
MAILEX: Email Event and Argument Extraction

Saurabh Srivastava†, Gaurav Singh† , Shou Matsumoto†, Ali Raz†,
Paulo Costa†, Joshua Poore#, Ziyu Yao†

†George Mason University, #University of Maryland ARLIS
{ssrivas6, gsingh33, smatsum2, araz, pcosta, ziyuyao}@gmu.edu,

poorejc@umd.edu

Abstract

In this work, we present the first dataset,
MAILEX, for performing event extraction from
conversational email threads. To this end, we
first proposed a new taxonomy covering 10
event types and 76 arguments in the email do-
main. Our final dataset includes 1.5K email
threads and ∼4K emails, which are annotated
with totally ∼8K event instances. To under-
stand the task challenges, we conducted a se-
ries of experiments comparing three types of
approaches, i.e., fine-tuned sequence labeling,
fine-tuned generative extraction, and few-shot
in-context learning. Our results showed that the
task of email event extraction is far from being
addressed, due to challenges lying in, e.g., ex-
tracting non-continuous, shared trigger spans,
extracting non-named entity arguments, and
modeling the email conversational history. Our
work thus suggests more future investigations
in this domain-specific event extraction task.1

1 Introduction

Email has been one of the most widely used com-
munication mediums, especially in professional
and work environments. As the number of email
users continues to rise, service providers are con-
stantly looking for ways to improve user experi-
ence. With advancements in machine learning and
natural language processing, email platforms have
introduced a range of features aimed at helping
users manage their inboxes and automate tasks
(Feddern-Bekcan, 2008; Kannan et al., 2016; Chen
et al., 2019), concurrent with research on request
identification (Lampert et al., 2010), intent identi-
fication (Wang et al., 2019), meeting summariza-
tion (Deshmukh and Lee, 2022), task management
(Zhang et al., 2022; Mukherjee et al., 2020), etc.

However, most of the existing work touches only
one specific aspect of email information and thus

1The source code and dataset can be obtained from https:
//github.com/salokr/Email-Event-Extraction.

cannot connect with other relevant tasks. For in-
stance, in Lampert et al. (2010) even after identify-
ing emails containing requests, users will still need
to manually search through the lengthy emails to
find the actual request and then manage the tasks
with separate tools. On the other hand, existing ex-
ploration on the email data can cover only a subset
of potential events in email communications (e.g.,
requests or to-do tasks), whereas there are many
others that also commonly happen and need proper
management (e.g., delivery of data or information).

To facilitate more comprehensive downstream
tasks on email data, in this paper, we introduce the
task of event extraction on email threads. Event
extraction (Grishman, 1997), or EE, is the task of
extracting a specific occurrence of an event and its
arguments. It is an important step for downstream
tasks such as information retrieval, question an-
swering, knowledge base population, etc. EE has
long been studied in the context of news articles
(Li et al., 2021; Yu et al., 2022; Du et al., 2022). As
far as we know, there has not been such a dataset
in the email domain. On the other hand, EE on
email threads brings unique challenges such as per-
forming information extraction in a conversational
setting and needing to handle much longer and
more verbose arguments, which cannot be studied
with existing datasets.

To fill this gap, we first developed a taxonomy
to describe events and arguments in email data.
Specifically, we designed a set of 10 event classes
and 76 arguments using the speech act theory of
Cohen et al. (2004). Our event classes cover pro-
posals, amendments, and deliveries of actionable
events on meetings, actions, and data items (Sec-
tion 2). Unlike existing EE datasets, each trigger in
the email EE task is described with one Verb and
one Noun Act (e.g., DeliverVerb DataNoun), and the
arguments are often long-span, non-named entities
(e.g., a description of the meeting agenda), which
make the task much more challenging. Based on

https://github.com/salokr/Email-Event-Extraction
https://github.com/salokr/Email-Event-Extraction

this taxonomy, we then proposed a new dataset,
MAILEX, which consists of 1.5K email threads
and ∼4K emails annotated with ∼8K events. The
dataset achieves a substantial agreement between
annotators.

Comparing three approaches, i.e., fine-tuned se-
quence labeling based on BERT (Devlin et al.,
2018), fine-tuned generative EE based on BART
(Lewis et al., 2019), and in-context learning us-
ing GPT-3.5,2 we analyze the challenges in trigger
and argument extraction. Our results highlight the
need for advancements in handling non-continuous,
shared triggers and long-span, non-named entity
arguments while emphasizing the importance of ef-
fectively modeling email history. Moreover, the in-
context learning of GPT-3.5 yields much worse per-
formance, suggesting the challenge of this domain-
specific task in the few-shot setting.

2 Taxonomy for Email Event Extraction

2.1 Verb and Noun Acts
In this work, we focus on extracting commonly
seen events (e.g., scheduling meetings) from daily
email communications. Our event definition
follows the email speech act theory of Cohen
et al. (2004). An email speech act describes the
sender intent using a “verb-noun” pair, such as
“Requestverb Meetingnoun”. As such, the email
speech act carries the “actionable” information by
the sender. In Cohen et al. (2004), a set of five verbs
and four nouns are proposed (which could form 20
email speech acts). However, our preliminary study
on email corpora (Minkov et al., 2008; Oard et al.,
2015; Ulrich et al., 2008) reveals that most of them
are not used frequently in daily communications
(e.g., amending an action), or are not relevant to
“events” (e.g., exchanging opinions). Therefore, we
keep our focus on the most common 10 event types
enabled by three verb acts (i.e., Request, Deliver,
and Amend) and three noun acts (i.e., Data, Meet-
ing, and Action). For the noun act “Data”, we
further consider three sub-categories: (a) Meeting
Data, which refers to facts related to specific meet-
ings (e.g., meeting date, location), (b) Action Data,
which refers to facts related to a specific action or
an activity (e.g., a deadline for approving a budget
request, the person who approved the request, etc.),
and (c) Data which refers to all other information
irrelevant to meetings and actions, such as PDF
files sent in emails. While this fine-grained noun

2https://platform.openai.com/docs/models.

acts categorization may lead to skewed data dis-
tributions (Table 5), doing so allows us to easily
connect the EE task with downstream applications.
For example, when an EE model extracts meeting
data, a downstream email reminder can be automat-
ically set up to provide additional assistance, which
will not be feasible if we simply merge all types of
data information into one coarse category. Detailed
descriptions of all the verb and noun acts can be
found in Appendix A.1.

2.2 Event Types and Argument Roles
In total, we defined 10 event types with 76 argu-
ment roles, including a few “meta semantic roles”
which come with pre-defined class spaces. We
present three event types as examples below and
show the full list in Appendix A.2. In the examples,
we also denote the corresponding triggers (under-
lined) and [argument roles] (wrapped by “[·]”).
Request Data: The event is triggered when the
sender seeks data such as a file or a fact.

Example: Please send me [the sum-
mary of our meeting]Data IdString (Request
Attribute: Data Value)

Here, “Data IdString” refers to the identity or de-
scription of the sender-requested data. We also
introduce a meta semantic role “Request Attribute”
to indicate the attribute that the sender queries from
the data, which in practice is often the “Data Value”,
e.g., the specific PDF file of the meeting summary.
Deliver Data: The event is triggered when the
sender provides or commits to provide certain data.

Example: Attached for your review [the
summary of our meeting]Data IdString. (Con-
firmation: Positive)

For Deliver events, we introduce “Confirmation”
(positive, negative, or tentative3) as a meta seman-
tic role, affirming if the sender can provide the
requested data information (i.e., when the noun act
is Data), or acknowledge their attendance in meet-
ings or participation in action events (i.e., when the
noun act is Meeting Data or Action Data). Notably,
the Confirmation role could be perceived as a form
of “data” as well. In a conversational email set-
ting, people often reply with brief responses such
as “Sure” or “No, it doesn’t work” when someone
makes a request. By introducing the Confirmation

3Rarely people may give uncertain responses such as “I’m
not sure”; in that case, we mark it as “Unsure”.

https://platform.openai.com/docs/models

role, we can discern the sender’s intent even though
no concrete event information may be extracted
from a short answer.

Amend Data: The event is triggered when the
sender requests or indicates changes to a data
record. In order to describe the type of change,
we introduce a fixed set of “Amend Type” verbs
including add, delete, and update. Additionally,
we have observed that individuals frequently de-
scribe changes by providing context followed by
the revision, as shown in the example below. Con-
sequently, to differentiate between the various roles,
we introduce two labels, “Context” and “Revision”,
and replace all argument roles of the Data act with
two sets of copies for each (e.g., “Context: Data
Type” and “Revision: Data Type” instead of the
original “Data Type”). These modifications allow
for more precise differentiation and description of
the different aspects of the event and its roles.

Example: Can [you]Members change [the
budget]CNT:Data IdString from [2K]CNT:Data Value

to [3K]REV:Data Value (Amend Type: Update)

Note on Non-Continuous, Shared Triggers. Fi-
nally, we note that multiple events of the same type
could be mentioned in one email. In that case, trig-
ger words could be shared partially between events,
which makes the dataset more challenging:

Example: Alice
::::
will approve the wire

request and
::::::
inform to Susan.

In this example, two Deliver Action Data events
share the trigger word “will”.

3 The MAILEX Dataset

3.1 Data Annotation

We utilize the open-source Enron dataset (Minkov
et al., 2008)4 which comprises a collection of email
data from 150 users. We considered the top 50
users with the highest inbox counts and randomly
selected a range of 20 to 40 email threads for anno-
tation. Note that all single-email threads have been
removed in the interest of conversational event ex-
traction. By focusing on a set of users, MAILEX

could support personalization research, which we
leave as future work. The annotation process
involved annotators marking trigger words, event

4http://www-2.cs.cmu.edu/∼enron/. Some prior work in-
stead used Avacado (Oard et al., 2015); we did not choose it
because it is not completely publicly available.

Data Statistics Total (train/dev/test)

of email threads 1,500 (1,200/150/150)
of total emails 3,936 (3,117/414/405)
of non-event emails 776 (636/70/70)
of annotated events 8,392 (6,571/946/875)
Avg. # of events of the same
type appearing at least twice

3.05

Avg. # of words in an email 64.400
Avg. # of words in a trigger 2.64
Avg. # of words in an argument 7.41

Table 1: MAILEX data statistics.

types, and argument roles for each email while con-
sidering the context of the email history. Two native
English-speaking Computer Science students were
recruited for the task and received 12 USD/hr for
their work. To ensure accuracy, multiple rounds
of training and discussions were conducted. Each
email was annotated twice by each annotator, and
annotations with agreement on event type, over-
lapping trigger words, and argument spans were
retained. Specifically, for partially agreed triggers
(but with agreement on the event type), we re-
tained the overlapped word spans, and for partially
agreed arguments (but similarly with agreement
on the event type and having overlapped trigger
spans), we similarly retain the overlapped word
span. When two annotators did not agree on the
event type or made no overlap in their annotated
triggers, we abandoned the annotations completely;
for more details and the annotation guideline, see
Appendix B.1. In total, we collected a dataset con-
sisting of 1.5K email threads, encompassing ∼4K
emails and ∼8K events (Table 1).

Inter-Annotator Agreement (IAA). We measure
two IAA values, one for triggers and their associ-
ated event types (i.e., whether annotators agree on
the same trigger words and assign the same event
type), and one for the argument roles (i.e., whether
annotators agree on the argument role annotations
for the same trigger and event type). For both cal-
culations, we consider overlapping spans as indi-
cating partial agreement and apply Cohen’s kappa
κ (Cohen, 1960) at the word level while comparing
the annotations. We obtained a κ value of 0.791
(i.e., substantial agreement) for the trigger-event
type IAA and 0.810 (i.e., almost perfect agreement)
for the argument role IAA. For “meta semantic role”
annotations, we did not observe disagreements be-
tween the annotators who had agreed on event trig-
gers. We include analyses on the disagreement
cases in Appendix B.2.

http://www.cs.cmu.edu/~enron/

[SEP]

BERT

edits

Context (Email History)

Current Email

Event Templates

Filled Event Templates

Context [SEP][CLS] DD [TYPE]

O

BERT-based Sequence Labeling Pipeline

BART-based End-to-End Extraction

Event Deliver Data ...

Task Instruct Context Current Email\n\n

In-context Learning w/ GPT-3.5

[BOT] Event Deliver Data ...

Encoder Decoder

</s>Context </s> Current Email </s> Templates<s> \n

Few-shot
Demonstrations Test Input

O O O O O B-IdS I-IdS O O O OO O

[/TRG][TRG]As discussed , please find the draft ... and the redline

Argument Extraction
Target Event: Trigger "please find

the draft", Type "Deliver Data (DD)"
Arg 1: Role "Data IdString",

Span "the draft"
Arg 2: Role "Data Value", Span

"kevin_summary.pdf"

Trigger Extraction
Event 1: Trigger "please

find the draft", Type
"Deliver Data (DD)"

Event 2: Trigger "please
find the redline edits", Type

"Deliver Data (DD)"

Extracted Argument for
Role "Data IdString"

As discussed, please find the draft as discussed in the
meeting and the redline edits.
Attached :
 << kevin_smmary.pdf >>
 << redline.rtf >>

Context [SEP][CLS] [SEP]

BERT

As , please find the draft ... and the redline editsdiscussed

O O O S-DD S-DD I-DD I-DD ... I-DD I-DD I-DDO

Shared Triggers please find the
redline edits

please find
the draft

...

...

...

...

[BOT] Event Deliver Data is triggered by |please find the draft|
where, |the draft as discussed|, |kevin_summary.pdf| is or will be
delivered to |Deliver Members| at |Time| on |Date| [EOT] </s>
[BOT] Event Deliver Data is triggered by |please find the redline|
where, |the redline edits|, |redline.rtf| is or will be delivered to
|Deliver Members| at |Time| on |Date| [EOT] </s> </s>

[BOT] Event Request Action is triggered by |trigger| where, |Action
Description| is requested from |Action Members| at |Time| on |Date|
[EOT] </s>
[BOT] Event Deliver Data is triggered by |trigger| where, |Data
Description|, |Data Value| is or will be delivered to |Deliver
Members| at |Time| on |Date| [EOT] </s>
... (in total, 10 templates)

Come join us in the 5th Annual Meeting to discuss our progress
tomorrow after 3 PM. [CONTEXT]
Can we schedule it tomorrow. Also, please send me the
presentations for your discussion by end of day today. [CONTEXT]
Thank you for attending the meeting everyone. Can everyone of
you please prepare the drafts as we discussed and send it to me
before 3 PM tomorrow? [CONTEXT]

"The filled
templates are:"

Figure 1: Illustrations of the three approaches we experimented with for email EE.

3.2 Data Statistic and Analysis

We present MAILEX statistics in Table 1. By look-
ing into the details, MAILEX presents following
unique characteristics and challenges:
Imbalanced type and role distribution. As shown
in Table 5, the event distributions are imbalanced
across different event types (e.g., events related
to delivering data are more common than amend-
ments); similarly for argument roles.
Conversational context. In a conversational set-
ting, we observe common patterns between con-
secutive emails. For example, a request event is
typically followed by a deliver or an amend event.
Modeling the email context and capturing this intu-
ition can thus be helpful for the task.
Multiple events of the same types. Unlike ex-
isting datasets, MAILEX often contains multiple
instances of the same event type within a single
email, such as multiple deliver data events. When
such cases happen, on average the same event type
recurs in ∼3 instances in the same email.
Non-continuous, shared triggers. Since MAILEX

contains event classes with verb and noun acts,
triggers signaling both acts may not necessarily
be continuous, especially when they share spans,
posing a new challenge for trigger identification.
Non-named-entity arguments. Argument spans
for roles such as “Meeting Agenda” and “Action
Description” may not necessarily be named enti-
ties; as an example, consider the “Meeting Agenda”
argument in “We will discuss the following items to-
day [1) Actionable for this month . 2) Next month’s

budget plan. . . .]Meeting Agenda.” As a result, arguments
in MAILEX can be much longer than conventional
entity arguments and may even span over a few sen-
tences. Unlike trigger spans, however, argument
spans are always continuous spans.
Non-event emails. Some emails contain only non-
event information, such as opinions and news in-
formation, and an intelligent EE model should not
identify any events from them.
Tabular data. MAILEX also includes emails con-
taining tabular data, which pose challenges due
to their non-sentence-like sequential structure (see
Figure 4 for example).

4 Methodology

4.1 Task Formulation

Each email thread X = (X1, . . . , Xt, . . . , XT)
consists of multiple emails, where T is the total
number of emails in a thread. Our goal is to extract
events from the thread. This involves two sub-tasks:
(1) Trigger Extraction, where we identify the trig-
ger span within each email and determine the as-
sociated event type, and (2) Argument Extrac-
tion, where we identify spans within each email
that serve as argument roles for the event instance.
During event extraction for a given email Xt, only
information before the current time step t is used as
context. This emulates a practical scenario where
an intelligent system incrementally extracts events
as new emails arrive. In this work, we explore three
approaches to understand the task of email event
extraction, as summarized in Figure 1.

4.2 BERT-based Sequence Labeling

Sequence labeling based on BIO tags is a classic
approach to event extraction (Nguyen et al., 2016;
Nguyen and Nguyen, 2018). In our work, we fine-
tune two BERT models, one for trigger extraction
and one for argument extraction, respectively.

For trigger extraction, in order to address the
challenge of multiple events within a single email
(Section 2.2), we additionally introduced a shared
“S” tag. Each event type is assigned BIS tags,
such as S/B/I-Request Meeting, while the tag
O is used to denote non-trigger words common
to all event types. Shared triggers among event
instances of the same type are identified using S
tags (see Figure 1 for an example). The input to
BERT is organized as “[CLS] X1 [CONTEXT]
X2. . . [CONTEXT] [SEP] Xt [SEP]”. Each
word in the current email Xt is then assigned a
label from the set of BIOS tags based on its BERT
representation.

For argument extraction, the BERT model is
provided with a target trigger span and its event
type. We similarly formulate this task as a BIO
sequence labeling problem. However, unlike trig-
ger extraction, arguments of the same event in-
stance do not share spans. Therefore, we do not
use any “S” tags in argument extraction. We pre-
pare the input as the following to the BERT model:
“[CLS] $type [TYPE] X1 [CONTEXT] X2 . . .
[CONTEXT] [SEP] xt,1 . . . [TRG] . . . [/TRG]
. . . xt,|Xt| [SEP]”. Here, $type is a placeholder
for the event type. To encode the trigger span in-
formation, we introduce a pair of special tokens
“[TRG]” and “[/TRG]” to indicate triggers in the
current email Xt. In the case of non-continuous
trigger spans, every segment of the trigger span
will be wrapped by this pair of special tokens. The
argument role label of each word is then predicted
based on its BERT representation.

In addition, the argument extraction model also
includes classifier heads for meta semantic roles
prediction (Section 2.2), which will be jointly opti-
mized in training. We refer readers to Appendix C.1
for details about the training and inference of the
sequence labeling approach.

4.3 BART-based End-to-End Extraction

A drawback of sequence labeling approaches lies in
that they cannot leverage the semantic meaning of
the label names and thus may need massive annota-
tions for effective generalization. Recent work has

illustrated the promise of adopting pre-trained au-
toregressive language models for EE, where label
names are explicitly spelled out during decoding
(e.g., “The meeting time is 7 AM” for extracting the
“Meeting Time” argument) and their semantics can
thus be leveraged (Li et al., 2021; Du et al., 2022).
Drawing inspiration from there, we design a set
of event templates (see Figure 1 for an example
and Appendix C.2 for all templates) and fine-tune
a BART model to perform end-to-end EE.

For end-to-end extraction, the model’s input
comprises the email content and the template.
Specifically, we prepare the input sequence as “<s>
X1 [CONTEXT] X2 . . . [CONTEXT] </s> Xt

</s> [BOT] $template1 [EOT] </s> [BOT]
$template2 . . . [EOT] </s> </s>”, where
“[BOT]” and “[EOT]” are special tokens indicating
the template boundaries. With this setup, BART is
trained to generate a sequence of templates, extract-
ing the events from the email and their respective
arguments. Importantly, the model only decodes
templates for events present in the email, disregard-
ing the ones for absent events. Moreover, in scenar-
ios where an email contains multiple instances of
the same event, the model produces multiple filled-
out templates for each instance, all categorized
under the same event type. All the generated tem-
plates are delimited via the special tokens “[BOT]”
and “[EOT]”.

4.4 In-context Learning with GPT-3.5
We further evaluate the performance of GPT-3.5 to
understand if few-shot large language models have
been able to perform well in closed-domain EE
tasks. Similar to our BART-based EE model, we
use GPT-3.5 for end-to-end extraction. Our prompt
concatenates a task instruction, all the event tem-
plates, few-shot demonstrations, and the context
and email body for the test example. We ensure the
presence of all possible event types and arguments
by carefully selecting K (K=5) shots of demon-
strations from the training set. We present our
prompt in Figure 8 in Appendix C.3. In experi-
ments, we investigated both text-davinci-003
and gpt-3.5-turbo for a comparison.

5 Experiments

5.1 Experimental Setup

Datasets. We split MAILEX by email threads into
training, development, and test sets with a ratio of
80, 10, and 10, ensuring that at least once each

Trigger Argument

Identification Classification Identification Classification

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT-based Sequence Labeling 0.581 0.499 0.537 0.566 0.486 0.523∗ 0.491 0.403 0.454 0.355 0.383 0.368
w/ ground-truth triggers - - - - - - 0.653 0.671 0.662 0.642 0.660 0.651
w/o email thread history 0.577 0.493 0.531 0.532 0.483 0.506 0.488 0.397 0.438 0.335 0.380 0.356

BART-based Generative Extraction 0.701 0.395 0.505 0.701 0.394 0.500 0.592 0.351 0.441 0.374 0.350 0.363
w/ ground-truth triggers - - - - - - 0.690 0.482 0.568 0.688 0.471 0.560
w/o email thread history 0.688 0.389 0.500 0.679 0.388 0.494 0.572 0.333 0.421 0.370 0.339 0.354

In-context Learning (GPT-3.5)
text-davinci-003 0.167 0.171 0.169 0.100 0.101 0.100 0.068 0.069 0.068 0.058 0.060 0.058

w/ ground-truth triggers - - - - - - 0.379 0.356 0.367 0.349 0.330 0.338
gpt-3.5-turbo 0.183 0.095 0.121 0.098 0.060 0.072 0.058 0.045 0.050 0.056 0.040 0.048

w/ ground-truth triggers - - - - - - 0.256 0.198 0.223 0.242 0.190 0.211

Table 2: Results on MAILEX test set. For both fine-tuned and in-context learning, we additionally report their
argument extraction performance when feeding ground-truth triggers (“w ground-truth trigger”). For the former,
we also report their overall performance when the email thread history is ablated (“w/o email thread history”).
∗ indicates significantly better performance than BART under a Wilcoxon signed-rank test (Wilcoxon, 1992) with a
significance level α = 0.05, whereas no significant difference was observed for Argument Classification F1.

event type is present in each of the three sets. The
statistics for the sets are shown in Table 1.

Evaluation Metrics. We evaluate trigger and ar-
gument extraction using Precision, Recall, and F1
scores, following prior work (Du and Cardie, 2020;
Sheng et al., 2021). For triggers, we consider a
match when the identified span exactly matches
the gold label (Trigger Identification) and is cor-
rectly classified into the event type (Trigger Clas-
sification). For arguments, we assess Argument
Identification (i.e., whether an argument span is
correctly identified) and Argument Classification
(i.e., whether the argument span is additionally cor-
rectly classified into the true role). Unlike trigger
evaluation, partial matching is allowed for argu-
ments to encourage more fair comparison, espe-
cially for non-named entity arguments with long
spans. This aligns with similar evaluation strategies
used by Li et al. (2021). Finally, we note that the
argument evaluation reports an end-to-end extrac-
tion performance; for BERT-based sequence label-
ing, only the model-extracted triggers are fed for
argument extraction during evaluation. More im-
plementation details are provided in Appendix D.

5.2 Experimental Results and Analyses

5.2.1 Main Results

Table 2 shows the model performance. We observe
that the BERT-based sequence labeling pipeline
and the BART-based approach achieve comparable
end-to-end argument classification performance,
though the former outperforms the latter in trig-
ger extraction. On the other hand, BART exhibits
high precision in making decisions, yet struggles in
recall. A qualitative examination of the dev set sug-

gests that BART occasionally fails to copy from the
current email, which leads to low recall. Moreover,
for trigger identification and classification, BART
achieves close F1s, suggesting that once it identi-
fies the span, it accurately classifies the trigger.

Finally, we note much worse overall perfor-
mance by both versions of GPT-3.5 in-context
learning, which we will carefully discuss in Sec-
tion 5.2.5. In light of this underwhelming perfor-
mance, our subsequent analyses will mostly focus
on the two fine-tuned approaches.

5.2.2 Challenges in Extracting Triggers

Identifying Minimal, Complete Trigger Spans.
Our annotation guidelines (Appendix B.1) con-
strains a trigger to be a minimal sequence of words
or phrases triggering an event. We observed that
both models fail to adhere to this constraint and
make mistakes by adding additional trivial details,
e.g., for an email with the ground-truth trigger “Will
meet”, BERT predicted “Will meet upstairs”.

Additionally, we noticed a few instances where
both models fail to identify the complete trigger
span, resulting in propagated errors in trigger classi-
fication. For example, for an email with the ground-
truth trigger “amended the deal”, BERT predicted
a partial trigger “amended”. It is worth emphasiz-
ing that in the ground-truth trigger, the phrase “the
deal” informs the recipient about an amendment
made on the data “the deal”, thereby triggering the
Amend Data event. Failure to identify the complete
trigger span incorrectly triggered a Deliver Action
Data event.

Classifying the Noun Acts of Triggers. In trigger
classification, models struggle to properly classify

noun acts associated with triggers. For example,
we observed instances where the true event Re-
quest Action Data was confused with Request Ac-
tion 39% of the time, and Deliver Meeting Data
was confused with Deliver Action Data 27% of the
time (Figure 6 in Appendix E.1). Such challenges
arise from similar words or phrases used by email
senders to trigger specific noun acts. For instance,
when the trigger is “will attend the seminar” BERT
fails to recognize that a seminar is a type of meet-
ing, resulting in incorrect classification as Deliver
Action Data instead of Deliver Meeting Data. This
highlights a challenge in MAILEX, where abstract
event-type definitions lead to language variations
and variations in noun acts of triggers. On the con-
trary, previous event extraction datasets (Walker
et al., 2006; Wang et al., 2020) have focused mainly
on verb-act triggers, overlooking the complexities
of noun acts and the resulting language variations.

Extracting Non-Continuous, Shared Triggers.
We observe that BERT was unable to segment
spans that trigger multiple events. For example,
in emails containing shared triggers with short
distances, such as “

::::::::
Attached the report and

:::
the

:::::::
redlines.”, it identifies one Deliver Data event with
the trigger “Attached the report and the redlines”.
Meanwhile, when there is a long distance between
the two partially shared triggers, BERT can iden-
tify only the first one. We include examples in
Appendix E.2. Intriguingly, BART was able to cor-
rectly extract shared triggers with shorter distances
in the majority of cases, though it still couldn’t
handle the longer distances. These findings are
consistent with a similar study conducted by Sheng
et al. (2021) where the authors also argue the lim-
itations of sequence labeling approaches for such
shared triggers.

5.2.3 Challenges in Extracting Arguments

Error Propagation from Trigger Extraction. In
Table 2, we present each model’s performance on
argument extraction when ground-truth triggers are
fed, so as to understand whether the low end-to-
end argument extraction performance of the two
fine-tuned models is caused by error propagated
by trigger extraction. We note that even with the
gold triggers, both models still fall short of achiev-
ing perfect argument extraction results, highlight-
ing the challenging nature of both extraction tasks.
Moreover, with ground-truth triggers, the sequence
labeling pipeline outperforms BART by around

Figure 2: Argument classification results on MAILEX
dev set, categorized by whether the argument is a named
entity (left) and by its length (right). For spans of length
more than 10 we show macro-average of their F1s. All
the models struggle to correctly extract non-named enti-
ties, long-span arguments.

9% Argument Classification F1. This implies a
stronger argument extraction performance from the
former model. In our conjecture, this can be at-
tributed to the fact that the pipeline approach has an
independently learned argument extraction model,
while the BART approach has to learn both extrac-
tion tasks within the same model.

Extracting Non-Named Entity Arguments. In
Figure 2, we break down each model’s argument
extraction performance by named vs. non-named
entity argument as well as the argument length. The
results indicate that all models struggle to extract
non-named entity arguments, particularly those
with longer spans. This observation thus implies
the need for more advanced modeling strategies in
future research.

5.2.4 Importance of Modeling Email History

In Table 2, we present model performance when
ablating the modeling of the email history (i.e.,
“context” in Figure 1). As expected, we observed
performance drops for both BERT and BART in
all metrics. This emphasizes the importance of
modeling the conversational history in the email
thread. To corroborate this, we conducted a study
of randomly sampled 50 emails and found that 11
(22%) emails required the previous turn in event
decision-making. We note that this percentage is
much larger than the observed performance drop.
We attribute this inconsistency to the ineffective
modeling of email history when our approaches
simply concatenate all the prior email bodies. This
thus calls for future exploration, such as selectively
including prior emails only when they are helpful
for EE from the current email.

8.0%

6.0%

8.0%

42.0%

36.0%

Extra Arguments
Missing Arguments
Semantically Correct but
not exactly matches w/
spans
Semantically incorrect
arguments
Semantically incorrect
and fabricated arguments

Figure 3: Distribution of erroneous arguments extracted
by gpt-3.5-turbo.

5.2.5 Analysis of In-context Learning

Both versions of GPT-3.5 in-context learning be-
haved substantially worse (e.g., 0.058 and 0.048
Argument Classification F1 in end-to-end evalua-
tion) compared to the fine-tuned approaches. To
understand whether the challenge lies solely in ex-
tracting triggers, in Table 2, we similarly present
results with ground-truth triggers as how we ana-
lyzed the fine-tuned models in Section 5.2.3. How-
ever, the results show that even with ground-truth
triggers, the few-shot argument extraction is still
very challenging (more than 0.3 Arg. Class. F1
behind the fine-tuned models).

We analyzed 50 randomly sampled erroneous
predictions by gpt-3.5-turbo w/ gold triggers,
and categorized errors in its extracted argument val-
ues in Figure 3. The most common mistakes made
by the models include semantically incorrect argu-
ments such as extracting an incorrect person as the
meeting member (42%). In this case, the incorrect
arguments are still valid entities mentioned in the
email. However, another common mistake (36%)
is generating not only semantically incorrect but
also fabricated, non-existing entities in the email
as arguments. Approximately 8% of the generated
arguments are semantically correct but not exact
spans copied from the email, such as a summarized
version of the meeting agenda. Other error types in-
clude introducing extra arguments (8%) or missing
arguments (6%); for the former, the model assigns
the sender as an extra member in all the failure
cases. We include examples in Table 11. In addi-
tion, gpt-3.5-turbo also made errors when gen-
erating unused argument placeholders of the event
templates, which we discuss in Appendix E.3. No-
tably, text-davinci-003 rarely generates fabri-
cated arguments, and it obtains better performance
particularly because it made much fewer mistakes
when generating argument placeholders.

We also note that due to the word limit imposed
by GPT-3.5, for some test examples, we have to

prune the email thread input, which could lead to a
loss of information. Designing prompts that allow
large language models to ground to long context is
thus an important future direction.

6 Related Work

Event Extraction Models. Earlier work on EE
tasks has typically followed a pipeline approach
to identify triggers before extracting arguments (Ji
and Grishman, 2008; Liao and Grishman, 2010; Du
and Cardie, 2020). Alternatively, joint sequence
labeling approaches (Nguyen et al., 2016; Nguyen
and Nguyen, 2018) perform trigger extraction and
argument extraction simultaneously, employing a
unified decoder that tags the sentence in a single
pass. A recent trend formulates EE as an extractive
question-answering problem (Du and Cardie, 2020;
Liu et al., 2020) which induces the language knowl-
edge from pre-trained language models by convert-
ing EE tasks to reading comprehension tasks via
a question template. With the help of pre-trained
encoder-decoder Transformer architectures such as
BART and T5 (Raffel et al., 2020), there is also
some recent work converting extraction tasks to
generation tasks (Li et al., 2021; Lu et al., 2021).
Finally, prompt-tuning (Dai et al., 2022; Ma et al.,
2022) and few-shot in-context learning (Gao et al.,
2023) have emerged as promising solutions to com-
bat the “low resources” constraint of EE.

In this work, we experimented with three ap-
proaches, i.e., a pipeline of sequence labeling, the
BART-based generative extraction, and few-shot
in-context learning using GPT-3.5. Particularly for
sequence labeling, we introduced a “S” tag to han-
dle shared triggers. Our experiments compared
these approaches and shed light on future research
on email EE.

Event Extraction Datasets. The Automatic Con-
tent Extraction, ACE05, dataset (Walker et al.,
2006) has been the standard evaluation benchmark
for EE. Similar to ours, there are also datasets fo-
cused on specific domains, such as drug safety (Sun
et al., 2022), news headlines (Deng et al., 2022),
and business and financial domain (Capet et al.,
2008). While most existing EE datasets aim to ex-
tract information from individual sentences, several
attempts have been made to extend the extraction
task to multiple sentences (Ebner et al., 2020) or
documents (Eirew et al., 2022). As far as we know,
MAILEX is the first comprehensive dataset for EE
in the email domain. As discussed in Section 3.2,

it brings multiple unique challenges such as the
conversational context and the need to model non-
named entity arguments, which were not covered
by prior datasets.

Other NLP research on Email Data. Previous
research on emails can be categorized into keyword
and action extraction (Turney, 2000), request iden-
tification (Lampert et al., 2010), modeling action
items in emails (Lin et al., 2018), subject line gener-
ation (Xue et al., 2020), to-do generation (Mukher-
jee et al., 2020), and text summarization (Desh-
mukh and Lee, 2022). There has also been consid-
erable research on identifying speech acts or tasks
in emails (Cohen et al., 2004; Carvalho and Cohen,
2005) and how it can be robustly adapted across
diverse email corpora (Azarbonyad et al., 2019).
Recent work on task management automatically
extracts actionable items from emails, generates
faithful to-do items, and then aligns them to the
correct users (Zhang et al., 2022). MAILEX uni-
fies the majority of these tasks (such as handling
requests, creating to-dos, etc) and covers a wide
range of events in email communications.

7 Conclusion

In this paper, we have proposed a new task of ex-
tracting events and their arguments from conver-
sational email data. To motivate future research
in this direction, we also present a new dataset
MAILEX, including a new taxonomy to describe
common events mentioned in emails. We also con-
duct a series of evaluations on MAILEX, conclud-
ing that email EE is far from being addressed and
more advanced methodologies are needed.

Limitations

While we aim to advocate the new task of EE in the
email domain, our approaches can be significantly
improved in the future. For example, as pointed
out in Section 5.2.4, modeling email history is cru-
cial for more accurate EE in a conversational set-
ting. While we directly concatenate all the previous
emails to extract events from the current turn, fu-
ture work can design more specialized architectures
for it such as applying an attention mechanism to
retrieve only the relevant emails from the history.
One could also use the dynamic memory similar to
that of Du et al. (2022) and store only the extracted
events (as opposed to the raw texts) from the email
history. In addition, future work can further ad-
vance our approaches by modeling the sequential

event constraints (e.g., amendments often follow
the proposal of an event), as well as proposing
better modeling strategies to handle the long-text,
non-named entity arguments in emails. Finally,
it could be worth investigating the application of
open-source Chat Language Models (e.g., Vicuna
(Chiang et al., 2023), FastChat (Zheng et al., 2023),
and Koala (Geng et al., 2023)) in this conversa-
tional EE task.

Another limitation of our work lies in the limited
contexts of the Enron dataset, which is the source
corpus of our annotations. As emails in the Enron
dataset are all conversations among Enron employ-
ees or between Enron employees and outsiders, the
resulting MAILEX still retains this context foot-
print and is not a fully open-domain one. However,
despite this constraint, our taxonomy of email EE
is not limited to only business contexts. As high-
lighted in Section 2, our taxonomy, inspired by
Cohen et al. (2004), is tailored for task-oriented
email communications, with the goal of extracting
“actionable” items conveyed by the sender. While
the majority of the MAILEX focuses on business-
related dialogues, it also touches down the realm
of informal and personal communications. Such
emails might delve into personal work reflections
or family-related job discussions. This diversity
is consistent with the findings of Alkhereyf and
Rambow (2017), which revealed a substantial vol-
ume of personal communications in the Enron col-
lection. Given that the Enron dataset is, to our
knowledge, the only comprehensive and publicly
available email corpus, MAILEX offers invaluable
potential for subsequent email EE research, despite
its specific contextual nature.

Ethical Statements

Our annotations are based on a fully open-source
dataset (Enron), and our developed models will be
open-source as well. We expect that our work can
have a strong broader impact. For example, our
dataset and the developed models can be used to
enable more advanced personal assistants based on
daily emails, which can improve workplace pro-
ductivity or help people with difficulty in reading
and processing a large volume of emails. However,
given that even the best-performing EE models in
our experiments cannot precisely extract the stated
information and may even fabricate contents, addi-
tional verification tools and proper user guidance
will be needed, although we anticipate that the ex-

traction performance can be significantly improved
in the future.

Acknowledgements

This work was supported by the United States
Government under contract FA8702-15-D-0002,
via subcontract through the University of Mary-
land. The views, opinions, and/or filings con-
tained in this material are those of the author(s)
and should not be construed as an official posi-
tion, policy, or decision of the Government of the
United States or Carnegie Mellon University or
the Software Engineering Institute unless desig-
nated by other documentation. This project was
also supported by resources provided by the Office
of Research Computing at George Mason Univer-
sity (https://orc.gmu.edu) and funded in part
by grants from the National Science Foundation
(Awards Number 1625039 and 2018631). Finally,
Saurabh and Ziyu appreciate the funding support
from George Mason College of Engineering and
Computing.

References
Sakhar Alkhereyf and Owen Rambow. 2017. Work hard,

play hard: Email classification on the avocado and
Enron corpora. In Proceedings of TextGraphs-11:
the Workshop on Graph-based Methods for Natu-
ral Language Processing, pages 57–65, Vancouver,
Canada. Association for Computational Linguistics.

Hosein Azarbonyad, Robert Sim, and Ryen W White.
2019. Domain adaptation for commitment detection
in email. In Proceedings of the twelfth ACM inter-
national conference on web search and data mining,
pages 672–680.

Philippe Capet, Thomas Delavallade, Takuya Nakamura,
Agnes Sandor, Cedric Tarsitano, and Stavroula Voy-
atzi. 2008. A risk assessment system with automatic
extraction of event types. In Intelligent Information
Processing IV: 5 th IFIP International Conference on
Intelligent Information Processing, October 19-22,
2008, Beijing, China 5, pages 220–229. Springer.

Vitor R Carvalho and William W Cohen. 2005. On the
collective classification of email" speech acts". In
Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 345–352.

Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan
Wang, Andrew M Dai, Zhifeng Chen, et al. 2019.
Gmail smart compose: Real-time assisted writing. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 2287–2295.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

William Cohen, Vitor Carvalho, and Tom Mitchell.
2004. Learning to classify email into “speech acts”.
In Proceedings of the 2004 Conference on Empiri-
cal Methods in Natural Language Processing, pages
309–316.

Lu Dai, Bang Wang, Wei Xiang, and Yijun Mo. 2022.
Bi-directional iterative prompt-tuning for event argu-
ment extraction. arXiv preprint arXiv:2210.15843.

Haolin Deng, Yanan Zhang, Yangfan Zhang, Wangyang
Ying, Changlong Yu, Jun Gao, Wei Wang, Xiaoling
Bai, Nan Yang, Jin Ma, et al. 2022. 2event: Bench-
marking open event extraction with a large-scale chi-
nese title dataset. arXiv preprint arXiv:2211.00869.

Soham Deshmukh and Charles Lee. 2022. Adapting
task-oriented dialogue models for email conversa-
tions. arXiv preprint arXiv:2208.09439.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xinya Du and Claire Cardie. 2020. Event extraction by
answering (almost) natural questions. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 671–683,
Online. Association for Computational Linguistics.

Xinya Du, Sha Li, and Heng Ji. 2022. Dynamic global
memory for document-level argument extraction. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5264–5275, Dublin, Ireland. As-
sociation for Computational Linguistics.

Seth Ebner, Patrick Xia, Ryan Culkin, Kyle Rawlins,
and Benjamin Van Durme. 2020. Multi-sentence
argument linking. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics.

Alon Eirew, Avi Caciularu, and Ido Dagan. 2022. Cross-
document event coreference search: Task, dataset and
modeling. arXiv preprint arXiv:2210.12654.

Tanya Feddern-Bekcan. 2008. Google calendar. Jour-
nal of the Medical Library Association: JMLA,
96(4):394.

Jun Gao, Huan Zhao, Changlong Yu, and Ruifeng Xu.
2023. Exploring the feasibility of chatgpt for event
extraction. arXiv preprint arXiv:2303.03836.

https://orc.gmu.edu
https://doi.org/10.18653/v1/W17-2408
https://doi.org/10.18653/v1/W17-2408
https://doi.org/10.18653/v1/W17-2408
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2022.acl-long.361
https://doi.org/10.18653/v1/2022.acl-long.361

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post.

Ralph Grishman. 1997. Information extraction: Tech-
niques and challenges. In International summer
school on information extraction, pages 10–27.
Springer.

Heng Ji and Ralph Grishman. 2008. Refining event
extraction through cross-document inference. In Pro-
ceedings of ACL-08: HLT, pages 254–262, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kauf-
mann, Andrew Tomkins, Balint Miklos, Greg Cor-
rado, Laszlo Lukacs, Marina Ganea, Peter Young,
et al. 2016. Smart reply: Automated response sug-
gestion for email. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge dis-
covery and data mining, pages 955–964.

Andrew Lampert, Robert Dale, and Cecile Paris. 2010.
Detecting emails containing requests for action. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 984–
992.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level
event argument extraction by conditional generation.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 894–908, Online. Association for Computa-
tional Linguistics.

Shasha Liao and Ralph Grishman. 2010. Using doc-
ument level cross-event inference to improve event
extraction. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 789–797, Uppsala, Sweden. Association for
Computational Linguistics.

Chu-Cheng Lin, Dongyeop Kang, Michael Gamon, and
Patrick Pantel. 2018. Actionable email intent mod-
eling with reparametrized rnns. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1641–1651, Online. Association
for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2Event: Controllable sequence-to-
structure generation for end-to-end event extraction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2795–2806, Online. Association for Computational
Linguistics.

Yubo Ma, Zehao Wang, Yixin Cao, Mukai Li, Meiqi
Chen, Kun Wang, and Jing Shao. 2022. Prompt
for extraction? paie: Prompting argument interac-
tion for event argument extraction. arXiv preprint
arXiv:2202.12109.

Einat Minkov, Ramnath Balasubramanyan, William W
Cohen, and Machine Learning Dep. 2008. Activity-
centred search in email. In CEAS.

Sudipto Mukherjee, Subhabrata Mukherjee, Marcello
Hasegawa, Ahmed Hassan Awadallah, and Ryen
White. 2020. Smart to-do: Automatic genera-
tion of to-do items from emails. arXiv preprint
arXiv:2005.06282.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016. Joint event extraction via recurrent neural
networks. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 300–309, San Diego, California.
Association for Computational Linguistics.

Trung Minh Nguyen and Thien Huu Nguyen. 2018. One
for all: Neural joint modeling of entities and events.

Douglas Oard, William Webber, David Kirsch, and
Sergey Golitsynskiy. 2015. Avocado research email
collection. Philadelphia: Linguistic Data Consor-
tium.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Jiawei Sheng, Shu Guo, Bowen Yu, Qian Li, Yiming
Hei, Lihong Wang, Tingwen Liu, and Hongbo Xu.
2021. CasEE: A joint learning framework with cas-
cade decoding for overlapping event extraction. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 164–174, Online.
Association for Computational Linguistics.

Zhaoyue Sun, Jiazheng Li, Gabriele Pergola, Byron C
Wallace, Bino John, Nigel Greene, Joseph Kim, and
Yulan He. 2022. Phee: A dataset for pharmacovig-
ilance event extraction from text. arXiv preprint
arXiv:2210.12560.

https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://aclanthology.org/P08-1030
https://aclanthology.org/P08-1030
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://aclanthology.org/P10-1081
https://aclanthology.org/P10-1081
https://aclanthology.org/P10-1081
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://aclanthology.org/2021.acl-long.217
https://aclanthology.org/2021.acl-long.217
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034
http://arxiv.org/abs/1812.00195
http://arxiv.org/abs/1812.00195
https://doi.org/10.18653/v1/2021.findings-acl.14
https://doi.org/10.18653/v1/2021.findings-acl.14

Peter D Turney. 2000. Learning algorithms for
keyphrase extraction. Information retrieval, 2:303–
336.

Jan Ulrich, Gabriel Murray, and Giuseppe Carenini.
2008. A publicly available annotated corpus for
supervised email summarization. In Proc. of aaai
email-2008 workshop, chicago, usa.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 57:45.

Wei Wang, Saghar Hosseini, Ahmed Hassan Awadallah,
Paul N Bennett, and Chris Quirk. 2019. Context-
aware intent identification in email conversations. In
Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 585–594.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong
Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin,
and Jie Zhou. 2020. Maven: A massive general
domain event detection dataset.

Frank Wilcoxon. 1992. Individual comparisons by rank-
ing methods. In Breakthroughs in Statistics: Method-
ology and Distribution, pages 196–202. Springer.

Mingfeng Xue, Hang Zhang, and Jiancheng Lv. 2020.
Key factors of email subject generation. In Neural
Information Processing: 27th International Confer-
ence, ICONIP 2020, Bangkok, Thailand, November
18–22, 2020, Proceedings, Part IV 27, pages 668–
675. Springer.

Pengfei Yu, Zixuan Zhang, Clare Voss, Jonathan May,
and Heng Ji. 2022. Building an event extractor with
only a few examples. In Proceedings of the Third
Workshop on Deep Learning for Low-Resource Natu-
ral Language Processing, pages 102–109.

Kexun Zhang, Jiaao Chen, and Diyi Yang. 2022. Focus
on the action: Learning to highlight and summarize
jointly for email to-do items summarization. In Find-
ings of the Association for Computational Linguistics:
ACL 2022, pages 4095–4106.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

A Taxonomy Details

A.1 Verb and Noun Acts
We consider three verb acts. When introducing
these acts, we also indicate the corresponding trig-
gers (underlined) that signal their presence. (1)
Request: The request act is triggered when the
sender intends to perform an act of asking or or-
dering something formally or informally. Example:

Can you please send me a summary of our meeting
yesterday? (2) Deliver: The deliver act provides
or commits to provide something, such as a file, an
answer to a query, or information about events (e.g.,
the location of a meeting). Example: I will send you
the summary report of our meeting. (3) Amend:
An amend act requests or informs about a change in
some earlier proposals, e.g., to change the meeting
date or contact information in a database. Example:
Can you please update the summary report of our
meeting?

We also define three noun acts, which describe
the event entities. (1) Data: Data can be a piece of
information, such as a concrete file or an abstract
fact. It is typically defined with an “IdString”(e.g.,
“the summary report of our meeting yesterday”)
and a “Value” (e.g., an attached PDF file). The
fact includes event-relevant information such as
the Meeting Data (e.g., the date when a meeting
will be held) and the Action Data (e.g., the address
where a package should be mailed). As we focus on
actionable events, we do not consider subjective in-
formation (e.g., opinions) or objective information
that is too complicated to be framed as data (e.g.,
news information), but would cover very light “is-a”
facts (e.g., Skilling is the CEO of Enron, where the
data IdString is “CEO of Enron” and the Value is
“Skilling”). (2) Meeting: We define a meeting as
a gathering of people for a discussion to achieve a
common goal or for entertainment. We also con-
sider a phone call or trip as a meeting. (3) Action:
An action refers to an activity that has to be done
or will be done, such as signing a document or
sending a mail package. Note that the “activity”
here does not include “meeting”, which has been
covered by the previous noun act. Similar to verb
acts, each noun acts will be signaled by a certain
trigger, as to be illustrated in the next section.

A.2 Complete Event and Argument Role
Definitions

We now present all 10 event types and their re-
spective argument roles (wrapped within “[·]” in
examples). In total, they result in 76 argument roles
at the event level by combing the roles from the
verb and the noun act for each event type (e.g., for
Request Data event, there are 8 argument roles in-
cluding Request Members, Request Date, Request
Time, Request Attribute, Data Type, Data IdString,
Data Value, and Data Owner). We also introduce
several “meta semantic roles” with pre-defined

http://arxiv.org/abs/2004.13590
http://arxiv.org/abs/2004.13590
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

Act Arguments

Requ
est

Members The recipient of the request event.
Date The date when the event will (or has) happen

(or happened).
Time The time when the event will (or has) happen

(or happened).
Attribute The attribute requested for the noun event

such as data, meeting time, etc.

Deliver

Members The recipient of the corresponding event.
Date The date when the event will (or has) happen

(or happened).
Time The time when the event will (or has) happen

(or happened).
Confirmation Acknowledgment of the sender (posi-

tive/negative/unsure)

Amend

Type The amend operation (add/delete/update)
Members The person to oversee the amend event.
Time The time when the amend action happens.
Date The date when the amend action happens.

Data

Type The type of data (e.g., PDF, is-a facts).
IdString A string describing or identifying the data.
Value The actual data file or fact.
Owner The person to whom the data belongs.

Meet
ing

Members Attendees of the meeting.
Agenda The topic of discussion for the meeting.
Name A reference name for the meeting.
Location The (physical or virtual) place where the

meeting will be held.
Date The date on which the meeting will (or has)

happen (or happened).
Time The time at which the meeting will (or has)

happen (or happened).

Action

Members Attendees of the activity.
Description A summary of the action.
Date The date on which the activity will (or has)

happen (or happened).
Time The time at which the activity will (or has)

happen (or happened).

Table 3: Descriptions of argument roles for Verb (upper)
and Noun (bottom) acts.

class spaces for some event types. The complete ar-
gument role definitions for each Verb or Noun Act
can be found in Table 3, and the list of 76 argument
roles can be found in Table 4.

Triggers of each event (for both Verb Act and
Noun Act) are underlined. Note that an event trig-
ger could span over non-continuous words since
people may not necessarily describe verbs and
nouns consecutively. This also allows us to keep
the trigger words as concise as possible rather than
marking a continuous but much longer text span.

Request Data: The event is triggered when the
sender seeks data such as a file or a fact.

Example 1: Please send me [the sum-
mary of our meeting]Data IdString (Request
Attribute: Data Value);
Example 2: Who owns [the survey re-
port]Data IdString? (Request Attribute: Data
Owner)

For Request Data/Meeting Data/Action Data, we
introduce a meta semantic role “Request Attribute”
to indicate the attribute that the sender queries from
the data. In practice, we consider four data at-
tributes: Type, IdString, Value, and Owner.
Deliver Data: The event is triggered when the
sender provides or commits to provide certain data.

Example 1: Attached for your review
[the summary of our meeting]Data IdString.
(Confirmation: Positive);
Example 2: I don’t have [that]Data IdString.
(Confirmation: Negative)

For Deliver events, we introduce “Confirmation”
(positive, negative, or tentative as a meta seman-
tic role, affirming if the sender can provide the
requested data information (when the Noun Act is
Data), or acknowledge their attendance in meet-
ings or participation in action events (when the
Noun Act is Meeting Data or Action Data). No-
tably, the Confirmation role could be perceived as
a form of “data” as well. In a conversational email
setting, people often reply with brief responses
such as “Sure” or “No, it doesn’t work” when some-
one makes a request. By introducing the Confirma-
tion role, we can discern the sender’s intent even
though no concrete event information may be ex-
tracted from a short answer.
Amend Data: The event is triggered when the
sender requests or indicates changes to a data
record. In order to describe the type of change,
we introduce a fixed set of “Amend Type” verbs
including add, delete, or update. Additionally, we
have observed that individuals frequently describe
changes by providing context followed by the re-
vision, as shown in Example 1. Consequently, to
differentiate between the various roles, we intro-
duce two labels, “Context” and “Revision”, and
replace all four argument roles (Table 3) for Data
act with two sets of copies for each (e.g., “Context:
Data Type” and “Revision: Data Type" instead of
the original “Data Type”). These modifications al-
low for more precise differentiation and description
of the different aspects of the event and its roles.

Example 1: Can [you]Members change [the
budget]CNT:Data IdString from [2K]CNT:Data Value

to [3K]REV:Data Value (Amend Type: Up-
date);
Example 2: Can you please update [the
summary report]CNT:Data IdString of our meet-
ing? (Amend Type: Update).

Request Events

Request Meeting Request Data Request Action
Meeting Members Meeting Location Request Date Request members Action Date
Meeting Agenda Meeting Date Data IdString Data Owner Action Members
Meeting Name Request Time Data Type Action Description
Meeting Time Requested Attribute Action Time

Request Action Data Request Meeting Data
Context: Action Time Context: Request Members Context: Meeting Date Context: Meeting Time
Context: Action Members Context: Action Date Context: Meeting Agenda Context: Meeting Members
Context: Action Description Context: Request Members Context: Meeting Location
Requested Attribute Context: Meeting Name Requested Attribute

Deliver Events

Deliver Data Deliver Action Data Deliver Meeting Data
Deliver Members Data IdString Action Date Action Time Meeting Members Meeting Time
Data Value Deliver Time Action Members Meeting Name Meeting Date
Deliver Date Data Type Action Description Meeting Agenda Meeting Location
Deliver Confirmation Deliver Confirmation Deliver Confirmation

Amend Events

Amend Data Amend Meeting Data
Context: Data Type Context: Amend Date Context: Meeting Members Context: Meeting Name Revision: Meeting Date Context: Amend Time
Revision: Data Type Context: Amend Time Revision: Meeting Members Context: Meeting Location Context: Meeting Time Revision: Amend Time
Context: Data Value Amend Type Context: Meeting Agenda Revision: Meeting Location Revision: Meeting Time Amend Type
Revision: Data Value Revision: Meeting Agenda Context: Meeting Date Context: Amend Date
Context: Amend Members Context: Amend Members Revision: Amend Members Revision: Amend Date

Table 4: All event arguments in MAILEX. We remove arguments that are trivial (such as Deliver Members for
events Deliver Action Data and Deliver Meeting Data) or are not frequent (such as Data Owner in Amend Data
event). In total, we keep 76 argument roles in the final version of MAILEX.

Request Meeting: The event is triggered when the
sender proposes a meeting.

Example: [Alice]Meeting Members has pro-
posed a meeting on [Tuesday]Meeting Date.

Request Meeting Data: The sender triggers the
event by requesting information about a certain
meeting. By using the “Request Attribute” for the
event, the sender could request one or more meet-
ing attributes such as the Date and Time of the
meeting.

Example: Where is [the meet-
ing]Meeting Name on [Tuesday]Meeting Date?
(Request Attribute: Meeting Location)

Deliver Meeting Data: The event is triggered
when the sender provides information about a cer-
tain meeting. The sender can acknowledge the
presence of both the sender and any other attendees
using the “Confirmation” attribute.

Example: [Alice]Members will attend the
[Tuesday]Date [Board meeting]Meeting Name.
(Confirmation: Positive)

Amend Meeting Data: The event is triggered
when the sender requests or informs of changes
to an already proposed meeting event.

Example: Can we reschedule [the meet-
ing]CNT:Meeting Name on [Tuesday]CNT:Meeting Date

to [Friday]REV:Meeting Date instead? (Amend
Type: Update)

Request Action: The event is triggered when the
sender proposes an activity or an action (e.g., play-
ing a sport, signing a document, etc.).

Example: Please [approve Alice’s travel
request]Action Description.

Request Action Data: The event is triggered when
the sender seeks information about an action event.

Example: Who [approved the travel
request]Action Description? (Request Attribute:
Action Members)

Deliver Action Data: The event is triggered when
the sender provides information about an action
event. The “Confirmation” attribute serves the pur-
pose of acknowledging the presence of the sender
and any other individuals involved in the event.

Example 1: [John]Action Members [approved
the travel request]Action Description (Confirma-
tion: Positive);
Example 2: [Alice]Action Members has agreed
to [deliver mail]Action Description. (Confirma-
tion: Positive)

B MAILEX Dataset Details

B.1 Annotation Details and Guidelines
MAILEX annotations were done in multiple rounds
due to the challenges discussed in Section 3.1. For

Event Type % Frequent Argument Roles

Request
Data

7.700 Data IdString (72%), Request Members
(23%), Request Date (2%)

Request Ac-
tion

14.985 Action Description (54%), Action Mem-
bers (35%), Action Date (6%)

Request
Meeting

2.775 Meeting Members (31%), Meeting
Agenda (21%), Meeting Date (18%)

Request Ac-
tion Data

2.456 Action Description (51%), Action Mem-
bers (38%), Request Members (8%)

Request
Meeting
Data

0.541 Meeting Members (31%), Meeting
Agenda (21%), Meeting Date (18%)

Deliver
Data

20.452 Data IdString (48%), Data Value (39%),
Deliver Members (10%)

Deliver Ac-
tion Data

34.439 Action Description (46%), Action Mem-
bers (41%), Action Date (9%)

Deliver
Meeting
Data

5.176 Meeting Members (34%), Meeting Date
(19%), Meeting Time (12%)

Amend
Data

2.054 Amend Members (26%), (Context) Data
IdString (25%), (Revision) Data Value
(25%)

Amend
Meeting
Data

0.569 (Revision) Meeting Time (22%), (Re-
vision) Meeting Date (19%), (Context)
Meeting Name (16%)

Table 5: Distributions of event types (in percentage)
and frequent argument roles in MAILEX. We have not
included the rare events Amend Action Data (0.028%)
and Non-Event annotations “O” (8.825) in the table.

consistent annotations, annotators were instructed
to annotate one email at a time, considering the
email history as context (see Figure 5 for the anno-
tation interface). Each email could have multiple
events, and annotators marked trigger words, event
types, and argument roles. For trigger words, an-
notators indicated the minimal span of words in
the email that triggered an event. Event types were
selected from pre-defined labels. Argument roles
were annotated using the BIO format, with annota-
tors marking the beginning (B) and inside (I) spans
of the arguments while leaving non-arguments out-
side (O). For Amend events, “Context” and “Re-
vision” were included in the BI tags (e.g., “B-
CNT:Meeting Date” or “B-REV:Meeting Date”).
Annotators also assigned pre-defined labels for
meta semantic roles from pre-defined labels ac-
cordingly.

Two native English-speaking Computer Science
students were recruited for the annotation task and
were paid 12 USD per hour. Multiple rounds of
training and discussions were conducted to ensure
an understanding of events and arguments. Each
email was annotated twice by each annotator, and
we retained event annotations with agreement on

event type, overlapping trigger words, and over-
lapping argument spans for the same role. Prob-
ing into the annotations, we found that the non-
overlapping partial text spans are typically trivial
words such as an article “the”. We use Jaccard sim-
ilarity larger than .3 as the “overlapping” criterion.
Threads with a total disagreement on event triggers
and arguments were discarded. In total, we obtain
1,500 email threads covering ∼4K emails and ∼8K
events.

B.2 Examples of Partially Agreed and
Disagreed Annotations

In practice, most partially agreed annotations hap-
pen when annotators inconsistently marked trivial
words (e.g., an article “the”) or referred to the same
entity mentioned with different details (e.g., “At-
tached agreement report” and “Attached report”),
while they agree on the actual trigger or argument
concepts. This gives us a κ value of 0.791 (i.e.,
substantial agreement) for the trigger-event type
IAA and 0.810 (i.e., almost perfect agreement) for
the argument role IAA.

We sampled a few annotations with total or par-
tial disagreement and manually analyze them. In
most cases, the total disagreement was caused by
task complexity and language ambiguity. For exam-
ple, in one email, the sender informed the recipient
of a “to-do list” to which one annotator marked it
as a Deliver Data event since the sender delivered
a list of the informative items, while the other an-
notator considered it a Request Action since the
sender had instructed a list of actions. Such dis-
agreed annotations have been removed from our
dataset. For partially disagreed cases, we often ob-
served disagreement on trivial words, as discussed
in IAA calculation (Section 3.1). We present more
examples in Table 6.

B.3 Dataset Analysis

Event Types and Argument Roles Distribution.
In Table 5, we present the distribution of event
types and argument roles in MAILEX. We observe
that events related to deliver acts are more frequent
than others and argument roles such as Members,
Descriptions, and IdString are more frequent than
Date and Time. Tabular Data in Email Text. As
mentioned in Section 3.2, MAILEX could contains
emails which have non-sequential sentence struc-
ture such as Tables. Figure 4, we present an ex-
ample table from MAILEX. For the sake of sim-

Figure 4: Example table from MAILEX. For the an-
notation purpose, we asked the annotator to annotate
the table header as “Data IdString” for the event type
“Deliver Data”. The rest of the table rows were asked to
be annotated as “Data Value”.

plicity, we asked annotators to mark the headers
of the table as the description of the table (Data
IdString) if no better description has been speci-
fied in the email. The rest of the rows were in-
structed to be marked as actual data instances (Data
Values). In our example, it means to mark the
header “Contract Shippers Contract
Date” as Data IdString and the remaining rows
from “107018. . . Nov 1 2001” as Data Value.
One could also use the row and column values to
mark more complicated data instances (such as
mapping each value in Contract column with each
value in Shippers column and then with the values
in Contract Date column). Modeling tables in such
as way presents more informative data to the end
user while complicating the task formulation by
introducing a non-sequential structure. We leave
this exploration to the future.

C Supplementary Modeling Details

C.1 Additional Details about Sequence
Labeling

Meta Semantic Role Prediction. As introduced in
Section 2, some argument roles (e.g., the requested
data attributes) have a fixed, pre-defined class space.
We formulate the identification of each of such
argument roles as a classification task, where the
[CLS] representation will be used as in standard
BERT-based classification tasks. These additional
classification models will be jointly trained with
the aforementioned sequence labeling model for
argument extraction.

Training and Inference. In experiments, the trig-
ger extraction and the argument extraction models
will be trained independently. During the training
time, the ground-truth trigger span and event type
will be used for the argument extraction training.

At test time, given each email in an email thread,
we will first apply the trigger extraction model to
identify all trigger spans and their corresponding
event types from the email. Then each trigger span
and its type information will be fed to the argument
extraction model for identifying the associated ar-
gument roles.

C.2 Templates for End-to-End Email EE

We present the templates for the task of end-to-end
email EE in Tables 8-10. All the templates begin
with a sentence concerning event type with a place-
holder | $trigger | for the corresponding trigger
span. Following that, the templates include place-
holders for the arguments specific to each event
type. It is worth noting that the template contents
and argument placeholders can vary depending on
the meta-semantic roles involved. For instance, dif-
ferent templates are used when the sender expresses
positive acknowledgment of an event compared to
when they express negative acknowledgment. This
flexibility allows for adaptable and context-aware
event extraction from emails.

C.3 Prompt Example for GPT-3.5

In Figure 8, we present the prompt design for us-
ing GPT-3.5 for event extraction. For each evalu-
ation instance from the test set, GPT-3.5 is tasked
with processing K (K=5) demonstrations, each of
which consists of context, current email, and out-
put, in addition to the task instruction and the event
templates. GPT-3.5 is expected to produce a re-
sponse by filling in the template for each event in
the current email with its trigger and corresponding
arguments.

D Implementation Details

D.1 Reproducibility Details

To train sequence labeling models, we used the
BERT-large-uncased with a batch size of 4 and
a learning rate of 1e-5. For the generative ap-
proach, we used BART-large with a learning rate
of 3e-5 and a batch size of 2. All the models were
optimized using AdamW (Loshchilov and Hutter,
2017) for cross-entropy loss for 100 epochs. We
tuned all the hyper-parameters on the dev set. We
maintain a maximum sequence length of 512 for all
our fine-tuned models. When using BART, we trun-
cate the input sequence from the left to retain the
most recent history or the recent portion of an email.
During training, we implement early stopping af-

Figure 5: Our annotation interface. For each email thread, the annotators were shown each email one by one. For
each email, they were tasked to select event types from a drop-down menu and directly select the event triggers by
clicking on words. Next, for each word, they annotate the word with the corresponding argument role (with the
default being O reflecting no role).

Example Annotator - 1 Annotator - 2

Partial
Agree-
ment

ENA has won the bid for Lost Creek Fuel sale
with a price of CIG Gas Daily plus $.03.

Trigger: has won
Event Class: Deliver Action Data

Trigger: won
Event Class: Deliver Action Data

Please file the completed hardcopy in the li-
brary/fileroom.

Trigger: Please file
Event Class: Request Action

Trigger: Please file the completed hard-
copy
Event Class: Request Action

No
Agree-
ment

Team , Here is an update on Oakhill : 1 . Ricki
said he is sending us a T & D only contract
first thing tomorrow morning.

Trigger: Here is an update
Event Class: Deliver Data

Trigger: said
Event Class: Deliver Action Data

One of you UBS people with your big bonuses
will have to pick it up.

Trigger: will have to pick it up
Event Class: Deliver Action Data

Trigger: pick it up
Event Class: Request Action

Table 6: Examples for agreed and disagreed annotations. For partially agreed triggers, we keep the overlapped
triggers (“won” and “Please file”) while, for disagreed annotations, we remove the corresponding event and
arguments annotations from the final version of the MAILEX.

ter 5 epochs, monitoring Trigger Classification for
trigger extraction and Argument Classification for
argument extraction.

Regarding in-context learning, we set a maxi-
mum generation length of 300 tokens with greedy
decoding. All experiments were conducted using
the default turbo version within the date range of
03/01/2023 to 06/13/2023. In cases where the input
demonstrations exceed GPT-3.5’s token limitation
of 4000, we left-truncate the input sequence to en-
sure it fits within the specified limit. To enforce
content copying and prevent the generation of extra-
neous information, we further adjusted the model
settings. Specifically, we set the temperature pa-

rameter to 0.0, which minimizes randomness in
the output, and the top_p parameter to 1, which
restricts the model’s choices to only the most prob-
able tokens. These settings effectively discourage
the GPT-based models from generating content that
is not present in the input and encourage them to
focus on copying and reproducing the input con-
tents.

Finally, for experiments involving “ground-truth
triggers” with both the BART- and In-context
Learning-based approaches, we feed the templates
iteratively one by one.

Figure 6: Confusion matrix for event type extraction
using BERT-based sequence labeling. The majority of
the confusion arises in noun acts, e.g., Deliver Meeting
Data vs. Deliver Action Data.

D.2 Hyperparameter Search

The BERT- and BART-based models were fine-
tuned for 100 epochs using early stopping, whereby
training was stopped if the validation results did not
improve for 5 epochs. During the experimentation
phase, we manually explored different learning rate
values within the range [.01, .001, 0001, .00001,
.000001] and batch sizes within the range [2, 4, 8,
16, 32]. The best model was selected based on its
performance on the validation set.

D.3 Runtime and Devices

The fine-tuned experiments were conducted on
NVIDIA A100 80 GB GPU cards. Training each
BERT-based model took approximately 4 hours,
while the full pipeline, including training and eval-
uation, required approximately 8 hours. For the
BART-based experiments, the training and eval-
uation process took approximately 12 hours. In
comparison, the GPT-based experiments were com-
pleted within approximately 3-4 hours due to the
time constraints imposed by the platforms used.

E Additional Experimental Analyses

E.1 Classifying Noun Act Triggers

In Section 5.2.2, we discussed the models’ inability
to properly classify the noun acts associated with
triggers. In Figure 6, we present the confusion
matrix outlining the confusion between the event
classes.

Example Email

Don, Attached is a detailed list of procedures and ideas on MHEB to send to the
hourly crew. «MHEB_procedures.docx» «MHEB_ideas.docx»

Ground Truth Triggers: 1) Attached is a detailed list (Deliver Data) 2) Attached
ideas (Deliver Data)

Trigger 1: Attached is a detailed list of procedures and ideas on MHEBERT Trigger 2: None

Trigger 1: Attached is a detailed listBART Trigger 2: Attached ideas

Please hold Thursday , December 20th for the Board and the Committee meetings
from 7:30 a.m. to 2:00 p.m. C.S.T.

Ground Truth Triggers: 1) Please hold Thursday , December 20th for the
Board meetings (Request Meeting) 2) Please hold Thursday , December 20th for
the Committee meetings (Request Meeting)

Trigger 1: Please holdBERT Trigger 2: None

Trigger 1: Please hold Thursday , December 20th for the Board meetingsBART Trigger 2: Please hold Thursday , December 20th for the Committee
meetings

Attached we are forwarding electronic copies of the ANGTS Proposal and cover
letter

Ground Truth Triggers: 1) Attached we are forwarding electronic copies of
cover letter (Deliver Data) 2) Attached we are forwarding electronic copies of
the ANGTS Proposal (Deliver Data)

Trigger 1: Attached forwardingBERT Trigger 2: None

Trigger 1: Attached we are forwarding a copies of the letterBART Trigger 2: None

Table 7: Examples of extracting shared triggers by the
BERT-based sequence labeling model and the BART
model. green and red indicate correct and incorrect ex-
tractions, respectively. For all the shared triggers, BERT
fails to segment the trigger spans. On the contrary,
BART can extract triggers when the trigger segments
have a shorter distance from the conjunction “and” (sec-
ond example). For the third example, both models fail
to identify the correct trigger segments, and notably,
BART adds contents that are not part of the current in-
put. We observed that when shared triggers have a long
distance in between the conjunctions (such as “and”),
even BART struggles to retrieve them correctly.

E.2 Shared Triggers
In Section 5.2.2, we concluded that both fine-tuned
models encounter challenges in identifying shared
triggers, particularly when the distance between
them is significant. We show examples in Table 7.
For the first two examples, where the shared trig-
gers are relatively close, we observe that BART
successfully extracts both triggers, whereas BERT
either fails to segment them accurately or fails to
detect them altogether. Similarly, in the last exam-
ple, both the BERT and BART-based approaches
struggle to identify such triggers as the distance
between them increases.

E.3 In-context Learning Analysis

Analysis of Actual Argument Values. We con-
ducted an analysis of 50 randomly sampled in-
stances where GPT-3.5 extracted erroneous argu-
ments. We categorized these errors into the fol-

14.0%

46.0%

40.0% Extra Arguments
Placeholders

Missing Arguments
Placeholders

Incorrect Arguments
Placeholders

Figure 7: Error distribution while gpt-3.5-turbo gen-
erates argument placeholders.

lowing types: 1) Extra Arguments: These errors
occur when the model includes arguments that are
not actual arguments for the events. For exam-
ple, email signatures were mistakenly captured as
member arguments for certain event types. 2) Miss-
ing Arguments: In some cases, when generating
filled-in templates with argument values, the model
completely misses certain arguments and generates
argument placeholders instead. 3) Semantically
Correct but not Exact Match Arguments: This
type of error arises when the model attempts to sum-
marize argument values such as Meeting Agenda
or Action Description. Although semantically cor-
rect, these arguments are not recognized as exact
match arguments by our evaluation script and are
therefore considered incorrect. 4) Semantically
Incorrect Arguments: These involve arguments
which are incorrect. While categorizing such errors
we also include cases where the model adds triv-
ial details to the arguments (such as “the” before
names). 5) Semantically Incorrect and Fabri-
cated Arguments: Arguments that do not appear
in the instructions or the current emails fall into
this category and are considered both semantically
incorrect and fabricated. We provide examples cor-
responding to each error class in Table 11.

Analysis on Arguments Placeholders. We also
found that gpt-3.5-turbo struggles in generating
consistent argument placeholders (when actual ar-
gument values are not expressed in the email). We
categorized such errors into 3 categories: 1) Extra
Placeholders: While generating the templates,
gpt-3.5-turbo generated more placeholders than
expected. For example, for the event Deliver Ac-
tion Data, it generated the template Event Deliver
Action Data is triggered by | trigger |
where , | Action | is or will be performed
by | Action Members | at | Time | on |
Date | delivered to | Deliver Member|,

where “Deliver Member” is an extra placeholder
not provided by the event template. 2) Missing
Placeholders: Another common problem while
generating the templates was identified to miss out
the placeholders for arguments. For example, for
the Deliver Data Events, it frequently leaves the
“Data Value” placeholders as in “Event Deliver
Data is triggered by | trigger | where , |
Data idString |, (missing | Data Value |)
of | Data Type | is or will be delivered
to | Deliver Members | at | Deliver Time
| on | Deliver Date |”. 3) Incorrect Place-
holders: For some generated templates, we found
that gpt-3.5-turbo incorrectly copies placehold-
ers for different events than specified. For exam-
ple, for the event Deliver Action Data it generated
a template “Event Deliver Action Data is
triggered by | trigger | where , | Action
Description | is or will be performed by
| Action Members | at | Context: Action
Time | on | Context: Action Date |” which
contains “Context:” label before date and time that
are not part of the Deliver Action Data templates.

We randomly sampled 50 generated templates
with such errors and plot an error distribution chart
showing errors while generating placeholders for
arguments. As Figure 7 depicts, most of the er-
rors were made because of missing the correct or
incorrect placeholders (Category 2 and 3 above).

Your task is to extract events from the email, along with their corresponding triggers and arguments. You will need to identify the templates for
each event and fill in the missing information with the extracted triggers and arguments. The unfilled templates are:
Event Request Meeting is triggered by | trigger | where , | Meeting Name | is requested among | Meeting Members | at | Meeting Time | on |
Meeting Date | at | Meeting Location | to discuss | Meeting Agenda |
Event Request Data is triggered by | trigger | where , | Context: Data idString | of | Context: Data Type | by | Context: Data Owner | is requested
from | Context: Request members | to be delivered at | Context: Request Time | on | Context: Request Date |
... (details skipped)
Event Amend Data is triggered by | trigger | where , For | Context: Data idString |, | Context: Data Value | is or requested to be updated to |
Revision: Data Value | from | Context: Amend Members | at | Context: Amend Time | on | Context: Amend Date |
Event Amend Meeting Data is triggered by | trigger | where , For | Context: Meeting Name | among | Context: Meeting Members | at | Context:
Meeting Time | on | Context: Meeting Date | at | Context: Meeting Location | to discuss | Context: Meeting Agenda |, date is or requested to be
updated to | Revision: Meeting Date | from | Context: Amend Members | Ta

sk
 In

st
r a

nd
 T

em
pl

at
es

D
em

on
st

ra
tio

n
1 Context:

Current Email:
EOL IT group (Torrey Moorer) has created a new DART product for us in testing stage . We will need the Build Route Reports to be revised
accordingly (please see the attached emails) . Would you have someone in your group work on this and let us know
... (details skipped)
The filled templates are:
Event Request Data is triggered by | let us know the timeline | where , | the timeline | of | Context: Data Type | by | Context: Data Owner | is
requested from | you | to be delivered at | Context: Request Time | on | Context: Request Date |
... (details skipped)

Context:
Please let me know if you have any more queries. MC
Current Email:
Ernesto , can you please provide the following information : 1 . Please confirm that the date that Accro commenced commercial operation was
7/6/2001 The Accroven Commercial Operations start date was July 09 , 2001 . . 2) ... (details skipped)
The filled templates are:
Event Request Data is triggered by | calculation is required | where , | An updated NPV calculation , reviewed and signed off on by RAC | of |
Context: Data Type | by | Context: Data Owner | is requested from | Ernesto | to be delivered at | Context: Request Time | on | Context:
Request Date |
Event Request Data is triggered by | ... (details skipped)

D
em

on
st

ra
tio

n
2

Context:
Current Email:
Please come by 5C2 at your convenience tomorrow as UBS require you to complete missing information on your application form . Kind
regards , Karen Buckley Human Resources Tel : 713 345 4667
The filled templates are:Te

st
 C

as
e

 ... (demonstrations 3, 4, ..., K; details skipped)

Figure 8: Prompt for event extraction using GPT-3.5. In experiments, K=5, and we ensure that the selected 5
demonstrations cover all event types and arguments.

Event
Type

Template Example

Request
Meeting

Event Request Meeting is triggered by | trigger | where, | Meeting | is requested among | Meeting
Members | at | Time | on | Date | at | Location | to discuss | Agenda |

Example: [Alice]Meeting Members has proposed
a meeting on [Tuesday]Meeting Date.

Template: Event Request Meeting
is triggered by | proposed a meeting |
where, | Meeting | is requested among
| Alice | at | Time | on | Tuesday | at
| Location | to discuss | agenda |

Request
Data

˜ When ReqAttr is Value: Event Request Data is triggered by | trigger | where, | Data | of | Type |
by | Owner | is requested from | Request Members | to be delivered at | Time | on | Date |;
˜ When ReqAttr is Data Owner: Event Request Data is triggered by | trigger | where, Owner of
| Data | of | Type | is requested from | Request Members | to be delivered at | Time | on | Date |

Example: Please send me [the summary
of our meeting]Data IdString (Request Attribute:
Data Value);

Template:Event Request Data is triggered
by | Please send me the summary | where,
| the summary of our meeting | of | Type |
by | Owner | is requested from | Request
Members | to be delivered at | Time | on
| Date |

Request
Action

Event Request Action is triggered by | trigger | where, | Action | is requested from | Action
Members | at | Time | on | Date |

Example:Please [approve Alice’s travel
request]Action Description.

Template:Event Request Action is
triggered by | Please approve | where,
| approve Alice’s travel request | is
requested from | Action Members | at
| Time | on | Date |

Request
Action
Data

˜ When ReqAttr is Action Members: Event Request Action Data is triggered by | trigger | where,
Action Members is requested for | Action | at | Time | on | Date | from | Request Members |;
˜ When ReqAttr is Action Date: Event Request Action Data is triggered by | trigger | where, Date
is requested for | Action | by | Action Members | at | Time | from | Request Members |;
˜ When ReqAttr is Action Time: Event Request Action Data is triggered by | trigger | where, Time
is requested for | Action | by | Action Members | on | Date | from | Request Members |;
˜ When ReqAttr is Action Description: Event Request Action Data is triggered by | trigger | where,
Action Description is requested for | Action | by | Action Members | on | Date | from | Request
Members |

Example: Who [approved the travel
request]Action Description? (Request Attribute:
Action Members)

Template: Event Request Action
Data is triggered by | Who approved |
where, Action Members is requested for
| approved the travel request | at | Time |
on | Date | from | Request Members |

Request
Meeting
Data

˜ When ReqAttr is Meeting Members: Event Request Meeting Data is triggered by | trigger | where,
Meeting Members is requested for | Meeting | at | Time | on | Date | at | Location | to discuss
| Agenda | from | Request Members |;
˜ When ReqAttr is Date: Event Request Meeting Data is triggered by | trigger | where, Date is
requested for | Meeting | among | Meeting Members | at | Time | at | Location | to discuss | Agenda |
from | Request Members |;
˜ When ReqAttr is Time: Event Request Meeting Data is triggered by | trigger | where, | Time |
is requested for | Meeting | among | Meeting Members | on | Date | at | Location | to discuss
| Agenda | from | Request Members |;
˜ When ReqAttr is Location: Event Request Meeting Data is triggered by | trigger | where, Location
is requested for | Meeting | among | Meeting Members | at | Time | on | Tuesday | to discuss
| Agenda | from | Request Members |;
˜ When ReqAttr is Agenda: Event Request Meeting Data is triggered by | trigger | where, Agenda
is requested for | Meeting | among | (Meeting) Members | at | Time | on | Date | at | Location | from
| Request Members |

Example: Where is [the meeting]Meeting Name

on [Tuesday]Meeting Date? (Request Attribute:
Meeting Location)

Example: Event Request Meeting
Data is triggered by | Where is the meet-
ing | where, Location is requested for | the
meeting | among | Meeting Members | at
| Time | on | Tuesday | to discuss | Agenda |
from | Request Members |

Table 8: Generation templates for end-to-end Request event extraction.

Event
Type

Template Example

Deliver
Data

˜ When Confirmation is Positive: Event Deliver Data is triggered by | trigger | where, | Data |,
| Value | of | Type | is or will be delivered to | Deliver Members | at | Time | on | Date |;
˜ When Confirmation is Negative: Event Deliver Data is triggered by | trigger | where, | Data |,
| Value | of | Type | is not or will not be delivered to | Deliver Members | at | Time | on | Date |;
˜ When Confirmation is Unsure: Event Deliver Data is triggered by | trigger | where, | Data |,
| Value | of | Type | is or will probably be delivered to | Deliver Members | at | Time | on | Date |

Example: Attached for your review [the
summary of our meeting]Data IdString.

Template: Event Deliver Data is
triggered by | Attached the summary |
where, | the summary of our meeting |,
| Value | of | Type | is or will be delivered
to | Deliver Members | at | Time | on
| Date |

Deliver
Action
Data

˜ When Confirmation is Positive: Event Deliver Action Data is triggered by | trigger | where,
| Action | is or will be performed by | Action Members | at | Time | on | Date |;
˜ When Confirmation is Negative: Event Deliver Action Data is triggered by | trigger | where,
| Action | is not or will not be performed by | Action Members | at | Time | on | Date |;
˜ When Confirmation is Unsure: Event Deliver Action Data is triggered by | trigger | where,
| Action | is probably or will probably be performed by | Action Members | at | Time | on | Date |

Example: [Alice]Action Members has agreed to
[deliver mail]Action Description. (Confirmation:
Positive)

Template: Event Deliver Action Data is
triggered by | agreed | where, | deliver
mail | is or will be performed by | Alice |
at | Time | on | Date |

Deliver
Meeting
Data

˜ When Confirmation is Positive: Event Deliver Meeting Data is triggered by | trigger | where,
| Meeting | is or will be attended by | Meeting Members | at | Time | on | Date | at | Location | to
discuss | Agenda |;
˜ When Confirmation is Negative: Event Deliver Meeting Data is triggered by | trigger | where,
| Meeting | is not or will not be attended by | Meeting Members | at | Time | on | Date | at | Location |
to discuss | Agenda |;
˜ When Confirmation is Unsure: Event Deliver Meeting Data is triggered by | trigger | where,
| Meeting | is probably or will probably be attended by | Meeting Members | at | Time | on | Date |
at | Location | to discuss | Agenda |

Example: [Alice]Members will attend the
[Tuesday]Date [Board meeting]Meeting Name.
(Confirmation: Positive)

Template: Event Deliver Meeting
Data is triggered by | will attend meeting |
where, | Board Meeting | is or will be
attended by | Alice | at | Time | on | Tues-
day | at | Location | to discuss | Agenda |

Table 9: Generation templates for end-to-end Deliver event extraction.

Event
Type

Template Example

Amend
Data

˜ When Amend Action is Update: Event Amend Data is triggered by | trigger | where, for | Cnt:
Data |, | Cnt: Value | is or requested to be updated to | Rev: Value | from | Amend Members | at
| Time | on | Date |;
˜ When Amend Action is Add: Event Amend Data is triggered by | trigger | where, for | Cnt: Data |,
| Rev: Value | is or requested to be added from | Amend Members | at | Time | on | Date |;
˜ When Amend Action is Delete: Event Amend Data is triggered by | trigger | where, for | Cnt:
Data |, | Con: Value | is or requested to be removed from | Amend Members | at | Time | on | Date |

Example: Can [you]Members change the
[budget]CNT:Data IdString from [2K]CNT:Data Value to
[3K]REV:Data Value (Amend Type: Update)

Template: Event Amend Data is
triggered by | change the budget | where,
for | budget |, | 2K | is or requested to be
updated to | 3K | from | you | at | Time | on
| Date |

Amend
Meeting
Data

˜ To update meeting members: Event Amend Meeting Data is triggered by | trigger | where, for
| Meeting | among | Cnt: Meeting Members | at | Cnt: Time | on | Cnt: Date | at | Cnt: Location |
to discuss | Cnt: Agenda |, meeting members is or requested to be updated to | Rev: Meeting
Members | from | Amend Members |;
˜ To update meeting date: Event Amend Meeting Data is triggered by | trigger | where, for meeting
| Meeting | among | Cnt: Meeting Members | at | Cnt: Time | on | Cnt: Date | at | Cnt: Location |
to discuss | Cnt: Agenda |, date is or requested to be updated to | Rev: Date | from | Amend
Members |;
˜ To update meeting time: Event Amend Meeting Data is triggered by | trigger | where, for meeting
| Meeting | among | Cnt: Meeting Members | at | Cnt: Time | on | Cnt: Date | at | Cnt: Location |
to discuss | Cnt: Agenda |, time is or requested to be updated to | Rev: Time | from | Amend
Members |;
˜ To update meeting location: Event Amend Meeting Data is triggered by | trigger | where, for
meeting | Meeting | among | Cnt: Meeting Members | at | Cnt: Time | on | Cnt: Date | at | Cnt:
Location | to discuss | Cnt: Agenda |, location is or requested to be updated to | Rev: Location |
from | Amend Members |;
˜ To update meeting agenda: Event Amend Meeting Data is triggered by | trigger | where, for
meeting | Meeting | among | Cnt: Meeting Members | at | Cnt: Time | on | Cnt: Date | at | Cnt:
Location | to discuss | Cnt: Agenda |, agenda is or requested to be updated to | Rev: Agenda | from
| Amend Members |;

˜ To add meeting members: Event Amend Meeting Data is triggered by | trigger | where, for
| Meeting | among | Cnt: Meeting Members | at | Cnt: Time | on | Cnt: Date | at | Cnt: Location | to
discuss | Cnt: Agenda |, meeting members | Rev: Meeting Members | is or requested to be added
from | Amend Members |;
˜ To add meeting date: Event Amend Meeting Data is triggered by | trigger | where, for | Meeting |
among | Cnt: Meeting Members | at | Cnt: Time | at | Cnt: Location | to discuss | Cnt: Agenda |,
date | Rev: Date | is or requested to be added from | Amend Members |;
˜ To add meeting time: Event Amend Meeting Data is triggered by | trigger | where, for | Meeting |
among | Cnt: Meeting Members | on | Cnt: Date | at | Cnt: Location | to discuss | Cnt: Agenda |,
time | Rev: Time | is or requested to be added from | Amend Members |;
˜ To add meeting location: Event Amend Meeting Data is triggered by | trigger | where, for
| Meeting | among | Cnt: Meeting Members | at | Cnt: Time | on | Cnt: Date | to discuss | Cnt:
Agenda |, location | Rev: Location | is or requested to be added from | Amend Members |;
˜ To add meeting agenda: Event Amend Meeting Data is triggered by | trigger | where, for
| Meeting | among | Cnt: Meeting Members | at | Cnt: Time | on | Cnt: Date | at | Cnt: Location |,
agenda | Rev: Agenda | is or requested to be added from | Amend Members |;

˜ To remove meeting members: Event Amend Meeting Data is triggered by | trigger | where, for
| Meeting | among | Cnt: Meeting Members | at | Cnt: Time | on | Cnt: Date | at | Cnt: Location | to
discuss | Cnt: Agenda |, meeting members | Rev: Meeting Members | is or requested to be removed
from | Amend Members |

Example: Can we reschedule [the meet-
ing]CNT:Meeting Name on [Tuesday]CNT:Meeting Date

to [Friday]REV:Meeting Date instead? (Amend
Type: Update)

Template: Event Amend Meeting
Data is triggered by | reschedule the
meeting | where, for meeting | the meet-
ing | among | Cnt: Meeting Members | at
| Cnt: Time | on | Cnt: Tuesday | at | Cnt:
Location | to discuss | Cnt: Agenda |, date
is or requested to be updated to | Friday |
from | Amend Members |

Table 10: Generation templates for end-to-end Amend event extraction.

Error Category

Example: Laura Giambrone discovered a PNR balance of 10,000 Dth on the above noted contract

Gold Template: Event Deliver Action Data is triggered by | discovered | where , | discovered a PNR balance of
10,000 Dth on the above noted contract | is or will be performed by | Laura Giambrone | at | Action Time | on |
Action Date |

GPT-3.5-turbo: Event Deliver Action Data is triggered by | discovered | where , | Laura Giambrone discovered
a PNR balance of 10,000 Dth on the above noted contract | is or will be performed by | Laura Giambrone
| at | Action Time | on | Action Date |Semantically Incorrect

Arguments
GPT-3.5 davinci-003: Event Deliver Action Data is triggered by | discovered | where , | discovered a PNR
balance of 10,000 Dth | is or will be performed by | Laura Giambrone | at | Action Time | on | Action Date |

Example: How about we all go to dinner at Mark ’s on Sunday night ? How does that sound ? -Eric

Gold Template: Event Request Meeting is triggered by | How about we all go to dinner | where , | Meeting
Name | is requested among | we | at | night | on | Sunday | at | Mark ’s | to discuss | dinner |

GPT-3.5-turbo: Event Request Meeting is triggered by | How about we all go to dinner | where , there is no
trigger or context in the email to fill in any of the event templates.Semantically Incorrect and

Fabricated Arguments
GPT-3.5 davinci-003: Event Request Meeting is triggered by | How about we all go to dinner | where , | Meeting
Name | is requested among | we all | at | Meeting Time | on | Sunday night | at | Meeting Location | to discuss |
How does that sound ? |

Example: Hi Shelley I have a meeting at 2:00-3:30 and am meeting Kevin at 4:00 . Can I come to your office at
3:30 ?

Gold Template: Event Amend Meeting Data is triggered by | Can I come to your office at 3:30 ? | where , For |
Context: Meeting Name | among | I | at | Context: Meeting Time | on | Context: Meeting Date | at | your office |
to discuss | Context: Meeting Agenda |, time is or requested to be updated to | 3:30 | from | Context: Amend
Members |

GPT-3.5-turbo: Event Amend Meeting Data is triggered by | Can I come to your office at 3:30 ? | where , For
| Meeting Name | among | Meeting Members | at | Context: Meeting Time | on | Context: Meeting Date | at |
Shelley’s office |, time is or requested to be updated to | 3:30 | from | Context: Amend Members |Semantically Correct but

not Exact Matched Arguments
GPT-3.5 davinci-003: Event Amend Meeting Data is triggered by | Can I come to your office at 3:30 ? | where ,
For | the meeting | among | I and Kevin | at | Context: Meeting Time | on | Context: Meeting Date | at | Context:
Meeting Location |, agenda | discuss | is or requested to be added from | Shelley |

Example: Where is the website for ERCOT ? JD

Gold Template: Event Request Data is triggered by | Where is the website | where , | the website for ERCOT | of
| Context: Data Type | by | Context: Data Owner | is requested from | Context: Request members | to be delivered
at | Context: Request Time | on | Context: Request Date |

GPT-3.5-turbo: Event Request Data is triggered by | Where is the website | where , | the website for ERCOT | of
| Context: Data Type | by | JD | is requested from | Rika | to be delivered at | Context: Request Time | on | Context:
Request Date |Extra Arguments

GPT-3.5 davinci-003: Event Request Data is triggered by | Where is the website | where , | website for ERCOT |
of | Context: Data Type | by | Context: Data Owner | is requested from | JD | to be delivered at | Context: Request
Time | on | Context: Request Date |

Example: Attached is a 2 nd draft of the qtrly letter reflecting more of my changes , ... < < AAP memo for qtrly
repts- (rev2-rj) .doc > >

Gold Template: Event Deliver Data is triggered by | Attached is a 2 nd draft | where , | 2 nd draft of the qtrly
letter reflecting more of my changes |, | AAP memo for qtrly repts- (rev2-rj) .doc | of | Data Type | is or will be
delivered to | Deliver Members | at | Deliver Time | on | Deliver Date |

GPT-3.5-turbo: Event Deliver Data is triggered by | Attached is a 2 nd draft | where , | 2nd draft |, | Data Value
| of | Data Type | is or will be delivered to | Deliver Members | at | Deliver Time | on | Deliver Date |Missing Arguments

GPT-3.5 davinci-003: Event Deliver Data is triggered by | Attached is a 2 nd draft | where , | 2 nd draft of the
qtrly letter |, | Data Value | of | Data Type | is or will be delivered to | Deliver Members | at | Deliver Time | on |
Deliver Date |

Table 11: Analysis of in-context learning-based approaches when ground truth triggers are fed to variants of GPT-3.5.
The errors made by models are highlighted in red and the ground-truth templates are highlighted in gold.

