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A B S T R A C T

Deep reinforcement learning (Deep RL) has recently seen significant progress
in developing algorithms for generalization. However, most algorithms target a
single type of generalization setting. In this work, we study generalization across
three disparate task structures: (a) tasks composed of spatial and temporal com-
positions of regularly occurring object motions; (b) tasks composed of active
perception of and navigation towards regularly occurring 3D objects; and (c) tasks
composed of remembering goal-information over sequences of regularly occur-
ring object-configurations. These diverse task structures all share an underlying
idea of compositionality: task completion always involves combining reccurring
segments of task-oriented perception and behavior. We hypothesize that an agent
can generalize within a task structure if it can discover representations that capture
these reccurring task-segments. For our tasks, this corresponds to representations
for recognizing individual object motions, for navigation towards 3D objects, and
for navigating through object-configurations. Taking inspiration from cognitive
science, we term representations for reccurring segments of an agent’s experience,
“perceptual schemas”. We propose Feature Attending Recurrent Modules (FARM),
which learns a state representation where perceptual schemas are distributed across
multiple, relatively small recurrent modules. We compare FARM to recurrent
architectures that leverage spatial attention, which reduces observation features
to a weighted average over spatial positions. Our experiments indicate that our
feature-attention mechanism better enables FARM to generalize across the diverse
object-centric domains we study.

1 I N T R O D U C T I O N

Cognitive scientists theorize that humans generalize broadly with “schemas” they discover for
regularly occurring structures within their experience (Minsky, 1979; Rumelhart, 1980; Rumelhart
et al., 1986). Schemas are representations that capture common features over diverse aspects of the
environment. For example, when we learn to drive, we learn schemas for common car types (such
as sedans), common car motions (such as accelerating or stopping), and common car arrangements
(such as a row of cars). Importantly, schemas are composable representations over portions of our
observations. This allows us to recombine them in novel ways. For example, once we learn schemas
for sedans, car motions, and rows of cars, we can recognize many rows of sedans moving in opposite
directions—even if we’ve never seen this before.

While substantial progress has been made on developing deep reinforcement learning (deep RL)
algorithms which can generalize, algorithms are typically limited to one type of generalization. For
example, one algorithm will generalize to novel compositions of familiar shapes and colors (Higgins
et al., 2017; Chaplot et al., 2018), whereas another algorithm will generalize to longer sequences of
observed subtasks (Sohn et al., 2018; 2021; Brooks et al., 2021). In this work, we hypothesize that
we can develop a single deep RL architecture that can exhibit multiple types of generalization if it can
learn schema-like representations for regularly occurring structures within its experience. As a first
step, we study learning schemas for perception (i.e. perceptual schemas) that support generalization
within a diverse set of tasks and environments.

We study generalization across three diverse environments and task structures, each with their own
regularly occurring structures (Figure 1). Across these environments, test tasks are novel compositions
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Figure 1: We study three diverse compositional task structures in both 2D and 3D environments:
(a) composing memory of object-motions, (b) composing 3D objects with a larger environment, and
(c) composing memory of goal information to longer tasks made of recurring object configurations.
We test an agent’s ability to generalize within a task structure by testing it on novel compositions
of the regularly occurring structures the agent experienced during training. We hypothesize that an
agent can successfully generalize at test time if it can discover perceptual schemas that capture these
recurring structures. Videos of our agent performing these tasks: https://bit.ly/3kCkAqd.
of the regularly occurring structures the agent experiences during training. Generalization for the
“Ballet task” involves recalling novel spatial and temporal compositions of regularly occurring
object motions (Figure 1, a); generalization for the “Place X on Y task” involves generalizing
active perception of and navigation towards regularly appearing 3D objects (Figure 1, b); and
generalization for the “Keybox task” involves generalizing memory-retention of goal-information to
larger environments composed of sequences of regularly occurring object-configurations (Figure 1,
c). We hypothesize that discovering perceptual schemas for these regularly occurring structures will
facilitate zero-shot generalization to tasks defined over novel compositions of these structures.

We propose Feature Attending Recurrent Modules (FARM), a state representation learning archi-
tecture for discovering task-relevant perceptual schemas. FARM learns perceptual schemas that
are distributed across multiple, smaller recurrent modules. To consider why this might be helpful,
consider the benefits of using word embeddings. A word embedding can represent more informa-
tion than a one-hot encoding of the same dimension because it can represent different patterns of
word usage with the same dimension. Analogously, learning multiple modules enables FARM to
represent different patterns of an agent’s experience—i.e. different perceptual schemas—with the
same module. To maximize the expressivity of the patterns a module can represent, each module
employs a novel dynamic feature attention mechanism to dynamically attends to important features
in the agent’s observation. When combined with spatio-temporal features, our results suggest that the
perceptual schemas FARM discovers capture diverse structures including object motions, 3D objects,
and spatial-relationships between objects. To have the modules coordinate what they attend to, they
share information using transformer-style attention (Vaswani et al., 2017).

Recent work indicates that spatial attention is a simple inductive bias for strong performance on
object-centric vision tasks (Greff et al., 2020; Locatello et al., 2020; Goyal et al., 2020b;a). We
compare FARM to recurrent architectures that employ spatial attention and contribute the following:
1. FARM, which combines dynamic feature attention with learning multiple recurrent modules (§3).
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2. We show that FARM’s components synergestically enable generalizing (a) recall to novel com-
positions of object motions; (b) active perception of 3D objects to larger environments; and (c)
generalizing memory of goal-information to longer tasks filled with more distractors (§4).

3. We show that spatial attention—which reduces observation features to a weighted average over
spatial positions—can be detrimental to reinforcement learning of our diverse object-centric tasks
and interfere with the benefits that come from learning multiple recurrent modules.

4. Our analysis of the representations learned by FARM provide evidence that it learns perceptual
schemas that are flexibly distributed across combinations of recurrent modules (§4.3.1).

2 R E L AT E D W O R K O N G E N E R A L I Z AT I O N I N D E E P R L

While a large body of work has focused on studying generalization in deep RL (Kansky et al., 2017;
Witty et al., 2018; Farebrother et al., 2018; Zhang et al., 2018b; Cobbe et al., 2019; Raileanu &
Fergus, 2021), there has been less emphasis on studying generalization within diverse environments
and task structures. One research direction has focused on generalizing to longer tasks, e.g. executing
longer sequences (Oh et al., 2017; Zhang et al., 2018a; Lampinen et al., 2021) or executing novel
subtask structures (Sohn et al., 2018; 2021; Brooks et al., 2021). Another direction has focused
on generalizing to tasks with novel features, e.g., novel shape-color combinations (Higgins et al.,
2017; Chaplot et al., 2018; Lee et al., 2020; Hill et al., 2020), novel backgrounds (Zhang et al., 2021;
Agarwal et al., 2021), and novel distractors (Mott et al., 2019; Goyal et al., 2020b). We attempt to
bridge these prior strands of research by developing a single architecture for (a) generalizing recall to
novel compositions of object motions; (b) generalizing sequential perception of 3D objects to larger
environments; and (c) generalizing memory of goal information to longer task lengths.

Task-driven generalization. Recent work which has shown that a diverse training curriculum can
promote generalization (Tobin et al., 2017; Packer et al., 2018; Hill et al., 2020). This research
inspired our task-driven approach to discovering generalizable “schema-like” representations. Addi-
tionally, our procedurally-generated KeyBox task follows previous research on using procedural level
generalization for faster learning and generalization (Justesen et al., 2019; Jiang et al., 2021).

Generalizing with feature attention. Most similar to our feature-attention mechanism are the
attention mechanisms by Perez et al. (2018); Chaplot et al. (2018). In particularly, Chaplot et al.
(2018) showed that mapping language instructions to non-linear feature coefficients enabled general-
izing to tasks specified over unseen feature combinations in a 3D environment. While FARM also
learns non-linear feature coefficients, our work has two important differences. First, we develop a
multi-head version where individual feature coefficients are produced by their own recurrent modules.
This enables FARM to leverage this form of attention in settings where language instructions don’t
indicate what to attend to (this is true in 2/3 of our tasks). Second, we are the first to show that
feature attention facilitates generalizing recall of object dynamics (Figure 4.1) and generalizing
memory-retention to larger environments (Figure 4.3).

Generalizing with top-down spatial attention. Most similar to FARM are the Attention Augmented
Agent (AAA) (Mott et al., 2019) and Recurrent Independent Mechanisms (RIMs) (Goyal et al.,
2020b). Both are recurrent architectures that produce top-down spatial attention over observations.
Additionally, RIMs also uses a modular state representation produced by a set of recurrent modules.
AAA showed generalization to unseen distractors and RIMs to more distractors than trained on. While
follow-up work on RIMs has addressed problems such as learning type-specific update rules (Goyal
et al., 2020a; Didolkar et al., 2021) and improved information sharing among modules (Mittal et al.,
2020; Goyal et al., 2021), there hasn’t been an emphasis on which components enable generalization
in reinforcement learning across diverse domains. The major difference between AAA, RIMs, and
FARM is that FARM attends to an observation with feature attention as opposed to spatial
attention. Our experiments indicate that spatial attention can be an impediment to reinforcement
learning of tasks defined by shape-color agnostic object-dynamics and 3D objects.

3 A R C H I T E C T U R E : F E AT U R E AT T E N D I N G R E C U R R E N T M O D U L E S

We study an agent that experiences a partial observation and task description (xt, τt) ∈ X × T , takes
an action at ∈ A, and experiences resultant reward rt ∈ R. The agent needs a representation for state
that enables learning a policy π : S → A that maximizes the expected reward from taking an action
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at a state Eπ[
∑
t=0 γ

tRt+1|St = a,At = a]. Since the agent only observes observation-task-action-
reward tuples (xt, τt, at, rt), it needs to learn a time-series representation mapping episode histories
(x≤t, τ≤t, a<t, r<t) to state representations st. The agent learns these representations with Feature
Attending Recurrent Modules (FARM).

Figure 2: FARM learns representations for perceptual schemas that are distributed across n recurrent
modules {η(i)}. To discover perceptual schemas, FARM exploits structured observation features
Zt = φ(xt,Zt−1) ∈ Rm×dz that share dz spatio-temporal features across m spatial positions. To
capture diverse structures, each module uses feature attention to compute coefficients for important
features: f (i)att. This allows a module to update with important features present across all spatial
positions. The modules share information to coordinate what they represent with f (i)share.

Exploiting structured observation features for generalization. We assume that FARM can
generalize if it represents task-relevant regularly occurring perceptual structures, i.e. perceptual
schemas. To discovering perceptual schemas, we assume an observation encoder φ(·) that produces
observation features Zt ∈ Z ∈ Rm×dz where dz features are shared across m rows representing
different portions of the observation. For an image, different rows might correspond to different
spatial positions; for audio, to different frequency bands; or for robotic proprioception, to spatial
information about different body parts. In this work, we focus on observations in the form of images.

Feature Attending Recurrent Modules. FARM learns representations for perceptual schemas that
are distributed over n recurrent modules {η(i)}. Module i uses a distinct initial module-state
h
(i)
0 ∈ H(i) and the subsequently experienced observation-task-action-reward tuple (xt, τt, at, rt) to

learn the following mapping, η(i) : Z ×T ×H(i)×A×R → H(i). For convenience, we can define
a module context c(i)t as the concatenation of the previous module-state, the action chosen with
it, the resultant reward, and the current task-description as c(i)t = [τt, h

(i)
t−1, at−1, rt−1]. The agent

integrates this context c(i)t with Zt to compute st using the collection of outputs from the modules:

st = [η(1)(Zt, c
(1)
t ), . . . , η(n)(Zt, c

(n)
t )] (1)

= [h
(1)
t , . . . , h

(n)
t ]. (2)

Module update rule. Each module will use its context c(i)t to (a) attend to some aspect of the
observation and (b) to retrieve information from other modules. This manifests with two functions,
(a) f (i)att and (b) f (i)share, respectively. Defining f (i)update as the module update-function, we model η(i)
as the following composition of functions:

η(i)(Zt, c
(i)
t ) = f

(i)
update(c

(i)
t , f

(i)
att(Zt, c

(i)
t ),︸ ︷︷ ︸

attend to observation

f
(i)
share(c

(i)
t , {h(j)t−1}n1 )︸ ︷︷ ︸

share information

) (3)

Modules capture diverse perceptual structures with dynamic feature attention. Our first insight
was that modules can attend to high-level object-dynamics information if FARM learns a recurrent
observation encoder Zt = φ(xt,Zt−1). By doing so, information about how feature-values shift
between positions (i.e. feature dynamics) can be captured in the features of Zt. Our second insight
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was that feature attention is an expressive attention mechanism for selecting observation information
to update with. Each module predicts its own feature attention coefficients and applies them identically
to all spatial positions in Zt (Perez et al., 2018; Chaplot et al., 2018). We found it useful to linearly
project the features before and after using shared parameters as in Andreas et al. (2016); Hu et al.
(2018). The operations are summarized below:

f
(i)
att(Zt, c

(i)
t ) = (ZtW1 � σ(W i

attc
(i)
t ))W2 (4)

where � denotes an element-wise product over the feature dimension and σ is a sigmoid non-
linearity. Equation 4 computes the degree to which important features are expressed across all
positions. Since our features capture dynamics information, this allows a module to attend to
dynamics (§ 4.1). When updating with equation 3, we flatten the output of equation 4 and give
this as input to an RNN. Flattening leads all spatial positions to be treated uniquely and enables a
module to represent aspects of the observation that span multiple positions, such as 3D objects (§ 4.2)
and spatial arrangements of objects (§ 4.3). Since the feature-coefficients for the next time-step are
produced with observation features from the current time-step, modules can dynamically shift their
attention when task-relevant events occur (see Figure 6, c).

Modules share information to coordinate what they represent. Similar to RIMs Goyal et al.
(2020b), before updating, each module retrieves information from other modules using transformer-
style attention (Vaswani et al., 2017). We define the collection of previous module-states as Ht−1 =[
h
(1)
t−1; . . . ;h

(n)
t−1;0

]
∈ R(n+1)×dh , where 0 is a null-vector used to retrieve no information. Each

module retrieves information as follows:

f
(i)
share(c

(i)
t , {h(j)t−1}n1 ) = softmax


(
c
(i)
t W q

i

) (
Ht−1W

k
i

)>
√
dh

Ht−1W
v
i (5)

4 E X P E R I M E N T S

In this section, we study the following questions:
1. Can FARM enable generalization of memory-retention to novel spatio-temporal compositions of

object-dynamics?
2. Can FARM generalize sequential active perception of 3D objects to larger environments?
3. Can FARM generalize memory-retention of goal-information to longer tasks composed of longer

sequences of observed obstacles?

Method Observation
Attention

Modular
State

LSTM 7 7
AAA Spatial 7
RIMs Spatial 3
FARM (Ours) Feature 3

Table 1: Comparison of baselines.

Baselines. Our first baseline is the canonical choice for
learning state-representations, a Long Short-term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997). Our other two
baselines — the Attention Augmented Agent (AAA) (Mott
et al., 2019) and Recurrent Independent Mechanisms
(RIMs) (Goyal et al., 2020b) — also employ top-down at-
tention over observation features. However, they both employ
transformer-style attention (Locatello et al., 2020; Vaswani
et al., 2017) to dynamically attend to spatial positions in the
observation; whereas, we dynamically attend to features shared across all spatial positions. RIMs,
like FARM, composes state with a set of recurrent modules.

Implementation details. We implement our recurrent observation encoder, φ, as a ResNet (He
et al., 2016) followed by a Convolutional LSTM (ConvLSTM) (Shi et al., 2015). We implement the
update function of each module with an LSTM. We used multihead-attention (Vaswani et al., 2017)
for f (i)share. We trained the architecture with the IMPALA algorithm (Espeholt et al., 2018) and an
Adam optimizer (Kingma & Ba, 2015). We tune hyperparameters for all architectures with the “Place
X next to Y” task from the BabyAI environment (Chevalier-Boisvert et al., 2019) (§ C.2). We keep
most hyperparameters fixed across our tasks. Our main change is to make the RNNs employed by
each architecture larger for the KeyBox task. For details on hyperparameters, see §B.

5



Under review as a conference paper at ICLR 2022

4 . 1 G E N E R A L I Z I N G M E M O RY- R E T E N T I O N T O N O V E L C O M P O S I T I O N S O F
O B J E C T- D Y N A M I C S

Figure 3: FARM enables generalizing recall to novel spatio-temporal compositions of object
motions. We present the success rate means and standard errors computed using 5 seeds. (a) Only
FARM is able to go above chance performance for each setting. (b) Given recurrent features, we find
that learning perceptual schemas with either multiple modules or feature attention enables learning
recall of spatio-temporal compositions. These results suggest that spatial attention removes the
benefits of learning multiple modules when learning to recall object-dynamics.

We study this with the “Ballet” grid-world (Lampinen et al., 2021) shown in Figure 1 (a). The agent
is a white square in the middle of the grid. There are m other “ballet-dancer” objects that move
with a distinct object-motion for 16 time-steps. There are 15 object-motions. The dances appear in
sequence for 16 time-steps with a 48-time-step delay in between. Training always consists of seeing
m = {2, 4} dancers; testing always consists of seeing m = {8} dancers. After all dancers finish, the
agent is given a language instruction and it must go to the correct ballet-dancer. The agent gets a
reward of 1 if it goes to the correct dancer, and 0 otherwise. All shapes and colors are randomized
making the dynamics the only feature that indicates the goal-object. We study the success rate of
an agent. A poorly performing agent will obtain chance performance, 1/m. All agents learn with a
sample budget of 2 billion frames and use approximately 7M parameters.

We present the training and generalization success rates in Figure 3. We learned recurrent observation
features with RIMs and AAA for a fair comparison. We find that only FARM is able to obtain above
chance performance for training and testing. In order to understand the source of our performance, we
ablate using a recurrent observation encoder, using multiple modules, and using feature-attention. We
confirm that recurrent encoder is required. Interestingly, we find that either using multiple modules or
using our feature-attention enables task-learning, with our feature-attention mechanism being slightly
more stable. We hypothesize that using a recurrent encoder with our attention allows for storing
information about how object-motions are shifting position in a way that mitigates interference.

(Lampinen et al., 2021) showed that a hierarchical transformer architecture was able to learn and
generalize recall of sequential object-motions in the Ballet task. However, their architecture uses
6 distinct 8-head hierarchical attention operations and 8 MLP layers, making it much deeper and
more computationally intensive than ours. Their architecture had 13.3M parameters whereas ours has
7.1M. We show that when using recurrent observation features, simply learning top-down feature
attention or using multiple RNNs can enable learning this task.

4 . 2 G E N E R A L I Z I N G S E Q U E N T I A L A C T I V E P E R C E P T I O N O F 3 D O B J E C T S T O
L A R G E R E N V I R O N M E N T S

We study this with the 3D Unity environment from Hill et al. (2020) shown in Figure 1 (b). This
environment tests an agent’s ability to generalize sequential composition of active perception of 3D
objects to larger environments. The agent is an embodied avatar in a room filled with task objects
and distractor objects. The agent has 46 discrete actions and has a navigation step-size of .15m. The
agent receives a language instruction of the form “X on Y” —e.g., “toothbrush on bed” and receives a
reward of 1 if it completes the task and 0 otherwise. We partition objects into two sets as follows:
pickup-able objects O1 = A ∪ B and objects to place them on O2 = C ∪D. During training the
agent sees A×D and B×C in a 4m× 4m room with 4 distractors, along with A×C and B×D in
a 3m× 3m room with 0 distractors. We test the agent on A×C and B×D in a 4m× 4m room with
4 distractors. The training curriculum also includes “Go to X” and “Lift X”. For details see § E.3.
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Figure 4: FARM enables generalizing sequential active perception of 3D objects to a larger
environment. We present the success rate means and standard errors computed using 3 seeds. (a)
FARM generalizes best. (b) Our performance benefits come mainly from learning multiple modules,
though feature attention slightly improves performance and lowers variance. These results suggest
that spatial attention interferes with reinforcement learning of 3D objects.

We present the generalization success rate in Figure 4. All architectures and ablations had approxi-
mately 5M parameters. We find that baselines which used spatial attention learn more slowly than
an LSTM or FARM. Additionally both models using spatial attention have poor performance until
the end of training where AAA begins to improve. FARM achieves relatively good performance,
achieving a success rate of 60% and 80% on the two test settings, respectively. We hypothesize that
our feature attention mechanism can more easily attend to 3D objects spanning multiple positions as
opposed to spatial attention which uses a softmax that may saturate on individual positions.

4 . 3 G E N E R A L I Z I N G M E M O RY- R E T E N T I O N T O L O N G E R TA S K S

In order to study this, we create the multi-level “keybox” environment depicted in Figure 1 (c). This
environment tests an agent’s ability to learn to remember goal-information for increasingly long time-
horizons. The agent maximizes reward by completing as many levels as it can in an episode. Each
level in this environment is a hallway with a single box and a key of the same color. The hallway for
level n consists of a length-n sequence of w × w environment subsections. Each subsection contains
d distractor objects that can either be a ball of any color or keys of non-goal colors. The agent and
the box always starts in the left-most subsection and the goal key always starts in the right-most
subsection. Each time the agent succeeds, it is teleported to the next level and gets a reward of
n/nmax where nmax is the maximum level the agent can complete. We set nmax = 10 during training.
The agent has 50n time-steps to complete a level. The distractors pose an additional challenge of
obstructing the agent’s path. This further challenges memory since they have to be incorporated into
the state-representation to predict actions but should not overwrite the goal information. We study
two generalization settings: a densely populated setting that has subsections of width w = 3 with
d = 2 distractors and sparsely populated setting that has subsections of width w = 5 with d = 4
distractors. In the dense setting, once the agent fails, it restarts in level n ∈ [1, ndone], where ndone is
the highest level the agent has completed. In the sparse setting, we found we needed to always restart
the agent on level 1 to enable learning. All architectures used approximately 7.5M parameters.

We present the maximum training level reached and generalization success rates in Figure 5. We
find that all methods achieve comparable training results. In the dense setting, we see an LSTM
quickly overfits in both settings. All architectures with attention continue to improve in generalization
performance as they continue training. In the dense setting, we find that FARM tends to generalize
better (by about 20% for AAA and about 30% for RIMs). In the sparse setting, both RIMs and an
LSTM fail to generalize above 30%. FARMbetter generalizes than the AAA for level 20 but gets
comparable performance for level 30. In some ways, this is our most surprising result since it is not
obvious that uniformly attending to features across all spatial positions should help with this task. In
the next section we study possible sources of our generalization performance.

4 . 3 . 1 A N A LY S I S O F R E P R E S E N TAT I O N S F O R R E G U L A R LY O C C U R R I N G E V E N T S

We study the representations FARM learns for categories of regularly occurring perceptual events.
We collect 2000 generalization episodes in level 20. We segment these episodes into 6 categories
of regularly occurring perceptual events: pickup ball, drop ball, pickup wrong key, drop wrong
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Figure 5: FARM enable generalizing memory-retention of goal-information to longer horizons
of obstacles than trained on. On the left-most panel of (a,b), we present the maximum training
level reached by each agent. All others panels in (a-c) show the generalization success rate. For all
quantities, we present the mean and standard error computed using 10 seeds. (a) All architectures
achieve comparable training performance. FARM better generalizes to longer hallways with more dis-
tractors in the densely populated setting. (b) FARM and AAA get similar generalization performance
in the sparsely populated setting. (c) Using multiple modules and feature attention both improve
generalization. These results suggest that spatial attention interferes with generalization benefits of
learning multiple modules while feature attention acts synergistically.

key, pickup correct key, and drop correct key. In order to understand how FARM represents these
categories, we study time-series of the L2 norm of each module LSTM-state and of their attention
coefficients. For reference, we also show the L2 norm for the entire episode.

We present a subset of results in Figure 6. For all results, see §D. It is worth noting that program-
matically extracting all task-relevant events for analysis is challenging. For example, we were able
to observe salient state activity from module 0 when the agent moved around obstacles but found
no way to extract this signal. We show an example in Figure 6 a. While some modules are selective
for different recurring events such as attending to goal information (Figure 6, a-c), it seems that the
perceptual schema used for recurring events are generally distributed across multiple modules. We
hypothesize that this enables FARM to leverage some modules to store goal-information and other
modules to represent and navigate around obstacles in increasingly long environments. This is further
supported by our ablation where we find that having 4 (8.2M params) or 8 (7.5M params) modules
significantly outperforms using a single large module (7.5M params) (Figure 5, (c)). Feature attention
consistently improves performance.

5 D I S C U S S I O N A N D C O N C L U S I O N

We have presented, FARM, a novel recurrent state representation learning architecture. Our results
show that a single architecture can support the following three disparate types of generalization: (a)
generalizing recall to novel spatio-temporal compositions of object-motions; (b) generalizing active
perception of 3D objects to larger environments; and (c) generalizing memory of goal-information to
longer sequences of obstacles. Our results suggest that learning feature attention and learning multiple
recurrent modules can act synergistically, with different components being more helpful in different
settings. For example, feature attention enables more stable learning of object-motions (Figure 3)
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Figure 6: While (a-c) show that individual modules have salient activity for different events, (d)
shows that different combinations of modules coordinate their activity for different events. This
indicates that event representations are distributed flexibly across the modules. (a) Module 0
commonly exhibits salient activity when the agent moves around an obstacle. (b) Module 6 shows
selective activity for representing goal information. (c) Module 6 activates its attention coefficients as
the agent picks up the goal key. (d) Some modules activate together (i.e. correlate) to represent some
recurring events but activate in opposite directions (i.e. anti-correlate) to represent other recurring
events. For example, modules 2 and 6 correlate for picking up the correct key but anti-correlate
for dropping the wrong object. This is similar to when neurons in word embeddings correlate for
some words (e.g. man and king), but anti-correlate for other words (e.g. man and woman). These
results suggest that FARM is distributing representations for perceptual schemas across the modules
in complicated ways rather than representing individual schema with separate modules. Videos of the
state-activity and attention coefficients: https://bit.ly/3qCxatr.

while multiple modules better enables generalization with 3D objects (Figure 4). Importantly, neither
component hinders the other and an architecture with both succeeds on a broader set of tasks.
Together, the two enable the discovery of representations for shape-color agnostic motion (§4.1), for
active perception of 3D objects (§4.2), and for spatial relationships between objects (§4.3, §C.3).

Feature attention vs. spatial attention. While our dynamic feature attention mechanism is flexible,
FARM learns an update function that treats all positions in the attention output as unique (equation 4).
A major advantage of spatial attention is that the resultant representation is spatially-invariant, which
may sometimes be more useful for a policy. For example, we find that RIMs has better generalization
to an unseen number of distractors (§C.2). Interestingly, using spatial attention seems to interfere with
the generalization benefits of learning multiple recurrent modules. An interesting future direction
might be to explore combining both forms of attention for a more flexible policy.

RNNs vs. Transformers. Another interesting future direction involves discovering perceptual
schemas with transformers (Vaswani et al., 2017). When used as memory for an RL agent, Transform-
ers have shown strong performance for representing state over longer sequences but show weaker
performance for reactive behavior (Parisotto et al., 2020). An interesting next-step might be to use a
hierarchical architecture where FARM provides representations for relatively short sequences. These
could be used as primitive observation-representations for a transformer-like architecture. Such an
architecture might enable discovering perceptual schemas over very long time-horizons.

9

https://bit.ly/3qCxatr


Under review as a conference paper at ICLR 2022

R E F E R E N C E S

Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. ICLR, 2021.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 39–48, 2016.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs. 2018. URL
http://github.com/google/jax.

Ethan A Brooks, Janarthanan Rajendran, Richard L Lewis, and Satinder Singh. Reinforcement
learning of implicit and explicit control flow in instructions. ICML, 2021.

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj
Rajagopal, and Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language
grounding. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJeXCo0cYX.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. In ICML, pp. 1282–1289. PMLR, 2019.

Aniket Didolkar, Anirudh Goyal, Rosemary Ke, Charles Blundell, Philippe Beaudoin, Nicolas
Manfred Otto Heess, Michael Mozer, and Yoshua Bengio. Neural production systems. In NeurIPS,
2021.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In ICML, pp. 1407–1416. PMLR, 2018.

Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in
dqn. arXiv, 2018.

Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe Beaudoin, Sergey Levine, Charles Blundell,
Yoshua Bengio, and Michael Mozer. Object files and schemata: Factorizing declarative and
procedural knowledge in dynamical systems. arXiv, 2020a.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. Recurrent independent mechanisms. ICLR, 2020b.

Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim Rahaman,
Jonathan Binas, Charles Blundell, Michael Mozer, and Yoshua Bengio. Coordination among neural
modules through a shared global workspace. arXiv preprint arXiv:2103.01197, 2021.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
neural networks. arXiv, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel, Matthew
Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot transfer in
reinforcement learning. In ICML, pp. 1480–1490. PMLR, 2017.

Felix Hill, Andrew Lampinen, Rosalia Schneider, Stephen Clark, Matthew Botvinick, James L
McClelland, and Adam Santoro. Environmental drivers of systematicity and generalization in a
situated agent. ICLR, 2020.

10

http://github.com/google/jax
https://openreview.net/forum?id=rJeXCo0cYX


Under review as a conference paper at ICLR 2022

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In ICML, pp.
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