable. For each t ∈Ds, define the jump at
t as ∆Fs(t) ∶= Fs(t) − Fs(t−), where Fs(t−) denotes the left limit of Fs at t.

Define the sub-CDF (i.e., the continuous part of Fs) as: F cont
s (v) ∶= Fs(v)−∑t∈Ds,t≤v ∆Fs(t) for v ∈ [0, 1]. Note

that this function F cont
s is continuous and non-decreasing on [0, 1]. Moreover, for any interval (a, b] ⊆ [0, 1],

define F cont
s ((a, b]) ∶= F cont

s (b) − F cont
s (a).

We here prove for the case when F cont
1 (1) ≤ F cont

0 (1). The other case F cont
1 (1) > F cont

0 (1) can be treated
similarly.

1. (Constructing subsets based on F cont
s ) Since F cont

1 (1) ≤ F cont
0 (1), there exists z ≤ 1 such that

F cont
1 (1) = F cont

0 (z). We partition the interval [0, z] into subintervals of length at most δ. Let v0 = 0
and define vk ∶= min{vk−1 + δ, z} for k = 1, . . . , m. Here, m ∈ N is the number that satisfies vm = z.
Note that F cont

1 (1) = ∑m
k=1 F cont

1 ((vk−1, vk]).
For each k ∈ {1, . . . , m}, we compare the measures of the intervals as follows.
If F cont

1 ((vk−1, vk]) ≤ F cont
0 ((vk−1, vk]), then there exists zk ∈ [vk−1, vk] such that F cont

1 ((vk−1, vk]) =
F cont

0 ((vk−1, zk]). Define X0,k ∶= f−1
0 ((vk−1, zk] ∖D0) and X1,k ∶= f−1

1 ((vk−1, vk] ∖D1).
If F cont

1 ((vk−1, vk]) > F cont
0 ((vk−1, vk]), we can define zk, X0,k and X1,k similarly.

2. (Defining probability measures and transport maps on subsets) For each k ∈ {1, . . . , m}, define
probability measures Ps,k, s ∈ {0, 1} such that Ps,k(A) ∶= Ps(A∩Xs,k)

Ps(Xs,k) for measurable subsets A ⊆ X .

By Breiner’s Theorem (Villani, 2008; Hütter & Rigollet, 2021), there exists a transport map T(1)0,k

from P0,k(⋅) to P1,k(⋅), under (C). Since vk − vk−1 ≤ δ,∀k, we have that

∣f(x, 0) − f(T(1)0,k(x), 1)∣ ≤ δ,∀x ∈ X0,k. (8)

3. (Handling discontinuity points) Let D0,1 ∶=D0 ∩D1 be the intersection of D0 and D1, which is the
set of common discontinuity points.
Fix d ∈ D0,1. Suppose that P1(f−1

1 ({d})) ≤ P0(f−1
0 ({d})). Then, there exists f−1

0 ({d})′ ⊂ f−1
0 ({d})

such that P0(f−1
0 ({d})′) = P1(f−1

1 ({d})). Define X̃0,d ∶= f−1
0 ({d})′ and X̃1,d ∶= f−1

1 ({d}). We can
define X̃0,d and X̃1,d similarly when P1(f−1

1 ({d})) > P0(f−1
0 ({d})).
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For each d ∈ D0,1, we define probability measures P̃s,d, s ∈ {0, 1} such that P̃s,d(A) ∶= Ps(A ∩
X̃s,d)/Ps(X̃s,d) for measurable subsets A ⊆ X . Then, there exists a transport map T(2)0,d from P̃0,d(⋅)
to P̃1,d(⋅). By the definition of X̃0,d, we have that

f(x, 0) = f(T(2)0,d(x), 1) = d,∀x ∈ X̃0,d. (9)

4. (Constructing the complement parts) We collect the complements as

X ′0 ∶= X0 ∖
⎛
⎝

m

⋃
k=1
X0,k ∪ ⋃

d∈D0,1

X̃0,d

⎞
⎠

and X ′1 ∶= X1 ∖
⎛
⎝

m

⋃
k=1
X1,k ∪ ⋃

d∈D0,1

X̃1,d

⎞
⎠

.

Because P0(⋃m
k=1X0,k) = P1(⋃m

k=1X1,k) and P0(⋃d∈D0,1 X̃0,d) = P1(⋃d∈D0,1 X̃1,d), we have P0(X ′0) =
1 − P0(⋃k∈{1,...,m}X0,k) − P0(⋃d∈D0,1 X̃0,d) = P1(X ′1) ≤ δ.

Define probability measures P ′s, s ∈ {0, 1} on X ′s, s ∈ {0, 1} such that P ′s(A) ∶=
Ps(A∩X ′s)
Ps(X ′s)

for measurable
subsets A ⊆ X . Then, there exists a transport map T(3)0 from P ′0(⋅) to P ′1(⋅).
For x ∈ X ′0, we have P0(X ′0) = 1 − (∑m

k=1P0(X0,k) +∑d∈D0,1 P0( ˜X0,d)) ≤ δ, since ∆TVDP(f) =
TV (Pf(X,0)∣S=0,Pf(X,1)∣S=1) ≤ δ. Furthermore, by f(⋅) ∈ [0, 1], we have that

E0 (∣f(X, 0) − f(T(3)0 (X), 1)∣ ⋅ 1(X ∈ X ′0)) = ∫ ∣f(X, 0) − f(T(3)0 (X), 1)∣ ⋅ 1(X ∈ X ′0)dP0(X)

≤ ∫ 1(X ∈ X ′0)dP0(X) = P0(X ′0) ≤ δ.
(10)

5. (Overall transport map) Finally, combining 2 to 4 above, we define the (overall) transport map T0 as

T0(⋅) ∶=
m

∑
k=1

T(1)0,k(⋅)1(⋅ ∈ X0,k) + ∑
d∈D0,1

T(2)0,d(⋅)1(⋅ ∈ X̃0,d) +T(3)0 (⋅)1(⋅ ∈ X ′0). (11)

We note that {{X0,k}m
k=1,{X̃0,d}d∈D0,1 ,X ′0} and {{X1,k}m

k=1,{X̃1,d}d∈D0,1 ,X ′1} are partitions of X0 and
X1, respectively. Moreover, P0(X0,k) = P1(X1,k),∀k, P0(X̃0,d) = P1(X̃1,d),∀d, and P0(X ′0) = P1(X ′1).
Hence, T0 is a transport map from P0 to P1.

6. (Calculation of the bound for ∆MDP(f, T0)) Using the constructed transport map T0, we have that

∆MDP(f, T0) = E0∣f(X, 0) − f(T0(X), 1)∣ = ∫ ∣f(X, 0) − f(T0(X), 1)∣dP0(X)

=
m

∑
k=1
∫
X0,k

∣f(x, 0) − f(T(1)0,k(x), 1)∣dP0(x)

+ ∑
d∈D0,1

∫
X̃0,d

∣f(X, 0) − f(T(2)0,d(x), 1)∣ ⋅ dP0(x)

+ ∫
X ′0
∣f(x, 0) − f(T(3)0 (x), 1)∣dP0(x)

≤
(∗)

δ
m

∑
k=1
P0(X0,k) + ∫

X ′0
∣f(x, 0) − f(T(3)0 (x), 1)∣dP0(x)

≤ δ + δ = 2δ,

(12)

where (*) holds by the inequalities in (8), (9), and (10).

◻
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Theorem 3.3 without the condition (C): the case when P0 and P1 are discrete The condition
(C) is assumed for easier discussion involving continuous distributions. This is because the existence of
(deterministic) transport maps is not guaranteed when the distributions P0 and P1 are discrete and their
supports are different. However, by using the notion of stochastic transport map (defined below), we can
derive a theoretical result similar to Theorem 3.3 when P0 and P1 are discrete.

Let X0 = {x(0)1 , . . . , x(0)n0 } and X1 = {x(1)1 , . . . , x(1)n1 }. For this time only, define P0 and P1 as the empirical
distributions on D0 and D1, respectively. Let X0 and X1 be the random variables following P0 and P1,
respectively. Furthermore, let f(X0) ∶= {f(x, 0) ∶ x ∈ X0} and f(X1) ∶= {f(x, 1) ∶ x ∈ X1}. Denote Pf0

and Pf1 be the empirical distributions on f(X0) and f(X1), i.e., the distributions of f(X0), X0 ∼ P0 and
f(X1), X1 ∼ P1, respectively.

For a given joint distribution Q between X0 and X1, define ∆MDP(f,Q) ∶= E(X0,X1)∼Q∣f(X0, 0) − f(X1, 1)∣,
which is a relaxed version of ∆MDP(f, Ts). That is, instead of the deterministic transport map we consider
the stochastic transport map Ts, defined by Ts(x(s)i ) = x(s

′)
j with probability Q(Xs = x(s)i , Xs′ = x(s

′)
j ).

In Proposition A.2 below, we show that there exists a stochastic transport map – a joint distribution Q (rather
than the deterministic transport map) – that satisfies ∆MDP(f,Q) ≤ δ, similar to the result ∆MDP(f, Ts) ≤ δ
in Theorem 3.3.

Note that if n0 = n1, there exist transport maps (i.e., one-to-one mappings or permutations) between X0
and X1. Thus, an analogous result to Theorem 3.3 can be derived by applying the proof of Proposition A.2
similarly.
Proposition A.2. Assume the supports of Pf0 and Pf1 share m(≤ n0, n1) number of common points. Then,
for any given group-fair model f such that ∆TVDP(f) ≤ δ, there exists a joint distribution Q between X0
and X1 satisfying ∆MDP(f,Q) ≤ δ.

Proof. If suffices to show that there exists Q such that ∆MDP(f,Q) ≤ ∆TVDP(f). Without loss of generality,
assume n0 ≤ n1 and let f(x(0)i , 0) = f(x(1)i , 1) for i ∈ {1, . . . , m} (i.e., the common points).

First, we calculate ∆TVDP(f) as follows. Recall the definition of TV for discrete measures: TV(Pf0 ,Pf1) =
1
2 ∑z ∣Pf0(z) − Pf1(z)∣. For the m number of common points, the sum of differences is m∣ 1

n0
− 1

n1
∣ =m n1−n0

n0n1
.

For the points only in f(X0) but not in f(X1), the sum of differences is (n0 −m)/n0. Similarly, for the points
only in f(X1) but not in f(X0), the sum of differences is (n1 −m)/n1. As a result, we have

∆TVDP(f) = TV(Pf0 ,Pf1) =
1
2
(mn1 − n0

n0n1
+ n0 −m

n0
+ n1 −m

n1
) = 1 − m

n1
. (13)

Then, we construct Q as follows. Let γi,j = Q(X0 = x(0)i , X1 = x(1)j ) and Γ = [γi,j]i∈[n0],j∈[n1] ∈ R
n0×n1
+ be the

coupling matrix (i.e., a matrix representation of Q, see equation (5) for a similar formulation). We construct
Γ following the steps below:

1. Build a diagonal matrix Γ11 = 1
n1

Im ∈ Rm×m
+ , where Im is the identity matrix of size m ×m.

2. Build a zero matrix Γ21 = 0(n0−m)×m ∈ R(n0−m)×m
+ , where 0 denotes the zero matrix.

3. Build matrices Γ12 ∈ Rm×(n1−m)
+ and matrix Γ22 ∈ R(n0−m)×(n1−m)

+ satisfying Γ121n1−m = ( 1
n0
− 1

n1
)1m,

Γ221n1−m = 1
n0

1n0−m, and (Γ12
Γ22
)
⊺

1n0 = 1
n1

1n1−m.

4. Complete Γ ∶= (Γ11 Γ12
Γ21 Γ22

) = (
1

n1
Im Γ12

0(n0−m)×m Γ22
) .
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Last, the Γ is a coupling matrix (i.e., satisfying the constraints ∑n0
i=1 γi,j = 1/n0,∀j ∈ [n1] and ∑n1

j=1 γi,j =
1/n1,∀i ∈ [n0]) and thus Q induced by this Γ is a joint distribution. Finally, we have

∆MDP(f,Q) = E(X0,X1)∼Q∣f(X0, 0) − f(X1, 1)∣
= ∑

i,j

Q(X0 = x(0)i , X1 = x(1)j )∣f(X0, 0) − f(X1, 1)∣ = ∑
i,j

γi,j ∣f(X0, 0) − f(X1, 1)∣

= ∑
i∈[m],j∈[m]

γi,j ∣f(X0, 0) − f(X1, 1)∣ + ∑
i,∈{m+1,...,n0},j∈[m]

γi,j ∣f(X0, 0) − f(X1, 1)∣

+ ∑
i∈[n0],j∈{m+1,...,n1}

γi,j ∣f(X0, 0) − f(X1, 1)∣

= ∑
i∈[n0],j∈{m+1,...,n1}

γi,j ∣f(X0, 0) − f(X1, 1)∣ ≤ ∑
i∈[n0],j∈{m+1,...,n1}

γi,j = 1 − m

n1
≤∆TVDP(f).

(14)

Therefore, any Q constructed by the steps 1-4 above satisfies ∆MDP(f,Q) ≤ δ. ◻

Proposition 3.5. Let Tf be the fair matching function of f on D0 and D1 (where the empirical distributions
with respect to D0 and D1 are used in Definition 3.4). Then, the matched individual Tf(x) of any x ∈ Ds is
obtained by Tf(x) = f−1

s′ ○ F −1
s′ ○ Fs ○ fs(x).

Proof of Theorem 3.5. First, we aim to find a permutation map M satisfying minM ∑m
i=1 ∣fs(xi)−M(fs′(xi))∣

subject to {M(fs(xi)) ∶ xi ∈ Ds} = {fs′(xj) ∶ xj ∈ Ds′}. By Rachev & Rüschendorf (1998); Chzhen et al.
(2020); Jiang et al. (2020b), we have the fact that 1-Wasserstein distance is equivalent to the average of
difference between two prediction scores that have same quantiles in each group. That is, M⋆(⋅) = F −1

s′ ○Fs(⋅) =
arg minM ∑m

i=1 ∣fs(xi) −M(fs(xi))∣ for any ⋅ ∈ {fs(x) ∶ x ∈ Ds}.
Second, we have M⋆ and Tf is one-to-one and {fs′(xj) ∶ xj ∈ Ds′} = {fs(Tf(xi)) ∶ xi ∈ Ds} = {M⋆(fs(xi)) ∶
xi ∈ Ds}, since Tf is also an exact one-to-one map.

Therefore, we conclude that Tf(x) = f−1
s′ ○M⋆ ○ fs(x) = f−1

s′ ○ F −1
s′ ○ Fs ○ fs(x) for all x ∈ Ds. ◻

Remark A.3. Using Proposition 3.5 to estimate the fair matching function is equivalent to estimating the
OT map between two score distributions. The statistical convergence rate for estimating the OT map between
one-dimensional distributions is fast; it is of the order ∣D0∣−1/2 + ∣D1∣1/2 (Chizat et al., 2020; Deb et al., 2021;
Hütter & Rigollet, 2021). This indicates that sufficiently large mini-batch size m can guarantee accurate
estimation.
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Theorem 3.7 For a given Ts ∈ T trans
s , if ∆MDP(f, Ts) ≤ δ, then we have ∆WDP(f) ≤ δ and ∆DP(f) ≤ δ.

Proof of Theorem 3.7. Fix f ∈ {f ∈ F ∶ Es∣f(X, s) − f(Ts(X), s′)∣ ≤ δ}. Let L1 the set of all 1-Lipschitz
functions. Using the fact that Wasserstein-1 distance is equivalent to IPM induced by set of 1-Lipschitz
function (Villani, 2008), we have that

∆WDP(f) = W (Pf(X,0)∣S=0,Pf(X,1)∣S=1)
= sup

u∈L1

∣Es(u ○ f(X, s)) −Es′(u ○ f(X, s′))∣

≤ sup
u∈L1

∣Es(u ○ f(X, s)) −Es(u ○ f(Ts(X), s′))∣

+ sup
u∈L1

∣Es(u ○ f(Ts(X), s′)) −Es′(u ○ f(X, s′))∣

≤ sup
u∈L1

Es ∣u ○ f(X, s) − u ○ f(Ts(X), s′)∣

+ sup
u∈L1

∣Es(u ○ f(Ts(X), s′)) −Es′(u ○ f(X, s′))∣

u∈L1≤ Es ∣f(X, s) − f(Ts(X), s′)∣
+ sup

u∈L1

∣Es(u ○ f(Ts(X), s′)) −Es′(u ○ f(X, s′))∣

≤ δ + sup
u∈L1

∣Es(u ○ f(Ts(X), s′)) −Es′(u ○ f(X, s′))∣

≤ δ + sup
f∈F

sup
u∈L1

∣Es(u ○ f(Ts(X), s′)) −Es′(u ○ f(X, s′))∣

≤ δ +TV(Ts#Ps,Ps′) = δ.

(15)

The last equality holds since TV(Ts#Ps,Ps′) = 0 for any transport map Ts.
For ∆DP(f), because the identity map is 1-Lipschitz, we have that ∆DP(f) ≤∆WDP(f), which completes
the proof. ◻
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Theorem 4.2 Suppose F is the collection of L-Lipschitz functions. Let A be a given subset in X . Then, for
all f satisfying ∆MDP(f, Tf

s ) ≤ δ, we have

∆DPA(f) ≤ L (Es∥X −Tf
s (X)∥2)

1
2 +TV(P0,A,P1,A) +Uδ, (16)

where Ps,A is the distribution of X∣S = s, X ∈ A, and U > 0 is a constant only depending on A and Ps, s = 0, 1.

Proof. We write Ts = Tf
s for notational simplicity.

∣E(f(X, 0)∣S = 0, X ∈ A) −E(f(X, 1)∣S = 1, X ∈ A)∣
≤ ∣E(f(X, 0)∣S = 1, X ∈ A) −E(f(T1(X), 0)∣S = 1, X ∈ A)∣
+ ∣E(f(T1(X), 0)∣S = 1, X ∈ A) −E(f(X, 1)∣S = 1, X ∈ A)∣
+ ∣E(f(X, 0)∣S = 0, X ∈ A) −E(f(X, 0)∣S = 1, X ∈ A)∣.

(17)

By (C1), the first term is bounded by LE1∥X −T1(X)∥, which is also bounded by L (E1∥X −T1(X)∥2)
1/2

.

The second term is bounded by δ up to a constant for all f satisfying ∆MDP(f, Ts) ≤ δ. That is, we have

∣E(f(T1(X), 0)∣S = 1, X ∈ A) −E(f(X, 1)∣S = 1, X ∈ A)∣

= ∣∫ f(T1(X), 0)I(X ∈ A)dP1(X)
∫ I(X ∈ A)dP1(X)

− ∫ f(X, 1)I(X ∈ A)dP1(X)
∫ I(X ∈ A)dP1(X)

∣

≤ 1
∫ I(X ∈ A)dP1(X) ∫X∈A

∣f(T1(X), 0) − f(X, 1)∣dP1(X)

≤ 1
∫ I(X ∈ A)dP1(X) ∫X∈X

∣f(T1(X), 0) − f(X, 1)∣dP1(X)

= U ′(A,P1) ×E1∣f(T1(X), 0) − f(X, 1)∣
≤ U ′(A,P1) × δ

(18)

where U ′(A,P1) = 1/ ∫ I(X ∈ A)dP1(X) = 1/P(X ∈ A∣S = 1) is a constant only depending on P1 and A.

The third term ∣E(f(X, 0)∣S = 0, X ∈ A) −E(f(X, 0)∣S = 1, X ∈ A)∣ is not controllable by either the transport
map or δ but depends on the given distributions and A. That is,

∣E(f(X, 0)∣S = 0, X ∈ A) −E(f(X, 0)∣S = 1, X ∈ A)∣

= ∣∫
A

f(X, 0)dP0(X) − ∫
A

f(X, 0)dP1(X)∣

≤ sup
f∈F
∣∫

A
f(X, 0)dP0(X) − ∫

A
f(X, 0)dP1(X)∣

≤ TV(P0,A,P1,A).

(19)

Hence, we have

∣E(f(X, 0)∣S = 0, X ∈ A) −E(f(X, 1)∣S = 1, X ∈ A)∣
≤ L(E1∥X −T1(X)∥2)1/2 +TV(P0,A,P1,A) +U ′(A,P1)δ.

(20)

We can similarly derive

∣E(f(X, 0)∣S = 0, X ∈ A) −E(f(X, 1)∣S = 1, X ∈ A)∣
≤ L(E0∥X −T0(X)∥2)1/2 +TV(P0,A,P1,A) +U ′(A,P0)δ.

(21)

Letting U ∶=max {U ′(A,P0), U ′(A,P1)} completes the proof. ◻
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Lemma A.4 (Optimal transport map between two Gaussians). For mean vectors µX, µY ∈ Rd and covariance
matrices ΣX, ΣY ∈ Rd×d, the OT map from N(µX, ΣX) to N(µY, ΣY) is given as TOT(x) =WOTx + bOT

where WOT = Σ−
1
2

X (Σ
1
2
XΣYΣ

1
2
X)

1
2

Σ−
1
2

X and bOT = µY −WOTµX.

Proof. Consider the centered Gaussians, i.e., µX = µY at first. Based on Theorem 4 of Olkin & Pukelsheim
(1982), we have that W2 (N(0, ΣX),N(0, ΣY)) = Tr(ΣX +ΣY − 2 (Σ1/2

X ΣYΣ1/2
X )

1/2
) = ∥Σ1/2

X −Σ1/2
Y ∥2F where

∥ ⋅ ∥ is the Frobenius norm. Correspondingly, Knott & Smith (1984) derived the optimal transport map as
x ↦ Σ−1/2

X (Σ−1/2
X ΣYΣ1/2

X )
1/2

Σ−1/2
X x.

Combining these results, we can extend the OT map formula of Gaussians with nonzero means as follows. Since
E∥X−Y∥2 = E∥ (X − µX)−(Y − µY)+(µX − µY) ∥2 = E∥ (X − µX)−(Y − µY) ∥2+∥µX−µY∥2, the Wasserstein
distance is given as W2 (N(µX, ΣX),N(µY, ΣY)) = ∥µX−µY∥2+∥Σ1/2

X −Σ1/2
Y ∥2F , and so the corresponding opti-

mal transport map is also given as x ↦ Σ−1/2
X (Σ−1/2

X ΣYΣ1/2
X )

1/2
Σ−1/2

X x+µY−Σ−1/2
X (Σ−1/2

X ΣYΣ1/2
X )

1/2
Σ−1/2

X µX,

which completes the proof. ◻

Proposition 4.3 (Counterfactual fairness and the OT map) For all A having (Id − A)−1, Ws becomes
σs′σ

−1
s Id. That is, x̃CF

s = x̃OT
s .

Proof of Proposition 4.3. Once we observe x0, the randomness ϵ0 is observed as ϵ0 = B−1x0−µ0. By replacing
the sensitive attribute on the randomness ϵ0, we obtain σ−1

1 (B−1x̃CF
0 − µ1) = σ−1

0 (B−1x0 − µ0). Then, its
counterfactual becomes x̃CF

0 = Bµ1 + σ1σ−1
0 Id(x0 −Bµ0). Then, we prove Proposition 4.3 by showing the if

and only if condition as follows.

W0 = (σ2
0BDB⊺)−1/2 ((σ2

0BDB⊺)1/2σ2
1BDB⊺(σ2

0BDB⊺)1/2)
1/2
(σ2

0BDB⊺)−1/2

= σ1σ−1
0 (BDB⊺)−1/2 ((BDB⊺)1/2BDB⊺(BDB⊺)1/2)

1/2
(BDB⊺)−1/2

= σ1σ−1
0 (BDB⊺)−1/2 ((BDB⊺)2)1/2 (BDB⊺)−1/2

= σ1σ−1
0 Id.

(22)

The same result can be done for x1. Hence, we conclude Ws = σs′σ
−1
s Id. ◻
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B More related works on algorithmic fairness

In presence of multiple sensitive attributes, the concept of subgroup fairness has emerged (Kearns et al.,
2018a;b; Shui et al., 2022; Mehrotra et al., 2022; Molina & Loiseau, 2022; Carvalho et al., 2022), emphasizing
the need for models that satisfy fairness for all subgroups defined over the multiple sensitive attributes.
However, collecting all sensitive attributes a priori would be challenging and also can undermine privacy and
security.

In addition, Wachter et al. (2020); Simons et al. (2021); Mougan et al. (2024) have suggested that not only
equal outcome, but also the notion of equal treatment, i.e., treating individuals with equal reasons, should be
considered.

C Disadvantage of high transport cost

This section presents an example of two completely different group-fair models where one is unreasonable
and the other is reasonable, particularly in terms of subset fairness. This example suggests that not all
group-fair models are acceptable, thereby emphasizing the necessity of finding group-fair models corresponding
to favorable implicit transport maps.

Suppose that the distribution of the input variable is given as X∣S = s ∼ Unif(0, 1), for s ∈ {0, 1}. Consider
the following two classification models: f̂(x, s) = sign(2x−1)(1−2s)+1

2 and f̃(x, s) = sign(2x−1)+1
2 .

Figure 7: (Top) A group-fair model with the risk of discrim-
ination on subsets. (Bottom) A group-fair model without
the risk of discrimination on subsets.

It is clear that both f̂ and f̃ are perfectly fair,
i.e., Pf̂0

= Pf̂1
and Pf̃0

= Pf̃1
. However, f̂ has

a notable unfairness issue in its treatments of
individuals within the subset {x ≥ 1/2} (as well
as {x < 1/2}); for when x > 1/2, f̂ assigns label
1 for all individuals of s = 0 while it assigns label
0 for all individuals of s = 1. This indicates that
f̂ discriminates against individuals in the subset
{x ≥ 1/2} (and also {x < 1/2}). In contrast, f̃
does not exhibit such undesirable discrimination
against the subsets. Hence, we can say that f̃ has
less discrimination on the subsets than f̂ . Figure
7 provides a comparative illustration of f̂ and f̃ .

The observed discrimination of f̂ on subsets can
be attributed to the unreasonable fair matching
function of f̂ . It turns out that the fair matching
function of f̂ is Tf̂(x) = x − sign((2x−1)(1−2s))

2 . This function matches an individual in {x < 1
2 , S = s} with

one in {x ≥ 1
2 , S = s′}, who are far apart from each other. In contrast, the fair matching function of f̃ is

Tf̃(x) = x.

This example emphasizes the need of group-fair models whose fair matching function have low transport
costs.
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D Kantorovich problem

As shortly introduced in Section 2.4, Kantorovich problem is to find the optimal coupling (i.e., joint
distribution) between two given distributions. It can be mathematically expressed as the following. For
two given distributions Q1 and Q2, infπ∈Π(Q1,Q2)EX,Y∼π (c(X, Y)) where Π(Q1,Q2) is the set of all joint
measures with marginals Q1 and Q2. Let c be the L2 cost function.

For given two empirical distributions on D0 = {x(0)i }
n0
i=1 and D1 = {x(1)j }

n1
j=1, we first define the cost matrix as

C ∶= [ci,j] ∈ Rn0×n1
+ , where ci,j = ∥x(0)i − x(1)j ∥2. Then, the solution of the Kantorovich problem, i.e., optimal

joint distribution between the two distributions, is defined by the coupling matrix Γ = [γi,j] ∈ Rn0×n1
+ , which

is the minimizer of the following objective:

min
Γ
∥C⊙ Γ∥1 =min

γi,j

ci,jγi,j s.t. γi,j ≥ 0,
n0

∑
i=1

γi,j =
1
n1

,
n1

∑
j=1

γi,j =
1
n0

. (23)

In fact, the Kantorovich problem can be solved by linear programming (Kantorovich, 2006; Villani, 2008).
For linear programming, we can use practical implementation such as POT library.
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E Implementation details

In this section, we provide detailed descriptions for the implementation of the experiments.

E.1 Datasets

First, the URLs of these datasets are provided.

Adult: the Adult income dataset (Dua & Graff, 2017) can be downloaded from the UCI repository1.

German: the German credit dataset (Dua & Graff, 2017) can be downloaded from the UCI repository2.

Dutch: the Dutch census dataset can be downloaded from the public Github of Quy et al. (2022) 3.

Bank: the Bank marketing dataset can be downloaded from the UCI repository4.

Second, we describe pre-processing method of the datasets used. For Adult, German, and Bank datasets,
we follow the pre-processing of the implementation of IBM’s AIF360 (Bellamy et al., 2018) 5. For Dutch
dataset, we follow the pre-processing of Quy et al. (2022)’s Github6. Basically, continuous input variables are
normalized by min-max scaling and categorical input variables are one-hot encoded. We set batch size as
1024, 200, 1024, and 512 for Adult, German, Dutch, and Bank datasets, respectively.

E.2 Algorithms

This section provides more detailed descriptions of the baseline algorithms used in our experiments.

• Reduction (Agarwal et al., 2018): This algorithm is an in-processing method that learns a fair classifier
with the lowest empirical fairness level ∆DP. To implement this method for MLP model architecture,
we employ FairTorch7. It minimizes cross-entropy + λ ⋅Reduction regularizer for a given λ > 0.

• Reg (Donini et al., 2018; Chuang & Mroueh, 2021): This method is a regularizing approach that
minimizes cross-entropy + λ ⋅∆DP2 for a given λ > 0. In Chuang & Mroueh (2021), they call this
algorithm GapReg. This is also similar to the approach of Donini et al. (2018) in the sense that the
model is learned with a constraint having a given level of ∆DP.

• Adv (Zhang et al., 2018): This algorithm is an in-processing method that regularizes the model
outputs with an adversarial network so that the adversarial network is learned to predict the sensitive
attribute using the model outputs as the inputs. It minimizes cross-entropy + λ ⋅Adversarial loss for
a given λ > 0.

Note that Reduction and Adv are ones of the most popular in-processing algorithms, as widely-used libraries
AIF360 (Bellamy et al., 2018) and Fairlearn (Bird et al., 2020) provide the usage and implementation of the
two algorithms. Reg is a vanilla approach of adding the regularization term in the loss function to learn the
most accurate model among models satisfying a given level of group fairness.

We basically train models with various fairness levels by controlling the Lagrangian multiplier λ. The values
are reported in the following table.

The Adam optimizer (Kingma & Ba, 2014) with an initial learning rate of 0.001 is used, and the learning
rate is scheduled by multiplying 0.95 at each epoch.

1https://archive.ics.uci.edu/ml/datasets/adult
2https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
3https://github.com/tailequy/fairness_dataset/tree/main/experiments/data/dutch.csv
4https://archive.ics.uci.edu/dataset/222/bank+marketing
5https://aif360.readthedocs.io/en/stable/
6https://github.com/tailequy/fairness_dataset/tree/main/experiments/data/
7https://github.com/wbawakate/fairtorch
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Table 7: Hyper-parameters used for controlling fairness levels for each algorithm.

Algorithm λ

Reduction {0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 80.0, 100.0, 150.0, 200.0, 300.0, 500.0}
Reg {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.8, 2.0, 3.0, 5.0, 10.0, 20.0, 50.0, 100.0}
Adv {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0, 3.0, 5.0, 10.0, 15.0, 20.0, 30.0, 50.0, 100.0}
FTM {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0, 3.0, 5.0, 10.0}

E.3 Pseudo-code

Here, we provide a Pytorch-style psuedo code of calculating the matching constraint in FTM.

Algorithm 1: PyTorch-style pseudo-code of calculating the matching constraint in FTM.
# xs, xt: input vectors from the source, target distribution, respectively.
# model: a classifier to be trained
import ot
# The matching constraint: matching with the OT map
weight_s = torch.ones(size=(xs.size(0), )) / xs.size(0)
weight_t = torch.ones(size=(xt.size(0), )) / xt.size(0) # identical to weight_s
M = ot.dist(xs, xt)
G = ot.emd(weight_s, weight_t, M)
matched_xs = xt[torch.argmax(G, dim=1)]
output, matched_output = model(xs), model(matched_xs)
FTM_REG = (output - matched_output).abs().mean()
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F Auxillary experimental results

In this section, we provide auxillary experimental results that are not displayed in the main body.

F.1 Fairness-prediction trade-off (Section 5.2.1)

Figure 8 shows the trade-offs between the fairness levels with respect to ∆DP, ∆DP and classification accuracy.

Figure 8: Fairness-prediction trade-offs: (Left to right) Adult, German, Dutch, Bank. (Top to bottom)
∆DP vs. Acc, ∆DP vs. Acc.

F.2 Improvement in subset fairness (Section 5.2.2)

Here, we provide experimental results showing fairness levels on subsets defined by input variables. Tables 8
and 9 are copies of Table 2 with standard errors.

Table 8: Fairness on subsets defined by the input variable age: Fairness levels on subsets defined by
the input variable age on German dataset under a given ∆DP = 0.045 with standard errors (s.e.).

Algorithm Reduction Reg Adv FTM ✓

High age
∆DP (s.e.) 0.073 (0.015) 0.077 (0.013) 0.048 (0.020) 0.045 (0.021)
∆DP (s.e.) 0.049 (0.006) 0.029 (0.008) 0.028 (0.012) 0.026 (0.006)

∆WDP (s.e.) 0.053 (0.005) 0.039 (0.003) 0.042 (0.008) 0.038 (0.003)

Low age
∆DP (s.e.) 0.118 (0.035) 0.116 (0.037) 0.122 (0.047) 0.077 (0.032)
∆DP (s.e.) 0.047 (0.015) 0.050 (0.009) 0.053 (0.017) 0.047 (0.007)

∆WDP (s.e.) 0.058 (0.011) 0.059 (0.007) 0.061 (0.015) 0.054 (0.006)

Table 9: Fairness on subsets defined by the input variable marital status: Fairness levels on subsets
defined by the input variable marital status on Dutch dataset under a given ∆DP = 0.12 with standard
errors (s.e.).

Algorithm Reduction Reg Adv FTM ✓

Married
∆DP (s.e.) 0.258 (0.005) 0.372 (0.003) 0.237 (0.083) 0.204 (0.003)
∆DP (s.e.) 0.182 (0.002) 0.164 (0.001) 0.187 (0.073) 0.152 (0.002)

∆WDP (s.e.) 0.183 (0.002) 0.172 (0.001) 0.193 (0.071) 0.152 (0.002)

Not married
∆DP (s.e.) 0.061 (0.007) 0.131 (0.006) 0.095 (0.038) 0.068 (0.005)
∆DP (s.e.) 0.045 (0.002) 0.062 (0.003) 0.098 (0.035) 0.036 (0.003)

∆WDP (s.e.) 0.045 (0.003) 0.072 (0.002) 0.098 (0.034) 0.045 (0.005)

35



Under review as submission to TMLR

F.3 An additional advantage of using the marginal OT map: reducing the risk of self-fulfilling prophecy

We compare the risks of discrimination in the context of self-fulfilling prophecy in Dwork et al. (2012), a
critical limitation that can arise when focusing solely on group fairness: unqualified individuals with relatively
low scores can be chosen to be qualified, while other individuals with relatively high scores are chosen to be
unqualified. To quantify the risk of self-fulfilling prophecy, we assume that the unfair model is optimal for
predicting the true score of each individual. We consider the following two evaluation approaches under this
assumption. For the transport map used in MDP constraint, we choose the marginal OT map.

(Evaluation 1) The first measure for the risk of self-fulfilling prophecy is the Spearman’s rank correlation
between unfair and fair prediction scores at each protected group: a higher rank correlation implies a lower risk
of self-fulfilling prophecy. Table 10 shows that FTM has lower risks of suffering from self-fulfilling prophecy,
in most cases.

Table 10: Spearman’s correlation coefficients between the scores of the unfair model and group-fair models
under fixed levels of ∆DP with standard errors (s.e.). Bold faces are the best ones, and underlined ones are
the second bests.

Dataset Adult German

∆DP 0.10 0.05

Sensitive attribute S 0 1 0 1
Reduction (s.e.) 0.935 (0.006) 0.987 (0.001) 0.996 (0.001) 0.997 (0.001)

Reg (s.e.) 0.762 (0.087) 0.806 (0.084) 0.997 (0.000) 0.998 (0.000)
Adv (s.e.) 0.876 (0.003) 0.979 (0.001) 0.986 (0.009) 0.986 (0.010)

FTM ✓ (s.e.) 0.968 (0.003) 0.989 (0.001) 0.993 (0.002) 0.995 (0.001)

Dataset Dutch Bank

∆DP 0.01 0.02

Sensitive attribute S 0 1 0 1
Reduction (s.e.) 0.940 (0.001) 0.922 (0.001) 0.958 (0.010) 0.978 (0.005)

Reg (s.e.) 0.872 (0.003) 0.972 (0.003) 0.784 (0.031) 0.974 (0.003)
Adv (s.e.) 0.659 (0.171) 0.693 (0.185) 0.603 (0.207) 0.505 (0.238)

FTM ✓ (s.e.) 0.973 (0.002) 0.991 (0.000) 0.964 (0.007) 0.979 (0.004)

36



Under review as submission to TMLR

(Evaluation 2) For the second approach, we employ 2 × 2 confusion matrices to compare the predicted
labels of the unfair and the group-fair models. In specific, in the privileged group S = 1, individuals predicted
as Ŷ = 0 (i.e., unqualified) by the unfair model but Ŷ = 1 (i.e., chosen to be qualified) by the group-fair model
are considered as undesirable instances in the context of self-fulfilling prophecy. Likewise, in the unprivileged
group S = 0, individuals predicted as Ŷ = 1 by the unfair model but Ŷ = 0 by the group-fair model are
similarly considered undesirable.

That is, for the risk of self-fulfilling prophecy, we count the number of individuals whose prediction is
undesirably flipped (i.e., # of Ŷ = 0 (Unfair)→ Ŷ = 1 (Fair) for S = 1, and # of Ŷ = 1 (Unfair)→ Ŷ = 0 (Fair)
for S = 0). Table 11 shows that the undesirable treatments of FTM are less observed than those of baseline
methods, in most cases.

Table 11: 2 × 2 confusion matrices comparing the predicted labels of the unfair model and the group-fair
models. The encircled numbers are the counts of undesirable instances. Bold faces are the best ones and
underlined ones are the second bests.

Dataset (∆DP) Adult (0.05) German (0.05) Dutch (0.15) Bank (0.04)
Unfair

S = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1

Reduction Ŷ = 0 6124 629 98 1 2170 662 5220 62
Ŷ = 1 22 1701 1 32 8 3158 62 579

Reg Ŷ = 0 6144 2198 99 8 2164 311 5265 229
Ŷ = 1 2 132 0 25 14 3509 17 412

Adv Ŷ = 0 6121 977 95 0 2152 1127 5255 516
Ŷ = 1 25 1353 4 33 26 2693 27 125

FTM ✓ Ŷ = 0 6146 1364 99 1 2174 862 5279 397
Ŷ = 1 0 966 0 32 4 2958 3 244

Unfair
S = 0 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1

Reduction Ŷ = 0 3486 13 54 3 4137 0 129 14
Ŷ = 1 262 341 0 11 226 1723 1 31

Reg Ŷ = 0 3748 104 54 4 4300 13 128 45
Ŷ = 1 0 250 0 10 63 1710 2 0

Adv Ŷ = 0 3655 52 53 3 3917 85 125 34
Ŷ = 1 93 302 1 11 446 1638 5 11

FTM ✓ Ŷ = 0 3719 11 54 3 4217 6 120 10
Ŷ = 1 29 343 0 11 146 1717 10 35
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