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Abstract
In recent years, the community of ‘explainable
artificial intelligence’ (XAI) has created a vast
body of methods to bridge a perceived gap be-
tween model ‘complexity’ and ‘interpretability’.
However, a concrete problem to be solved by
XAI methods has not yet been formally stated.
As a result, XAI methods are lacking theoreti-
cal and empirical evidence for the ‘correctness’
of their explanations, limiting their potential use
for quality-control and transparency purposes. At
the same time, Haufe et al. (2014) showed, using
simple toy examples, that even standard interpre-
tations of linear models can be highly misleading.
Specifically, high importance may be attributed to
so-called suppressor variables lacking any statisti-
cal relation to the prediction target. This behavior
has been confirmed empirically for a large array
of XAI methods in Wilming et al. (2022). Here,
we go one step further by deriving analytical ex-
pressions for the behavior of a variety of popular
XAI methods on a simple two-dimensional bi-
nary classification problem involving Gaussian
class-conditional distributions. We show that the
majority of the studied approaches will attribute
non-zero importance to a non-class-related sup-
pressor feature in the presence of correlated noise.
This poses important limitations on the interpre-
tations and conclusions that the outputs of these
XAI methods can afford.

1. Introduction
The field of ‘explainable artificial intelligence’ (XAI) is de-
voted to answering the broad question of why an automatic
decision system put forward a certain prediction. This is
often addressed by techniques that attribute a so-called ‘im-
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portance’ score to each feature of an individual test input. It
is commonly agreed that being able to answer this question
is necessary to create trust in and a better understanding of
the behavior of such decision systems (Baehrens et al., 2010;
Ribeiro et al., 2016; Binder et al., 2016; Lundberg & Lee,
2017; Fisher et al., 2019). In Haufe et al. (2014) and Wilm-
ing et al. (2022), it was shown that features which certain
XAI methods determine to be important, e.g. by inspecting
their corresponding weights of a linear model, may actually
not have any statistical association with the predicted vari-
able. As a result, the provided ‘explanation’ may not agree
with prior domain knowledge of an expert user and might
undermine that user’s trust in the predictive model, even if it
performs optimally. Indeed, a highly accurate model might
exploit so-called suppressor features (Conger, 1974; Fried-
man & Wall, 2005), which can be statistically independent
of the prediction target yet still lead to increased prediction
performance. On the other hand, incorrect explanations may
implant misconceptions about the data, the model and/or
the relationship between the two into a user’s mind, which
could lead to misguided actions that could be harmful.

While Haufe et al. (2014) have introduced low-dimensional
and well-controlled examples to illustrate the problem of
suppressor variables for model interpretation, Wilming et al.
(2022) showed empirically that the emergence of suppres-
sors indeed poses a problem for a large group of XAI meth-
ods and diminishes their ‘explanation performance’. Here,
we go one step further and derive analytical expressions for
commonly used XAI methods for a simple two-dimensional
linear data generation process capable of creating suppressor
variables by parametrically inducing correlations between
features. In particular, we investigate which XAI approaches
attribute non-zero importance to plain suppressor variables
that are by construction independent of the prediction tar-
get and thereby violate a data-driven definition of feature
importance recently put forward by Wilming et al. (2022).

2. Related Work
XAI methods often analyze ML models in a post-hoc man-
ner (Arrieta et al., 2020), where a trained model deemed
to be ‘non-interpretable’, such as a deep neural network, is
given, while the XAI methods attempt to ‘reverse-engineer’
its decision for a given input sample. A crucial limitation of
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the field of XAI is that it is still an open question what for-
mal requirements correct explanations would need to fulfill
and what conclusions about data, model, and their relation-
ship the analysis of an importance map provided by XAI
methods should afford. The lack of a clear definition of what
problem XAI is supposed to solve led to multiple studies
evaluating explanation methods (e.g. Doshi-Velez & Kim,
2017; Kim et al., 2018; Alvarez-Melis & Jaakkola, 2018;
Adebayo et al., 2018; Sixt et al., 2020). Yet, these studies
primarily employ auxiliary metrics to measure secondary
quality aspects, such as the stability of the provided maps.
For example, Yang & Kim (2019) investigate how impor-
tance maps for one model change relative to another model.
Until recently, it has been considered difficult to define
and evaluate the correctness of importance maps, because
real-world datasets, which are ubiquitous in the ML com-
munity as benchmarks for supervised prediction tasks, do
not offer access to the ‘true’ set of important features. How-
ever, several XAI benchmarks using controlled synthetic
data have emerged in the past three years. Agarwal et al.
(2022) propose a benchmark that can generate synthetic
data and assess XAI methods on a broad set of evaluation
metrics. The authors state that their framework predomi-
nantly serves the purpose of gaining a better understanding
of a model’s internal mechanics, which would primarily
show the debugging capabilities of XAI methods rather
than their ability to generate knowledge of ‘real-world’ ef-
fects. Sixt et al. (2020) provide a theoretical analysis of
convergence problems of so-called saliency methods, espe-
cially Layer-wise Relevance Propagation (LRP, Bach et al.,
2015), Deep Taylor Decomposition (DTD, Montavon et al.,
2017), and DeepLIFT (Shrikumar et al., 2017). Notably,
the provided derivations do not take the model’s input data
into account. Kindermans et al. (2018) use a minimal data
generation example, to mainly motivate a discussion about
drawbacks of saliency maps to finally propose novel expla-
nation techniques based on the DTD framework. Janzing
et al. (2020) consider a structural data generation model,
promoting unconditional expectations as a value function
for SHAP (Lundberg & Lee, 2017) by demonstrating that
observational conditional expectations are flawed. In an ex-
tensive study on Partial Dependency Plots (Friedman, 2001)
and M-plots (Apley & Zhu, 2020), Grömping (2020) theoret-
ically analyse a regression task via a pre-defined regression
model E(Y |x) with multivariate Gaussian distributed data.
They argue that M-plots can lead to deceptive results, espe-
cially if machine learning models rely on interaction effects.
Wilming et al. (2022) empirically study common post-hoc
explanation methods using a carefully crafted dataset based
on a linear data generation process. Here, all statistical
dependencies and absolute feature importances are well de-
fined, giving rise to ground-truth importance maps. This
empirical study showed that most XAI methods indeed high-
light suppressor features as important.

X2

X1Y

(a) Confounder

X2

X1Y

(b) Suppressor and
Collider

Figure 1. In (a), feature X2 is a confounder variable influencing Y
and another feature X1, causing spurious associations. In contrast,
in (b) X2 is a so-called suppressor variable that has no statistical
association with the target Y , although both influence feature X1,
which is called a collider.

2.1. Definition of Feature Importance

In this paper, we adopt a data-driven notion proposed by
Wilming et al. (2022) as a tentative definition of feature
importance. We consider a supervised learning task, where
a model f : Rd → R learns a function between an input
x(i) ∈ Rd and a target y(i) ∈ R, based on training data
D = {(x(i), y(i)}N

i=1. Here, x(i) and y(i) are realizations of
the random variables X and Y , with joint probability density
function pX,Y (x, y). Then a feature Xj can be defined to
be important if it has a statistical association to the target
variable Y , i.e.

Xj is important ⇒ Xj ⊥̸⊥ Y. (1)

2.2. Suppressor Variables

To illustrate the characteristics of suppressor variables, con-
sider a binary classification problem with two measured
scalar input features x1 and x2, where x1 carries all dis-
criminative information, following Haufe et al. (2014). We
design the input data such that x1 holds the signal of interest
z ∈ {−1, 1}, which is identical to the target variable y = z.
Furthermore, during the measuring process, feature x1 is
inadvertently obfuscated by a distractor η: x1 = z + η.
The second feature only consists of the distractor signal,
i.e. x2 = η. Our goal is to learn a function that can dis-
criminate between the two states y = −1 and y = 1 or, in
other words, recover the signal of interest z. We can build a
model solely based on feature x1 to solve the classification
problem, as x1 is the only feature that contains information
about y = z. Yet, the obfuscation of x1 by the distrac-
tor η diminishes its predictive power. On the other hand,
feature x2 does not contain any information about y = z.
Therefore, a model solely based on x2 cannot reach above
chance-level classification accuracy. However, a bivariate
linear model with a weight vector w = (1, −1)⊤ can per-
fectly recover the signal of interest and, thereby, the target:
w⊤x = z + η − η = z = y . Additionally, Structural equa-
tion models (SEM) are depicting different ways in which a
variable X2 can influence the prediction of a target variable
Y . In Figure 1a X2 is a confounder variable influencing
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Y and another feature X1, causing spurious associations.
Confounders can appear, for example, as watermarks in
image classification tasks, as studied by Lapuschkin et al.
(2019) and can reduce the generalization capabilities of
a model to new data where confounders might be absent.
However, in contrast, we consider suppressor variables X2
(see Figure 1b) that have no statistical associations with a
target variable Y , while X1 is a collider variable, taking
input from both Y and X2. Here, we can establish the rela-
tion P(X2 | X1) ̸= P(X2 | X1, Y ) showing a conditional
dependency of the suppressor X2 on the target Y . These
conditional dependencies are used by multivariate methods
to improve the accuracy of predictions. In practice, XAI
methods do not distinguish whether a feature is a confounder
or a suppressor, which can lead to misunderstandings about
a model’s performance and interpretation.

3. Methods
The purpose of this paper is to use a simple model of sup-
pressor variables as a device to analyze the importances
produced by a number of popular XAI methods, and to com-
pare these importance scores to our data-driven definition
of feature importance (1). In the following, we introduce
notation that we will use throughout the text, define the data
generation model, derive the Bayes optimal classifier, and
provide further technical remarks.

3.1. Linear Generative Model

We now slightly extend the generative data model of the
former section 2.2 and provide a full specification of it.
Again, we consider a binary classification problem with a
two-dimensional feature space where feature x1, by con-
struction, is statistically associated with the target y, while
feature x2 fulfills the definition of a suppressor variable.
Correlations between both features are introduced paramet-
rically through a Gaussian noise process, as a result of which
the Bayes optimal classifier generally needs to make use of
the suppressor variable. We define H and Z as the random
variables of the realizations η and z, respectively, to describe
the linear generative model

x = az + η, y = z, (2)

with Z ∼ Rademacher(1/2), a = (1, 0)⊤ and H ∼
N(0, Σ) with a covariance matrix parameterized as follows:

Σ =
[

s2
1 cs1s2

cs1s2 s2
2 ,

]
, (3)

where s1 and s2 are non-negative standard deviations and
c ∈ [−1, 1] is a correlation. The vector a is also called signal
pattern (Haufe et al., 2014; Kindermans et al., 2018). With
that, the generative model (2) induces a binary classification

problem, where X = (X1, X2) is the random variable of
the realization x with the joint density

p(x) = πp1(x | Y = 1) + (1 − π)p2(x | Y = −1) , (4)

and prior probabilities, π = P(Y = ±1) = 1/2. The
densities p1/2 are the class-conditional densities which are
both multivariate normal, with X | Y = y ∼ N(µi, Σ) for
y ∈ {−1, 1} and i = 1, 2 and have identical covariance
matrix Σ ∈ R2×2 and expectations µ1 = (1, 0)⊤ and µ2 =
(−1, 0)⊤. A graphical depiction of the data generated by
our data model is provided in Figure 2.

3.2. Bayes Optimal Classifier

The classifier g : Rd → {−1, 1} that minimizes the error
P(g(X) ̸= Y ) is called the Bayes optimal classifier and
defined by g(x) = If∗(x)>1/2, with the conditional proba-
bility f∗(x) = P(Y = 1|X = x). For multivariate normal
class-conditional densities, we can calculate the exact Bayes
rule f : Rd → R, which in this case is a linear discriminant
function with g(x) = If(x)>0 and f(x) = w⊤x + b.

The generative data model, defined above in section 3.1,
induces a binary classification problem yielding two class-
conditional densities which are both multivariate normal.
We solve the classification task in a Bayes optimal way if
we assign x either to class Y = 1 or to class Y = −1 based
on the minimal squared Mahalanobis distance δ2(x, µi) =
(x − µi)⊤Σ−1(x − µi) between x and the two class means
µi, i = 1, 2. Then the concrete form of the linear Bayes rule
is determined by the coefficients

w1 = α, w2 = −αcs1/s2 (5)

for α := (1 + (cs1/s2)2)− 1
2 and ||w||2 = 1. Note, the

classification problem is set up such that the linear decision
rule requires no offset or bias term, i.e. b = 0. In Appendix
A we provide further details for deriving the Bayes optimal
decision rule f .

3.3. Notation

Throughout, f : Rd → R is a learned function, in our case
the Bayes optimal classifier, where f usually represents
the linear decision rule itself. The dimension of the input
domain, d ∈ N, is set to d = 2. We define an index set of
all features [d] := {1, . . . , d}, in order to define features of
interest as a subset S ⊂ [d], where xS denotes the restriction
of x ∈ Rd to the index set S. Analogously, we define the
complement C = [d] \ S, defining xC as all other features
that are not of interest in a particular explanation task. We
also define the output of any XAI method as a mapping
eS : Rd → R representing the importance or ‘relevance’
assigned by the method to the feature set S.
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(a) c = 0.8 (b) c = 0 (c) c = −0.8

Figure 2. Data sampled from the generative process (2) for differ-
ent correlations c and constant variances s2

1 = 0.8 and s2
2 = 0.5.

Boundaries of Bayes optimal decisions are shown as well. The
marginal sample distributions illustrate that feature x2 does not
carry any class-related information.

4. Analysis of Common Explanation Methods
In the following, we provide a theoretical analysis of pop-
ular XAI methods. The linear generative model (2) is our
device to assess those methods’ behavior in the presence of
suppressor features.

4.1. Gradient

A ML model’s gradient itself is often used for explana-
tions, as it describes the change of the model output as a
function of the change of the input parameters (e.g. Gevrey
et al., 2003; Selvaraju et al., 2017). For linear models, the
gradient is identical to the model weights, and thus inde-
pendent of the input sample. This might be in part a reason
why linear models are sometimes described as ‘glass-box’
models, particularly when it comes to explaining complex
non-linear models via linear surrogate models (e.g. Ribeiro
et al., 2016). However, we can see that the Bayes optimal
classifier’s weights (5), which are the gradient of the optimal
decision function f , clearly attribute non-zero importance
to the suppressor variable x2, which is inconsistent with the
data-driven definition of feature importance (1).

4.2. Pattern

Haufe et al. (2014) argue that the coefficients of linear mod-
els are difficult to interpret. In particular, they may highlight
suppressor variables. Instead, the authors propose a trans-
formation to convert weight vectors into parameters a of a
corresponding linear forward model x = af(x) + ε. The
solution is provided by the covariance between the model
output and each input feature: aj = Cov(xj , f(x)) =
Cov(xj , f(x)) = Cov(xj , w⊤x), for j = 1, . . . d, which
yields a global importance map

eS(x) := (Cov(x, x)w)S (6)

called linear activation pattern (Haufe et al., 2014). For the
generative model (2) and the Bayes optimal classifier (5),

(a) Faithfulness through
pixel flipping

(b) Permutation feature
importance

Figure 3. Analytical approximations of faithfulness and permuta-
tion feature importance. Shown is a family of curves as a function
of feature correlation c ∈ [−1, 1] variance s2

1 for constant variance
s2

2 = 0.5. Importance maps differ in offsets, indicating consis-
tently higher importance for the informative feature x1. Yet, both
methods allocate importance also to the suppressor feature x2 for
c > 0. Analogous figures for different s2

2 values are contained in
the supplementary Figures 6 and 7.

we obtain

e{1}(x) = αs2
1(1 − c2) , e{2}(x) = 0 . (7)

Thus, the pattern approach does not attribute any importance
to the suppressor feature x2.

4.3. Faithfulness and Pixel Flipping

It is widely acknowledged that the correctness of any XAI
method as well as the correctness of a given importance map
is notoriously hard to assess. This is, because there exists
no agreed upon definition of importance as well as because
‘true’ importances scores are rarely available when it comes
to solving problems with learning algorithms. Nonetheless,
surrogate metrics have been defined to work around this
problem. These metrics are often referred to as ‘faithfulness’
and, rather than being based on fundamental properties of
the data and/or model, they are often based on predictability
arguments. Faithfulness is not a well-defined concept and
has numerous notions, some of which are tied to specific
XAI methods (Jacovi & Goldberg, 2020). As these metrics
are often defined algorithmically, they can be regarded as
XAI methods in their own right.

The most widely adopted notion of faithfulness is that the
omission or obfuscation of an important feature will lead
to a decrease in a model’s prediction performance. One
algorithmic operationalization to assess this is the ‘pixel
flipping’ method (Samek et al., 2017). For linear models,
the simplest form of flipping or removing features is just
by setting their corresponding weights wj to zero. With
this, we can approximate the classification losses through
squared errors as

eS(x) := E
(
(Y − fwS=0(x))2)

− E
(
(Y − f(x))2)

.

(8)
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For features x1 and x2, we obtain

e{1}(x) = 2α − α2 + α2s2
1(2c2 − 1),

e{2}(x) = α2c2s2
1 ,

(9)

as derived in Appendix C. We can observe that for non-zero
correlation c, e{2} is non-zero; that is, pixel-flipping assigns
importance to the suppressor feature x2.

4.4. Permutation Feature Importance

Proposed by Breiman (2001), the permutation feature impor-
tance (PFI) for features xS measures the drop in classifica-
tion performance when the associations between xS and the
corresponding class labels is broken via random permutation
of the values of xS . As in pixel flipping, a significant drop
in performance defines an important feature (set). Let πS(x)
be the randomly permuted version of x, where features with
indices in S are permuted and the remaining components
are untouched. The randomly permuted features πS(x) and
xS are independent and identically distributed now, which
leads to the following approximation of PFI:

eS(x) := E
(
(Y − f(πS(x)))2)

− E
(
(Y − f(x))2)

.

(10)

For features x1 and x2, we obtain

e{1}(x) = 2α + 2α2c2s2
1 e{2}(x) = 2α2c2s2

1 . (11)

Thus, similar to faithfulness, PFI assigns non-zero impor-
tance to x2 if |c| > 0. This similarity is expanded upon in
Appendix D, and a graphical depiction of that behavior is
presented for both methods in Figure 3.

4.5. Partial Dependency Plots

Partial dependency (PD) plots are a visualization tool for
(learned) high-dimensional functions, aiming to foster a
deeper understanding of the relations between their in- and
outputs. PD plots also became widely appreciated in the
XAI community, where they have been proposed as model-
agnostic ‘interpretation’ or ‘explanation’ tools (e.g., Molnar,
2020). For a group of features of interest xS and remaining
features xC , the partial dependency function is the average
function

eS(x) := ExC

(
f(x)

)
=

∫
R

f(xS , xC)p(xC)dxC , (12)

where p(xC) denotes the marginal probability density func-
tion, or ‘marginal expectation’, of xC . The Bayes optimal
decision (5) allows us to directly state the partial dependency
functions for features x1 and x2 as

e{1}(x) = αx1 e{2}(x) = −αcs1s−1
2 x2 . (13)

Figure 4. The Partial Dependency Plots (black solid line) and M-
plots (red dashed line) for different correlations (columns), and
different features x1 (upper row) and x2 (bottom row) correspond-
ing for Figure fig:1. The background shows a scatter plot of the
corresponding predictions f(x) vs. the feature of interest xS . The
Partial Dependency Plots and M-plots both ‘follow’ the ‘trend’ of
the samples showing an apparent dependency on the feature x1
(upper row). For feature x2 the scatter plots show no structural
direction, where we would suspect no ‘directional response’ from
explanation methods like those shown by the M-plots. While PD
plots show a dependency on x2. The figures depict cropped ver-
sions; the scatter plots and explanation functions extend beyond
the axes’ limits for some plots.

These results indicate that the PD function does vary as a
function of the suppressor feature x2. This is further illus-
trated in Figure 4, which shows PD plots with corresponding
scatter plots of the log odds f(x) as a function of the fea-
ture of interest xS . The partial dependency function for x2
is heavily influenced by the correlation of x1 and x2 and
only vanishes for c = 0, indicating that PD plots are indeed
merely a tool to visualize relations between in- and outputs
of a function rather than providing ‘explanations’ compati-
ble with the data-driven definition of feature importance (1).
This is in line with works reporting problematic behavior of
PD plots when applied to strongly correlated data (Apley &
Zhu, 2020; Molnar, 2020).

Marginal Plots For exploratory analyses of tabular
datasets, it is common to start by visually assessing simple
scatter plots of the target variable as a function of individual
features. As such, it is common to fit curves to pairs of
in- and outputs (x1, y) and (x2, y). This can be done by
estimating the conditional expectations E

(
Y |X1 = x1

)
or

E
(
Y |X2 = x2

)
. A variation of this is to replace output pa-

rameters by their model predictions, leading to conditional
expectations eS(x) := E

(
f(xS , xC)|XS = xS

)
, which

were coined M-plots by Apley & Zhu (2020). Their Cal-
culation requires the conditional expectations E

(
X2|X1 =

x1
)

= cs2
s1

h(x1) and E
(
X1|X2 = x2

)
= cs1

s2
x2, where

h(x1) := (x1 −1)ϑ(2x1/s2
1)+(x1 +1)(1−ϑ(2x1/s2

1)) (14)
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and with ϑ(x) := (1+exp(−x))−1 as the sigmoid function.
For the generative model (2) and corresponding Bayes opti-
mal classifier with weights (5) , the conditional expectations
for the model given x1 or x2, respectively, amount to

e{1}(x) = αx1 − αc2h(x1) e{2}(x) = 0 . (15)

This is shown in Appendix E. Thus, the M-plot assigns
a vanishing conditional expectation value to the suppres-
sor variable x2, which is also confirmed visually in Fig-
ure 4 (bottom row). As such, M-plots appear to be suitable
tools to identify important features according to definition
(1). However, M-plots have been reported to lead to mis-
interpretations of main effects if y depends on x1 and x2,
especially when there is an interaction between the two fea-
tures (Grömping, 2020). Studying the case of interacting
features, however, goes beyond the scope of this paper.

4.6. Shapley Values

Another class of XAI methods leverages game theoretic
considerations to assign importance scores to individual
features. Originally introduced by Shapley (1953), the con-
cept of distributing gains of a coalition game among players
fairly was extended by Lipovetsky & Conklin (2001) and
Lundberg & Lee (2017), who propose the use of Shapley
values (Shapley, 1953) as a procedure to quantify the con-
tribution of a feature to a decision function by considering
all possible combinations of features. One can quantify the
contribution of a feature xj to a coalition of features S via
the Shapley value

e{j} =
∑

S⊆[d]\{j}

γd(S) [v(S ∪ {j}) − v(S)] , (16)

with the weighting factor γd representing the proportion
of coalitions S not including the jth feature, defined as
γd(S) = |S|!(d−|S|−1)!/d!. The value function v : 2[d] → R,
with v(∅) = 0, is a set function that assigns a quantity
of ‘worth’ to a coalition and can have many forms. But,
for our analysis, we are focusing on the choices made by
Lipovetsky & Conklin (2001); Lundberg & Lee (2017) and
Aas et al. (2021). In general, the purpose of the value
function v(S) := gS(xS), gS : R|S| → R is to measure
the impact of a reduced subset of feature values xS on the
model output. In the following paragraphs, we analyze
three different value functions to assess: (1) their impact
on feature attribution within the Shapley value framework,
and (2) the consequences for models relying on suppressor
variables.

Coefficient of Multiple Determination In the Shapley
value regression context, Lipovetsky & Conklin (2001)
leverage the coefficient of determination (Hoffman, 1960) as
a value function, which we decompose as R2 =

∑d
j=1 wjrj .

Here, wj are the learned model weights, and rj := (X⊤y)j

defines the sample correlation between feature xj and target
y, for standardized features xj . We can directly define R2

for a subset of features as gS(xS) := R2
S =

∑
j∈S wjrj ,

and utilize it as value function v(S) := gS(xS), which
can be interpreted as shares of the overall R2. If we re-
call the data generation process (2) and consider the co-
variances Cov(Y, X1) = 1, and Cov(Y, X2) = 0, re-
spectively, we can state the marginal Pearson correlations
ρY,X1 = (s2

1 + 1)−1/2 and ρY,X2 = 0 directly, without
relying on the sample correlations rj .

First, we consider the case of calculating the Shapley values
e{j} with respect to the R2

S value function, and, as originally
intended by Lipovetsky & Conklin (2001), three hypotheti-
cally trained models: One bivariate model, here the Bayes
rule (5), and two univariate models f{1}(x) = ŵx1 and
f{2}(x) = w̃x2. We specify e{1}, e{2} as

e{1}(x) = α + 1
2(s2

1 + 1)1/2 e{2}(x) = α − 1
2(s2

1 + 1)1/2 ,

(17)

where the rules f{1}(x) = x1 and f{2}(x) = x2, with
ŵ = 1 and w̃ = 0 correspond to the optimal decisions for
the univariate models. We can observe that the Shapley
values are ‘governed’ by the factor α of the bivariate model.
As long as c ̸= 0, it holds that α ̸= 1, and this method
attributes importance to the suppressor feature x2. Now, we
approximate this procedure using only the bivariate model
containing all variables – this is the ‘common’ scenario,
as it can be quite computationally expensive to train new
models on many feature subsets. Using the Shapley value
framework together with the R2 measure, we obtain

e{1}(x) = α(s2
1 + 1)−1/2, e{2}(x) = 0 . (18)

Since e{2} = 0, we can conclude that R2 measure in combi-
nation with Shapley values is an appropriate value function
for assessing feature importance for our linear data genera-
tion process (2). This, and the work of the following section,
is expanded upon in Appendix F.

SHAP Lundberg & Lee (2017) propose the conditional
expectation for a suitable approximation of f , but for com-
putational reasons the authors decided to approximate it
with the non-conditional expectation, assuming feature in-
dependence. This is called the SHAP (Shapley additive ex-
planations) approach. Later, Aas et al. (2021) suggested an
estimation method for the conditional expectation, extend-
ing SHAP by actively incorporating potential dependencies
among features. We start by defining the value function via
the marginal expectation gS(xS) := ExC

(
f(xS , xC)

)
, and

with the results of Section 4.5, we obtain the Shapley values

e{1}(x) = αx1, e{2}(x) = −αcs1s−1
2 x2 . (19)
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This, in essence, resembles the partial dependency functions
(13). In a similar way, we calculate the Shapley values
for the set function defined via the conditional expectation
gS(xS) := E

(
f(xS , xC)|XS = xS

)
as

e{1}(x) = αx1 − αc2

2 h(x1) − αcs1
2s2

x2

e{2}(x) = αc2

2 h(x1) − αcs1
2s2

x2 ,

(20)

where h is defined in (14). Thus, the Shapley value e{2}
does not just reflect an attribution of importance to the sup-
pressor variable x2 but is also affected by feature x1 if
c ̸= 0.

4.7. Counterfactual Explanations

Wachter et al. (2017) propose an explanation framework
based on counterfactual explanations, which we can think
of as statements depicting an “alternative world”. Formally,
we have a given instance ξ ∈ Rd and the desired outcome
y∗, and try to find a minimizer

x∗ = arg min
x

max
λ

λ(f(x) − y∗)2 + δ(x, ξ) , (21)

for λ ∈ R and a suitable distance function δ (Wachter et al.,
2017). To find a counterfactual sample according to (21)
for our linear model f(x) = w⊤x, it is sufficient to con-
sider points that are located on the linear decision boundary
f(x∗) = 0 of the Bayes optimal classifier (5), since the
decision can be flipped in any epsilon-neighborhood around
any such point. The closest such counterfactual x∗ for a
given instance ξ is the point that has minimal distance to ξ
in the Euclidean sense. We can also think of that point as
the orthogonal projection of ξ onto the decision hyperplane
via its orthogonal subspace

⟨ξ − au, u⟩ = 0 with x∗ := ξ − au , (22)

where u is an element of the orthogonal complement of
w, and a ∈ R. Then, with u = (cs1/s2, 1)⊤ and a =
⟨ξ, u⟩/∥u∥2

2, the counterfactual explanation x∗ results in

x∗
1 = β(ξ1 − ξ2cs1s−1

2 )
x∗

2 = βcs1s−1
2 (ξ2cs1s−1

2 + ξ1) ,
(23)

with β := ((cs1s−1
2 )2 + 1)−1. Thus, to change the decision

of the Bayes optimal classifier with minimal interventions, a
shift from ξ to x∗ would be required, and this shift would not
only involve a change in the informative feature x1 but also
in the suppressor feature x2 (see also Figure 5 for a graphical
depiction). Based on this result it may be, erroneously,
concluded from this counterfactual explanation, that feature
x2 has a correlation with or even a causal influence on the
classifier decision.

Figure 5. Counterfactual x∗ for a given instance of interest ξ in
the generative setting c = 0.8, s2

1 = 0.8, and s1
2 = 0.5. As can

be seen, for |c| > 0, reaching a counterfactual decision always
involves a manipulation of the suppressor feature x2.

4.8. FIRM

Another post-hoc method to assess the importance of fea-
tures of an arbitrary function f : Rd → R is the feature
importance ranking measure (FIRM) proposed by Zien et al.
(2009). Inspired by the feature sensitivity measure of Fried-
man (2001), the authors utilize the conditional expectation
E

(
f(x)|XS = xS

)
and define the importance ranking mea-

sure as

eS(x) := Var(E
(
f(x)|XS

)
) 1

2 . (24)

Computing this expression, in general, is infeasible since
we need access to the data distribution. For the generative
model (2) it is possible to prove that

e{1}(x) = αVar(X1 − c2h(X1)) 1
2

≥ α

2
(
2ϑ(2/s2

1) − 1
)

e{2}(x) = 0 .

(25)

A derivation of the lower bound is provided in Appendix G.
As also noted in Haufe et al. (2014), the variability of e{2}
is zero, indicating that FIRM does not assign importance to
suppressor features.

4.9. Integrated Gradients

Integrated gradients (Sundararajan et al., 2017) belongs
to the family of path methods (Friedman, 2004), which
aggregate a model’s gradients along a predefined path or
curve γ : [0, 1] → Rd with γ(0) = x′ and γ(1) = x. If we
think of images, then x ∈ Rd can be an image we seek an
explanation for, and x′ represents a corresponding baseline
image, where a black image x′ ≡ 0 is a common choice.
For the curve γ : t 7→ x′ + t(x − x′), a general baseline x′,
and a model f , the integrated gradient importance map is
given by (Sundararajan et al., 2017)

e{j}(x) := (xj − x′
j)

∫
[0,1]

∂f(x′ + t(x − x′))
∂xj

dt. (26)
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For the Bayes optimal linear classifier (5), the importance
scores for features x1 and x2 are given by

e{1}(x) = α

2 (x2
1 − (x′)2),

e{2}(x) = −αcs1
2s2

(x2
2 − (x′)2) ,

(27)

respectively. Thus, independent of the baseline x′ (provided
that x′ ̸= x), the integrated gradients for the suppressor
feature x2 are non-zero for |c| > 0.

4.10. LIME

The idea of LIME (Ribeiro et al., 2016) is to ‘explain’ a
model’s decision for a given instance x by sampling data
points in the vicinity of x and using these samples to build
a ‘glass-box’ model, which is assumed to be more easily
interpretable. Typically, a linear model is chosen as a surro-
gate model. In the scenario studied here, the Bayes optimal
model (5) is already linear with non-zero weight w2. Thus,
we would expect that a local linear approximation would
show the same behavior. Indeed, Garreau & von Luxburg
(2020) show that for a ‘linear black-box’ model and a Gaus-
sian i.i.d. sampling procedure from N(µ, σ2Id), the local
weights ŵj estimated by LIME are approximately propor-
tional to the partial derivatives of f . Since these derivates
reduce to the weights (5) of the Bayes optimal linear clas-
sifier in the studied setting, we have wj ∝ ŵj . Therefore,
LIME resembles the global model and attributes non-zero
importance to the suppressor variable x2.

4.11. Saliency Maps, LRP and DTD

Saliency map explanations estimate how a prediction f(x)
is influenced when moving along a specific direction in the
input space. If the direction is along the model’s gradient,
this is known as sensitivity analysis (Baehrens et al., 2010;
Simonyan et al., 2014). Several explanation techniques for
neural networks are based on this approach (e.g. DeConvNet
and Guided BackProp), primarily distinguishing themselves
by their treatment of rectifiers (Kindermans et al., 2018;
Zeiler & Fergus, 2014; Springenberg et al., 2015). For
single-layer neural networks without rectifiers, that is, linear
models, the saliency maps of these explanation methods
reduce to the gradient itself (cf. Section 4.1). Layerwise rel-
evance propagation (LRP, Bach et al., 2015) and its general-
ization Deep Taylor Decomposition (DTD, Montavon et al.,
2017) are methods that propagate a quantity termed ‘rele-
vance’ from output to input neurons backwards through a
neural network, following a set of rules. The DTD approach
develops, for each layer l of a neural network, a first-order
Taylor expansion around a root point x0, which gives rise
to a relevance score for each neuron j with the propagation
rule e{j}(x) := Rl−1

j = w ⊙ (x − x0)(w⊤x)−1Rl
j , where

⊙ is the Hadamard product. Choosing an appropriate root

point is essential in the DTD framework, and Kindermans
et al. (2018) notice that by estimating the distractor η and
understanding it as root point x0 = η, DTD recovers the
pattern estimator for linear models proposed by Haufe et al.
(2014). Kindermans et al. (2018) derive the signal estimator
Sa = Cov(x, y)w⊤x, yielding the DTD propagation rule

e{j}(x) = (w ⊙ a)j (28)

for j = 1, 2 (cf. Eg. (2)) (see Appendix H). Kindermans
et al. (2018) refer to this propagation rule as PatternArribu-
tion, or PatterNet in case where only the activation patterns
aj are back-propagated. In this case, DTD indeed achieves
that no relevance gets attributed to suppressor features in a
linear setting. Notably, it has also been shown that in more
complex learning scenarios and depending on root points,
DTD can generally yield almost any explanation (Kohlbren-
ner et al., 2020; Montavon et al., 2018; Sixt & Landgraf,
2022).

5. Discussion
The field of XAI is seen as a critical part of a to-be-
developed infrastructure that should guarantee the safety
of future ML-based high-stake decision systems and create
trust in such systems. However, the current state of XAI
lacks precise specifications of the problem to be solved by
XAI methods. Operationalizations of XAI are, therefore,
notoriously difficult to validate theoretically and empirically,
which currently prohibit their use for quality assurance.

Two proclaimed use cases of XAI are model and dataset
debugging (Lapuschkin et al., 2019), and feature discovery
(e.g. Jiménez-Luna et al., 2020; Tran et al., 2021). However,
it remains unclear how well contemporary XAI methods can
provide evidence in each of these use cases that is beyond
anecdotal. If XAI outputs are ill-defined or simply unfit
for purpose, this could turn an anticipated benefit of their
use even into a disadvantage. For example, characterizing
features as important that have no statistical association with
the prediction target could give rise to psychological biases
and circular reasoning. A pathologist presented with an
importance or saliency map for a histological image may
try to identify familiar patterns in the map while potentially
being tempted to ignore less familiar structures. In the
worst case, this could mutually reinforce false prior beliefs
between researchers and developers of XAI methods.

Suppressors as Benchmarks for XAI

Wilming et al. (2022) argue that humans often implicitly as-
sume an actual statistical association between a feature and
the prediction target when being offered the ‘explanation’
that the feature in question is important. This gives rise to
a purely data-driven yet concrete definition of feature im-
portance based on a statistical dependency on the prediction
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target. We use this definition to construct a standard bi-
nary classification problem with Gaussian class-conditional
distributions. By introducing noise correlations within this
model, we create a suppressor variable, which has no statis-
tical relation to the target but whose inclusion in any model
will lead to better predictions (Haufe et al., 2014).

We view this simple, yet very insightful, classification prob-
lem primarily as a minimal counterexample, where the exis-
tence of suppressor variables challenges the assumptions of
many XAI methods as well as the assumptions underlying
metrics such as faithfulness, which are often considered a
gold-standard for quantitative evaluation and an appropriate
surrogate for ‘correctness’. Indeed, authors have shown
empirically that XAI methods can lead to suboptimal ‘ex-
planation performance’ even when applied to linear data
with suppressor variables (Wilming et al., 2022). Here, we
complement the study of Wilming et al. (2022) by deriving
analytical expression of popular XAI methods employing
a two-dimensional linear binary classification problem that
has the same problem structure as the 64-dimensional prob-
lem presented by Wilming et al. (2022). These analytical
expressions allow us to study the factors that lead to non-
zero importance attribution, and to expose the mathematical
mechanism by which different properties of the data dis-
tribution influence XAI methods. Our results demonstrate
that outputs of explanation methods must be interpreted
in combination with knowledge about the underlying data
distribution. Conversely, it may be possible that XAI meth-
ods with improved behavior could be designed by reverse-
engineering the analytical importance functions eS .

We found that several XAI methods are incapable of nulli-
fying the suppressor feature, i.e., assigning non-zero impor-
tance to it, when correlations between features are present.
This is the case for the naive pixel flipping and the PFI
methods representing operationalization of faithfulness, but
also for actively researched methods like SHAP, LIME, and
counterfactuals, as well as partial dependency plots. Note
that these methods can typically also not be ‘fixed’ by just
ranking features according to their importance scores and
considering only the top features ‘important’. In fact, we
can devise scenarios where the weight w2 corresponding
to the suppressor variable x2 is more than twice as high as
the weight w1 (see Appendix B and Haufe et al. (2014)),
which may lead to the misconception that the feature x2
is ‘twice’ as important as feature x1. XAI methods based
on the Shapley value framework yield particular diverging
results, as the strong influence of the value function is re-
flected in the diversity of analytical solutions. SHAP-like
approaches, based on the conditional or marginal expecta-
tions 4.6, show how heavily dependent such methods are
on the correlation structure of the dataset. In contrast, the
M-Plot approach, FIRM, PATTERN, and the Shapley value
approach using the R2 value function, deliver promising re-

sults by assigning exactly zero importance to the suppressor
variable. This positive result can be attributed to the fact that
all methods make explicit use of the statistics of the training
data including the correlation structure of the data. This
stands in contrast to methods using only the model itself to
assign importance to a test sample.

5.1. Limitations

Here we studied a linear generative model and used a univari-
ate data-driven definition of feature importance to design our
ground truth data. In real-world scenarios, we do not expect
that suppressor variables are always perfectly uncorrelated
with the target. In Appendix A we provide deliberations
for the case where the suppressor variable x2 = εz + η2
consists of a small portion ε ∈ R of the signal z as well.
However, in this case, it is not exactly clear what numerical
value for the importance we can assume as ground-truth,
other than zero. Furthermore, modern machine learning
model architectures excel in dealing with highly complex
non-linear data involving, among other characteristics, fea-
ture interactions. Most XAI methods have been designed
to ‘explain’ the predictions of such complex models. To
better understand the behavior of both machine learning
models and XAI methods in such complex settings, future
work needs to focus on non-linear cases, and develop clear
definitions of feature importance in complex settings.

6. Conclusion
We study a two-dimensional linear binary classification
problem, where only one feature carries class-specific infor-
mation. The other feature is a suppressor variable carrying
no such information yet improving the performance of the
Bayes optimal classifier. Analytically, we derive closed-
form solutions for the outputs of popular XAI methods,
demonstrating that a considerable number of these methods
attribute non-zero importance to the suppressor feature that
is independent of the class label. We also find that a number
of methods do assign zero significance to that feature by
accounting for correlations between the two features. This
signifies that even the most simple multivariate models can-
not be understood without knowing essential properties of
the distribution of the data they were trained on.
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A. Bayes optimal classifier
The generative data model, defined in (2), induces a binary classification problem yielding two class-conditional densities
which are both multivariate normal, with X | Y = y ∼ N(µi, Σ) for y ∈ {−1, 1} and i = 1, 2, and have identical
covariance matrix Σ ∈ R2×2 and expectations µ1 = (1, 0)⊤ and µ2 = (−1, 0)⊤. We solve the classification task in a Bayes
optimal way if we assign x either to class Y = 1 or to class Y = −1 based on the minimal squared Mahalanobis distance
δ2(x, µi) = (x − µi)⊤Σ−1(x − µi) between x and the two class means µi, i = 1, 2. As described we have equal covariance
matrices Σ for both classes, thus, the Bayes rule becomes linear and we can assign x to class Y = 1, if w⊤(x − µ) ≥ 0,
where w := Σ−1(µ1 − µ2) and µ := 1

2 (µ1 + µ2). The concrete form of the Bayes optimal rule f(x) = w⊤x + b with
weights w⊤ = (w1, w2)⊤ is determined by the coefficients

w1 = α, w2 = −αcs1/s2 (29)

for α := (1 + (cs1/s2)2)− 1
2 and ||w||2 = 1 and b = 0. The inverse of the covariance matrix Σ is given by

Σ−1 = 1
s2

1s2
2(1 − c2)

[
s2

2 −cs1s2
−cs1s2 s2

1

]
. (30)

Furthermore, we consider a version of generative data model (2) where we parameterize, via a scalar ε ∈ R, the dependency
between the suppressor variable and the target

x = aεz + η, y = z, (31)

with Z ∼ Rademacher(1/2), aε = (1, ε)⊤ and H ∼ N(0, Σ). The induces binary classification problem slightly changes
with class-conditional distributions X | Y = y ∼ N(µi, Σ) for y ∈ {−1, 1} and i = 1, 2 and updated expectations
µ1 = (1, ε)⊤ and µ2 = (−1, ε)⊤. Then for the optimal Bayes rule, we yield the weights and offset

w1 = α, w2 = −αcs1/s2 b = εαcs1/s2 . (32)

B. Ranking
Let the correlation c = −0.8 and the varainces be s2

1 = 1 and s2
2 = 0.15, then we yield the coefficients w1 ≈ 0.42

and w2 ≈ 0.90. Using the coefficient as importance scores would rank the suppressor variable x2 twice as high as the
class-dependent variable x1.

C. Faithfulness
Throughout the appendix, let the random variables X = (X1, X2) and Y be defined as in Section 3 and f(x) = w1x1+w2x2.
For the Pixel-Flipping method, we consider the error

eS(x) := E
(
(Y − fwS=0(x))2)

− E
(
(Y − f(x))2)

. (33)

Now, let us consider

E
(
(Y − f(x))2)

= P(Y = 1)E
(
(Y − f(x))2 | Y = 1

)
+ P(Y = −1)E

(
(Y − f(x))2 | Y = −1

)
= 1

2E
(
(1 − f(x))2 | Y = 1

)
+ 1

2E
(
(1 + f(x))2 | Y = −1

)
= 1 − 2w1 + w2

1(s1
1 + 1) + w2

2s2
2 + 2w1w2cs1s2.

(34)

We take a closer look at the conditional expectation E
(
(1 − f(x))2 | Y = 1

)
and observe

E
(
(1 − f(x))2 | Y = 1

)
= E

(
1 | Y = 1

)
− 2E

(
f(x) | Y = 1

)
+ E

(
f(x)2 | Y = 1

)
= 1 − 2w1 + w2

1(s1
1 + 1) + w2

2s2
2 + 2w1w2cs1s2,

(35)
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(a) Faithfulness for s2
2 = 0.1 (b) Faithfulness for s2

2 = 0.9

Figure 6.

where

E
(
f(x) | Y = 1

)
= w1,

E
(
f(x)2 | Y = 1

)
= Var

(
f(x) | Y = 1

)
+ E

(
f(x) | Y = 1

)2

= w2
1s2

1 + w2
2s2

2 + w2
1 + 2w1w2cs1s2.

(36)

By using (35) and (36) we can compute the value for E
(
(1 + f(x))2 | Y = −1

)
analogously

E
(
(1 + f(x))2 | Y = −1

)
= 1 − 2w1 + w2

1(s1
1 + 1) + w2

2s2
2 + 2w1w2cs1s2. (37)

Similarly, we reive the results for E
(
(Y − fwS=0(x))2)

using the obfuscated decision rule fwS=0. Finally, for the weights
w1 = α and w2 = αcs1/s2 we yield the importance values (9)

e{1}(x) = E
(
(Y − fw1=0(x))2)

− E
(
(Y − f(x))2)

= 1 + w2
2s2

2 − 1 − 2w1 + w2
1(s1

1 + 1) + w2
2s2

2 + 2w1w2cs1s2

= 2α − α2 + α2s2
1(2c2 − 1)

e{2}(x) = E
(
(Y − fw2=0(x))2)

− E
(
(Y − f(x))2)

= 1 − 2w1 + w2
1(s2

1 + 1) − 1 − 2w1 + w2
1(s1

1 + 1) + w2
2s2

2 + 2w1w2cs1s2

= α2s2
1c2

(38)

D. Permutation Feature Importance
Analogously to the computation of the Faithfulness values we can compute the Permutation Feature Importance values.
Note, we compute the Permutation Importance value in a relatively naive way, where we understand the permutation πS(x)
as ‘breaking’ the correlations with the remaining features and the target. We do not provide a probabilistic definition of
a permutation operator. We just use a direct translation of how we would implement feature permutation in practice. We
already computed the value of E

(
(Y − f(x))2)

, therefore it is sufficient to consider

E
(
(Y − f(π{1}(x)))2)

= E
(
Y 2)

− 2E
(
Y f(π{1}(x))

)
+ E

(
f(π{1}(x))2)

= 1 + w2
1(s2

1 + 1) + w2
2s2

2,
(39)

where E
(
Y 2)

= 1 by the properties of the Rademacher distribution and E
(
Y f(π{1}(x))

)
= 0, because we set

Cov(Y, π{1}(X1)) = 0 and Cov(π{1}(X1), X2) = 0. Moreover

E
(
f(π{1}(x))2)

= w2
1E

(
π{1}(x1)

)
− 2w1w2E

(
π{1}(x1)x2

)
+ w2

2E
(
x2

2
)

= w2
1(s2

1 + 1) + w2
2s2

2.
(40)
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(a) Permutation Importance for s2
2 = 0.1 (b) Permutation Importance for s2

2 = 0.9

Figure 7.

Analogously for π{2}(x) we obtain

E
(
(Y − f(π{2}(x)))2)

= 1 − 2w1 + w2
1(s2

1 + 1) + w2
2s2

2. (41)

E. Conditional expectations
In order to compute the M-plots E

(
w1x1 +w2x2|XS = xS

)
, we will first consider the conditional expectations E

(
X1|X2 =

x2
)

and E
(
X2|X1 = x1

)
. Starting with E

(
X1|X2 = x2

)
, by the law of total expectation, we can write

E
(
X1|X2 = x2

)
= E

(
X1 | X2 = x2, Y = 1

)
P(Y = 1 | X2 = x2)

+ E
(
X1 | X2 = x2, Y = −1

)
P(Y = −1 | X2 = x2).

(42)

Since P(X1, X2 | Y = 1) ∼ N ((1, 0)⊤, Σ) and P(X1, X2 | Y = −1) ∼ N ((−1, 0)⊤, Σ), we can straightfowardly
compute the conditional expectations

E
(
X1 | X2 = x2, Y = 1

)
= cs1

s2
x2

E
(
X1 | X2 = x2, Y = −1

)
= cs1

s2
x2.

(43)

And by Bayes’ theorem and using the notation of the joint density p (see (4)), we can write

P(Y = 1 | X2 = x2) = p1,X2(x2) P(Y = 1)
p1,X2(x2) = 1

2 , (44)

with marginal density p1,X2 of the marginal distribution of p in X2, i.e. p1,X2(x2) = φ(x2/s1) with standard normal density
φ. In accordance with (44) we obtain P(Y = −1 | X2 = x2) = 1/2. Combining the results (42), (43) and (44) we yield

E
(
X1|X2 = x2

)
= cs1

s2
x2. (45)

Again, by the law of total expectation, for E
(
X1|X2 = x2

)
, we can compute the conditional expectations E

(
X2 | X1 =

x1, Y = 1
)

and E
(
X2 | X1 = x1, Y = −1

)
in a straightforward manner by the argument used for (43)

E
(
X2 | X1 = x1, Y = 1

)
= cs2

s1
(x1 − 1)

E
(
X2 | X1 = x1, Y = −1

)
= cs2

s1
(x2 + 1).

(46)
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Furthermore, by Bayes’ theorem, we know

P(Y = 1 | X1 = x1) = p1,X1(x1) P(Y = 1)
1
2 p1,X1(x1) + 1

2 p2,X1(x1)
= ϑ(2x1/s2

1),
(47)

where p1,X1 and p2,X1 are the marginal densities of the marginal distribution of p in X1, namely p1,X1(x1) = φ((x1−1)/s1)
and p1,X1(x1) = φ((x1 + 1)/s1), and sigmoid function ϑ : R → R. Similarly, P(Y = −1 | X1 = x1) = 1 − ϑ(2x1/s2

1).
The combination of (46) and (47) amounts to (15).

F. Shapley values
With d = 2 and set of feature indices [d], we consider the Shapley values

e{j} =
∑

S⊆[d]\{j}

γd(S) [v(S ∪ {j}) − v(S)] . (48)

We define the value function v via a set function v(S) := gS(xS), gS : R|S| → R. For feature sets with two features, the
Shapley values are given by

e{1} = 1
2

(
g∅∪{1} − g∅

)
+ 1

2
(
g{1,2} − g{2}

)
e{2} = 1

2
(
g∅∪{2} − g∅

)
+ 1

2
(
g{1,2} − g{1}

)
,

(49)

with their corresponding weights

γ2(∅) = 1/2, γ2({1}) = 1/2, γ2({2}) = 1/2. (50)

In the considered scenarios we use different set functions depending on the particular XAI approach, but set g∅ = 0. Now,
we state the value functions we used to compute the corresponding Shapley values for each feature.

Coefficient of multiple determination For Paragraph 4.6 we employed the value function gS(xS) := R2
S =

∑
j∈S wjrj

and for the corresponding subsets S we yield

g∅(x) = 0 g{1,2}(x) = w1/(s2
1 + 1)1/2 g{2}(x) = 0

g{1}(x) = w1/(s2
1 + 1)1/2

g{1}(x) = ŵ1/(s2
1 + 1)1/2 (for the ‘sub-model’f{1}(x1) = ŵ1x1).

(51)

SHAP Using the set function gS(xS) := ExC
(f(xS , xC)) and computing the Shapley values for a linear model reduces to

gS∪{j}(xS) − gS(xS) = wj(xj − E(xj)), (52)

therefore, do not dependent on S (cf. Štrumbelj & Kononenko, 2014). For the set function gS(xS) := E
(
f(xS , xC)|XS =

xS

)
consider the derivations provided by Aas et al. (2021).

G. FIRM
To derive the lower bound for e{1}(x) we first observe that for x1 > 0

x1 − h(x1) = x1 −
[
(x1 − 1)ϑ(2x1/s2

1) + (x1 + 1)(1 − ϑ(2x1/s2
1))

]
= 2ϑ(2x1/s2

1) − 1
> 0

(53)
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where ϑ(x) := (1 + exp(−x))−1 denotes the sigmoid function as before. Thus, we may estimate e{1}(x) from below by

e{1}(x)2 = Var(E
(
f(x) | X1

)
)

= α2E
(
(X1 − c2h(X1))2)

≥ α2E
(
(X1 − h(X1))2 | X1 > 1

)
P(X1 > 1)

= α2E
(
(2ϑ(2X1/s2

1) − 1)2 | X1 > 1
)

P(X1 > 1)
≥ α2(2ϑ(2/s2

1) − 1)2 P(X1 > 1 | Y = 1) P(Y = 1)

= α2

4
(
2ϑ(2/s2

1) − 1
)2

.

(54)

Taking the square root on either side now yields the lower bound

e{1}(x) ≥ α

2
(
2ϑ(2/s2

1) − 1
)

. (55)

H. LRP and DTD
The Deep Taylor decomposition (DTD, Montavon et al., 2017) as a generalization of layerwise relevance propagation (LRP,
Bach et al., 2015) summarizes this family of explanation methods via the general propagation rule

e{j}(x) := Rl−1
j = w ⊙ (x − x0)

w⊤x Rl
j . (56)

In applications of DTD, the choice of a suitable root point x0 is of critical importance. Here, Kindermans et al. (2018)
observe that in order to extract the ‘signal’ from the data we have to remove the distractor η by choosing a signal estimator
Sa(x) = x − η, i.e. we pick the root point x0 = η and implicitly estimate the distractor η̂ = x − Sa(x). Furthermore, a
good signal estimator should yield high values of the quality measure

ρ(Sa) := 1 − max
v

v⊤ Cov(η̂, y)(
σ2

v⊤η̂
σ2

y

)1/2 , (57)

i.e. a signal estimator Sa is optimal if we have a vanishing correlation between η̂ and y. With these observations Kindermans
et al. (2018) assume a linear dependency between the signal Sa and the target y yielding a signal estimator

Sa(x) = aw⊤x . (58)

Now, consider

Cov(η̂, y) = 0
⇔ Cov(x − Sa(x), y) = 0

⇔ Cov(x, y) = Cov(Sa(x), y)
⇔ Cov(x, y) = Cov(aw⊤x, y) ,

(59)

and for Cov(aw⊤x, y) = a Cov(y, y) we yield the activation pattern a = Cov(x, y)/σ2
y . Applying the signal estimater Sa

to the propagation rule (56) means replacing (x − x0) by (aw⊤x), and with Rl
j = If(x)>0 we yield the explanation

e{j}(x) =
(

w ⊙ (aw⊤x)
w⊤x

)
j

= (w ⊙ a)j , (60)

which is called the PatternAttribution method by Kindermans et al. (2018). The PatterNet method only back-propagates the
activation patterns aj .
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