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Abstract

Efficiently exploring complex loss landscapes is key to the performance of deep neural
networks. While momentum-based optimizers are widely used in state-of-the-art setups,
classical momentum can still struggle with large, misaligned gradients, leading to oscillations.
To address this, we propose Torque-Aware Momentum (TAM), which introduces a damping
factor based on the angle between the new gradients and previous momentum, stabilizing
the update direction during training. Empirical results show that TAM, which can be
combined with both SGD and Adam, enhances exploration, handles distribution shifts more
effectively, and improves generalization performance across various tasks, including image
classification, large language model fine-tuning and continual learning, when compared to
classical momentum-based optimizers.

1 Introduction

Despite the wide range of optimization methods available in the literature, stochastic gradient descent (SGD),
typically augmented with momentum (Kingma & Ba, 2015; Nesterov, 1983; Qian, 1999), remains the go-to
approach for practitioners. Momentum accelerates convergence, particularly in the presence of high curvature
(Cutkosky & Mehta, 2020b), small but consistent gradients, or noisy gradients. It also helps the optimizer
navigate the loss landscape and escape local minima or saddle points by maintaining consistent updates
directions (Jin et al., 2018).
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Figure 1: Comparing momentum updates obtained
using SGDM and TAM for a given SGD trajectory.
While TAM results in more stable directions pointing
to a lower loss basin, SGDM has higher magnitude
updates susceptible to misaligned gradients.

While SGD with momentum (SGDM) has shown re-
markable success in various scenarios, particularly in
computer vision (Sutskever et al., 2013), it remains
vulnerable to the adverse effects of large, misaligned
gradients (Zhang et al., 2019). These gradients often
stem from noisy data or abrupt changes in loss land-
scape curvature, especially in narrow basins where
gradients frequently shift direction (Ortiz-Jiménez
et al., 2022). This can lead to oscillations, making
it harder for the optimizer to escape sharp minima
(Fu et al., 2023).

In this work, we propose that minimizing the in-
fluence of misaligned gradients during momentum
updates can preserve valuable information and im-
prove the exploration capabilities of momentum-
based methods. To enable more consistent explo-
ration of the loss landscape, particularly in noisy
settings, we introduce a new approach that modifies
the standard momentum update by incorporating a
damping factor, inspired by the damping effect in
mechanical systems (Fritzen, 1986).

In this analogy, momentum represents velocity in
linear dynamics, and the gradient represents the
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applied force. The damping term we introduce depends on the angle between the gradient and momentum,
acting as anisotropic friction (Tramsen et al., 2018). This term modulates the influence of misaligned (or
‘torqued’) gradients, much like damping reduces torque in rotational systems. Drawing from this physical
analogy, we name our method Torque-Aware Momentum (TAM).

Figure 1 illustrates how TAM (blue) modifies the momentum update in terms of both magnitude and direction
compared to SGDM (red) along an SGD trajectory (black). At θ2, where the gradient aligns with the previous
momentum, both SGDM and TAM incorporate the new gradients similarly, propelling the parameters forward.
However, at θ5, where a misaligned (torqued) gradient emerges, SGDM’s update direction shifts abruptly
due to the conflicting gradient. In contrast, TAM maintains stability by preserving the previous momentum
direction, allowing for continued exploration without discarding past information.

Our empirical analysis shows that this consistent exploration early in training helps discover more generalizable
basins in the loss landscape. Our key contributions are as follows:

• We propose Torque-Aware Momentum (TAM), a new method that mitigates the impact of torqued
gradients while enhancing exploration in momentum-based optimizers (Section 3).

• We illustrate the performance of TAM and its adaptive variant, AdaTAM, with experiments on image
classification tasks using CIFAR10, CIFAR100, and ImageNet (Section 4.1) as well as fine-tuning
different large language models (Section 4.2).

• We demonstrate additional benefits of TAM, specifically its increased robustness to distribution
shifts in online learning setups (Section 4.3) and its effectiveness as a warm-up phase to enhance
exploration in the early stages of training (Section 4.5).

2 Related work

Momentum-based methods have been widely studied for their ability to improve convergence speed and
exploration of the loss landscape. For instance, Xing et al. (2018) showed that as mini-batch gradients align
with the top eigenvectors of the Hessian, SGD’s exploration slows due to oscillatory behavior, particularly at
larger batch sizes. Similarly, Fu et al. (2023) showed that SGDM accelerates convergence by deferring this
oscillation, referred to as abrupt sharpening, where gradients and the Hessian suddenly align, making SGDM
more effective for larger learning rates.

Momentum-based optimizers have been well-studied from a theoretical perspective. In particular, Shi (2024)
provided a stochastic differential equation (SDE)–based framework to study how learning rate and momentum
interact in stochastic gradient descent (SGD), showing the importance of hyperparameter tuning for stabilizing
training in non-convex settings. Along the same line of work, Cutkosky & Orabona (2019) introduced STORM,
a momentum-based method that adaptively reduces gradient variance and improves convergence rates in
non-convex optimization under mild smoothness assumptions.

Several momentum variants aim to improve convergence by utilizing the curvature of the loss surface (Gilmer
et al., 2021; Foret et al., 2021; Yao et al., 2021; Tran & Cutkosky, 2022; Kaddour et al., 2022). Tran &
Cutkosky (2022) explored how momentum interacts with curvature by incorporating second-order information
into the update rule. They further showed that curvature-aware momentum improves both convergence speed
and robustness in sharp surfaces. Similarly, Arjevani et al. (2020) established lower bounds for stochastic
optimization with access to second-order information and showed that momentum can be particularly
beneficial for escaping saddle points when paired with such curvature data. Optimizers like Adam (Kingma
& Ba, 2015) combine adaptive learning rate with momentum for faster convergence, while Ziyin et al. (2020)
proposed leveraging parameter updates, rather than gradients, to compute momentum. However, while these
methods improve convergence speed, they do not specifically address the challenge of torqued gradients on
noisy loss surfaces.

Beyond convergence, Ramezani-Kebrya et al. (2024) also analyzed the generalization error of heavy-ball
momentum, showing that, even in convex settings, standard SGDM may exhibit unbounded stability gaps.
They proposed SGDEM (SGD with early momentum), which improves generalization across a wide range of
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hyperparameters. Liu & Tian (2022) proposed SGEM (Stochastic Gradient with Energy and Momentum),
which augments SGDM with an energy-based scaling mechanism. More recently, Chayti et al. (2024)
introduced a momentum-augmented cubic Newton method that leverages both first- and second-order
information to ensure convergence to second-order stationary points in highly non-convex landscapes.

Recently, Grams was proposed by Cao et al. (2025) that decoupled the direction and magnitude of the
gradients such that momentum is solely used for scaling. Huang et al. (2025), on the other hand, proposed
SPAM, which involves resetting momentum and clipping gradients in LLMs. Chen et al. (2023) performed a
symbolic discovery and obtained an optimizer called Lion, which only uses the sign of the momentum vector
for parameter updates. However, Rong et al. (2025) improved upon Lion optimizer by replacing sign updates
with a non-linear continuous scaling function based on momentum magnitude. Lucas et al. (2018) introduced
AggMo, an optimizer combining multiple momentum vectors with different decay rates, but requires storing
multiple copies of model states (Cutkosky & Mehta, 2020a; Xie et al., 2021), unlike our method TAM, which
maintains the same memory footprint as SGDM.

Hermant (2024) theoretically showed that gradient correlation could be the key to accelerating SGDM. In
the convex setting, they demonstrated that the average correlation between successive gradients satisfies a
strong growth condition, which results in faster convergence of SGDM. Closest to our work, Roy et al. (2021)
tackled gradient misalignment by considering angles between consecutive gradients. However, we show that
focusing on the angle between momentum and gradients is more critical for stability in complex deep learning
settings, as demonstrated by our comparisons with their method, AngularGrad (see Section 4).

3 Methodology

3.1 Background: SGDM

Momentum was first introduced to accelerate convergence in SGD (Polyak, 1964; Qian, 1999). Given a loss
function LD(θ) and its gradients gt = ∇θt

LD(θt) at time t, the momentum and parameter updates are:

mt = βmt−1 + gt; θt+1 = θt − ηmt (1)

Figure 2: TAM controls update magnitude (red) based
on the alignment between momentum and new gra-
dients. The angle (α1, α2) between previous momentum
(green) and new gradients (white) determines the magni-
tude of the update (red). When g1 aligns well with m0,
the resulting momentum m1 has a higher magnitude. In
contrast, when the misalignment between g2 and m1 results
in a smaller magnitude m2.

where β is the momentum coefficient and η is
the learning rate. The momentum accumulates
past gradients, smoothing out noise and pro-
viding more weight to recent gradients. This
helps accelerate convergence by allowing the
optimizer to maintain a consistent update di-
rection, even in the presence of noisy gradi-
ents or small gradients from the mini-batches
(Sutskever et al., 2013).

3.2 Torque-Aware Momentum (TAM)

TAM modifies the momentum update in Eq. 1
to regulate the impact of new gradients. To
handle the noisy nature of loss surfaces, we
introduce a damping factor that adjusts the
influence of gradients based on their directional
alignment with the previous momentum. This
acts like anisotropic friction (Tramsen et al.,
2018), reducing the effect of torqued gradients,
similar to how damping reduces torque in ro-
tational systems.
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To increase robustness against misaligned gradients and encourage exploration of dominant gradient directions,
we define the correlation St between the previous momentum direction and the current gradient as the cosine
similarity:

St = mt−1.gt

||mt−1||||gt||
. (2)

We apply smoothing to St with a decay rate γ to account for stochasticity:

ŝt = γŝt−1 + (1 − γ)St . (3)

Next, we normalize the smoothed correlation ŝt to the range [0, 1] and introduce a small constant ϵ to ensure
that new gradients still exert a small influence even when the momentum magnitude diminishes. We prioritize
momentum updates aligned with previous directions to reduce the influence of large opposing gradients:

dt = 1 + ŝt

2 ; mt = βmt−1 + (ϵ + dt)gt . (4)

Algorithm 1 TAM update

Require: Initial parameters θ0, momentum m0, learn-
ing rate η, momentum coefficient β, smoothing decay
rate γ, ϵ, # of iterations T . ŝ0 = 0
for t = 1, 2, . . . , T do

Sample mini-batch bt from data D
Compute gradients gt = ∇θtLbt(θt)
St = mt−1.gt/||mt−1||||gt|| (Eq. 2)
ŝt = γŝt−1 + (1 − γ)St (Eq. 3)
dt = (1 + ŝt)/2
mt = βmt−1 + (ϵ + dt)gt (Eq. 4)
θt = θt−1 − ηmt

end for
return θT

Though TAM introduces the hyper-parameters γ
and ϵ, they are fixed by default at 0.9 and 1e − 8,
respectively, requiring no additional tuning (other
values are considered in our ablation study in Section
4.6). Figure 2 illustrates TAM’s behaviour: when the
alignment α1 is stronger (smaller α1), the gradient g1
amplifies the momentum m1. Conversely, when α2 is
larger, the gradient g2 has less influence, resulting in
a smaller momentum m2. The pseudo-code of TAM
is given in Algorithm 1.

3.3 Theoretical Discussion

Here, we describe a simple heuristics for transferring
a tuned learning rate from SGDM to TAM, allowing
TAM to inherit convergence guarantees of SGDM.
We can do so by comparing effective learning rates,
as derived in (Fu et al., 2023). For SGDM, the idea
is that momentum changes the update magnitude in a way that can be approximated as t gets large as

mt =
t∑

s=1
βt−sgs ≈ 1 − βt

1 − β
gt → 1

1 − β
gt

This suggests that the SGDM updates (1) with learning rate η have the same magnitude as the updates of
SGD with effective learning rate η eff

SGDM = 1
1−β η. Similarly, we derive the effective learning rate for TAM

based on the update rule (4) with ∥ϵ∥ ≪ 1. Assuming that, as t increases, the cosine similarity ŝt stabilizes
to a constant value s∗ (see Figure 3), TAM’s effective learning rate becomes:

ηeff
TAM ≈ 1 + s∗

2(1 − β)η (5)

Under this assumption, a tuned learning rate η∗
SGDM for SGDM can be transferred to an optimal learning

rate η∗
TAM for TAM by equating the corresponding effective learning rate. Solving for η∗

TAM yields:

η∗
TAM = 2(1 − βTAM)

(1 + s∗)(1 − βSGDM)η∗
SGDM . (6)
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Figure 3: Evolution of ŝt during training ResNet18 on
CIFAR10/100 datasets. We observe that after starting
from a positive value, ŝt drops to negative, fluctuates,
and eventually saturates near s∗ = 0 in both cases.

In Figure 3, we plot ŝt from Eq. 3 obtained during
training ResNet18 on CIFAR10/100. We observe
that after ŝt starts with a positive value, it fluctuates,
drops to a negative value, and eventually increases
to saturate near s∗ = 0 in both cases.

Our interpretation is that as training progresses, the
momentum term continues to push parameters along
previously dominant directions, while new gradients,
influenced by increasing curvature, fluctuate more
strongly and decorrelate from past directions. This
progressive decorrelation drives the cosine similarity
toward zero, and in some cases negative, indicating
that fresh gradients occasionally oppose the accu-
mulated momentum. Such behavior aligns with the
abrupt sharpening effect described by Fu et al. (2023),
where gradients begin to oscillate as the optimizer
approaches sharp minima. In this view, the negative
correlation reflects the optimizer resisting curvature-
induced oscillations. TAM’s damping mechanism
mitigates the influence of these misaligned gradients,
delaying the sharpening event and allowing longer
exploration of flatter regions.

Furthermore, Figure 3 empirically shows that once
the parameters enter the neighborhood of an opti-
mum and ŝt stabilizes near zero, TAM is expected to inherit the well-established convergence guarantees of
SGDM (Yan et al., 2018; Liu et al., 2020). In other words, the damping factor (1 + ŝt)/2 remains bounded,
ensuring the effective learning rate stays within a controlled range throughout training. This theoretical
connection to SGDM ensures TAM’s convergence while maintaining its enhanced exploration capabilities
during early training.

In our experiments, we set βTAM = βSGDM, and found that η∗
TAM = 2η∗

SGDM consistently yields optimal
performance.

3.4 AdaTAM

We also introduce an adaptive variant of TAM, which combines Adam (Kingma & Ba, 2015) and the TAM
update in Eq. 4. The update rule for AdaTAM is thus defined as:

mt = βmt−1 + (ϵ + dt)gt ; vt = β2vt−1 + (1 − β2)g2
t ; θt+1 = θt − η

mt√
vt + c

, (7)

where β2 is the second-moment decay rate, and c is a small constant (typically 1e − 8 by default). Note that
AdaTAM only modifies mt and keeps the updates of vt the same as in Adam.

4 Experiments

In this section, we present the results of our experiments evaluating TAM across various benchmarks. First,
we compare TAM and AdaTAM with baseline optimizers including SGD (with and without momentum),
Adam, and AngularGrad (Roy et al., 2021), in terms of generalization performance on image classification
datasets (subsection 4.1). We also assess AdaTAM’s performance in fine-tuning Bert-based models on the
MTEB datasets (subsection 4.2). Additionally, we demonstrate TAM’s robustness to distribution shifts
in online learning settings ( subsection 4.3) and explore its use during a warm-up phase to facilitate loss
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landscape exploration in the early stages of training (subsection 4.5). All results of our experiments are
averaged across five seeds, with additional experimental details provided in Appendix A.1.

4.1 Image classification

Setup. We run experiments that involves training MobileNet (Howard, 2017) ResNet18, ResNet34 architec-
tures on CIFAR10/100 (Krizhevsky & Hinton, 2009) for 200 epochs and ResNet50 on ImageNet (Deng et al.,
2009) for 90 epochs. We also fine-tune a ViT model on CIFAR10/100 that was pre-trained on ImageNet
dataset.1 We perform a learning rate grid search with a fixed compute budget assigned to each optimizer to
obtain the best setup. We choose the ranges of these grid searches to be consistent with the learning rate
transfer heuristic rule in Equation 6.

Dataset Model SGD SGDM TAM (ours) Adam AngularGrad AdaTAM (ours)

CIFAR10

MobileNet 93.7±0.2 93.9±0.1 93.9±0.2 92.7±0.1 91.7±0.1 93.1±0.1
ResNet18 93.3±0.1 93.6±0.3 94.2±0.2 93.4±0.1 93.3±0.2 93.3±0.3
ResNet34 93.8±0.1 93.9±0.2 94.3±0.2 93.6±0.2 93.7±0.2 93.3±0.1

ViT fine-tuning 97.1±0.1 97.7±0.1 97.7±0.1 - - -

CIFAR100

MobileNet 72.8±0.1 72.8±0.3 72.8±0.1 69.8±0.1 66.4±0.1 70.7±0.3
ResNet18 73.1±0.3 73.2±0.2 73.8±0.1 70.1±0.3 70.9±0.2 72.7±0.3
ResNet34 73.6±0.1 74.7±0.1 74.3±0.3 71.7±0.1 71.2±0.2 72.9±0.1

ViT fine-tuning 74.4±0.6 85.3±0.2 86.2±0.2 - - -
ImageNet ResNet50 75.4±0.1 77.0±0.1 77.1±0.1 74.4±0.5 73.8±0.1 74.5±0.1

Table 1: Comparison of TAM and AdaTAM with baseline optimizers for different architectures trained on
CIFAR10/100 and ImageNet with learning rate grid search.

Results. The validation accuracy for each optimizer is reported in Table 1. The results indicate that TAM and
AdaTAM generally outperform their corresponding baselines across most configurations. Among non-adaptive
optimizers, the only exception is for CIFAR100 with the ResNet34 model, where TAM performs slightly
below SGDM. In all other cases, TAM achieves higher accuracy. Although adaptive optimizers generally
underperform compared to non-adaptive ones in these setups, we observe that AdaTAM achieves similar
or even better results compared to Adam and AngularGrad, with the exception of ResNet34 on CIFAR10.
Overall, while the effectiveness may vary depending on the specific model, these results indicate that TAM
and AdaTAM provide consistent improvements in generalization across various models and datasets.

4.2 LLM Fine-tuning

Setup. We compare AdaTAM with weight decay (AdaTAMW) to AdamW for fine-tuning LLMs. Specifically,
we consider six pre-trained BERT-based models: BERT-base, BERT-large (Devlin, 2018), DeBERTa-base,
DeBERTa-large (He et al., 2021), RoBERTa-base, and RoBERTa-large (Zhuang et al., 2021). Each model is
fine-tuned on masked language modeling using the WikiText dataset (Merity et al., 2016), applying both
AdaTAMW and AdamW across varying numbers of epochs. We use the open source implementation by Wolf
et al. (2020). All hyperparameters, except for the learning rate, remain at their default values. A grid search
was performed to identify the optimal learning rate across {5e − 6, 1e − 5, 5e − 5}, with the best checkpoint
selected based on validation perplexity. The fine-tuned models were then evaluated on the Massive Text
Embedding Benchmark (MTEB), covering 7 task categories across a total of 56 datasets (Muennighoff et al.,
2022).

Results. Figure 4 summarizes all results obtained for each type of model. Specifically, it shows the percentage
improvement in the average scores of AdaTAMW compared to AdamW across the MTEB task categories
for each model type. The evaluation includes a total of 42, considering two model sizes ({Base, Large}), 7
English task categories in MTEB (classification, pair classification, semantic textual similarity, information
retrieval, clustering, summarization, and reranking) and different fine-tuning epochs ({3, 5, 10}).

1Notebook: Vision Transformer
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Figure 4: Percentage improvement in the average scores of AdaTAMW compared to AdamW across different
MTEB task categories for three types of models: BERT (left), DeBERTa (middle), and RoBERTa (right).
The y-axis labels indicate the model size ({Base, Large}) / MTEB task category (7 in total), and the number
of fine-tuning epochs ({3, 5, 10}), covering 42 configurations in total. Overall, AdaTAMW achieves similar or
better performance than AdamW in at least 28 configurations across all three model types.

AdaTAMW shows the highest improvements over AdamW on DeBERTa models across configurations with
varying numbers of epochs. In contrast, results for RoBERTa are more mixed, with the most significant
improvements observed in Retrieval tasks. For BERT models, while AdaTAMW generally delivers similar or
better average scores, the most notable gains occur in the 3 and 5-epoch settings. Another key observation is
that AdaTAMW yields larger improvements for BERT-large and DeBERTa-large models, but it performance
on RoBERTa-large is less consistent, where RoBERTa-base often outperforms it.

In addition, Figure 5 shows the percentage of times AdaTAMW performed similarly or better than AdamW.2
Except for the RoBERTa-large and BERT-base fine-tuned on 10 epochs, AdaTAMW generally matches
or exceeds AdamW’s performance in most settings. Furthermore, except for DeBERTa-base, AdaTAMW
achieves higher scores on more than two-thirds of the MTEB datasets in the 3- and 5-epoch settings. Detailed
results on individual MTEB datasets are reported in Appendix A.2.3. In terms of runtime, since AdaTAMW

2Performance is considered similar if the difference in scores between AdaTAMW and AdamW is less than 0.2% of the highest
score on a given dataset.
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only introduces computation overhead of cosine similarity, it is only 1.12x slower than the runtime of AdamW.
For example, we provide time spent on finetuning the BERT-large model in Figure 6.

3 5 10
epochs

BERT-base

BERT-large

DeBERTa-base

DeBERTa-large

RoBERTa-base

RoBERTa-large

71%  (88%) 50%  (77%) 18%  (23%)

68%  (70%) 75%  (75%) 48%  (48%)

54%  (64%) 43%  (62%) 64%  (73%)

93%  (93%) 73%  (75%) 50%  (54%)

80%  (91%) 84%  (91%) 88%  (95%)

39%  (39%) 43%  (45%) 39%  (39%)

Figure 5: Percentage of times when AdaTAMW performs better (or similar/better) than AdamW on various
LLMs across 56 MTEB datasets. Green indicates that AdaTAMW achieves similar or better performance,
while red indicates worse performance. Except for BERT models with 10 epochs and RoBERTa-large,
AdaTAMW performs similar/better in majority of the datasets.

4.3 Online learning
Epochs AdaTAMW AdamW
3 19.75 17.58
5 32.00 28.67
10 63.83 57.00

Figure 6: Running time (in minutes) comparison for
AdaTAMW and AdamW on finetuning BERT-large on
Wikitext dataset for different number of epochs.

In this section, we investigate whether TAM can
handle distribution shifts in online learning, where
non-IID setups typically cause deep learning models
to struggle due to a loss of plasticity—the ability
to adapt to new tasks. In such setups, distribution
shifts alter the loss landscape, pushing parameters
that performed well on a previous task into sub-
optimal, higher loss regions for the new task, leading
to plasticity loss (Lewandowski et al., 2024; Elsayed & Mahmood, 2024). Existing solutions to this problem
focus on regularization (Kumar et al., 2023), reinitializing inactive parameters (Sokar et al., 2023), or adding
normalization layers (Lyle et al., 2024b), often using SGD as the base optimizer.

We hypothesize that TAM’s momentum from previous tasks can help push parameters out of sub-optimal
regions by mitigating the torqued gradients that arise at the start of the new task, allowing for better
exploration of the new task’s loss landscape using knowledge from previous gradients. To test this, we
compare TAM with SGD and SGDM in an online learning setup. Specifically, similar to (Lyle et al.,
2024a;b), we also train multi-layered networks (MLP) on a sequence of tasks, where each task involves image
classification on CIFAR10. We induce distribution shifts by flipping the labels between tasks, a common
benchmark in online learning research (Elsayed & Mahmood, 2024; Lewandowski et al., 2024). We experiment
with different degrees of label flipping, δ ∈ {40%, 80%, 100%}, to simulate soft and hard task boundaries. For
each optimizer and each setup, a hyper-parameter grid search is conducted across different effective learning
rates, selecting the best-performing setup based on average online accuracy across all tasks, following Dohare
et al. (2021). Each task is assigned a compute budget of 40 training epochs. We evaluate on two different
sizes of MLP. Further setup details are provided in Appendix A.1.

In Figure 7 (first row), we observe that with smaller MLPs, TAM performs similarly to SGDM across most
tasks, with both optimizers consistently outperforming SGD for δ = 40%. As δ increases to 80% or 100%,
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Figure 7: Comparing online accuracy of TAM with SGDM and SGD on label flipping benchmark for training
MLP with 2 hidden layers (first row) and 4 hidden layers (second row) after hyper-parameter search across
effective learning rates for the following: (i) 40% labels flipping, (ii) 80% labels flipping, and (iii) 100% labels
flipping. Although TAM performs similarly to SGDM for smoother shifts (40%), it tends to outperform
SGDM when distribution shifts are more drastic (80% and 100%).

TAM outperforms both SGD and SGDM. Notably, for δ = 80%, TAM maintains higher accuracy and better
stability beyond 30 tasks, while SGD and SGDM degrade. At δ = 100%, TAM continues to show superior
accuracy, with a clear gap from the beginning as SGD and SGDM struggle to transfer knowledge for future
tasks.

For larger MLPs, TAM performs similarly to SGDM at δ = 40%, but at higher δ values, it matches
SGD’s performance, with both optimizers outperforming SGDM. We also observe temporary performance
drops, which are a direct consequence of the extreme distribution shifts in online learning, where optimizers
experience abrupt changes when a new task is introduced. Crucially, TAM exhibits rapid recovery and
achieves higher overall accuracy than SGDM after these transitions, particularly in the most challenging
settings (δ = 80%, 100%), where it maintains superior performance over a long sequence of tasks. These
results further highlight TAM’s robustness, as it not only matches SGDM’s adaptability to distribution shifts
but also surpasses it in more challenging online learning settings.

4.4 Continual Learning

Next, we evaluate TAM in a more challenging setting - continual learning - where the goal is to maintain both
the stability and plasticity of the model. In particular, we train a ResNet50 model on CLEAR benchmark
(Lin et al., 2021) which consists of 10 sequential image recognition tasks (or experiences) with the goal
of maximizing average accuracy on all tasks without forgetting. We follow the implementation provided
by Zhang et al. (2023) to compare SGDM and TAM optimizers. We evaluate these two optimizers on
top of two continual learning setups: Naive and Learning without forgetting (LwF) (Li & Hoiem, 2017)
which is a well-known continual learning method. We conduct a grid search across learning rate (from set
{0.005, 0.1, 0.2}) and select the best setup based on performance on a held-out dataset. The learning rate of
0.005 performed best for both SGDM and TAM.
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In Table 2, we report the accuracies obtained on the evaluation set of each experience when the model was
sequentially trained on all tasks. Overall, we observe that under both setups, TAM outperforms SGDM in all
experiences. Interestingly, in some cases, TAM with Naive setup also performs better than SGDM with LwF.
These results suggest that TAM can maintain both stability and plasticity better than SGDM.

Methods Optimizers Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10

Naive SGDM 89.1 90.1 89.8 89.4 92.0 90.7 90.4 91.2 89.9 93.7
TAM (ours) 90.9 90.5 92.5 92.2 93.6 92.7 92.4 92.9 93.4 95.9

LwF SGDM 93.2 93.3 93.7 93.8 94.0 92.3 93.4 94.5 93.3 96.1
TAM (ours) 95.3 94.6 94.6 94.5 97.1 94.4 94.8 95.3 94.5 96.3

Table 2: Comparing final accuracy(%) obtained using TAM and SGDM on the evaluation set of each CLEAR
dataset experience under Naive and LwF setups in continual learning. We observe that in both setups, TAM
outperforms SGDM on all experiences.

4.5 Warm-up with TAM

Exploring the loss surface is especially important during the initial phase of training, as it helps the optimizer
effectively navigate the loss landscape and avoid getting stuck in local minima. TAM can be beneficial as a
warm-up strategy, as it prioritizes important directions, helping to identify the basin of attraction early on.

In this section, we perform an ablation study to evaluate TAM warmup when training a ResNet18 on
CIFAR-10. We begin by training the model with TAM and a constant learning rate for a specified number of
steps (denoted as sw), then switch to SGDM while keeping the effective learning rate and optimizer state
the same. The learning rate of SGDM is set to half of TAM’s learning rate, based on the effective learning
rate analysis in section 3. Additionally, we include a baseline where training starts with SGDM, followed by
a halving of the learning rate at step sw, while maintaining the optimizer state. Further implementation
details are provided in Appendix A.1.

Figure 8: (i) Comparing the performance of TAM and SGDM while training ResNet18 on CIFAR10 with
a fixed learning rate across different switching steps (sw). Overall, TAM with/without warmup leads to
improved validation accuracy compared to SGDM. (ii) Gradient norm observed during training. There is an
abrupt jump in gradient norm that occurs first for all SGDM variants.

In Figure 8 (left), we observe that warmup using TAM leads to higher validation accuracy compared to
SGDM for both sw = 25 and sw = 50. To understand how TAM and SGDM navigate through different
regions of the loss landscape, we plot the evolution of gradient norm during training (right). We observe an
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abrupt jump of the gradient norm for both methods: this is suggestive of the abrupt sharpening phenomenon
(Fu et al., 2023), which leads to oscillations of the updates and slows down convergence. However, we note
that this jump is delayed by around 5 − 10 epochs with TAM, allowing for exploration of the landscape
for a larger number of epochs. We conducted similar gradient norm analysis on different benchmarks and
optimizers in Appendix A.2.2 for better comparisons (see (Figure 11).

4.5.1 Testing warmup on a different loss surface

We conduct a similar ablation using another architecture to test whether TAM warmup aids performance in
other types of loss landscapes. Specifically, we train a Graph Neural Network (GNN) to solve a link prediction
problem (Harper & Konstan, 2015; Zhang & Chen, 2018), following the open-source implementation 3. We
compare three setups: (i) Adam, the default optimizer used in this setting, (ii) TAM warmup + Adam, and
(iii) SGDM warmup + Adam. In the warmup settings, the respective optimizer is used for the first few epochs,
then switched to Adam. The models are trained for 300 epochs, and we evaluate the optimizers based on the
best validation Root Mean Square Error (RMSE). We test different switching steps (sw ∈ {10, 50, 100, 200}),
with TAM and SGDM learning rates obtained through a grid search across {0.1, 0.01, 0.001} on a held-out
dataset. For both TAM warmup and SGDM warmup, η = 0.01 yields the best results. Adam’s learning rate
remains fixed at 0.001.
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Figure 9: Evaluating warmup with TAM on Link prediction task using GNNs for different switching steps.
While warmup with both TAM and SGDM improve the performance for different switching steps, we observed
that TAM warmup + Adam has faster convergence speed and result in a lower validation RMSE compared
to SGDM warmup + Adam.

In Figure 9, we plot the validation RMSE for each setup. We also include results with no switching, where
the initial optimizer was used for the entire training process. In this setting, Adam outperforms non-adaptive
momentum-based methods for the GNN architecture. The results show that TAM warmup consistently leads
to better validation RMSE compared to both naive Adam and SGDM warmup + Adam. Notably, after
switching to Adam, the TAM warmup setting exhibits faster convergence than SGDM warmup across all
switching steps. The lowest validation RMSE of 0.86 is achieved with TAM warmup at sw = 50 epochs,
also suggesting that switching at sw = 10 epochs is too early for this particular setup. Additionally, as
we increase sw, the convergence speed after switching decreases, particularly with SGDM warmup. These
findings suggest that TAM, when combined with appropriate warmup steps, can guide the model to a better
generalizing region of the loss landscape compared to Adam alone.

4.6 Ablations

4.6.1 Varying γ

In this section, we conduct a brief ablation study on ResNet18 to compare the effects of varying γ (in Eq.
3) while keeping all other hyperparameters fixed for CIFAR10 and CIFAR100. The results are reported in
Table 3. We observe that varying gamma has minimal impact on the overall behavior of the optimization
trajectories and therefore, even with changes in gamma, TAM consistently outperforms other baselines.
However, higher values (e.g., 0.9 or 0.99) noticeably reduce the variance in the case of CIFAR-100, which can

3Link Prediction on MovieLens
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be particularly important in non-stationary settings such as online or continual learning. Therefore, we have
used γ = 0.9 by default in our main experiments.

γ 0.99 0.9 0.8 0.5 0.0
CIFAR10 93.9±0.1 94.2±0.2 94.1±0.2 93.9±0.1 94.1±0.1

CIFAR100 74.0±0.1 73.8±0.1 74.1±0.3 73.7±0.4 74.1±0.3

Table 3: Performance comparison for different γ values for training ResNet18 on CIFAR10 and CIFAR100.
Varying gamma has minimal impact on the overall behavior of the optimization trajectories.

4.6.2 AdaTAM with exponential moving average

In the following ablation, we consider an alternate update rule for momentum as compared to Eq. 7 as
follows:

mt = (1 − (ϵ + dt))mt−1 + (ϵ + dt)gt . (8)

Specifically, the above update rule uses an exponential moving average to update momentum. We call this
variant AdaTAM2 and compare its performance with the default AdaTAM in Table 4. We observe that
incorporating an exponential moving average into AdaTAM had minimal impact on performance and, on
CIFAR100, it slightly degraded it.

CIFAR10 CIFAR100
Metric ResNet18 ResNet34 ResNet18 ResNet34
AdaTAM 93.3±0.3 93.3±0.1 72.7±0.3 72.9±0.1
AdaTAM2 93.3±0.1 93.6±0.2 71.9±0.2 72.6±0.1

Table 4: Performance comparison of AdaTAM and its variant AdaTAM2 which uses exponential moving
average to update momentum on CIFAR10 and CIFAR100 with ResNet18 and ResNet34.

5 Conclusion

In this paper, we propose Torque-Aware Momentum (TAM), an enhancement of classical momentum that
mitigates the detrimental effects of torqued gradients, enabling a more stable and consistent exploration of
the loss landscape. By incorporating a damping factor that adjusts momentum based on gradient alignments,
TAM helps models escape sharp minima and improve generalization across diverse tasks.

Our evaluation of TAM spans multiple experimental setups, including image classification, large language
model fine-tuning, and online learning with distribution shifts. Across these tasks, TAM consistently performs
on par with, and often surpasses, traditional SGD and SGDM. In particular, TAM shows significant advantages
in tasks involving distribution shifts, where it stabilizes learning and adapts more effectively than SGDM,
especially when tasks share little overlap. Additionally, TAM proves valuable as a warm-up strategy, leading
to faster convergence and lower loss barriers compared to SGDM.

While our results demonstrate TAM’s effectiveness in tasks with distribution shifts and gradient misalignment,
further work is needed to test its capabilities in more challenging non-stationary environments, such as
continual learning. Our preliminary continual learning experiments in Appendix 4.4 highlight TAM’s potential
to address catastrophic forgetting by retaining gradient direction from previous tasks. However, a thorough
investigation is required to fully understand and optimize TAM’s performance in this domain. Another
exciting avenue is to explore TAM’s potential in other training paradigms, such as self-supervised learning
and reinforcement learning, where effective exploration and stability is critical for model success.
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A Appendix

In this section, we provide the details and results not present in the main content. We describe the
implementation details including hyper-parameters values used in our experiments in section A.1. All
experiments were executed on an NVIDIA A100 Tensor Core GPU machine with 40 GB memory.

A.1 Implementation details

A.1.1 Datasets and models

Dataset Train set Validation set Test set
CIFAR10 45K 5K 10K
CIFAR100 45K 5K 10K
ImageNet 1281K 50K –
MovieLens 80K 10K 10K

Table 5: Dataset details

For CIFAR10/100, the training set was further split into 90%/10% for training/validation, and the reported
results are on the test set, which contains 10K samples. For ImageNet, we report results on the validation set.
For MovieLens, the data is split into 80%/10%/10% for training/validation/test. In all cases, the validation
set is used to select the best learning rate. We use early stopping for selecting the checkpoint with the highest
validation accuracy, ensuring a fair and unbiased evaluation. In Table 5 and Table 6, we provide a summary
of all datasets and models used in image classification (subsection 4.1), LLM experiments (subsection 4.2),
except details on MTEB, which is later described in subsubsection A.2.3, online learning (subsection 4.3) and
GNN experiments (Figure 9).

Model Number of parameters Other details
MobileNet 13M
ResNet18 11M
ResNet34 22M
ResNet50 25.5M

ViT 87M
BERT-base 110M 12-layers, 768-hidden
BERT-large 340M 24-layers, 1024-hidden

DeBERTa-base 86M 12-layers, 768-hidden
DeBERTa-large 304M 24-layers, 1024-hidden
RoBERTa-base 125M 12-layers, 768-hidden
RoBERTa-large 355M 24-layers, 1024-hidden

MLP-2 412K 2-layers, 128-hidden
MLP-4 460K 4-layers, 128-hidden
GNN 80K 2-layers

Table 6: Model details

A.1.2 Hyper-parameters

Unless specified in the experiment description, the default set of hyperparameters in all our experiments is
for momentum-based methods are {η, β1} = {0.1, 0.9} and similarly for adaptive optimizers are {η, β1, β2} =
{0.001, 0.9, 0.999}.

For image classification and online learning experiments, we provide the details on hyper-parameter grid-search
in Table 7 and the best settings for all experiments and Table 8. Apart from that, for SGDM and SGD
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on ViT, we select the learning rate from the grid {0.01, 0.03, 0.1, 0.3}, whereas for TAM, we choose it from
{0.02, 0.06, 0.2, 0.6}. We conduct a grid search across learning rate (from set {0.005, 0.1, 0.2}) and select the
best setup based on performance on a held-out dataset.

Optimizer Learning rate set
SGD {0.1, 0.01, 0.001, 0.0001}

SGDM {0.1, 0.01, 0.001, 0.0001}
TAM {0.2, 0.02, 0.002, 0.0002}
Adam {0.1, 0.01, 0.001, 0.0001}

AdaTAM {0.1, 0.01, 0.001, 0.0001}
AngularGrad {0.1, 0.01, 0.001, 0.0001}
Online SGD {0.005, 0.01, 0.02, 0.03}

Online SGDM {0.005, 0.01, 0.02, 0.03}
Online TAM {0.01, 0.02, 0.04, 0.06}

Table 7: Details on grid search on image classification and online learning experiment.

Optimizers CIFAR10 CIFAR100 CIFAR10 CIFAR100 CIFAR10 CIFAR10 CIFAR100 CIFAR100 ImageNet Shuffled CIFAR10 Shuffled CIFAR10
MobileNet MobileNet ViT fine-tuning ViT fine-tuning ResNet18 ResNet34 ResNet18 ResNet34 ResNet50 MLP-2 MLP-4

SGD 0.1 0.1 0.1 0.03 0.1 0.1 0.1 0.1 0.1 {0.03, 0.03, 0.03} {0.03, 0.03, 0.03}
SGDM 0.01 0.01 0.1 0.1 0.1 0.01 0.01 0.1 0.1 {0.02, 0.01, 0.01} {0.005, 0.005, 0.005}
TAM 0.02 0.02 0.2 0.2 0.2 0.2 0.2 0.2 0.2 {0.04, 0.02, 0.04} {0.01, 0.01, 0.02}
Adam 0.01 0.01 - - 0.001 0.001 0.001 0.001 0.0001 - -

AngularGrad 0.001 0.001 - - 0.001 0.001 0.001 0.001 0.0001 - -
AdaTAM 0.0001 0.0001 - - 0.0001 0.0001 0.0001 0.0001 0.0001 - -

Table 8: Best learning rate for different optimizers on image classification and online learning benchmarks.

A.2 Additional results

A.2.1 Image classification

Figure 10: Comparison of training loss and test accuracy for TAM and SGDM optimizers for CIFAR10 with
ResNet18 (trained with MultiStepLR scheduler at every 50 epochs). The left subplot shows the evolution
of train loss, highlighting the faster and more stable convergence of TAM compared to SGDM. The right
subplot shows generalization performance, where TAM achieves higher accuracy. We also observe that in
later stages, TAM behaves like SGDM, as loss increases similarly to SGDM.

A.2.2 Warm-up with TAM

We conducted a gradient norm analysis similar to that shown in Figure 8 and present the results in Figure 11:

1. On SVHN (Netzer et al., 2011), we observe a pattern similar to CIFAR10 in Figure 8 (second).
Both SGDM and TAM exhibit abrupt jumps in gradient norm, possibly due to oscillations in sharp
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minima. However, TAM defers this oscillatory behavior and explores the loss landscape for more
epochs, showcasing its ability to maintain stability for a longer period during training.

2. On CIFAR100, we observe that TAM avoids abrupt jumps in gradient norm during the first 100
epochs. Moreover, SGDM with sw = 25 also demonstrates controlled gradient norms, indicating
improved training stability.

3. On comparing AdaTAM with Adam on CIFAR100, the results indicate that AdaTAM consistently
maintains a lower gradient norm as training progresses whereas the gradient norm in Adam decreases
gradually over time. This suggests that the damping effect in AdaTAM effectively controls large
gradients.
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Figure 11: Comparing gradient norm observed during training ResNet18 similar to Figure 8 for (i) TAM vs
SGDM on SVHN, (ii) TAM vs SGDM on CIFAR100 and (iii) AdaTAM vs Adam on CIFAR100. There is an
abrupt jump in gradient norm that occurs first for SGDM variants whereas for training with Adam, gradient
norm gradually decreases from a higher value. In case of TAM on SVHN, the abrupt jump is delayed by few
epochs as compared to SGDM. On CIFAR100, both TAM and AdaTAM maintain a low gradient norm for
the first 100 epochs.

A.2.3 LLM Fine-tuning

Figure 12 shows the percentage of times AdaTAMW performed similarly or better than AdamW. Unlike
Figure 5, the performance is considered similar if the difference in scores between AdaTAMW and AdamW is
less than 1% of the highest score on a given dataset. Except for the BERT-base fine-tuned on 10 epochs,
AdaTAMW generally matches or exceeds AdamW’s performance in most settings.

A.2.4 GPT

We conducted an experiment to compare AdamW and AdaTAMW optimizers in terms of validation loss for
training GPT, using a grid search over three learning rates: {0.006, 0.0006, 0.00006}. 13 showed that while
both optimizers achieve similar performance by the 100k iterations, AdaTAMW converged faster in the early
stages.

A.2.5 Detailed MTEB results

We report the exact scores obtained on all 56 MTEB datasets for all types of BERT model in Table 9,
Table 10, Table 11, Table 12, Table 13 and Table 14.
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3 5 10
epochs

BERT-base

BERT-large

DeBERTa-base

DeBERTa-large

RoBERTa-base

RoBERTa-large

71%  (100%) 50%  (96%) 18%  (45%)

68%  (73%) 75%  (77%) 48%  (52%)

54%  (88%) 43%  (79%) 64%  (93%)

93%  (95%) 73%  (79%) 50%  (61%)

80%  (96%) 84%  (95%) 88%  (98%)

39%  (55%) 43%  (52%) 39%  (55%)

Figure 12: Percentage of times when AdaTAMW performs better (or similar/better) than AdamW on various
LLMs across 56 MTEB datasets. Green indicates that AdaTAMW achieves similar or better performance,
while red indicates worse performance. Except for BERT models with 10 epochs and RoBERTa-large,
AdaTAMW performs similar/better in the majority of the datasets.
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Figure 13: Validation loss over training iterations for AdamW and AdaTAMW for training GPT.
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AdamW/3 AdamW/5 AdamW/10 AdaTAMW/3 AdaTAMW/5 AdaTAMW/10
AmazonCounterfactualClassification 68.77 68.86 68.68 68.71 68.82 68.69
AmazonPolarityClassification 70.24 70.17 70.70 70.26 70.18 70.51
AmazonReviewsClassification 26.14 26.14 26.15 26.15 26.13 26.15
Banking77Classification 56.94 57.76 57.52 57.80 57.25 47.81
EmotionClassification 34.79 34.70 34.89 34.82 34.74 35.00
ImdbClassification 63.84 63.81 64.31 63.85 63.83 63.84
MTOPDomainClassification 53.66 53.69 53.58 53.70 53.65 53.66
MTOPIntentClassification 40.20 40.20 40.17 40.19 40.14 35.20
MassiveIntentClassification 29.90 29.26 29.11 29.93 29.86 29.36
MassiveScenarioClassification 31.39 31.29 31.07 31.40 31.28 31.39
ToxicConversationsClassification 67.72 67.61 67.13 67.65 67.58 67.30
TweetSentimentExtractionClassification 50.39 50.40 50.48 50.39 50.45 50.61
ArxivClusteringP2P 34.14 34.37 34.47 34.20 34.36 34.40
ArxivClusteringS2S 25.89 25.94 26.23 25.96 25.99 26.03
BiorxivClusteringP2P 28.07 28.43 28.69 28.01 28.41 28.37
BiorxivClusteringS2S 22.03 22.10 22.47 22.07 22.10 22.13
MedrxivClusteringP2P 24.91 25.02 25.33 24.90 24.96 25.00
MedrxivClusteringS2S 22.04 21.97 22.12 21.89 22.04 22.11
RedditClustering 22.20 22.96 24.21 22.28 22.92 22.94
RedditClusteringP2P 41.24 41.55 42.13 41.43 41.84 41.58
StackExchangeClustering 39.65 40.03 41.14 39.63 39.91 40.21
StackExchangeClusteringP2P 25.74 25.73 26.00 25.75 25.80 25.84
TwentyNewsgroupsClustering 18.50 18.79 20.43 18.75 18.64 18.97
SprintDuplicateQuestions 41.99 42.02 43.01 42.06 41.71 41.90
TwitterSemEval2015 57.80 57.84 57.94 57.81 57.77 57.83
TwitterURLCorpus 76.06 76.25 76.62 76.07 76.22 76.09
AskUbuntuDupQuestions 47.74 47.86 48.01 47.71 47.81 47.41
MindSmallReranking 26.98 27.09 27.32 27.00 27.08 26.90
SciDocsRR 62.05 62.18 62.67 62.09 62.20 62.32
StackOverflowDupQuestions 36.51 36.32 36.33 36.51 36.43 36.39
ArguAna 28.24 28.47 28.72 28.29 28.55 28.20
CQADupstackTexRetrieval 4.30 4.46 4.86 4.32 4.46 4.32
ClimateFEVER 7.56 7.90 8.34 7.59 8.01 7.78
DBPedia 7.10 7.36 7.97 7.07 7.34 7.52
FEVER 6.29 6.45 7.56 6.25 6.62 6.50
FiQA2018 3.83 4.05 4.44 3.91 4.02 4.07
HotpotQA 9.77 9.66 9.70 9.76 9.61 9.62
MSMARCO 3.76 3.91 4.03 3.79 3.91 3.82
NFCorpus 7.52 7.41 7.51 7.48 7.32 7.40
NQ 5.48 5.58 5.99 5.54 5.61 5.45
QuoraRetrieval 61.45 61.55 62.15 61.43 61.57 61.58
SCIDOCS 4.44 4.45 4.57 4.49 4.42 4.46
SciFact 17.19 17.64 18.66 17.45 17.51 17.61
TRECCOVID 16.88 17.53 19.18 16.84 17.87 16.97
Touche2020 3.49 3.91 4.42 3.47 3.73 3.65
BIOSSES 55.56 55.38 54.58 55.69 54.89 55.17
SICK-R 60.52 60.66 60.99 60.54 60.74 60.75
STS12 33.51 34.45 36.26 33.56 34.54 33.92
STS13 60.04 60.20 61.28 60.09 60.28 60.04
STS14 48.89 49.38 50.76 48.93 49.41 49.03
STS15 63.48 63.79 64.93 63.51 63.88 63.38
STS16 63.22 63.40 64.10 63.16 63.49 63.09
STS17 21.05 20.99 20.76 21.08 20.99 21.03
STS22 19.77 20.77 21.45 19.93 20.80 21.35
STSBenchmark 51.21 52.18 53.80 51.26 52.36 51.54
SummEval 29.61 29.85 30.03 29.62 29.89 29.82

Table 9: Performance on all 56 MTEB datasets obtained on BERT-base.
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AdamW/3 AdamW/5 AdamW/10 AdaTAMW/3 AdaTAMW/5 AdaTAMW/10
AmazonCounterfactualClassification 65.25 64.78 67.17 67.38 65.52 67.01
AmazonPolarityClassification 67.98 67.45 68.03 69.90 67.46 71.12
AmazonReviewsClassification 24.06 24.02 24.75 25.29 24.33 25.15
Banking77Classification 47.59 43.45 47.71 46.04 43.66 45.85
EmotionClassification 27.00 25.10 28.19 27.77 26.65 27.00
ImdbClassification 66.21 66.07 64.68 65.58 64.93 66.79
MTOPDomainClassification 41.55 39.64 45.69 45.92 40.75 43.04
MTOPIntentClassification 26.89 28.04 31.25 32.00 25.73 28.33
MassiveIntentClassification 19.29 20.31 24.95 25.47 21.14 22.53
MassiveScenarioClassification 20.90 22.19 26.71 26.73 22.64 24.16
ToxicConversationsClassification 64.19 63.01 65.17 64.58 63.50 64.66
TweetSentimentExtractionClassification 45.75 45.67 48.40 49.45 46.97 47.54
ArxivClusteringP2P 34.84 35.18 32.77 33.37 33.62 35.73
ArxivClusteringS2S 14.89 13.19 22.26 22.58 17.72 19.68
BiorxivClusteringP2P 29.59 29.70 27.17 28.59 28.46 29.92
BiorxivClusteringS2S 14.32 9.35 18.03 16.59 13.95 15.31
MedrxivClusteringP2P 25.29 25.20 23.59 24.25 24.43 25.57
MedrxivClusteringS2S 17.27 14.50 19.28 19.00 16.84 17.56
RedditClustering 8.46 8.54 12.30 12.68 9.58 11.56
RedditClusteringP2P 31.51 32.42 28.52 31.34 28.96 34.87
StackExchangeClustering 22.80 19.71 27.92 27.39 23.63 25.69
StackExchangeClusteringP2P 24.10 23.96 22.96 23.24 23.53 24.21
TwentyNewsgroupsClustering 9.65 9.34 12.24 11.97 10.02 10.99
SprintDuplicateQuestions 29.19 16.33 38.96 37.44 32.34 35.59
TwitterSemEval2015 41.90 38.98 47.80 47.41 40.84 43.90
TwitterURLCorpus 53.78 50.15 65.24 67.26 56.38 58.87
AskUbuntuDupQuestions 45.72 43.96 46.88 47.17 46.11 46.31
MindSmallReranking 25.08 25.09 26.02 26.23 24.91 25.28
SciDocsRR 45.57 41.86 54.45 53.62 46.51 49.32
StackOverflowDupQuestions 31.80 28.20 35.52 35.23 33.10 33.46
ArguAna 22.07 23.11 17.84 18.32 18.88 22.60
CQADupstackTexRetrieval 2.84 1.82 3.07 3.37 2.62 3.26
ClimateFEVER 6.91 7.63 4.97 6.08 6.32 7.22
DBPedia 2.87 3.46 2.57 3.53 2.84 4.96
FEVER 5.40 3.16 3.82 5.59 4.75 6.84
FiQA2018 3.56 2.37 2.80 3.09 2.81 3.73
HotpotQA 10.68 9.13 8.57 8.18 8.57 9.89
MSMARCO 2.82 0.63 1.98 2.25 2.13 2.08
NFCorpus 2.72 3.42 4.01 4.46 3.27 4.08
NQ 4.81 3.48 3.43 3.51 3.69 5.47
QuoraRetrieval 50.94 42.47 53.34 52.94 50.21 50.09
SCIDOCS 2.87 1.77 3.03 3.38 2.66 3.39
SciFact 16.10 16.04 15.29 15.63 16.51 21.80
TRECCOVID 16.76 13.33 16.05 16.81 16.38 16.84
Touche2020 2.95 1.95 2.55 2.63 2.27 3.06
BIOSSES 39.02 37.44 41.46 34.51 40.96 44.87
SICK-R 36.85 34.65 40.25 39.28 35.42 39.27
STS12 20.27 17.60 23.65 22.08 17.70 21.67
STS13 18.79 19.54 32.18 31.75 18.78 25.39
STS14 22.78 19.02 30.08 29.98 21.24 26.13
STS15 32.86 22.31 39.90 36.49 27.56 34.74
STS16 39.88 32.49 40.74 41.38 36.72 40.88
STS17 13.46 14.42 14.97 14.23 14.74 15.72
STS22 13.62 11.94 11.18 12.66 12.56 14.99
STSBenchmark 29.31 22.17 32.03 30.96 25.29 31.10
SummEval 30.37 30.22 30.37 30.35 30.63 31.02

Table 10: Performance on all 56 MTEB datasets obtained on BERT-large.
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AdamW/3 AdamW/5 AdamW/10 AdaTAMW/3 AdaTAMW/5 AdaTAMW/10
AmazonCounterfactualClassification 67.79 68.40 69.11 67.96 68.43 68.85
AmazonPolarityClassification 63.98 66.05 67.98 63.98 65.98 67.50
AmazonReviewsClassification 28.93 30.09 30.72 28.93 30.09 30.64
Banking77Classification 39.95 41.65 43.62 38.67 40.06 43.59
EmotionClassification 25.28 26.58 27.56 25.14 26.72 27.81
ImdbClassification 60.39 62.45 64.58 60.48 62.62 64.64
MTOPDomainClassification 48.02 49.53 51.61 47.79 49.47 51.94
MTOPIntentClassification 32.65 34.00 35.66 32.38 33.90 35.83
MassiveIntentClassification 18.75 19.41 21.54 18.69 19.83 21.76
MassiveScenarioClassification 22.81 23.79 25.57 22.98 23.88 25.83
ToxicConversationsClassification 60.92 61.13 62.51 60.92 61.05 62.00
TweetSentimentExtractionClassification 46.65 48.28 49.81 46.68 48.45 49.82
ArxivClusteringP2P 22.04 23.46 23.94 21.92 23.45 24.19
ArxivClusteringS2S 14.47 15.70 15.88 14.50 15.61 15.99
BiorxivClusteringP2P 16.57 18.81 20.39 16.55 18.80 20.55
BiorxivClusteringS2S 10.16 11.51 12.16 10.12 11.41 12.33
MedrxivClusteringP2P 19.48 20.67 21.42 19.42 20.66 21.59
MedrxivClusteringS2S 17.46 18.09 18.44 17.50 18.22 18.42
RedditClustering 14.10 15.42 15.97 14.13 15.34 15.98
RedditClusteringP2P 27.59 29.70 31.50 27.78 29.77 31.43
StackExchangeClustering 22.08 24.29 25.81 21.93 24.23 25.85
StackExchangeClusteringP2P 26.83 27.10 27.10 26.93 27.12 27.26
TwentyNewsgroupsClustering 12.97 13.91 14.06 13.09 13.72 13.98
SprintDuplicateQuestions 15.46 18.71 21.50 15.46 18.93 21.60
TwitterSemEval2015 50.32 50.48 51.25 50.30 50.42 51.05
TwitterURLCorpus 65.46 66.17 66.68 65.34 66.20 66.57
AskUbuntuDupQuestions 43.89 44.37 45.02 44.22 44.33 44.93
MindSmallReranking 26.97 27.41 27.60 27.06 27.46 27.62
SciDocsRR 43.55 45.39 46.76 43.58 45.30 46.70
StackOverflowDupQuestions 30.19 30.92 31.75 30.13 30.89 31.74
ArguAna 8.95 11.46 12.88 9.03 11.32 13.24
CQADupstackTexRetrieval 0.35 0.47 0.78 0.34 0.49 0.82
ClimateFEVER 0.55 0.89 1.30 0.47 0.82 1.09
DBPedia 0.10 0.14 0.25 0.10 0.14 0.30
FEVER 0.12 0.16 0.58 0.10 0.16 0.47
FiQA2018 0.31 0.33 0.44 0.31 0.29 0.43
HotpotQA 0.22 0.40 0.77 0.23 0.39 0.92
MSMARCO 0.05 0.08 0.18 0.04 0.09 0.19
NFCorpus 1.45 1.59 1.68 1.43 1.56 1.70
NQ 0.04 0.06 0.15 0.04 0.08 0.16
QuoraRetrieval 32.25 35.91 39.37 32.47 36.01 39.61
SCIDOCS 0.21 0.28 0.39 0.21 0.27 0.39
SciFact 2.33 3.40 5.15 2.30 3.28 5.58
TRECCOVID 5.11 5.46 5.25 5.75 5.33 6.23
Touche2020 0.13 0.53 0.64 0.18 0.55 0.90
BIOSSES 46.42 49.24 50.18 46.55 48.65 49.56
SICK-R 51.85 54.83 56.59 51.83 54.54 56.68
STS12 26.79 29.32 30.65 27.07 29.50 31.42
STS13 43.69 46.20 49.69 43.89 46.33 50.45
STS14 36.85 39.21 41.86 36.87 39.25 42.38
STS15 51.15 53.76 56.27 51.31 53.76 56.45
STS16 48.44 50.22 52.40 48.45 50.54 52.02
STS17 14.58 15.20 16.71 14.12 15.07 16.64
STS22 33.20 34.21 34.74 33.81 34.34 35.20
STSBenchmark 37.81 41.20 44.44 37.72 41.11 44.51
SummEval 30.68 31.01 30.36 30.56 30.37 30.41

Table 11: Performance on all 56 MTEB datasets obtained on DeBERTa-base.
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AdamW/3 AdamW/5 AdamW/10 AdaTAMW/3 AdaTAMW/5 AdaTAMW/10
AmazonCounterfactualClassification 68.30 68.96 70.64 69.80 67.98 69.23
AmazonPolarityClassification 57.63 58.68 62.02 60.51 61.09 64.00
AmazonReviewsClassification 26.95 27.46 29.49 28.70 28.46 29.94
Banking77Classification 34.89 36.55 45.32 43.52 36.23 43.73
EmotionClassification 20.55 20.95 23.80 22.20 22.65 25.07
ImdbClassification 55.85 56.93 60.45 59.49 59.61 62.07
MTOPDomainClassification 49.99 50.56 55.26 52.74 47.11 53.55
MTOPIntentClassification 38.40 38.70 41.69 39.51 32.26 37.98
MassiveIntentClassification 22.93 22.17 24.10 23.32 19.29 22.66
MassiveScenarioClassification 25.17 25.24 27.90 26.03 24.65 27.54
ToxicConversationsClassification 58.13 58.67 62.96 62.53 60.96 62.62
TweetSentimentExtractionClassification 43.02 43.53 47.43 45.33 45.24 47.82
ArxivClusteringP2P 14.79 16.24 21.34 20.58 19.74 19.53
ArxivClusteringS2S 11.23 11.64 14.06 12.75 12.78 14.18
BiorxivClusteringP2P 7.13 8.33 14.75 12.45 11.97 15.23
BiorxivClusteringS2S 6.27 6.47 9.40 7.95 7.61 9.83
MedrxivClusteringP2P 13.91 14.76 18.62 17.15 16.65 18.55
MedrxivClusteringS2S 14.66 15.04 17.49 16.72 15.92 17.31
RedditClustering 10.31 10.58 14.61 13.25 12.33 15.42
RedditClusteringP2P 17.92 19.73 27.93 25.42 23.89 28.98
StackExchangeClustering 14.12 15.10 24.46 21.45 19.41 24.95
StackExchangeClusteringP2P 23.09 23.29 24.71 24.56 25.02 24.91
TwentyNewsgroupsClustering 8.72 9.11 13.04 11.73 11.53 13.04
SprintDuplicateQuestions 15.10 14.68 20.68 17.44 15.77 18.34
TwitterSemEval2015 40.94 42.19 49.09 45.84 42.10 45.24
TwitterURLCorpus 58.85 58.74 64.98 60.50 56.99 61.66
AskUbuntuDupQuestions 43.00 42.49 44.44 43.29 43.21 43.89
MindSmallReranking 25.55 25.54 27.15 26.71 26.47 26.84
SciDocsRR 38.33 38.85 44.25 41.64 40.77 43.96
StackOverflowDupQuestions 29.51 29.47 31.44 30.02 28.81 30.51
ArguAna 2.82 3.56 9.89 7.38 7.41 11.42
CQADupstackTexRetrieval 0.08 0.09 0.39 0.32 0.34 0.68
ClimateFEVER 0.04 0.04 0.15 0.15 0.26 0.53
DBPedia 0.00 0.00 0.07 0.04 0.12 0.25
FEVER 0.01 0.01 0.11 0.12 0.20 0.31
FiQA2018 0.04 0.07 0.37 0.16 0.26 0.50
HotpotQA 0.06 0.10 0.53 0.42 0.69 1.28
MSMARCO 0.03 0.04 0.09 0.08 0.12 0.13
NFCorpus 1.56 1.38 1.30 1.35 1.45 1.57
NQ 0.00 0.00 0.04 0.05 0.08 0.09
QuoraRetrieval 24.23 26.18 36.19 33.26 30.28 37.09
SCIDOCS 0.18 0.14 0.22 0.19 0.20 0.28
SciFact 0.38 0.45 1.01 0.95 0.81 2.58
TRECCOVID 3.84 4.12 6.46 5.93 4.28 6.21
Touche2020 0.00 0.00 0.14 0.06 0.12 0.31
BIOSSES 45.61 46.15 44.77 43.29 34.63 44.84
SICK-R 46.29 45.12 51.62 47.51 44.42 50.14
STS12 4.81 6.23 17.43 12.31 15.59 21.20
STS13 29.36 30.41 40.42 34.59 32.32 37.90
STS14 21.94 22.63 30.55 25.19 23.41 28.69
STS15 37.17 35.34 47.61 39.55 40.42 44.24
STS16 39.44 39.50 45.69 42.40 38.17 43.40
STS17 21.97 20.99 20.99 20.05 17.87 20.32
STS22 24.92 26.02 33.08 30.95 28.65 31.70
STSBenchmark 25.03 25.49 33.59 27.90 25.25 33.56
SummEval 30.48 30.46 30.51 30.32 29.16 30.29

Table 12: Performance on all 56 MTEB datasets obtained on DeBERTa-large.
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AdamW/3 AdamW/5 AdamW/10 AdaTAMW/3 AdaTAMW/5 AdaTAMW/10
AmazonCounterfactualClassification 69.49 69.31 69.16 69.25 69.11 68.98
AmazonPolarityClassification 65.74 65.46 65.44 65.63 65.55 65.81
AmazonReviewsClassification 26.57 26.53 26.55 26.55 26.50 26.52
Banking77Classification 63.52 63.33 63.51 64.02 64.19 64.62
EmotionClassification 32.81 32.95 33.05 33.38 33.45 33.52
ImdbClassification 58.48 58.44 58.41 58.55 58.56 58.83
MTOPDomainClassification 56.18 56.03 55.71 56.29 56.32 56.40
MTOPIntentClassification 39.80 39.63 39.64 39.67 39.93 39.89
MassiveIntentClassification 23.71 23.76 22.71 22.49 24.02 22.99
MassiveScenarioClassification 27.69 27.51 27.44 27.66 27.71 27.63
ToxicConversationsClassification 62.17 62.14 62.21 62.30 62.08 62.09
TweetSentimentExtractionClassification 52.11 52.11 51.97 52.13 52.10 51.92
ArxivClusteringP2P 23.44 23.41 23.51 23.75 23.67 24.13
ArxivClusteringS2S 20.04 20.06 20.06 20.08 20.16 20.37
BiorxivClusteringP2P 16.64 16.44 16.40 16.83 16.84 16.94
BiorxivClusteringS2S 18.19 18.07 18.14 18.41 18.33 18.36
MedrxivClusteringP2P 19.84 19.70 19.62 19.82 19.72 19.81
MedrxivClusteringS2S 20.54 20.52 20.46 20.52 20.50 20.46
RedditClustering 17.90 18.13 18.28 18.65 18.70 19.20
RedditClusteringP2P 25.73 25.85 25.97 26.49 26.47 26.88
StackExchangeClustering 34.70 34.99 34.97 35.89 36.02 36.48
StackExchangeClusteringP2P 24.86 24.79 24.89 25.00 24.98 25.13
TwentyNewsgroupsClustering 16.38 16.83 16.84 17.06 17.31 17.59
SprintDuplicateQuestions 47.92 47.66 47.15 48.07 48.06 48.23
TwitterSemEval2015 53.50 53.48 53.65 53.63 53.68 53.88
TwitterURLCorpus 69.84 69.80 70.04 70.58 70.49 71.11
AskUbuntuDupQuestions 45.95 46.01 46.12 46.28 46.58 46.62
MindSmallReranking 27.71 27.68 27.70 27.73 27.69 27.77
SciDocsRR 52.86 52.87 52.83 53.40 53.42 53.52
StackOverflowDupQuestions 34.33 34.36 34.33 34.55 34.56 34.71
ArguAna 14.39 14.34 14.39 14.70 14.85 15.12
CQADupstackTexRetrieval 0.53 0.51 0.53 0.58 0.63 0.71
ClimateFEVER 0.26 0.26 0.24 0.28 0.26 0.27
DBPedia 0.40 0.35 0.41 0.42 0.48 0.70
FEVER 0.07 0.22 0.10 0.11 0.07 0.24
FiQA2018 0.77 0.72 0.73 0.86 0.89 1.01
HotpotQA 1.14 1.09 1.07 1.17 1.17 1.51
MSMARCO 0.37 0.40 0.38 0.43 0.45 0.51
NFCorpus 1.47 1.47 1.48 1.52 1.54 1.64
NQ 0.29 0.27 0.28 0.29 0.26 0.34
QuoraRetrieval 55.52 55.54 55.67 56.44 56.52 57.00
SCIDOCS 0.41 0.40 0.40 0.43 0.42 0.45
SciFact 1.02 0.97 0.90 0.96 0.89 0.92
TRECCOVID 10.10 10.13 10.26 10.36 10.65 10.84
Touche2020 0.07 0.07 0.06 0.09 0.13 0.20
BIOSSES 58.86 58.60 58.62 59.02 58.22 57.89
SICK-R 62.98 62.87 62.59 63.15 63.11 63.20
STS12 33.84 34.14 34.17 35.40 35.67 36.82
STS13 59.13 59.60 59.78 59.97 60.68 61.01
STS14 47.29 47.61 48.46 49.70 49.91 51.35
STS15 61.55 61.58 61.90 62.99 63.14 64.02
STS16 62.84 63.13 63.17 62.83 63.64 63.18
STS17 33.28 33.31 34.00 33.71 33.95 33.85
STS22 22.91 22.84 22.76 22.76 23.10 23.26
STSBenchmark 54.87 54.91 55.02 55.66 56.02 57.20
SummEval 28.03 28.16 27.44 28.29 28.44 28.51

Table 13: Performance on all 56 MTEB datasets obtained on RoBERTa-base.
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AdamW/3 AdamW/5 AdamW/10 AdaTAMW/3 AdaTAMW/5 AdaTAMW/10
AmazonCounterfactualClassification 72.26 72.26 72.29 71.79 71.45 71.56
AmazonPolarityClassification 70.71 71.29 70.88 70.50 70.85 70.37
AmazonReviewsClassification 28.28 28.26 28.26 27.96 28.01 28.05
Banking77Classification 53.02 49.70 56.01 56.74 56.04 55.34
EmotionClassification 31.16 31.53 31.48 29.16 29.10 29.84
ImdbClassification 66.76 66.89 66.61 66.79 66.92 67.07
MTOPDomainClassification 62.52 61.11 60.38 60.71 60.38 59.86
MTOPIntentClassification 35.97 36.51 34.79 36.81 37.57 38.61
MassiveIntentClassification 24.01 21.85 21.99 24.89 23.15 23.15
MassiveScenarioClassification 30.51 31.41 31.30 30.36 31.76 31.18
ToxicConversationsClassification 66.41 66.76 66.56 65.64 65.68 65.31
TweetSentimentExtractionClassification 51.69 52.06 51.83 50.38 50.44 50.78
ArxivClusteringP2P 35.53 35.88 35.62 35.73 35.70 35.38
ArxivClusteringS2S 22.89 23.16 22.60 20.43 20.08 19.79
BiorxivClusteringP2P 31.56 31.57 31.69 31.58 31.63 31.37
BiorxivClusteringS2S 21.31 21.42 20.99 20.05 19.75 19.66
MedrxivClusteringP2P 27.20 27.25 27.24 27.06 27.29 27.38
MedrxivClusteringS2S 22.90 23.02 22.71 21.99 21.87 21.84
RedditClustering 25.38 26.41 25.73 21.14 21.11 21.33
RedditClusteringP2P 44.90 45.24 44.58 44.47 44.78 44.89
StackExchangeClustering 45.02 46.10 45.34 39.25 38.89 39.37
StackExchangeClusteringP2P 26.31 26.34 26.29 26.17 26.17 26.16
TwentyNewsgroupsClustering 22.50 22.60 22.25 15.39 15.71 15.64
SprintDuplicateQuestions 57.43 58.21 57.79 47.77 47.07 43.12
TwitterSemEval2015 49.58 50.37 50.32 50.36 50.50 49.86
TwitterURLCorpus 69.08 69.63 69.35 66.71 67.40 67.56
AskUbuntuDupQuestions 47.54 47.62 47.36 47.16 47.55 47.22
MindSmallReranking 28.69 28.60 28.81 27.89 27.72 27.70
SciDocsRR 57.88 58.36 57.86 53.35 53.26 53.56
StackOverflowDupQuestions 34.50 34.59 34.38 34.74 35.12 34.39
ArguAna 26.35 26.68 26.59 26.95 27.58 28.30
CQADupstackTexRetrieval 1.78 2.02 1.83 2.87 2.92 2.47
ClimateFEVER 6.09 4.90 4.88 7.84 8.26 6.97
DBPedia 2.46 2.53 2.14 3.81 4.24 4.08
FEVER 3.40 2.09 2.41 7.76 5.87 4.46
FiQA2018 2.74 3.28 3.13 4.41 4.26 4.44
HotpotQA 6.36 6.46 5.83 8.15 10.10 8.05
MSMARCO 1.86 1.82 1.65 1.92 2.23 2.16
NFCorpus 3.37 3.56 3.43 3.27 3.67 3.53
NQ 3.61 3.73 3.49 4.17 4.80 4.75
QuoraRetrieval 57.87 58.94 58.46 57.32 57.04 58.19
SCIDOCS 1.73 1.92 1.90 2.27 2.40 2.45
SciFact 14.09 15.50 14.82 19.00 18.92 17.34
TRECCOVID 15.39 15.73 14.60 17.65 17.08 16.57
Touche2020 1.68 1.56 1.51 3.16 2.55 2.45
BIOSSES 57.46 58.08 57.91 56.01 55.86 52.38
SICK-R 58.12 57.90 58.14 53.95 54.43 53.28
STS12 30.82 30.83 28.26 31.42 32.37 28.59
STS13 53.15 54.49 52.35 51.01 52.27 50.47
STS14 43.24 44.51 42.35 42.08 43.27 41.76
STS15 54.42 56.06 54.74 53.15 54.52 54.94
STS16 58.91 58.67 59.83 55.41 54.53 55.37
STS17 28.40 27.01 26.63 16.20 17.53 16.19
STS22 25.02 26.14 25.54 24.60 24.69 24.55
STSBenchmark 54.42 54.66 54.29 50.47 50.82 49.29
SummEval 29.43 29.71 29.59 29.18 29.37 29.01

Table 14: Performance on all 56 MTEB datasets obtained on RoBERTa-large.
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