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A B S T R A C T

Does Knowledge Distillation (KD) really work? Conventional wisdom viewed it as a knowledge transfer
procedure where a perfect mimicry of the student to its teacher is desired. However, paradoxical studies
indicate that closely replicating the teacher’s behavior does not consistently improve student generalization,
posing questions on its possible causes. Confronted with this gap, we hypothesize that diverse attentions
in teachers contribute to better student generalization at the expense of reduced fidelity in ensemble KD
setups. Focusing on supervised image classification task, by increasing data augmentation strengths, our key
findings reveal a decrease in the Intersection over Union (IoU) of attentions between teacher models, leading to
reduced student overfitting and decreased fidelity. We propose this low-fidelity phenomenon as an underlying
characteristic rather than a pathology when training KD. This suggests that stronger data augmentation
fosters a broader perspective provided by the divergent teacher ensemble and lower student–teacher mutual
information, benefiting generalization performance. We further demonstrate that even optimization towards
logits-matching between teachers and student can hardly mitigate this low-fidelity effect. These insights clarify
the mechanism on low-fidelity phenomenon in KD. Thus, we offer new perspectives on optimizing student
model performance, by emphasizing increased diversity in teacher attentions and reduced mimicry behavior
between teachers and student. Codes are available at https://github.com/zisci2/RethinkKD
1. Introduction

In the realm of supervised image classification, Knowledge Distilla-
tion (KD) (Hinton et al., 2015) is renowned for its effectiveness in deep
model compression and enhancement, emerging as a critical technique
for knowledge transfer. Previously, this process has been understood
and evaluated through model fidelity (Stanton et al., 2021), measured
by the student model replication degree to its teachers. High fidelity,
assessed by metrics like low averaged predictive Kullback–Leibler (KL)
divergence and high top-1 logits agreement (Stanton et al., 2021), have
conventionally been used to assess the success of KD.

While fidelity has traditionally guided enhancements in model
architectures, optimization, and training frameworks, repeated high-
fidelity results corresponding to strong student performance seem to
indicate that a high degree of mimicry between the student and
teachers is desirable (Lao et al., 2023; Li, Li et al., 2022; Wang et al.,
2022). Yet this notion was initially challenged in Stanton et al. (2021),
which empirically shows that good student accuracy does not imply
good distillation fidelity in self and ensemble distillation. However,
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though (Stanton et al., 2021) underscores their empirical findings on
the low-fidelity phenomenon, they still believe that closely matching
the teacher is beneficial for KD in terms of knowledge transfer. Further,
they identify optimization difficulties as one key reason of student’s
poor emulation behavior to its teachers during training. Thus, this
paradox highlights a need for further exploration on model fidelity and
its mechanism in KD.

Among factors in KD analysis, the attention map mechanism serves
as a pivotal role in understanding the student-teacher interplay. It is
known that in ensemble learning, diverse models improve the overall
performance. Tsantekidis et al. (2021) empirically shows that diversi-
fying teachers’ learnt policies by training them in different subsets of
learning environment, can enhance the distilled student performance
in KD. Yet, a theoretical foundation is lack for doing so. Allen-Zhu
and Li (2023) proved how the multi-view structure of training images
contributes to this improvement. However, beyond examining feature
structures within an image from a dataset perspective, assessing model
diversity by analyzing the ensemble models’ attention maps can provide
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Fig. 1. Left : Attention map visualizations for teacher ensembles and student model in Knowledge Distillation (KD) on ImageNet dataset. Stronger data augmentation (T1𝑤T2𝑠S𝑠 and
T1𝑠T2𝑤S𝑠 in this case) as measured by Affinity improves teachers’ attentional divergence, thus providing the student a more comprehensive perspective on the overall characteristics
of the target images, leading to a better generalization ability. This is discussed in detail in Section 6.1. Middle and Right : Scatter plots of Intersection over Union (IoU) in
Attention maps, and Fidelity between teacher ensembles and student during KD training. The decreasing tendency in fidelity challenges the conventional wisdom that higher
fidelity consistently correlate with better student performance. Later in Section 6.3 we will demonstrate that the low-fidelity observation is caused by attention map diversification
existed within teacher ensembles, and even optimization towards logits-matching can hardly mitigate this low-fidelity effect.
us with more straightforward insights into the learning dynamics,
which has been overlooked in previous studies. Besides, it would be
intriguing to check the student-teacher fidelity under such circum-
stance, to see if diversifying teacher models in an ensemble consistently
corresponds with low-fidelity as well. If so, one can devote model
attention map diversities to explain the existing fidelity paradox. Thus
in this paper, we utilize the Intersection over Union (IoU) (Rezatofighi
et al., 2019) of attention maps (Zhou et al., 2016) between different
teacher models in ensemble KD to help elucidate the existing fidelity
paradox.

Following the investigation paradigm in Stanton et al. (2021),
where the model fidelity variations were observed with different data
augmentations, we adapt this paradigm to our case with a more
cautious control over the degree of randomness in augmentation during
ensemble KD training. By varying data augmentation strengths, as
measured by Affinity (Cubuk et al., 2021), which will be introduced
later, we modulated the model diversities trained on them. Impacts
not only on traditional metrics like student–teacher fidelity, but also
on less-explored aspects of attention maps diversity between different
teachers, and mutual information between student and teachers are
witnessed. Our empirical observations appear to challenge the tradi-
tional wisdom on the student–teacher relationship in distillation during
training procedure and thus provide further insights on explaining the
fidelity paradox.

Specifically, in support and further complement to Stanton et al.
(2021), we highlight attention map diversification existed within
teacher ensembles as a deeper reason why a student with good gener-
alization performance may be unable to match the teacher during KD
training: Stronger data augmentation increases attention divergence in
the teacher ensemble, enabling teachers to offer a broader perspective
to the student. Consequently, the student surpassing the knowledge
of single teacher becomes more independent as measured by lower
student-teacher mutual information. And the low-fidelity observed is
a demonstration of this phenomenon.

Furthermore, though (Stanton et al., 2021) has demonstrated the
low-fidelity observation, they still proposed the difficulties in optimiza-
tion as the primary reason for it. And recent works including (Sun
et al., 2024) remain optimizing in the direction of facilitating the
student-teacher emulation procedure. Yet our empirical and theoreti-
cally analysis demonstrate that, optimization with logits matching does
improve the student generalization ability but is still at the cost of
fidelity reduction.

Our primary goal is to explain the fidelity paradox and understand
the student learning and knowledge transfer dynamics in ensemble KD,
by observing the implications of data augmentation on the student-
teacher relationship. By doing so, we seek to provide insights that
2 
challenge the traditional or extend preliminary wisdom in KD fidelity
by leveraging the attention mechanism in ensemble learning. As shown
in Fig. 1, we summarize our contributions as follows:

(1) We demonstrate the correlation between teachers’ attention map
diversity and student model accuracy in ensemble KD train-
ing. Stronger data augmentation improves attentional diver-
gence among teacher models, offering the student a more com-
prehensive perspective.

(2) We affirm the viewpoint from Stanton et al. (2021) that higher
fidelity between teachers and student does not consistently im-
prove student performance. What is more, through analyzing
attention maps between teachers in ensemble KD, we highlight
this low-fidelity phenomenon as an underlying characteristic
rather than a pathology: Student’s generalization is enhanced
with more diverse teacher models, which causes the reduction
in student-teacher fidelity.

(3) We examine data augmentation’s effects on learning dynamics
in ensemble KD. Through systematically analyzing the impact of
modulated data augmentation strengths on the learning dynam-
ics within KD, we offer a novel, simple yet effective perspective
on optimizing the ensemble KD learning processes.

(4) We further investigate if optimization towards facilitating the
student-teacher logits matching procedure can enhance the KD
fidelity. Our empirical and theoretically analysis demonstrate
that such optimization improve the student generalization ability
but still at the cost of fidelity reduction.

The rest of the paper is structured as follows: Section 2 summarizes
the related works, Section 3 clarifies the problem and hypothesis fo-
cused in this work, and Section 4 introduces the evaluation metrics
used to validate our argues. Section 5 further gives the experimental
settings, and the empirical results and theoretical analysis are provided
in Section 6. Section 7 compares our method of modulated data aug-
mentations on ensemble KD, with the SOTA KD baselines. Section 8
offers the ablation study. Section 11 finally summarizes the work of
this paper.

2. Related works

Our study contributes to a growing body of research that explores
the interactions between data augmentation, model fidelity, attention
mechanisms, and their impact on student performance in Knowledge
Distillation (KD) with teacher ensembles.

From a dataset perspective, Allen-Zhu and Li (2023) attributes the
success of ensemble KD to the multi-view structure commonly found in
vision task datasets. For instance, a car image can be identified as a car
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by focusing on features like the headlights, wheels, or windows, which
are considered positive indicators. However, the headlights might also
esemble a cat’s eye, which could be a negative feature. These features,
long with the soft labels in KD, serve as ‘‘dark knowledge’’ for the
tudent model to learn from the ensemble of teachers. In other words,
rom a single car image, the student can learn both car and cat features,
hereby enhancing its performance. However, beyond analyzing fea-
ure structures within an image from a dataset perspective, evaluating
odel diversity through the attention maps of ensemble models can

ffer more direct insights into the learning dynamics, a dimension that
revious studies have largely overlooked.

In Bai et al. (2023), a KD framework utilizing Masked Autoen-
oder, one of the primary factors influencing student performance

is the randomness introduced by masks in its teacher ensembles. It
comes naturally if incorporating randomness into the dataset, through
a simple yet effective method like data augmentation, and carefully
controlling its strength, will be as effective as integrating it into model
architectures.

Yet, theories on the impacts of data augmentation on KD remain
iverse and varied. Li, Shao et al. (2022) offers theoretical insights, sug-

gesting that leveraging diverse augmented samples to aid the teacher
model’s training can enhance its performance but will not extend the
same benefit to the student. Shen et al. (2022) emphasizes how data
augmentation can alter the relative importance of features, making
hallenging features more likely to be captured during the learning
rocess. This effect is analogous to the multi-view data setting in
nsemble learning, suggesting that data augmentation is likely to be
eneficial for ensemble KD.

On the application front, research proposing novel attention-based
KD frameworks usually accompanied with intricate designs in model
architectures or data augmentation strategies (Lewy & Mańdziuk, 2023;
Özdemir & Sönmez, 2022). For instance, studies like Tian and Chen
(2022) aim to address the few shot learning in KD with a novel data
augmentation strategy based on the attentional response of the teacher
model. Gou et al. (2023) proposed a hierarchical multi-attention trans-
fer framework (HMAT), which employs various types of attention to
acilitate knowledge transfer at different levels of deep representation

learning for KD. Although their concentration is different from ours,
the studies nevertheless show the significance of attention mechanism
in KD.

In align with the initial ‘‘knowledge transfer’’ definition of KD, as an
nderlying assumption that a higher degree of emulation between the

student and teachers benefits its training, previous studies are devoted
o optimizing towards increased student-teacher fidelity or mutual
nformation (Lao et al., 2023; Li, Li et al., 2022; Wang et al., 2022).

Recent work Sun et al. (2024) also optimizes in this direction, where a
-score logit standardization process is proposed to mitigate the logits
atching difficulties caused by logit shift and variance match between

eacher and student. Nevertheless, this idea faced initial challenge
n Stanton et al. (2021), indicating that closely replicating the teacher’s
ehavior does not consistently lead to significantly improved student
eneralization performance during testing, whether in self-distillation
r ensemble distillation.

Stanton et al. (2021) first investigates if the low-fidelity is an
dentifiability problem that can be solved by augmenting the dataset,
nd the answer is no: experimental results show subtle benefits of this

increased distillation dataset. They further explore if the low-fidelity is
an optimization problem resulting in a failure of the student to match
the teacher even on the original training dataset, and their answer is
yes: A shared initialization does make the student slightly more similar
o the teacher in activation space, but in function space the results are

indistinguishable from randomly initialized students.
Though insightful, it prompts further questions and drives us to

hink: Is low-fidelity truly undesirable and problematic for KD, es-
ecially if it does not harm student performance? Thus, additional
xploration into this student fidelity-performance relation is required to
3 
elucidate the above paradox. Adopting a similar investigative approach
which observes model fidelity variations with different data augmen-
tations, we tailor it to our case, exercising a more cautious control
over the data augmentation strength and thus the randomness into the
istillation dataset during KD training.

In our work, we applied various data augmentations on KD, aiming
to provide a more comprehensive understanding of model fidelity and
attention mechanisms. Our empirical results and theoretical analysis
challenge conventional wisdom, supporting and extending (Stanton
et al., 2021) by demonstrating that student-teacher fidelity or mutual
nformation does decrease with improved student performance during
D training. And, this low-fidelity phenomenon can hardly be mitigated
ith optimization aimed at improving student generalization. We thus
dvocate for more cautious practices in future research when designing
D strategies.

3. Problem and hypothesis

We focus on Knowledge Distillation (KD) with teacher ensembles
in supervised image classification. In this realm, the efficacy of the
process has traditionally been evaluated through the model fidelity and
student validation accuracy. However, this conventional approach may
ot fully capture the complexity and nuances inherent in the knowledge
ransfer process, especially in light of evolving practices like data aug-
entation and the growing importance of attention mechanisms in neu-

al networks. This study is driven by a series of interconnected research
uestions that challenge and extend the traditional understanding of KD
s follows.
Impact of Varied Data Augmentation Strengths on Model Di-

ersity in Attention Map Mechanisms. The application of diverse
data augmentation strengths during the training of teacher and student
models plays a crucial role in shaping KD (Stanton et al., 2021).

onsequently, it is natural to inquire whether, across augmentation
strategies, stronger data augmentation results in an increase or decrease
n model fidelity within teacher ensembles during training. And if so,
ow does this correlate with the student model’s performance. Inspired
y the theory in machine learning that diversity among models can
nhance ensemble learning performance (Asif et al., 2019; Zhou, 2012),
ur hypothesis is that varying augmentation strengths in different

teachers inject randomness into the data, thereby diversifying teacher
models’ attention (Zhou et al., 2016) mechanisms trained on them.
This diversity promotes heterogeneity in learning features, enables the
student to learn diverse solutions to the target problem, and thus en-
hances the KD process. As a result, the student surpasses the knowledge
of a single teacher, leading to a better overall performance, and the
observed low-fidelity serves as a demonstration of this phenomenon.

Interplay Between Student Fidelity, Mutual Information and Gen-
eralization. Shrivastava et al. (2023) and Stanton et al. (2021) have
observed that fidelity or mutual information between teacher and
student models interact with varying data augmentation strengths,
influencing the overall effectiveness of distilled knowledge. The crit-
ical questions then arise: Does lower or higher fidelity and mutual
nformation benefit the KD training and student performance, and why
oes it happen? We hypothesize that, varied augmentation strengths in
ifferent teachers in ensemble KD would provide a broader view for
he student to learn. Thus, the student surpassing the knowledge of a
pecific teacher. Contrary to the traditional perspective, we expect a
ecreased mimicry behavior of the student to benefit the student gen-
ralization ability during training, as it learns more intricate patterns
rom the diverse set of teachers.
Effect of Optimization towards Student-Teacher Logits Match-

ing on Fidelity. Question also comes on why some works thought
a high-fidelity is beneficial, while others thought a low-fidelity is
inevitable during training. Our intuition is that the researches devoted
to optimizing towards increased student-teacher fidelity or mutual
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information do achieve the ultimate goal of improving the overall
tudent performance, but in fact fail at enhancing the mimicry behavior
uring training. In this paper, we try to answer this question by delving

into a logits matching KD case as in Sun et al. (2024). Specifically,
we experiment with a z-score standardization method to mitigate the
logits magnitudes and variance gap between teacher and student, which
facilitates the student-teacher emulation procedure. Our hypothesis is
that though such an optimization can relieve the logit shift and variance
match problem, in reality its benefit lies in the student generalization
rather than the fidelity improvement.

These questions aim to dissect the underlying learning dynamics
in KD, moving beyond traditional metrics and exploring how newer
facets like data augmentation strength, attention map diversity, fidelity
and mutual information interplay to influence the student’s learning
and generalization abilities. Here, the data augmentation strength is
measured by Affinity (Cubuk et al., 2021), the offset in data distri-
ution between the original one and the one after data augmentation
s captured by the student model, which we will talk more later.
y addressing these questions, this study seeks to provide a more
omprehensive understanding of KD.

4. Evaluation metrics

This section introduces evaluation metrics aimed at quantifying
the learning dynamics and thus explains the existing fidelity para-
dox of Knowledge Distillation (KD) with teacher ensemble training,
particularly when subject to varied data augmentation strengths.

4.1. IoU in attention maps

To elucidate divergent attentional patterns within teacher ensem-
les, without losing the generalizability, we examine their attention
aps (Zhou et al., 2016) in the most representative model architec-

ures, i.e., ResNet (He et al., 2016) and Transformer (Vaswani et al.,
2017), during the training and validation stage. In practice, for ResNet
eacher or student models, the features output from the penultimate
onvolution layer, followed by a new convolution layer constructed
sing the model’s fully-connected layer weights, are selected to com-
ute the attention maps. For the Transformers, the attention maps are
btained directly with their built-in attention modules. Subsequently,
he Intersection over Union (IoU) (Rezatofighi et al., 2019) is computed

between the attention maps of different teachers to measure their
diversities. Take the 2-teacher ensemble KD as an example, for an
mage sample 𝑺, to compute the IoU between the teacher models, two

attention maps 𝐴𝑡1, 𝐴𝑡2 ⊆ 𝑺 are obtained associated with each teacher
model, with the final metric value computed as in Eq. (1):

IoU =
|𝐴𝑡1 ∩ 𝐴𝑡2|

|𝐴𝑡1 ∪ 𝐴𝑡2|
(1)

4.2. Model dependency in KD

We use fidelity metrics, namely the averaged predictive Kullback–
Leibler (KL) divergence and top-1 agreement (Stanton et al., 2021),
along with mutual information calculated between models’ logits. This
nables us to showcase the mimicry behavior and dependency between

teachers and the student.
Given a classification task with input space  = {𝒙𝑖}𝑁𝑖=1 and label

space  = {𝑦𝑐}𝐶𝑐=1. Let 𝑓 ∶  → R𝐶 be a classifier whose outputs define
a categorical predictive distribution over  , 𝑝̂(𝑦𝑐 |𝒙𝑖) = 𝜎𝑐 (𝒛𝑖), where
𝑐 (⋅) is the softmax function and 𝒛𝑖 ∶= 𝑓 (𝒙𝑖) denotes the model logits
hen 𝒙𝑖 is feed into 𝑓 . The formal definition of KL divergence, top-1
greement (Top-1 A), and mutual information (MI) are formulated as
ollows:

KL(𝑃𝑡∥𝑃𝑠) =
𝐶
∑

𝑝̂𝑡(𝑦𝑐 |𝒙) log
𝑝̂𝑡(𝑦𝑐 |𝒙) (2)
𝑐=1 𝑝̂𝑠(𝑦𝑐 |𝒙)

4 
Top-1 A = 1
𝑁

𝑁
∑

𝑖=1
1{argmax

𝑐
𝜎𝑐 (𝒛𝑡) = argmax

𝑐
𝜎𝑐 (𝒛𝑠)} (3)

MI( 𝑡;𝑠) =
∑

𝒚𝑡∈ 𝑡

∑

𝒚𝑠∈𝑠
𝑃 (𝒚𝑡, 𝒚𝑠) log 𝑃 (𝒚𝑡, 𝒚𝑠)

𝑃 (𝒚𝑡)𝑃 (𝒚𝑠)
(4)

where 𝑃 (𝒚𝑡, 𝒚𝑠) is the joint probability distribution of the teacher and
student. 𝑃 (𝒚𝑡) and 𝑃 (𝒚𝑠) represent the marginal probability distribu-
ions of the teacher and student. For metrics calculated between teacher
nsemble and student, the logits or outputs of different teachers are

first averaged and then computed with the student. This paper uses
Top-1 A for fidelity measurement in the main text, and results with KL
divergence can be found in Appendix A.2.

4.3. Quantify data augmentation strength within ensemble KD

In our experiments, we employ various data augmentation tech-
iques on both teacher ensembles and the student model to modu-
ate the level of randomness introduced into the dataset, as detailed
n Section 5. To quantify the strength of these applied data aug-

mentations and demonstrate their effects on KD, we leverage Affinity
measurements (Cubuk et al., 2021), specifically adapted to our KD
scenario:

Affinity =
Acc(𝐷′

𝑣𝑎𝑙)
Acc(𝐷𝑣𝑎𝑙)

(5)

where Acc(𝐷′
𝑣𝑎𝑙) denotes the validation accuracy of the student model

rained with augmented distillation dataset and tested on the aug-
ented validation set. Acc(𝐷𝑣𝑎𝑙) represents the accuracy of the same
odel tested on clean validation set. It is worth noting that for a

pecific dataset, the augmented set 𝐷′
𝑣𝑎𝑙 is shared. And, to avoid intro-

ucing possible biases in metrics computation, each time the random
eeds are altered for the augmentations.

This metric measures the offset in data distribution between the
riginal one and the augmented one captured by the student model
fter KD training: Higher Affinity value corresponds to smaller offset
etween the data distributions. It is a generic metric that is not sensitive
o different types of augmentation or the dataset in use. In this paper,
ffinity is used as a tool to quantify and thus help on controlling the
egree of randomness injected into the distillation dataset. This pro-
ides us with a systematic approach to analyze how data augmentation
nteracts with KD generalization, fidelity, and attention mechanisms.

e anticipate that when the data augmentation strength of the student
odel aligns with that of the teacher model, the Affinity will be higher.
nd, lower Affinity corresponds to stronger data augmentation, leading

o higher student accuracy and better generalization performance.
It is noteworthy that what we mean low Affinity is a ‘‘moderate

low but cannot be as low as 0’’ notion: An Affinity of 0 presupposes a
situation where the augmented data is so drastically different from the
original that it no longer retains any of the original data’s informative
features, or the model has entirely failed to learn from the augmented
data. Our claim that models with low Affinity can still exhibit good
generalization performance is based on the understanding that these
models, through diverse and challenging augmentations, learn to ab-
stract and generalize from complex patterns. This does not necessarily
imply that an Affinity of 0, resulting from complete misalignment
with the augmented data, is desirable or indicative of strong gener-
alization. Instead, we suggest that moderate to low Affinity, within a
range that indicates the model has been challenged but still retains
learning efficacy, can foster robustness and generalization. In contrast,
an intermediate to high Affinity value is assumed to indicate greater
alignment with the original dataset. This will be further clarified in

6.1.
Section
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5. Experimental setup

In our ensemble Knowledge Distillation (KD), experiments are con-
ducted with two or three teachers. Each teacher model is a ResNet50
classifier pretrained on ImageNet (Deng et al., 2009) and then fine-
tuned on their respective target datasets. The student model is
ResNet18 trained from scratch using vanilla KD (Hinton et al., 2015).
Take the ensemble KD with two teachers as an example, the loss
function is defined as:

NLL(𝒛𝑠, 𝒚𝑠) = −
𝐶
∑

𝑐=1
𝑦𝑐 log 𝜎𝑐 (𝒛𝑠) (6)

KD1,2(𝒛𝑠, 𝒛𝑡1.2) = −𝜏2
𝐶
∑

𝑐=1
𝜎𝑐 (

𝒛𝑡1,2
𝜏

) log 𝜎𝑐 (𝒛
𝑠

𝜏
) (7)

 = NLL + 1
2
(KD1 + KD2) (8)

where NLL is the usual supervised cross-entropy between the student
logits 𝒛𝑠 and the one-hot labels 𝒚𝑠. KD1,2 is the added knowledge
distillation term that encourages the student to match the teacher
ensembles.

In this paper, we are focusing on ensemble KD with 2 teachers T1
nd T2. Results with 3 teachers are discussed in Appendix A.5. We
lso provide experiments with Vision Transformers (ViTs) (Dosovitskiy

et al., 2021) where the attention map can be obtained directly with the
built-in attention module in Appendix A.7.

Experiments are conducted on well-recognized long-tailed datasets
mageNet-LT (Liu et al., 2019), CIFAR100 (Krizhevsky, 2009) with
n imbalanced factor of 100, and their balanced counterparts. Hy-
erparameters remain consistent across experiments for each dataset.
ore detailed settings, including learning rates and temperatures, are

rovided in Appendix A.1.
In this paper, we distinguish between two types of data augmenta-

tion: (1) Weak data augmentation, encompassing conventional methods
uch as random resized crop, random horizontal flip, and color jitters.
2) Strong data augmentation includes RandAugment (RA) (Cubuk
t al., 2020) applied to ImageNet-based datasets and AutoAugment
AA) (Cubuk et al., 2019) applied to CIFAR-based datasets. Further
echnical details on these augmentation methods can be found in

Appendix A.1. For denotation purposes, we use T𝑠, S𝑠 to represent
eacher or student models trained with strong augmentation, while
𝑤, S𝑤 denote those trained with weak augmentation.

It is essential to highlight that technically, the strong data augmen-
ation applied to both teacher ensemble and student model in KD does
ot necessarily result in the highest data augmentation strength, as
easured by our Affinity metric (defined in Eq. (5)). This will be shown

nd clarified further in Section 6.1 Table 1. Therefore, in this study, we
varied the data augmentation strengths in ensemble KD. Specifically,
in the series of experiments conducted on each dataset, we utilized the
entire permutation set of T𝑤,T𝑠, S𝑤, S𝑠 to construct trials (for example,
1𝑠T2𝑤S𝑠 is one trial denotation), and then computed their Affinity to
uantify their data augmentation strength. In practice, for evaluation,
e computed our metrics introduced in Section 4 on both the train-

ing set and validation set, considering each trial’s corresponding data
augmentation strength.

6. Results and analysis

Our comprehensive set of experiments has yielded several intriguing
nsights into the learning dynamics of Knowledge Distillation (KD)

and explains the fidelity paradox through various data augmentation
strengths. We particularly emphasize the roles of attention map di-
versity, model fidelity, and mutual information, as they interact with
student performance in terms of top-1 accuracy and overfitting during

both the training and validation procedures.

5 
6.1. Impact on attention map diversity

Fig. 2 Top shows that during training, a consistent decrease is
bserved in the Intersection over Union (IoU) of attention maps be-

tween different teacher models with stronger data augmentation. This
decrease is correlated with an increase in the student model’s accuracy.
Trial denotations are also marked as data labels in these scatter plots,
together with Table 1 demonstrating their data augmentation strengths.

These Affinity values aid in understanding the data augmenta-
ion strengths and the decreasing tendencies in the scatter plots: Re-
all that Affinity measures the offset in data distribution between
he original one and the one after data augmentation captured by
he student, and lower Affinity corresponds to higher augmentation

strength, leading to higher student accuracy. As evidence, for those
rials with strong data augmentation and low Affinity, e.g., T1𝑠T2𝑤S𝑠
n CIFAR-100, T1𝑤T2𝑠S𝑠 in CIFAR-100 imb100, T1𝑠T2𝑤S𝑠 in ImageNet,
nd T1𝑠T2𝑤S𝑠 in ImageNet-LT, a relatively high validation accuracy
s observed for each dataset. It is important to emphasize that the
pplication of strong data augmentation to both teacher ensemble

and student model in KD does not lead to the highest level of data
augmentation strength, as quantified by our Affinity metric defined
in Eq. (5). That is, it is the diversity of teachers’ augmentation strength
but not the strong data augmentation for a single teacher or student
model matters: T1𝑠T2𝑤S𝑠 is stronger than T1𝑠T2𝑠S𝑠. Appendix A.4 also
offers scatter plots of IoU between T1 and T2 attention maps versus
Affinity during KD training.

Significantly, this observation suggests that as the ensemble of
teachers focuses on increasingly diverse aspects of the input data,
he student model benefits from a richer, more varied set of learned
epresentations, leading to enhanced performance, as visualized in

Fig. 2 Bottom. This finding aligns with and extends ensemble learning
theories in KD, where diversity among models enhances overall stu-
ent performance even by simply manipulating the data augmentation
trength. It introduces a new dimension to Knowledge Distillation
heory, emphasizing the value of diverse learning stimuli.

Section 7 also compares our method with the SOTA baselines, which
uggests that our approach, achieved solely by injecting varied levels
f randomness into the dataset through modulated data augmentation
trength, can attain comparable student performance on both balanced
nd imbalanced datasets with SOTA methods featuring intricate designs
n architectures, optimization, or distillation procedures. Additionally,
o demonstrate the effectiveness of the proposed data augmentation
rials in ensemble KD, Section 8 presents an ablation study. This

includes results from directly training student models with varying
augmentation strengths, as well as KD training results without any data
augmentation as a control.

6.2. Revisiting the role of fidelity and mutual information

As in Fig. 3, during training, we observed a decrease in both fidelity
and mutual information between teacher ensembles and the student
model with stronger data augmentation. Intriguingly, this decrease was
accompanied by improved validation accuracy in the student model.
This indicates that a lower level of direct mimicry, in terms of out-
put logits distribution, between teacher ensembles and the student is
conducive to more effective learning in KD, possibly due to student
learning from more divergent teachers’ attentions.

To further demonstrate the causality between teachers’ attention
divergence and low student-teacher fidelity, i.e., a more diverse at-
tention maps within teacher ensemble causes a lower fidelity, an A/B
test is conducted in the setup of ensemble KD with two teachers.
Specifically, the control group is the vanilla KD (denoted as vKD)
with different data augmentation strengths we used in all previous
experiments, and the experimental group (denoted as hKD) is designed
as follows: Each training image is first cropped into two parts, left and

right, as input to teacher model T1 and T2 respectively. This allows us to
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Fig. 2. For ResNet models. Top: Scatter plots of IoU between T1 and T2 attention maps during KD training. Bottom: Exampled attention maps of T1, T2 and S. This attention
divergence among teacher ensembles, attributed to the randomness injected by data augmentation, gives the student distilled on them a more comprehensive perspective.
Table 1
Affinity, and Validation Accuracy (Val-Acc) of models with various data augmentation strengths.

Dataset Metric Model

T1𝑤T2𝑤S𝑤 T1𝑤T2𝑤S𝑠 T1𝑠T2𝑤S𝑤 T1𝑠T2𝑤S𝑠 T1𝑤T2𝑠S𝑤 T1𝑤T2𝑠S𝑠 T1𝑠T2𝑠S𝑤 T1𝑠T2𝑠S𝑠

Cifar100 Affinity 0.9807 0.8611 0.9805 0.9083 0.9858 0.9143 0.9729 0.9310
Val-Acc 0.7952 0.8129 0.8103 0.8195 0.8015 0.8161 0.8107 0.8137

Cifar100
imb100

Affinity 0.9763 0.8132 0.9810 0.8637 0.9751 0.8635 0.9723 0.8955
Val-Acc 0.4621 0.5111 0.4850 0.5220 0.4862 0.5148 0.5028 0.5210

ImageNet Affinity 0.9901 0.8767 0.9930 0.8988 0.9845 0.9131 0.9871 0.9122
Val-Acc 0.6902 0.6908 0.6878 0.6917 0.6895 0.6914 0.6891 0.6898

ImageNet
long-tail

Affinity 0.9850 0.8311 0.9755 0.8704 0.9782 0.8751 0.9903 0.8971
Val-Acc 0.4791 0.4929 0.4839 0.4966 0.4846 0.4968 0.4842 0.4942
Fig. 3. For ResNet models. Scatter plots of Top: Fidelity (measured by top-1 A) and Bottom: Mutual Information (MI) between teacher ensembles and student during KD training.
These decreasing tendencies along with the improved student validation accuracy are in contrast to the traditional viewpoint that higher fidelity consistently benefits student
performance, indicating that some extent of student independency may be desired during KD training.
proactively diversify the attention maps of each teacher model, rather
than passively altering it in the case of varying data augmentation
strengths. Then in average, we can expect the experimental group to
have far less attention IoU values than the control group, while keeping
comparable generalization performance, because in the former each
teacher’s attention is constrained to one half of each image. The null
hypothesis 𝐻0 is that from control (vKD) to experimental (hKD) group,
as the teachers’ attention maps IoU decrease, an increase in student-
teacher fidelity is observed. Denoting the total number of trials as 𝑁 𝑢𝑚,
6 
the corresponding 𝑝-value is calculated as:

𝑝-value =
#|fidelity(hKD) > fidelity(vKD)|

𝑁 𝑢𝑚 (9)

Experiments reveal a 𝑝-value less than 0.05, suggesting that we
should reject this null hypothesis. Detailed experimental results are
provided in Appendix A.3. In summary, more divergent teacher atten-
tions (i.e., lower IoU values) does cause the decrease in student-teacher
fidelity.
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Fig. 4. For ResNet models. Bar plots comparing between vanilla KD and z-score standardization KD. Top: Generalization performance in terms of train-validation accuracy gap.
bottom: Student–teacher fidelity. The z-score standardization, aimed at facilitating the student–teacher logits matching procedure, does improve student generalization performance
(indicated by a lower accuracy gap) in most cases. However, it also leads to a decrease in student–teacher fidelity during training, suggesting that the benefit lies more in student
generalization than in fidelity improvement.
This counterintuitive result aligns with and complements the para-
doxical observation in Stanton et al. (2021). It implies that while
the student model develops a certain level of independence from the
teachers (evidenced by lower fidelity and mutual information), it still
effectively captures and generalizes the core knowledge of the teachers.
Combining with the observation on how varying data augmentation
strengths influence the teachers’ attention divergence in Section 6.1,
we highlight attention diversification in teacher ensembles as a deeper
reason why a student with good generalization may be unable to
match the teacher during KD training: Stronger data augmentation
increases attention divergence, enabling teachers to offer a broader
perspective to the student. Consequently, the student surpasses the
knowledge of a single teacher, becoming more independent, and the
observed low-fidelity is a demonstration of this phenomenon rather
than a pathology.

6.3. Effects of logits matching optimization on KD

Although Stanton et al. (2021) has shown the phenomenon of low-
fidelity, they attributed the challenges in optimization as the key factor
for the student’s inability to match the teacher. Recent studies, such
as Sun et al. (2024), continue to focus on optimizing the student-
teacher logits matching process. Yet in Section 3 the 3rd hypothesis,
we suggested that the optimization towards increasing student-teacher
mimicry behavior in fact benefits generalization performance rather
than the fidelity.

To illustrate, here we compared the aforementioned vanilla KD
with a logits-matching optimization method in KD (Sun et al., 2024)
under different data augmentation strengths, for dataset CIFAR100,
CIFAR100-imb100, and ImageNet-LT. Specifically, we experiment with
a z-score standardization method applied on logits before the softmax.
This mitigates the logits magnitudes and variance gap between teacher
and student, which facilitates the student-teacher emulation procedure.

Theoretically, denote the logits of teacher model and student model
as 𝒛𝑡 and 𝒛𝑠 respectively, and the softmax function as 𝜎(⋅). Then
for a finally well-distilled student with predicted probability density
7 
perfectly matching the teacher, i.e., 𝜎(𝒛𝑠) = 𝜎(𝒛𝑡), we have the following
two properties proved in (Sun et al., 2024):

Logit shift: 𝒛𝑠 = 𝒛𝑡 + 𝛥 (10)

Variance match: Var(𝒛𝑠)
Var(𝒛𝑡) =

𝜏𝑠
𝜏𝑡

(11)

where 𝛥 can be considered constant for each sample image, and 𝜏𝑠, 𝜏𝑡
are temperatures for the student and teacher respectively during train-
ing. That is, even for the student with highest fidelity to its teacher such
that 𝜎𝑐 (𝒛𝑠) = 𝜎𝑐 (𝒛𝑡) for any class 𝑐 in the dataset, still we have 𝒛𝑠 =

√

𝜏𝑠
𝜏𝑡
⋅

𝒛𝑡 + 𝛥 which means the student logits cannot match the teacher logtis.
A z-score normalization applied on both the student and teacher logits
during KD training can soothe this mismatch by making their logtis
distribution equal mean and variance, and thus improve generalization
performance. However, from the fidelity definition in Eq. (3), since
the softmax function is monotonic, what we are looking for is the
agreed index 𝑐 of maximum logits between the teacher and student
argmax𝑐 (𝒛𝑡) = argmax𝑐 (𝒛𝑠), which unfortunately cannot be directly
affected by such optimization method.

In conclusion, though an optimization towards student-teacher log-
its matching can relieve the logit shift and variance match problem,
in reality its benefit lies in the student generalization rather than the
fidelity improvement. As shown in Fig. 4, the z-score standardization
does improve the student train-validation accuracy gap in most cases,
but a decrease in the student-teacher fidelity is still witnessed.

7. Quantitative evaluation

Table 2 compares our method with SOTA KD baselines: LFME (Xiang
& Ding, 2020), DMAE (Bai et al., 2023), FFKD (Gou et al., 2024),
and z-score logit standardization (Sun et al., 2024), focusing on the
top-1 validation accuracy. LFME is specifically tailored for long-tailed
datasets, so we only present its results on those. DMAE, originally
designed for balanced datasets, performs less effectively on long-tailed
ones. The z-score logit standardization process is introduced to alleviate
the challenges of logits matching due to logit shifts and variance
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Table 2
Validation accuracies for our method, LFME, and DMAE on four data sets.

Method Cifar100 ImageNet Cifar100
imb100

ImageNet
long-tail

LFME – – 0.4380 0.3880
DMAE 0.8820 0.8198 0.3725 0.4395
FFKD 0.7980 0.7217 0.5001 0.4684
Z-Score 0.8044 0.6781 0.5219 0.4805
Ours(1T) 0.8133 0.6802 0.5152 0.4910
Ours(2T) 0.8195 0.6917 0.5220 0.4968
Ours(3T) 0.8204 0.7032 0.5302 0.4965

mismatches between teacher and student, and it ultimately reduces the
overfitting and enhances the student’s generalization ability. FFKD is a
two-stage forward and feedback KD method. In the feedback stage, the
teacher evaluates the student model’s knowledge mastery, allowing the
teacher to adjust its teaching strategy to enhance overall performance.

For our method shown in this table: Ours(1T) is refferred to the
KD with one ResNet50 teacher model distilled to one ResNet18 student

odel, with T𝑤S𝑠. Ours(2T) is refferred to the KD with two ResNet50
eacher models distilled to one ResNet18 student model, with T1𝑠T2𝑤S𝑠.

Ours(3T) is refferred to the KD with three ResNet50 teacher models
distilled to one ResNet18 student model, with T1𝑠T2𝑤T3𝑤S𝑠. For the z-
score standardization KD method shown in this table, the same models
as in Ours (2T) are used.

This table demonstrates that our approach, achieved solely by in-
ecting varied levels of randomness into the dataset through controlled
ata augmentation strength, can attain comparable student perfor-
ance on both balanced and imbalanced datasets with methods fea-

uring intricate designs on architectures, optimization, or distillation
rocedures.

8. Ablation study

Our augmented KD approach focuses on two key components: (1)
an ensemble KD framework with multiple teachers, and (2) the use
of varying data augmentation strengths across models. We conducted
ablation studies to assess the impact of these components on general-
ization ability, fidelity, attention mechanisms, and student validation
performance. Specifically, we compared the results of our ensemble
KD with two teachers, T1 and T2, as previously described, against KD
training without data augmentation (denoted as S𝑛 and T𝑛 for student
nd teacher, respectively) and direct student training with different
ugmentation strengths (denoted as S𝑤 and S𝑠 for weak and strong
ata augmentation, respectively). Additionally, we discuss the results of
nsemble KD with three teachers in Appendix A.5 as a supplementary

analysis.
As shown in Table 3, across all datasets, our ensemble KD frame-

work under the data augmentation trial with a low Affinity value
(i.e., T1𝑠T2𝑤S𝑠) achieves the highest validation accuracy, coupled with
the lowest fidelity, mutual information, T1-T2 attention maps IoU, and
the second-lowest train-val accuracy gap. These results not only align
with our previous analysis but also underscore the effectiveness of our
approach in enhancing supervised image classification tasks.

Moreover, regarding the generalization ability indicated by the
train-val accuracy gap, we observe that for a specific dataset, as we
progress from S𝑛 to T1𝑛T2𝑛S𝑛, and then from S𝑤 to S𝑠, ultimately reach-
ng T1𝑠T2𝑤S𝑠, an increase in data augmentation strength correlates with
ecreasing fidelity and a diminishing accuracy gap. This demonstrates
hat the relationship between low fidelity and enhanced generalization

ability is linked to stronger data augmentations, such as S𝑠 or T1𝑠T2𝑤S𝑠.

9. Generalization to other network architectures

To demonstrate the generalizability of our methods and conclusions
to other model architectures, we present experimental results using the
 i

8 
Table 3
Ablation study: Comparison of our two-teacher ensemble KD against KD training
without any data augmentation (denoted as T𝑛 and S𝑛), and against the direct
student training with different augmentation strengths. Evaluation metrics involve the
validation accuracy (Val-Acc), the train-val accuracy gap (Acc-Gap) as an indicator
to the model generalization ability, fidelity between teacher ensemble and student
(Fidelity), mutual information between teacher ensemble and student (MI), and IoU
between T1 and T2 attention maps (IoU).

Dataset Metric Model

S𝑛 S𝑤 S𝑠 T1𝑛T2𝑛S𝑛 T1𝑠T2𝑤S𝑠

Cifar100

Val-Acc 0.640 0.714 0.726 0.680 0.819
Acc-GAP 0.360 0.126 −0.014 0.320 0.054
Fidelity N/A N/A N/A 0.999 0.854
MI N/A N/A N/A 2.779 2.690
IoU N/A N/A N/A 0.601 0.510

Cifar100
imb100

Val-Acc 0.311 0.343 0.340 0.351 0.522
Acc-GAP 0.689 0.391 0.221 0.649 0.360
Fidelity N/A N/A N/A 1.000 0.868
MI N/A N/A N/A 1.462 2.900
IoU N/A N/A N/A 0.491 0.456

ImageNet

Val-Acc 0.516 0.536 0.545 0.568 0.692
Acc-GAP 0.166 −0.101 −0.011 0.426 −0.093
Fidelity N/A N/A N/A 0.996 0.666
MI N/A N/A N/A 1.610 1.023
IoU N/A N/A N/A 0.746 0.557

ImageNet
long-tail

Val-Acc 0.245 0.372 0.388 0.312 0.497
Acc-GAP 0.754 0.363 0.184 0.688 0.264
Fidelity N/A N/A N/A 0.999 0.779
MI N/A N/A N/A 2.180 1.657
IoU N/A N/A N/A 0.793 0.671

CIFAR-100 dataset with VGG network architectures. Specifically, the
eachers are VGG19 models, while the students are VGG16 models.
ll other settings remain consistent with those used in the ResNet
xperiments.

Fig. 5 presents the results from distilling two VGG19 teachers onto
ne VGG16 student for the CIFAR-100 dataset. The decreasing trends
n the top row and the increasing trends in the bottom row confirm that
he conclusions drawn from the ResNet cases also apply to these VGG
rials. Specifically, greater teacher attention diversity correlates with
igher student validation accuracy, as do lower student-teacher fidelity
nd mutual information. Additionally, increased attention diversity,
educed fidelity, and lower mutual information also correspond to
ower Affinity, which indicates stronger data augmentation.

For visualization and comparison, Table 4 further summarizes the
results of train-val accuracy gap, as an indicator to the model general-
ization ability, alongside student-teacher fidelity for both ResNet and
VGG architectures, under various data augmentation strengths on the
CIFAR-100 dataset. As shown, for a specific data augmentation strength
(i.e., within each column), a consistent decrease in both fidelity and
Acc-Gap is observed when moving from ResNet to VGG, indicating that
low fidelity and better generalization ability correlate with a simpler
model architecture.

10. Discussion

In this study on ensemble KD, we explore the underlying mecha-
nisms of how teacher models’ attentions interact with student model
erformance and influence student–teacher fidelity. We also propose a
imple yet effective teacher-ensemble KD framework that achieves per-
ormance comparable to SOTA methods. However, beyond our findings,
here is still room for further exploration: our research is limited to data
ugmentation techniques that control teachers’ attention divergence.
hile simple, this approach may not fully capitalize on the potential

enefits of attention divergence and low-fidelity characteristics.
To address this issue, there are two potential paths: one is to

onstruct frameworks that specifically diversify teachers’ attentions
n ensemble KD or combine different types of attention at various
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Fig. 5. For VGG models on CIFAR-100 dataset. Scatter plots of Fidelity (measured by top-1 A), IoU between T1 and T2 attention maps, and Mutual Information (MI) between
teacher ensembles and student during KD training. Top: Versus student validation accuracy. Bottom: Versus Affinity. The decreasing tendencies in the top row, and the increasing
trends in the bottom row, demonstrate that the conclusions drawn from the previous ResNet cases still holds for these VGG trials.
Table 4
Train-val accuracy gap (Acc-Gap) and student-teacher fidelity for different model architectures under various data augmentation strengths, on
CIFAR-100 dataset.

Arch Metric Model

T1𝑤T2𝑤S𝑤 T1𝑤T2𝑤S𝑠 T1𝑠T2𝑤S𝑤 T1𝑠T2𝑤S𝑠 T1𝑤T2𝑠S𝑤 T1𝑤T2𝑠S𝑠 T1𝑠T2𝑠S𝑤 T1𝑠T2𝑠S𝑠

ResNet Acc-Gap 0.1593 0.0122 0.1411 0.0537 0.1468 0.0553 0.1333 0.0714
Fidelity 0.9523 0.7859 0.9411 0.8536 0.9387 0.8568 0.9048 0.8897

VGG Acc-Gap −0.0093 −0.2008 −0.0195 −0.1162 −0.0204 −0.1201 −0.0501 −0.0719
Fidelity 0.7919 0.6948 0.7755 0.7128 0.7472 0.7676 0.7539 0.7464
levels (Gou et al., 2023). The other, which has been less explored, is
to introduce external guidance or multi-modal features to enrich the
knowledge derived from diverse attentions. For instance, one could
leverage CLIP (Radford et al., 2021) features for KD, using CLIP im-
age features for one teacher and CLIP text features for another. The
challenge with this approach lies in effectively combining and distilling
knowledge from the two teachers, as well as optimizing the CLIP model
during KD training to enhance feature representations. This will be the
focus of our future work.

11. Conclusion

Our research, aiming to explain the fidelity paradox, intersects with
and expands upon existing theories for ensemble Knowledge Distillation
(KD) in several ways. (1) It introduces a novel perspective on the
learning and knowledge transfer process by investigating the impact
of attention map diversity on fidelity in KD with various data aug-
mentation strength. (2) It reevaluates the student-teacher fidelity and
mutual information challenge, providing insights into the ongoing de-
bates about the relation between student’s ability to mimic its teachers
and its generalization performance in KD. (3) It highlights that for
optimization towards facilitating student-teacher logits matching which
relieves the logit shift and variance match problem, its benefit lies in
the student generalization rather than the fidelity improvement. These
insights have the potential to catalyze further theoretical advancements
in the pursuit of robust KD.
9 
CRediT authorship contribution statement

Chenqi Guo: Conceptualization, Investigation, Software, Supervi-
sion, Writing – original draft, Funding acquisition. Shiwei Zhong:
Methodology, Investigation, Software, Data curation, Validation, Writ-
ing – review & editing. Xiaofeng Liu: Methodology, Investigation,
Validation, Writing – review & editing. Qianli Feng: Methodology,
Writing – review & editing. Yinglong Ma: Writing – review & editing,
Validation.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
The corresponding author previously worked at the Ohio State Univer-
sity. If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Fundamental Research Funds
for the Central Universities of Ministry of Education of China (No.
JB2024020).



C. Guo et al.

A

d

d
(
a
a
d

w
b
e

a
t
o
d
2

c
c

b

i
a
t
r

Expert Systems With Applications 262 (2025) 125579 
Appendix

A.1. Detailed experimental settings

The experiments are run on a GPU machine with RTX 4090 GPU,
MD 5995WX CPU and 128 GB memory. In each trial, the teacher

model of ResNet50 is trained for 30 epochs for ImageNet-LT dataset,
and 60 epochs for all the others. The student model of ResNet18 is
distilled for: 200 epochs for CIFAR-100; 175 epochs for CIFAR-100
imb100; 60 epochs for ImageNet; and 165 epochs for ImageNet-LT
ataset, when their validation accuracy converges.

In the main text, we apply strong data augmentations using Ran-
Augment (RA) for the ImageNet-based datasets and AutoAugment
AA) for the CIFAR-based datasets. We selected these methods because,
mong the various augmentation techniques and policies we tested, AA
nd RA yielded the best validation accuracy. Below are some technical
etails regarding the implementation of these methods in our work:

(1) For weak data augmentation, we employ a transformation se-
quence that includes random resized cropping, random horizontal
flipping, random rotation, and color jittering.

(2) For strong data augmentation on the CIFAR-100 and CIFAR-
100 imb100 datasets, we utilize a transformation sequence that
includes random resized cropping and random horizontal flip-
ping, followed by the AA policy and the image cutout technique.
Notably, within the AA policy, one of 25 sub-policies is ran-
domly selected each time, with each sub-policy consisting of
a combination of two transformations such as image shearing,
translation, rotation, contrast adjustment, inversion, sharpness
enhancement, brightness adjustment, color enhancement, poster-
ization, and solarization. The image cutout technique improves
model robustness by randomly selecting rectangular regions in an
image and setting their pixel values to zero.

(3) For strong data augmentation on the ImageNet and ImageNet-
LT datasets, we utilize a transformation sequence that includes
random resized cropping, random horizontal flipping, and color
jittering, followed by the RA policy. In the RA policy, a random
number of transformation operations (up to 2) are selected from
a comprehensive list, which includes image shearing, translation,
rotation, contrast adjustment, inversion, sharpening, brightness
adjustment, color enhancement, posterization, and solarization.
These operations are executed sequentially, each with a randomly
determined magnitude (up to 10).

Hyper-parameters, including temperatures of 𝜏 = 10, hard label
eight of 𝛼 = 0.2, initial learning rate of 0.1, momentum of 0.9, and
atch size of 128, remain the same throughout the entire procedure in
ach case, ensuring consistent and reliable results for evaluation.

For training with balanced ImageNet dataset, we use a cosine
nnealing learning rate scheduler, with 𝑇max = 30, etamin = 0 for
eacher training, and 𝑇max = 60, etamin = 0 for student distillation. For
ther datasets, a lambda learning rate scheduler is used. Specifically,
uring teacher training, with the following hyperparameters: step1 =
5, step2 = 40, step3 = 60 for CIFAR-100; step1 = 25, step2 = 40, step3 =
60 for CIFAR-100 imb100; and step1 = 35, step2 = 50 for ImageNet-
LT. During student distillation, with the following hyperparameters:
step1 = 190, step2 = 195 for CIFAR-100; step1 = 160, step2 = 165, step3 =
170 for CIFAR-100 imb100; and step1 = 150, step2 = 155, step3 = 160 for
ImageNet-LT.

A.2. Fidelity with KL divergence measurement

In the main text Section 6.2, Top-1 A is used for the fidelity metric.
Here we also provide results with Kullback–Leibler (KL) divergence
between teacher ensembles and student during KD training, as in
Fig. A.1. Note that for KL divergence, a higher value implies lower
fidelity.
 d
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Table A.1
Results for the A/B test on CIFAR100 dataset.

Model Acc Gap IoU Fidelity

vKD hKD vKD hKD vKD hKD

T1𝑤T2𝑤S𝑤 0.1593 0.1631 0.5860 0.3188 0.9523 0.7564
T1𝑤T2𝑤S𝑠 0.0122 0.0171 0.5560 0.3062 0.7859 0.5921
T1𝑠T2𝑤S𝑤 0.1411 0.1560 0.5678 0.3033 0.9411 0.7295
T1𝑠T2𝑤S𝑠 0.0537 0.0654 0.5097 0.2970 0.8536 0.6520
T1𝑤T2𝑠S𝑤 0.1468 0.1784 0.5519 0.2619 0.9387 0.7248
T1𝑤T2𝑠S𝑠 0.0553 0.0759 0.4925 0.2549 0.8568 0.6513
T1𝑠T2𝑠S𝑤 0.1333 0.1541 0.5539 0.2738 0.9048 0.6621
T1𝑠T2𝑠S𝑠 0.0714 0.0657 0.5361 0.2747 0.8897 0.6801

Table A.2
Results for the A/B test on CIFAR100 IMB100 dataset.

Model Acc Gap IoU Fidelity

vKD hKD vKD hKD vKD hKD

T1𝑤T2𝑤S𝑤 0.4854 0.4836 0.4900 0.3195 0.9580 0.7114
T1𝑤T2𝑤S𝑠 0.3206 0.3742 0.4419 0.3094 0.8078 0.5406
T1𝑠T2𝑤S𝑤 0.4712 0.4995 0.5309 0.3041 0.9467 0.6892
T1𝑠T2𝑤S𝑠 0.3604 0.3994 0.4560 0.2992 0.8675 0.6040
T1𝑤T2𝑠S𝑤 0.4641 0.4860 0.4329 0.2643 0.9467 0.6892
T1𝑤T2𝑠S𝑠 0.3570 0.3827 0.4084 0.2558 0.8664 0.5997
T1𝑠T2𝑠S𝑤 0.4444 0.4790 0.4410 0.2717 0.9145 0.6192
T1𝑠T2𝑠S𝑠 0.3738 0.3225 0.4107 0.2721 0.8953 0.6242

Table A.3
Results for the A/B test on ImageNet Long-tail dataset.

Model Acc Gap IoU Fidelity

vKD hKD vKD hKD vKD hKD

T1𝑤T2𝑤S𝑤 0.3937 0.4104 0.7391 0.6245 0.8873 0.5657
T1𝑤T2𝑤S𝑠 0.2453 0.2426 0.7122 0.6311 0.7240 0.4542
T1𝑠T2𝑤S𝑤 0.3873 0.4152 0.7287 0.5948 0.8850 0.5554
T1𝑠T2𝑤S𝑠 0.2639 0.2713 0.6708 0.5607 0.7786 0.4901
T1𝑤T2𝑠S𝑤 0.3871 0.4161 0.7204 0.5798 0.8856 0.5559
T1𝑤T2𝑠S𝑠 0.2622 0.2680 0.6608 0.5537 0.7795 0.4916
T1𝑠T2𝑠S𝑤 0.3816 0.4133 0.7563 0.6244 0.8745 0.5308
T1𝑠T2𝑠S𝑠 0.2700 0.2663 0.7431 0.6490 0.7941 0.5138

A.3. In-depth results for the A/B test

In the main text, to demonstrate the causality between teachers’
attention divergence and low student-teacher fidelity, an A/B test is
conducted for ensemble KD with two teachers. Experiments reveal a 𝑝-
value less than 0.05, suggesting that more divergent teacher attentions
(i.e., lower IoU values) does cause the decrease in student-teacher
fidelity. In this section, we further provides the detailed experimental
results of the A/B test, as shown in Tables A.1–A.3. Here, vKD denotes
the control group of vanilla KD experiments, and hKD denotes the
ontrol group of half-image inputs experiments. From these results, it
an be seen that in average, hKD has far less attention IoU values than

vKD, while keeping comparable generalization performance (indicated
y a lower accuracy gap).

A.4. Evaluation metrics versus affinity

In the main text, we show that during training, a consistent decrease
s observed in the student-teacher fidelity, mutual information (MI),
nd Intersection over Union (IoU) of attention maps between different
eacher models, which correlates with higher student validation accu-
acy. Here, we also provide scatter plots illustrating the relationship

between fidelity, MI, and IoU of attention maps between T1 and T2
versus Affinity during KD training, as shown in Fig. A.2. These increas-
ing trends demonstrate that stronger data augmentation (reflected by
smaller Affinity) is associated with lower fidelity, lower MI, and greater
ivergence in teacher attentions (indicated by lower IoU).
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Fig. A.1. For ResNet models. Scatter plots of fidelity (measured by KL divergence) between teacher ensembles and student during KD training. For KL divergence, a higher value
implies lower fidelity. Thus, these increasing tendencies align with the decreasing ones with Top-1 A in the main text.
Fig. A.2. For ResNet models. Scatter plots of student-teacher fidelity, mutual information (MI), and IoU between T1 and T2 attention maps, versus Affinity during KD training.
These increasing tendencies demonstrate that stronger data augmentation (reflected by smaller Affinity) is associated with lower fidelity, lower MI, and greater divergence in
teacher attentions (indicated by lower IoU).
A.5. Results with more teacher numbers in ensemble knowledge distillation

In the main text, we focused on Knowledge Distillation (KD) with
2 teachers in the ensemble. Results with 3 teachers are discussed here.
Fig. A.3 provides scatter plots of teacher attention IoU, fidelity, mutual
information, and student entropy in 3-teacher ensemble KD cases, for
CIFAR100 and CIFAR100 imb100 datasets. These plots align with the
tendencies observed in 2-teacher cases in the main text.

A.6. Model calibration and overfitting effects in our experiments

As a supplementary study, in this section we further investigate
the model calibration effects in ensemble KD. Empirically, the student
model can be better calibrated by simply enhancing data augmentation
strength. And, as the augmentation strength (measured by Affinity)
and/or teacher numbers increased, the calibration effects become more
pronounced.

While Guo et al. (2017) has revealed the calibration effects of tem-
perature scaling, a common technique in KD that does not influence the
student’s accuracy, the impact of data augmentation on the student’s
prediction confidence and model calibration in KD remains unexplored.
11 
This impact is typically gauged by entropy and Expected Calibration
Error (ECE) in predictions and is crucial in understanding how they
relate to the student’s ability to generalize and perform on unseen
data, as measured by overfitting tendencies. Our hypothesis is that,
beyond the inherent calibration effects of KD, the student model can
be effectively calibrated by elevating data augmentation strengths as
well.

In this study, we leverage logits entropy and Expected Calibration
Error (ECE), along with calibration reliability diagrams (Guo et al.,
2017) for visualization, to assess the calibration properties for teachers
and student under varied data augmentation strengths. Specifically, the
model logits entropy is computed as:

𝐻(𝒙) = −
𝐶
∑

𝑐=1
𝑝̂(𝑦𝑐 |𝒙) log 𝑝̂(𝑦𝑐 |𝒙) (12)

For ECE calculation, we first group all the validation samples into 𝑀
interval bins, which are defined based on the prediction confidence of
the model for each sample. The ECE thus can be formulated as follows:

ECE =
𝑀
∑

|𝐵𝑚|
|

|

Acc(𝐵𝑚) − Conf(𝐵𝑚)|| (13)

𝑚=1 𝑁
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Fig. A.3. For ResNet models. Scatter plots of teacher attention IoU, fidelity, mutual information, and student entropy in 3-teacher ensemble KD cases. These results, aligning with
the tendencies observed in 2-teacher cases, further support our conclusions in the main text.
Fig. A.4. For ResNet models. Top: Scatter plots of student entropy versus overfitting (gap between top-1 validation and training accuracy) during KD training. Bottom: Calibration
reliability diagrams with varied teacher numbers (1 to 3) for CIFAR100 imb100 and its balanced counterpart. Stronger augmentation (indicated by decreased Affinity) and more
teachers in the ensemble contributes to improved model calibrations and mitigate overfitting effects.
where 𝐵𝑚 denotes the set of samples in the 𝑚th bin. The function
Acc(𝐵𝑚) calculates the accuracy within bin 𝐵𝑚, while conf(𝐵𝑚) com-
putes the average predicted confidence of samples in the same bin.

In Fig. A.4 Top, a notable inverse relationship was observed between
the entropy of the student model’s predictions and overfitting. While
stronger data augmentation leading to increased entropy (indicative of
lower confidence), there was a concurrent decrease in the tendency
of the student model to overfit the training data, as evidenced by
the reduction in the train-validation accuracy gap. Fig. A.4 Bottom
further compares the model calibration reliability diagrams for KD with
varied teacher numbers (from 1 to 3) and data augmentation strengths.
It can be observed that as the number of teachers increased or the
augmentation strength increased (indicated by decreased Affinity), the
student models exhibited better calibration.

Table A.4 further provides the Expected Calibration Error (ECE)
with corresponding Affinity values for all the trials with 2-teacher en-
semble KD. This aids in understanding the data augmentation strengths
and the decreasing tendencies in all the previous scatter plots: Recall
12 
that Affinity measures the offset in data distribution between the orig-
inal one and the one after data augmentation captured by the student,
and lower Affinity corresponds to higher augmentation strength, lead-
ing to higher student accuracy. Thus, for the trials with strong data
augmentation (e.g., T1𝑤T2𝑤S𝑠 in CIFAR-100, CIFAR-100 imb100, and
ImageNet; T1𝑠T2𝑤S𝑠 in ImageNet-LT), they not only correspond to a
relatively small ECE but also a high validation accuracy.

A.7. Experiments with vision transformers

In this section, we also provide experiments with Vision Trans-
formers (ViTs) (Dosovitskiy et al., 2021) on CIFAR100 imb100 dataset
where the attention map can be obtained directly with the built-in
attention module. As shown in Fig. A.5, our analysis method can be
applied to attention-based methods such as ViT. The only difference is
that when calculating IoU, we can directly use the built-in attention
module of ViT to obtain the attention maps. In this experiment, two
ViT-b32 teachers are distilled on one ViT-b16 student for CIFAR100
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Table A.4
ECE and Affinity of models with various data augmentation strengths.

Dataset Metric Model

T1𝑤T2𝑤S𝑤 T1𝑤T2𝑤S𝑠 T1𝑠T2𝑤S𝑤 T1𝑠T2𝑤S𝑠 T1𝑤T2𝑠S𝑤 T1𝑤T2𝑠S𝑠 T1𝑠T2𝑠S𝑤 T1𝑠T2𝑠S𝑠

Cifar100 ECE 0.0776 0.0124 0.1076 0.0537 0.0994 0.0568 0.1397 0.0745
Affinity 0.9807 0.8611 0.9805 0.9083 0.9858 0.9143 0.9729 0.9310

Cifar100
imb100

ECE 0.0979 0.0103 0.1114 0.0465 0.0711 0.0482 0.1303 0.0651
Affinity 0.9763 0.8132 0.9810 0.8637 0.9751 0.8635 0.9723 0.8955

ImageNet ECE 0.0275 0.0095 0.0233 0.0118 0.0126 0.0107 0.0122 0.0193
Affinity 0.9901 0.8767 0.9930 0.8988 0.9845 0.9131 0.9871 0.9122

ImageNet
long-tail

ECE 0.0322 0.0226 0.0357 0.0224 0.0494 0.0307 0.0499 0.0178
Affinity 0.9850 0.8311 0.9755 0.8704 0.9782 0.8751 0.9903 0.8971
Fig. A.5. Scatter plots for experiments with Vision Transformer (ViT) on CIFAR100
imb100 dataset. Left : Fidelity (measured by top-1 A) and Right : IoU between T1 and T2
during KD training. These decreasing tendencies align with our conclusions drawn from
ResNet experiments, suggesting the applicability of our analysis method to attention-
based methods like ViT. The main distinction is in calculating IoU, where we can
directly use ViT’s built-in attention module to obtain the attention maps.

imb100 dataset. And the conclusions in our manuscript still holds
for these two cases. That is, lower student–teacher fidelity and larger
teachers’ attention diversity correlate with higher student validation
accuracy.

A.8. Few-shot knowledge distillation scenario

Previously, our problem setting required internal access to the
teachers and their complete original training set with labels. However,
in real-world applications, these resources are not always available.
Teachers may withhold their parameters or logits due to security and
privacy concerns, or the distillation process might occur on an external
party’s side where access to data is limited. In light of these practical
considerations, this section focuses on KD in few-shot, data-free, or
black-box scenarios.

Specifically, this section conducts experiments with the black-box
few-shot unsupervised KD method FS-BBT (Nguyen et al., 2022), and
the data-free KD method MAD (Do et al., 2022) on the CIFAR-100 and
ImageNet datasets. For comparison, we also evaluate our proposed KD
method, both in white-box supervised settings and black-box unsuper-
vised scenarios within few-shot learning. Notably, in the unsupervised
case, we adhere to the settings outlined in Nguyen et al. (2022),
where teacher models are trained using the full dataset in a super-
vised manner, while the student model accesses only a small subset
of training images without class labels, receiving target information
from the teachers’ outputs. To ensure fairness, we use the same number
of original subset images 𝑁 as in Nguyen et al. (2022), specifically
𝑁 = 10 000 for CIFAR-100 and 𝑁 = 50 000 for ImageNet.

The experimental results are presented in Table A.5. For reference,
we include the results of our proposed method, Ours(2T), which utilizes
fully supervised datasets, and these results are identical to those in
Table 2 in Section 7. In this context, Ours(2T) refers to the same setup
as before, specifically the KD process where two ResNet50 teacher
models distill knowledge to one ResNet18 student model, denoted as
T T S .
1𝑠 2𝑤 𝑠

13 
Table A.5
Few-shot KD: Comparison of our two-teacher ensemble KD against the black-box
few-shot unsupervised KD method FS-BBT, and the data-free KD method MAD on
CIFAR-100 and ImageNet datasets. without any additional models like VAE or EMA
image generators, our proposed method achieves comparable student performance
under the black-box few-shot unsupervised scenario.

Dataset Method Val-Acc

Cifar100

FS-BBT 0.5628
MAD 0.6405
Ours(2T) few-shot Bl-Una 0.6534

Ours(2T) few-shot Wh-Sub 0.7065
Ours(2T) full 0.8195

ImageNet

FS-BBT 0.4329
MAD 0.4548
Ours(2T) few-shot Bl-Una 0.4068

Ours(2T) few-shot Wh-Sub 0.4258
Ours(2T) full 0.6917

a Bl-Un: black-box teachers, unsupervised student.
b Wh-Su: white-box teachers, supervised student.

Table A.5 illustrates that, without the need for additional models
such as the VAE used in Nguyen et al. (2022) or EMA image generators
from Do et al. (2022), our proposed approach achieves comparable
student performance in the black-box few-shot unsupervised scenario.
Specifically, in this setting, Ours(2T) outperforms FS-BBT by 9.06% and
outperforms MAD by 1.29% on the CIFAR-100 dataset. Meanwhile, on
the ImageNet dataset, the performance of Ours(2T) is comparable to
both the FS-BBT and MAD methods.

The effectiveness of our proposed method stems from the teacher
ensemble structure combined with diverse data augmentation
strengths, which enhance the model’s attention mechanisms.

A.9. Comparison with model quantization

This section focuses on model quantization and presents experi-
ments using the Post Training Static Quantization technique (Nagel
et al., 2021) on our pre-trained teacher model with ImageNet dataset.
This technique reduces the model’s 32-bit floating-point numbers to
8-bit integers. We implemented this using torch.ao.quantization, and
since PyTorch does not provide quantized operator implementations
on CUDA, the experiments were conducted on a CPU, which is the only
supported device for testing quantized models. The experimental results
are summarized in Table A.6. For comparison, we include the baseline
results for the pre-trained teacher ResNet50 model and the Ours(2T)
Student ResNet18 model, as presented in Table 2.

Table A.6 shows that, compared to our proposed KD method, static
quantization on the pre-trained teacher model achieves a higher val-
idation accuracy (by 4.49%) and results in a smaller model size (by
20.8MB). However, due to PyTorch quantization’s lack of CUDA sup-
port, the average inference time is significantly higher, nearly 1 s per
image, while our KD method only takes 0.0036 s. To address this
issue, effective model quantization requires dedicated efforts in its
implementation, which can be model-specific and often necessitates
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Table A.6
Model quantization experimental results using Post Training Static Quantization tech-
nique, on our pre-trained teacher model with ImageNet dataset. This technique reduces
he 32-bit floating-point numbers in the model to 8-bit integers. For comparison, the
aseline (pre-trained teacher model ResNet50) and Ours(2T) student model ResNet18
re also listed.
Method Val-Acc Avg Infer time Model Size

Baselinea 0.7620 0.0059 s 102.5 MB
Static Quantb 0.7366 0.9143 s 26.1 MB
Ours(2T)c 0.6917 0.0036 s 46.9 MB

a Baseline: Teacher ResNet50.
b Static Quant: Static Quantization ResNet50.
c Ours(2T): Student ResNet18.

hardware-level adaptations. Such processes, along with quantization-
aware training, can be complex. In contrast, the KD technique of-
fers greater flexibility: once trained, the student model is ready for
eployment, with its architecture or size easily customizable.

Data availability

The data and codes are already shared online.
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