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ABSTRACT

This paper is concerned with learning the input-output mapping of general nonlinear
dynamical systems. While the existing literature focuses on Gaussian inputs and
benign disturbances, we significantly broaden the scope of admissible control
inputs and allow correlated, nonzero-mean, adversarial disturbances. With our
reformulation as a linear combination of basis functions, we prove that the ℓ2-norm
estimator overcomes the challenges as long as the probability that the system
is under adversarial attack at a given time is smaller than a certain threshold.
We provide an estimation error bound that decays with the input memory length
and prove its optimality by constructing a problem instance that suffers from the
same bound under adversarial attacks. Our work provides a sharp input-output
analysis for a generic nonlinear and partially observed system under significantly
generalized assumptions compared to existing works.

1 INTRODUCTION

Dynamical systems describe how the state of a system evolves over time according to specific laws.
Such systems are ubiquitous in scientific and engineering disciplines, including computer networks
(Low et al., 2002), deep learning (Meunier et al., 2022), portfolio management (Grinold & Kahn,
2000), biology (Murray, 2007), and optimal control (Dorf & Bishop, 2011). In many practical settings,
however, the underlying dynamics are too complex to be explicitly characterized, resulting in models
with partially or entirely unknown parameters. Designing controllers or making predictions without
first identifying these unknowns can lead to suboptimal or even unsafe outcomes. To address this
challenge, the field of system identification focuses on identifying system dynamics from observed
input-output data.

There has been extensive research in system identification under various structural and disturbance
assumptions (Simchowitz et al., 2018; Faradonbeh et al., 2018; Simchowitz et al., 2019; Jedra &
Proutiere, 2020; Sarkar et al., 2021; Oymak & Ozay, 2022; Yalcin et al., 2024; Zhang et al., 2025;
Kim & Lavaei, 2025a;c) While these works provide strong theoretical guarantees and practical
algorithms, the majority of them concentrate on linear systems. However, many real-world systems
are inherently nonlinear (Grinold & Kahn, 2000; Low et al., 2002; Murray, 2007), which motivates
us to develop identification methods that go beyond the linear setting.

We consider a generic partially observed nonlinear system

xt+1 = f(xt, ut, wt), yt = g(xt, ut), t = 0, 1, . . . , T − 1, (1)

where xt ∈ Rn is the state, ut ∈ U ⊂ Rm is the control input, and yt ∈ Rr is the observation at time
t. The set U consists of admissible control inputs, and T is the time horizon. Under adversarially
chosen disturbances wt ∈ Rd, our goal is to identify the input-output mapping of the system (1).
To be specific, given an input memory length τ > 0, we study the mapping from the recent input
sequence (ut, . . . , ut−τ ) to the observation yt.

In this paper, we approximate the input-output behavior of the system (1) using a finite-memory
reformulation, which offers a tractable and expressive representation of the system under mild
assumptions:

(schematic) yt = G∗ · Φ(ut, . . . , ut−τ ) + residual terms + approximation error vector, (2)
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(a) Approximation of the true input-output map-
ping via a linearly parameterized mapping

(b) Impact of detectable attacks versus occasional unde-
tectable attacks on outputs

Figure 1: Input-output analysis of linearly parameterized mappings under clean and corrupted outputs. (a) We
reformulate the input-output behavior of nonlinear systems as a linearly parameterized nonlinear system, which
can be approximated to arbitrary precision ϵ, given a sufficiently expressive set of basis functions ϕ1, . . . , ϕM .
(b) We assume that most attacks are detectable and produce clean outputs, whereas undetectable attacks occur
infrequently but can have arbitrarily large magnitudes, producing completely corrupted outputs. Our goal is to
identify a linearly parameterized input-output mapping from this partially corrupted output trajectory.

where M is the number of basis functions, Φ : (U)τ+1 → RM is the stack of basis functions,
G∗ ∈ RM×r represents the matrix governing the input-output mapping, τ > 0 is input memory
length, and the residual terms are functions of disturbances and “far” past states. Note that the far
past states are exponentially small with the exponent τ under stability conditions. We will formalize
this schematic form in Section 2.

In particular, given that the basis functions Φ(·) are sufficiently expressive, it is guaranteed from
the function approximation theory that a wide class of nonlinear mappings can be approximated
to arbitrary precision, up to an approximation error vector of an arbitrarily small norm, using a
finite set of appropriately chosen basis functions such as radial basis functions (RBF) (Chen et al.,
1991), Volterra kernels (Boyd & Chua, 1985), and random feature models (Rahimi & Recht, 2007).
Motivated by this, we focus on analyzing the corresponding linearly parameterized approximation of
the input–output mapping (see Figure 1(a)).

Allowing for a small approximation error, we reduce the system identification task to estimating G∗.
However, adversarial disturbanceswt, combined with the partial observability of the nonlinear system,
introduce significant challenges to accurately recovering G∗. We categorize adversarial disturbances
as either detectable or undetectable attacks: the former are reliably detected and corrected by a
well-designed detector and feedback controller (Fawzi et al., 2014; Shoukry & Tabuada, 2016; Pajic
et al., 2017), whereas the latter—though injected occasionally—corrupt the outputs and hinder
the identification of the mapping G∗ (see Figure 1(b)). Furthermore, it is natural to ask whether
restrictions on admissible control inputs ut may also impede the identification task. To this end, we
pose the following central question:

When and how can we accurately estimate the true G∗ under
nonzero-mean, non-Gaussian inputs and correlated, nonzero-mean, adversarial disturbances?

In this paper, we address the question posed above and summarize our contributions as follows:

1) Our work focuses on nonlinear systems with partially observed outputs, non-Gaussian control
inputs, and correlated, nonzero-mean, possibly adversarial disturbances. This setting significantly
broadens the scope of existing literature, each of which assumes at least one of Gaussian control
inputs, i.i.d. disturbances, or zero-mean disturbances. A detailed comparison of the problem setups is
provided in Table 1.

2) We reformulate the problem as estimating G∗ · Φ(ut, ..., ut−τ ), which represents a general
form of modeling the system output as a linear combination of basis functions applied to a truncated
input history of length τ . When disturbances are fully adversarial at every time step, the matrix G∗
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Table 1: Comparison of problem settings in existing literature with our work: N/A in Gaussian input
means that they consider the system without inputs.

Dynamics Available
Outputs

Gaussian
input

i.i.d.
Disturbance

Zero-mean
Disturbance

Identification
Approach

Our Work Nonlinear Partial No No No Parametric
Sarkar et al. (2021) Linear Partial Yes Yes Yes Parametric
Oymak & Ozay (2022) Linear Partial Yes Yes Yes Parametric
Ziemann et al. (2022) Nonlinear Full N/A No Yes Nonparametric
Zhang et al. (2025) Nonlinear Full N/A No Yes Parametric
Kim & Lavaei (2025c) Linear Partial Yes No No Parametric

becomes non-identifiable. Thus, within this framework, we characterize the class of problems for
which the true G∗ can accurately be identified. In particular, we focus on the problems where the
attack probability p at each time (namely, the probability of wt being nonzero) is restricted to p < 1

2τ .

3) We establish that the estimation error of identifying G∗ using the ℓ2-norm estimator is O(ρτ ),
where 0 < ρ < 1 is the contraction factor of the function f . Notably, we further provide a matching
lower bound of Ω(ρτ ) on the estimation error, showing that the presented bound is indeed optimal.

Related works. We focus on identifying the input-output mapping of the system, since in many
settings it suffices to capture how control actions influence observable outcomes (Abbeel et al., 2006;
Deisenroth & Rasmussen, 2011). For instance, in model-based reinforcement learning (RL), the agent
first learns an input–output model of the environment and subsequently uses it to make informed
decisions (Moerland et al., 2023). To ensure tractability of our analysis, we adopt a parameterized
system with a finite-memory approximation, which yields interpretable and computationally efficient
models—particularly when the chosen function class closely aligns with the true system dynamics
(Chen, 1995; Giannakis & Serpedin, 2001). The finite-memory approach is consistent with classical
nonlinear system identification methods, such as Volterra series truncations (Boyd & Chua, 1985)
and NARMAX models (Billings, 2013). Further details on related works are in Appendix A.

Outline. The paper is organized as follows. In Section 2, we formulate the problem and state
the relevant assumptions. In Section 3, we prove that the ℓ2-norm estimator achieves the optimal
estimation error and provides the analysis outline. In Section 4, we present numerical experiments to
validate our main results. Finally, concluding remarks are provided in Section 5.

Notation. Let Rn denote the set of n-dimensional vectors and Rn×n denote the set of n×nmatrices.
For a matrix A, ∥A∥F denotes the Frobenius norm of the matrix. For a vector x, ∥x∥2 denotes the
ℓ2-norm of the vector. For a set S, the k-fold Cartesian product S × S × · · · × S (with k factors) is
denoted by (S)k. For an event E, the indicator function I{E} equals 1 if E occurs, and 0 otherwise.
P(E) denotes the probability that the event occurs. We use O(·) for the big-O notation and Ω(·)
for the big-Ω notation. Let In denote the n × n identity matrix. The notation ⪰ denotes positive
semidefiniteness. Let N(µ,Σ) denote the Gaussian distribution with mean µ and covariance Σ, and
Unif[a, b]n denote the uniform distribution on the hypercube [a, b]n ⊂ Rn. Finally, let E denote the
expectation operator.

2 PROBLEM FORMULATION

In (1), we study a nonlinear dynamical system xt+1 = f(xt, ut, wt) and yt = g(xt, ut), where the
state equation is governed by the dynamics f : Rn × U × Rd → Rn and the observation equation is
determined by the measurement model g : Rn × U → Rr. We have the discretion to design control
inputs u0, u1, . . . , uT−1 and we have access to a single observation trajectory consisting of partial
observations y0, y1, . . . , yT−1. We assume the Lipschitz continuity of the measurement model g and
the contraction property for the dynamics f to ensure system stability and prevent the explosion of
the nonlinear system, which is common in control theory literature (Tsukamoto et al., 2021; Lin et al.,
2023). The formal assumption on the dynamics is given below.

Assumption 2.1 (Lipschitzness). g is Lipschitz continuous; i.e., there exists L > 0 such that

∥g(x, u)− g(x̃, ũ)∥2 ≤ L(∥x− x̃∥2 + ∥u− ũ∥2) (3)
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for all x, x̃ ∈ Rn, u, ũ ∈ U . Moreover, note that for k ≥ 1, the k-fold composition of the dynamics
f , denoted by f (k), maps (xt−k, ut−k, . . . , ut−1, wt−k, . . . , wt−1) to xt. We assume that f (k) is
Lipschitz continuous in its oldest arguments (xt−k, ut−k, wt−k) with constant Cρk for some C > 0
and 0 < ρ < 1, with later inputs and disturbances fixed. In other words, we have

∥f (k)(xt−k, ut−k, wt−k;u,w)− f (k)(x̃t−k, ũt−k, w̃t−k;u,w)∥2
≤ Cρk(∥xt−k − x̃t−k∥2 + ∥ut−k − ũt−k∥2 + ∥wt−k − w̃t−k∥2), (4)

for all xt−k, x̃t−k ∈ Rn, ut−k, ũt−k ∈ U , wt−k, w̃t−k ∈ Rd, with any u = (ut−k+1, . . . , ut−1) ∈
(U)k−1 and w = (wt−k+1, . . . , wt−1) ∈ (Rd)k−1. We further make the standard assumption
f(0, 0, 0) = 0.
Remark 2.2. The contraction property in Assumption 2.1 is analogous to Gelfand’s formula in
linear systems. For any matrix A ∈ Rn×n, the formula guarantees the existence of the absolute
constant c(n) (which only depends on the system order n) such that ∥Ak∥2 ≤ c(n) · [λmax(A)]

k for
all k ≥ 0, where ∥ · ∥2 denotes the spectral norm and λmax(·) denotes the spectral radius. We adopt
this analogous setting in our nonlinear system by interpreting λmax(A) as ρ, and assume that f (k) has
a Lipschitz constant of Cρk.

In this work, we focus on input-output analysis and aim to identify the model governing the mapping
from (truncated) control inputs (ut, . . . , ut−τ ) to observation outputs yt, where τ denotes the input
memory length specified by the user to construct the mapping. As described in the introduction,
we will reformulate the true mapping to a linearly parameterized input-output mapping with a
finite-memory approximation. To this end, we outline the following four steps.

Step 1 By recursively applying the system dynamics (1), the observation yt can be represented as

yt = g(xt, ut) = g(f(xt−1, ut−1, wt−1), ut) = · · ·
= g(f(· · · f(f(xt−τ , ut−τ , wt−τ ), ut−τ+1, wt−τ+1), . . . , ut−1, wt−1), ut) (5)

for all t ≥ τ , where the right-hand side considers the control inputs ut, ut−1, . . . , ut−τ .

Step 2 We next separate the effect of disturbances and the oldest state with the effect of inputs,
which allows us to establish the input-output mapping. The result is summarized in the following
lemma (see the proof in Appendix C).
Lemma 2.3. Under Assumption 2.1, the equation (5) for each t ≥ τ implies that there exist
W

(τ)
t ,x

(τ)
t ∈ Rr such that

yt = g(f(· · · f(f(0, ut−τ , 0), ut−τ+1, 0), · · · , ut−1, 0), ut) +W
(τ)
t + x

(τ)
t , (6)

where ∥W (τ)
t ∥2 ≤ CL

∑τ
k=1 ρ

k∥wt−k∥2 and ∥x(τ)
t ∥2 ≤ CLρτ∥xt−τ∥2.

Step 3 For the equation (6), note that the term g ◦ f ◦ · · · ◦ f is a function of ut, ut−1, . . . , ut−τ .
Allowing for a small approximation error vector ϵt, we convert this nonlinear function to a linear
combination of basis functions taking a truncated number of control inputs, in which we establish a
time-invariant system in the sense that the input memory length is fixed:

g(f(· · · f(f(0, ut−τ , 0), ut−τ+1, 0), · · · , ut−1, 0), ut) = G∗ · [ϕ1(U (τ)
t ) · · · ϕM (U

(τ)
t )]T + ϵt,

(7)

where U
(τ)
t = (ut, . . . , ut−τ ) ∈ (U)τ+1 is the stack of inputs from the time t − τ to t, the basis

functions ϕi : (Rm)τ+1 → R are distinct nonlinear mappings for i = 1, . . . ,M , and the matrix
G∗ ∈ Rr×M explains how the nonlinear transformation of the inputs is mapped to the observation
outputs. The number of basis functions M as well as how to design them can be chosen at the
discretion of the user.

Step 4 Let Φ(U (τ)
t ) := [ϕ1(U

(τ)
t ) · · · ϕM (U

(τ)
t )]T . Considering the relationships (6) and (7), we

finally arrive at the equation

yt = G∗ · Φ(U (τ)
t ) +W

(τ)
t + x

(τ)
t + ϵt (8)

for all t ≥ τ . This provides an equivalent representation of yt via a linearly parameterized mapping
(see Figure 1(a)), with the goal of accurately estimating the true matrix G∗ that governs the input-
output mapping from the control inputs (ut, . . . , ut−τ ) to the observation yt.
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We now present the mild assumptions that each basis function should satisfy.
Assumption 2.4 (Basis functions). Each basis function ϕi is designed to be Lϕ-Lipschitz (one
can always find such basis functions since f (k) and g are assumed to be Lipschitz continuous in
Assumption 2.1), namely,

|ϕi(U (τ)
t )− ϕi(Ũ

(τ)
t )| ≤ Lϕ∥U (τ)

t − Ũ
(τ)
t ∥2, ∀i = 1, . . . ,M, (9)

for all U (τ)
t , Ũ

(τ)
t ∈ (U)τ+1. Also, each basis function with inputs should excite the system for the

exploration in learning the system. In other words, there exists a universal constant λ > 0 such that

E
[
Φ(U

(τ)
t )Φ(U

(τ)
t )T

]
⪰ λ2IM (10)

holds for all t ≥ τ . We further assume that Φ(0) = 0, meaning that zero input results in zero basis
function values.

We also consider both inputs and disturbances on the system to be sub-Gaussian variables. For
example, any bounded variables automatically satisfy this assumption. We use the definition given in
Vershynin (2018) (see the detailed definitions and properties of sub-Gaussian variables in Appendix
B). Note that we do not require each input or disturbance to have a zero mean (see Definitions B.1
and B.4). The formal assumptions are given below.
Assumption 2.5 (sub-Gaussian control inputs). We design our control input to be independent
sub-Gaussian variables, meaning that u0, u1, . . . , uT−1 are independent of each other and there exists
a finite σu > 0 such that ∥ut∥ψ2

≤ σu for all t = 0, . . . , T − 1.
Assumption 2.6 (sub-Gaussian disturbances). Define a filtration

Ft = σ{x0, u0, . . . , ut, w0, . . . , wt−1}.
Then, there exists σw > 0 such that ∥x0∥ψ2 ≤ σw and ∥wt∥ψ2 ≤ σw conditioned on Ft for all
t = 0, . . . , T − 1 and Ft.
Remark 2.7. While existing literature typically assumes zero-mean Gaussian inputs, we significantly
relax this assumption by only requiring ut to be sub-Gaussian (see Assumption 2.5) and Φ(U

(τ)
t ) to

be Lipschitz and excite the system (see Assumption 2.4), without imposing a zero-mean condition.
These assumptions characterize the general conditions on control inputs applicable to nonlinear
system identification. In practice, control inputs are often synthesized in the form of K(yt) +
[sub-Gaussian excitation term], where K is a controller and yt is the observation at time t. With
excitation terms, K(yt) may indeed have a nonzero mean, which incorporates realistic scenarios.

If the disturbance wt is always adversarial with nonzero-mean, any estimator may be misled. For
example, the adversary can always inject an attack wt that drives the next state xt+1 to be irrelevant
to the current state xt, preventing any valid estimation method from extracting useful information
(Kim & Lavaei, 2025a). Hence, we may need to restrict the time instances t in which the adversary
may be able to fully attack the system via wt. We now formally present the additional restriction on
our disturbances wt, under which the input-output mapping in (8) is accurately estimated.
Assumption 2.8 (Attack probability). wt is an adversarial attack at each time t with probability
p < 1

2τ conditioned on Ft; i.e., there exists a sequence (ξt)t≥0 of independent Bernoulli(p) variables,
each independent of any Ft, such that

{ξt = 0} ⊆ {wt = 0}, ∀t ≥ 0. (11)

Assumption 2.8 specifies that the system is not under attack (case 1 in Figure 1(b)) with probability at
least 1− p, since ξt = 0 implies wt = 0. At attack times (case 2 in Figure 1(b)), the adversary uses
the information in the filtration Ft to generate disturbances wt, which can therefore be correlated and
possibly adversarial.

Remark 2.9 (Choice of τ ). In Assumption 2.8, the attack probability depends on a user-defined
constant τ , which represents an input memory length. As discussed in the introduction, it is inevitable
to consider a finite-memory approximation, and the permissible attack probability 1

2τ —which depends
on the memory length τ—will accordingly restrict the ability of the adversary. It is worth noting that
the term W

(τ)
t in (8) is identically zero if the system is not under attack for τ consecutive periods; i.e.

wt−1 = · · · = wt−τ = 0, which happens with probability at least (1− p)τ . We have (1− p)τ > 0.5
with the restriction on attack probability p < 1

2τ , which we will leverage to prove the useful results
on the estimation error.
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Given a time horizon T , we aim to learn the true system G∗ in (8), using the following ℓ2-norm
estimator based on partial observations yτ , . . . , yT−1 and control inputs u0, . . . , uT−1:

ĜT = argmin
G

T−1∑
t=τ

∥∥∥yt −G · Φ(U (τ)
t )

∥∥∥
2

(12)

Under the stated assumptions, we will show in the next section that the ℓ2-norm estimator achieves
the optimal estimation error O(ρτ ), where ρ is the contraction factor in Assumption 2.1 and τ is the
input memory length.

3 MAIN THEOREMS AND ANALYSIS OUTLINE

In this section, we will state our main theorems on bounding the estimation error to identify G∗ and
provide the analysis outline.

3.1 MAIN THEOREM

Our main theorem holds under the stated assumptions, which incorporates non-Gaussian inputs and
correlated, nonzero-mean, adversarial disturbances, with an attack probability p no greater than 1

2τ .

Theorem 3.1. Suppose that Assumptions 2.1, 2.4, 2.5, 2.6, and 2.8 hold, and that the approximation
error vector satisfies ∥ϵt∥2 ≤ ϵ̄ for all t. Consider ν :=

√
MτLϕσu

λ . Let G∗ be the true matrix
governing the system (8) and ĜT denote a solution to the ℓ2-norm estimator given in (12). Given
δ ∈ (0, 1], when

T = Ω

(
τν8

(2(1− p)τ − 1)2

[
rM log

(
τν

2(1− p)τ − 1

)
+ log

(
1

δ

)])
, (13)

we have

∥G∗ − ĜT ∥F = O

((
ρτL

λ
· σu + σw

1− ρ
+
ϵ̄

λ

)
· ν3

2(1− p)τ − 1

)
. (14)

with probability at least 1− δ.

Remark 3.2. Our main theorem states that after the time given in (13) and with a sufficiently small
ϵ̄, the estimation error of O(ρτ ) is achieved, considering that additional polynomial terms in τ are
dominated by the exponential decay in τ . However, notice that the estimation error does not decay as
the time T increases, and thus cannot converge to zero. While this error bound decreases as τ grows,
the memory length τ will be chosen as a finite number at the user’s discretion, and thus the bound
should be treated as a positive constant. This suggests that the user may want to choose a sufficiently
long τ to obtain a smaller estimation error. However, increasing τ has three drawbacks: First, it
restricts the attack probability as stated in Remark 2.9. Second, the required time (13) implies that it
takes longer to arrive at the desired estimation estimation bound. Third, the basis function Φ may
become significantly complex to incorporate longer history, and naturally the optimization problem
needs far more computations. Thus, even though the estimation error may decrease with increasing τ ,
the aforementioned demerits create an inherent trade-off in selecting an appropriate value for τ .

3.2 ANALYSIS OUTLINE

We now provide the outline of proof analysis. The proof details can be found in Appendix D.

3.2.1 ANALYSIS WITHOUT PAST STATE AND APPROXIMATION EFFECT

Our proof technique starts from a special case where the term x
(τ)
t and ϵt in the equation (8) are zero.

This auxiliary setting will later be generalized to the case where they can take nonzero values. In
the following theorem, we establish a sufficient condition for the true matrix G∗ to be the unique
solution to the ℓ2-norm minimization problem (12).

6
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Theorem 3.3. Suppose that x(τ)
t = 0 and ϵt = 0 for all t. Then, G∗ is the unique solution to the

ℓ2-norm estimator (12) if
T−1∑
t=τ

∥∥ZΦ(U (τ)
t )

∥∥
2
· I{W (τ)

t = 0} −
T−1∑
t=τ

∥∥ZΦ(U (τ)
t )

∥∥
2
· I{W (τ)

t ̸= 0} > 0, (15)

holds for all Z ∈ Rr×M such that ∥Z∥F = 1.

Theorem 3.3 implies that if the left-hand side given in equation (15) is positive for all Z ∈ Rr×M
such that ∥Z∥F = 1, we will actually be able to exactly recover the true matrix G∗ with the ℓ2-norm
estimator. In particular, thanks to Lemma 2.3 and (11), we have

P(W (τ)
t = 0) ≥ P(wt−1 = 0, . . . , wt−τ = 0) ≥ P(ξt−1 = 0, . . . , ξt−τ = 0) = (1− p)τ > 0.5.

Then, for a fixed Z, the sub-Gaussianity of control inputs ut, Lipschitzness of Φ(·), and the excitation
condition (10) ensures that the left-hand side of (15) will be sufficiently positive after a finite time.

We now analyze how the term in (15) changes when evaluated at two different points Z, Z̃ ∈ Rr×M .
We show that the difference is indeed small when the points are close. Thus, if one can select a
sufficient number of points for which the term in (15) is simultaneously positive with high probability,
then their surrounding neighborhoods will also yield positive values. This implies that the term in
(15) is universally positive for all points in Rr×M with unit Frobenius norm. To quantify how many
such points are needed, we invoke a well-known covering number argument (Vershynin, 2018).

3.2.2 BEYOND THE ZERO PAST STATE AND APPROXIMATION EFFECT

In general, x(τ)
t in (8) is nonzero since ∥xt−τ∥2 ̸= 0 (see Lemma 2.3). Moreover, we inevitably face

a nonzero approximation error vector ϵt, whose magnitude depends on the expressiveness of the
chosen basis functions. Thus, we need to extend the previous analysis in Section 3.2.1 to general
cases. From the optimality of ĜT for the ℓ2-norm estimator (12) and the input-output mapping (8),
we have

T−1∑
t=τ

∥(G∗ − ĜT )Φ(U
(τ)
t ) +W

(τ)
t + x

(τ)
t + ϵt∥2 ≤

T−1∑
t=τ

∥W (τ)
t + x

(τ)
t + ϵt∥2, (16)

where the right-hand side is the result of substituting G∗ into G in (12). Using the triangle inequality,
we can arrive at

T−1∑
t=τ

∥(G∗ − ĜT )Φ(U
(τ)
t ) +W

(τ)
t ∥2 − ∥W (τ)

t ∥2 ≤ 2

T−1∑
t=τ

(
∥x(τ)

t ∥2 + ∥ϵt∥2
)

(17)

where the left-hand side turns out to be the perturbation of ℓ2-norm estimator without the effect of
x
(τ)
t and ϵt. This can be lower-bounded by using the positive constant lower bound Ω(T ) of the

term in (15) constructed in the previous Section 3.2.1. The right-hand side is also upper-bounded by
O(T ) due to Lemma D.9. Accordingly, we can bound the estimation error ∥G∗ − ĜT ∥F using (17)
to obtain the results in Theorem 3.1.

Remark 3.4. We note that any ℓα-norm estimator with α ≥ 1 can ensure the left-hand side of (15)
remains universally positive even though ℓ2-norm is replaced by other norms. However, the resulting
estimation error bound is weaker than that of the ℓ2-norm estimator. We analyze two different cases:

Case 1 — 1 ≤ α < 2: In this regime, the final estimation error bound (14) suffers from an
additional multiplicative factor, at most

√
r. This arises from the inequality ∥x(τ)

t ∥1 + ∥ϵt∥1 ≤√
r(∥x(τ)

t ∥2 + ∥ϵt∥2), which will appear in (17) and ultimately worsens the estimation error bound.

Case 2 — 2 < α ≤ ∞: Our analysis hinges on E
[
∥ZΦ(U (τ)

t )∥22
]
≥ λ2 (see (38)) for the ℓ2-norm

estimator. Using α > 2 also introduces an additional factor of
√
r, since the term of interest in the

worst case is ∥ZΦ(U (τ)
t )∥∞ ≥ 1√

r
∥ZΦ(U (τ)

t )∥2 ≥ λ√
r

, which negatively affects the estimation
error bound.

Consequently, the ℓ2-norm estimator yields a tighter estimation bound O
(
ρτL
λ

)
than those based on

other norms since it does not depend on the observation dimension r. This will further be supported
by the lower bound presented in the next subsection, which is also independent of r.
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3.3 LOWER BOUND

In this section, we claim that there is no estimator that can improve the constant bound in Theorem
3.1 in the worst case.

Theorem 3.5. Given δ ∈ (0, 1], suppose that adversarial attacks wt are designed by an adversary
to satisfy σw =

(
1
ρ

)Ω(τ log(T/δ))
, where 0 < ρ < 1 is the contraction factor of f , and τ is the input

memory length. Then, there exists a problem instance satisfying Assumptions 2.1, 2.4, 2.5, 2.6, and
2.8 that suffers from Ω

(
ρτL
λ

)
estimation error with probability at least 1− δ for any estimator.

Proof Sketch. Consider the case where the approximation error vector ϵt = 0. Under the attack
probability O(1/τ) in Assumption 2.8, the maximum consecutive attack-free length is bounded by
O(τ log(T/δ)) with probability at least 1 − δ. Then, the adversarial attacks enable the property
xt ≥ 1 for all t with high probability. This implies that yt in (5) can be written in two different
functions h1 ̸= h2 such that

yt = h1(xt−τ , ut−τ , . . . , ut, wt−τ , . . . , wt−1) = h2(xt−τ , ut−τ , . . . , ut, wt−τ , . . . , wt−1) (18)

for all xt−τ ≥ 1, which implies that h1 and h2 are not distinguishable under adversarial attacks.
However, the corresponding input-output mappings (see (6)) will be

h1(0, ut−τ , . . . , ut, 0, . . . , 0) and h2(0, ut−τ , . . . , ut, 0, . . . , 0), (19)

where xt−τ and the disturbances are set to 0. Choose the functions h1 and h2 to have different
function values for (19), while satisfying the equation (18) for all xt−τ ≥ 1. As a result, any
estimator may recover either one of the mappings h1 or h2 arbitrarily, given the same observation
trajectory y0, y1, . . . , yT−1. In particular, the two expressions in (19) can differ by Ω(ρτL), leading
to an estimation error Ω(ρ

τL
λ ). The proof details can be found in Appendix E.

Remark 3.6. We have established the lower bound Ω(ρ
τL
λ ), which implies that the estimation error

is bounded below by a positive constant for any estimator due to adversarial attacks. While this
matches the upper bound (14) up to the same order, the assumption on the sub-Gaussian norm of the
attacks depends on T . If this norm is required to be uniformly bounded over all T ≥ 0, it remains
unclear whether the gap between the upper and lower bounds can be further tightened. Meanwhile,
the proof in Appendix E relies on specially designed nonlinear basis functions to achieve the desired
lower bound. It remains an intriguing open question whether there exists a linear system instance for
which the upper and lower bounds match under the constraint that all basis functions are linear in
control inputs.

4 NUMERICAL EXPERIMENTS

In this section, we provide the numerical experiments that show the effectiveness of the ℓ2-norm
estimator and illustrate how the results align with our theoretical findings. To this end, we consider
the following dynamics with the states xt ∈ R100, the inputs ut ∈ R5, the disturbances wt ∈ R100,
and the observations yt ∈ R10 for t = 0, . . . , T − 1:

xt+1 = f(xt, ut, wt) = σ(Axt +But + wt), yt = g(xt, ut) = Cxt +Dut, (20)

where A ∈ R100×100, B ∈ R100×5, C ∈ R10×100, D ∈ R10×5 are randomly selected matrices and
the function σ(x) = tanh(x) is 1-Lipschitz and is applied elementwise to each coordinate. Each
entry of A,B,C and D is randomly selected from Unif[−1, 1] and A is normalized subsequently to
have a spectral radius less than one (see Assumption 2.1 and Remark 2.2). As a result, the τ -fold
composition of f will have the form of a feedforward neural net, where σ(·) works as an activation
function. For the system (20), the relevant input-output mapping in (6) can be written as

σ(Cσ(Aσ(· · ·σ(Aσ(But−τ ) +But−τ+1) · · · ) +But−1) +Dut). (21)

We first reformulate the true input-output mapping as a linear combination of basis functions G∗ ·Φ(·)
(see (8)). Our chosen basis functions are polynomial kernels up to degree 3, using randomly sampled
tuples (ut, . . . , ut−τ ) whose entries are drawn from Unif[−15, 15]. We then use kernel regression to
estimate the true matrix G∗. The number of kernels used as basis functions is set to M = 25.
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(a) Comparison of Least-squares and
ℓ2-norm estimator

(b) Comparison of the ℓα-norm esti-
mators (α = 1, 2,∞)

(c) Analysis of τ and ρ effects under
non-Gaussian inputs

Figure 2: Estimation error of the input-output mapping (21) under adversarial attacks.

Experiment 1. The first experiment is to compare the ℓ2-norm estimator with the commonly used
least-squares estimator. The attack probability is set to 1

2τ+1 , with sub-Gaussian attack wt designed
to have a covariance 25I100 and a mean vector whose entries are either 300 or 1000 depending on the
sign of the corresponding coordinate of xt. In Figure 2(a), we show that the least-squares method is
vulnerable to attacks and fails to recover the system, while the ℓ2-norm estimator closely identifies
the system after finite time. We provide the results under both Gaussian inputs N(0, 100I5) and
non-Gaussian (nonzero-mean) inputs Unif[−8, 10]5. Our theory only requires Assumptions 2.4 and
2.5 on the inputs, which is supported by our results showing that the ℓ2-norm estimator converges
to the same stable region for the Gaussian inputs even when using the nonzero-mean non-Gaussian
inputs (see Table 1).

Experiment 2. Under the same experimental settings, we now present experiments comparing
the ℓα-norm estimators, where α = 1, 2,∞. As discussed in Remark 3.4, all norm estimators are
expected to recover the true matrix G∗ to some extent, but only the ℓ2-norm estimator theoretically
achieves the optimal error O(ρτ ) that matches the lower bound Ω(ρτ ) (see Theorems 3.1 and 3.5).
Figure 2(b) indeed verifies that the ℓ2-norm estimator outperforms the other norm estimators, although
the empirical differences are relatively small.

Experiment 3. We finally provide experiments under different hyperparameters: the contraction
factor ρ and the input memory length τ , using the ℓ2-norm estimator. Figure 2(c) demonstrates
how the estimation error evolves over time under non-Gaussian inputs considered in Experiment 1.
The figure illustrates that a larger ρ results in a higher estimation error, while a larger τ leads to a
smaller eventual estimation error. These two observations align precisely with an estimation error of
O(ρτ )—increasing with ρ and decreasing with τ . It is worth noting that this estimation error does not
decay over time in the figures, which strongly supports the constant lower bound Ω(ρτ ). In Appendix
F, we provide experimental details along with additional results for the case where an unbounded
function is designed as the activation function σ.

5 CONCLUSION

In this paper, we study the identification of the input-output mappings of nonlinear dynamical systems,
where control inputs are not necessarily Gaussian and the disturbances are potentially adversarial. We
formulate a time-invariant input-output mapping using a linear combination of basis functions taking
the input history, where we decouple the control inputs and disturbances. We propose a problem
class that accurately identifies the input-output mapping, characterized by a restriction on the attack
probability. We then prove that the estimation error using ℓ2-norm estimator amounts to O(ρτ ) under
the presence of adversarial attacks and show that this bound is optimal by providing a matching lower
bound Ω(ρτ ). Future directions include extending our analysis to a nonparametric approach under
the same assumptions, where the estimator inherently involves an infinite-dimensional problem such
as optimization over a function class.
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A DETAILS ON RELATED WORKS

Fully and Partially Observed Systems. In system identification, based on the degree of state
observability, systems are often categorized as fully observed and partially observed systems. In
fully observed systems, all states are measured, thus the outputs are identical to the states. In such
systems, numerous methods have been proposed to recover the underlying system, e.g., least-squared
methods (Simchowitz et al., 2018; Faradonbeh et al., 2018; Jedra & Proutiere, 2020), ℓ2-norm
estimator (Yalcin et al., 2024; Zhang et al., 2025), and ℓ1-norm estimator (Kim & Lavaei, 2025a).
However, in many real-world applications—such as robotics (Lauri et al., 2023), healthcare (Alagoz,
2014), and safety-critical systems (Bensoussan, 1992)—not all states are observable, giving rise
to the partially observed system setting. In this case, system identification becomes substantially
more challenging. A growing body of research has addressed this challenge: for instance, Sarkar
et al. (2021); Oymak & Ozay (2022) identified the systems using least-squares methods, assuming
disturbances are independent and follow Gaussian or sub-Gaussian distribution with zero-mean.
Simchowitz et al. (2019) extended the least-squares method to setups where the disturbances can be
predicted based on past observations. However, little research has been conducted in the partially
observed systems when the disturbances are adversarially selected. Only recently, Kim & Lavaei
(2025b;c) investigated system identification using the ℓ2-norm or ℓ1-norm estimator and allowed
adversarial disturbances.

Nonparametric and Parametric approaches. Nonlinear system identification approaches can gener-
ally be classified into two broad categories: nonparametric and parametric methods. Nonparametric
approaches operate over infinite-dimensional function spaces, often leveraging techniques such as
kernel methods and deep learning to model complex system dynamics (Greblicki & Pawlak, 2008;
Ziemann et al., 2022). These methods are highly flexible, making them well-suited for capturing
behaviors without strong structural assumptions. However, they often come with significant com-
putational overhead and reduced interpretability. In contrast, our approach is based on parametric
methods that approximate the system using a finite set of basis functions, typically chosen based
on prior knowledge or structural insights. This approach yields models that are more interpretable,
computationally efficient, and easier to analyze—especially when the chosen function class aligns
well with the true system dynamics (Chen, 1995; Giannakis & Serpedin, 2001). Moreover, the
parametric framework facilitates model selection and regularization, enabling effective control over
model complexity and reducing the risk of overfitting through techniques such as cross-validation or
penalization.

Finite-memory approximation. For a tractable identification of input-output mappings, we adopt a
finite-memory approximation strategy with length τ , consistent with classical system identification
techniques such as Volterra series truncations (Boyd & Chua, 1985) and NARMAX models (Billings,
2013). These methods are grounded in the assumption that the dynamics of a nonlinear system can
effectively be represented using a fixed window of past inputs.

Input-output mapping. In many cases, it suffices to focus on the input-output relationship—how
control actions affect observable outcomes—rather than attempting to recover the full latent state
dynamics (Abbeel et al., 2006; Deisenroth & Rasmussen, 2011). Similarly, to identify the input-output
mapping, we design the basis functions to depend solely on the control inputs, thereby decoupling
the control inputs and disturbances. This separation has proven effective and is widely adopted in
various settings. For example, in model-based reinforcement learning (RL), it is common to alternate
between system identification and control policy design, where the agent first learns an input-output
model of the environment and then uses it to make informed decisions (Moerland et al., 2023). This
simplification is particularly valuable in high-stakes applications like autonomous driving, where
control inputs such as throttle and steering are mapped to observations such as heading direction,
position, and velocity (Paden et al., 2016).

B PRELIMINARIES ON SUB-GAUSSIAN VARIABLES

In this work, we consider both inputs and attacks on the system to be sub-Gaussian variables in which
the tail event rarely occurs. We use the definition given in Vershynin (2018).
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Definition B.1 (sub-Gaussian scalar variables). A random variable w ∈ R is called sub-Gaussian if
there exists c > 0 such that

E
[
exp
(w2

c2

)]
≤ 2. (22)

Its sub-Gaussian norm is denoted by ∥w∥ψ2
and defined as

∥w∥ψ2
= inf

{
c > 0 : E

[
exp
(w2

c2

)]
≤ 2

}
. (23)

Note that the ψ2-norm satisfies properties of norms: positive definiteness, homogeneity, and triangle
inequality. We have the following properties for a sub-Gaussian variable w:

E
[
|w|k

]
≤ (C1

√
k)k ∀k = 1, 2, . . . , (24a)

P(|w| ≥ s) ≤ 2 exp(−s2/C2
2 ), ∀s ≥ 0, (24b)

E[exp(θw)] ≤ exp(θ2C2
3 ), ∀θ ∈ R if E[w] = 0, (24c)

where C1, C2, C3, and ∥w∥ψ2
are positive absolute constants that differ from each other by at most

an absolute constant factor. For example, there exist K, K̃ > 0 such that c1, c2, c3 ≤ K∥w∥ψ2

and ∥w∥ψ2
≤ K̃max{c1, c2, c3}. Note that the property (24b) is also called Hoeffding’s inequality,

which can be split into two inequalities if E[w] = 0:

P(w ≥ s) ≤ exp(−s2/C2
2 ), ∀s ≥ 0, (25a)

P(w ≤ −s) ≤ exp(−s2/C2
2 ), ∀s ≥ 0. (25b)

We introduce the following useful lemmas to analyze the sum of independent noncentral sub-
Gaussians (Vershynin, 2018).
Lemma B.2 (Centering lemma). If w is a sub-Gaussian variable satisfying (22), then w − E[w] is
also a sub-Gaussian variable with

∥w − E[w]∥ψ2
= O(∥w∥ψ2

). (26)

Lemma B.3 (Sum of mean-zero independent sub-Gaussians). Let w1, . . . , wN be independent, mean
zero, sub-Gaussian random variables. Then,

∑N
i=1 wi is also sub-Gaussian and its sub-Gaussian

norm is O
(
(
∑N
i=1 ∥wi∥2ψ2

)1/2
)
.

To provide the analysis of high-dimensional systems, we introduce the notion of sub-Gaussian vectors
below.
Definition B.4 (sub-Gaussian vector variables). A random vector w ∈ Rd is called sub-Gaussian if
for every x ∈ Rd, wTx is a sub-Gaussian variable. Its norm is defined as

∥w∥ψ2
= sup

∥x∥2≤1,x∈Rd

∥wTx∥ψ2
. (27)

For example, if w is a sub-Gaussian vector with a norm γ, then the sub-Gaussian norm of ∥w∥2 is
also γ, considering that wT w

∥w∥2
= ∥w∥2.

Throughout the paper, we will assume that the inputs and attacks injected into the system are indeed
sub-Gaussian vectors. For example, the m-dimensional Gaussian variables and the r-dimensional
bounded attacks are indeed sub-Gaussian vectors.

We finally define a notion of subexponential, which is essentially a squared sub-Gaussian.
Lemma B.5. w is sub-Gaussian if and only if w2 is subexponential, and it holds that

∥w∥2ψ2
= ∥w2∥ψ1

,

where the ψ1-norm is defined as

∥w2∥ψ1
= inf

{
c > 0 : E

[
exp

(
w2

c

)]
≤ 2

}
. (28)
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C PROOF OF LEMMA 2.3

We first provide the proof of Lemma 2.3, which states that the observation equation can be separated
into the input term consisting of (ut, . . . , ut−τ ), the attack term W

(τ)
t , and the oldest state term x

(τ)
t .

Proof. We iteratively apply (4) to the equation (5) for k = τ, τ − 1, . . . , 1. For k = τ , one can write

∥yt−g(f(· · · f(f(0, ut−τ , 0), ut−τ+1, wt−τ+1), · · · , ut−1, wt−1), ut)∥2 ≤ CLρτ (∥xt−τ∥2+∥wt−τ∥2),

since the composition of g and f (k) yields a Lipschitz function with Lipschitz constant L · Cρk. In
turn, for k = τ − 1, we have

∥g(f(· · · f(f(0, ut−τ , 0), ut−τ+1, wt−τ+1), · · · , ut−1, wt−1), ut)

− g(f(· · · f(f(0, ut−τ , 0), ut−τ+1, 0), · · · , ut−1, wt−1), ut)∥2 ≤ CLρτ−1∥wt−τ+1∥2.

Similarly, one can derive the similar inequalities for k = τ − 2, . . . , 2 and finally arrive at k = 1:

∥g(f(· · · f(f(0, ut−τ , 0), ut−τ+1, 0), · · · , ut−1, wt−1), ut)

− g(f(· · · f(f(0, ut−τ , 0), ut−τ+1, 0), · · · , ut−1, 0), ut)∥2 ≤ CLρ∥wt−1∥2.

Note that g(f(· · · f(f(0, ut−τ , 0), ut−τ+1, 0), · · · , ut−1, 0), ut) is the auxiliary observation, where
the attacks and the oldest state are assumed to be zero. Let ȳt denote the difference between the true
observation and the auxiliary observation:

ȳt := yt − g(f(· · · f(f(0, ut−τ , 0), ut−τ+1, 0), · · · , ut−1, 0), ut).

Then, summing up all the inequalities for k = τ, . . . , 1 and applying the triangle inequality to the
left-hand side implies that

∥ȳt∥2 ≤ CLρτ∥xt−τ∥2 + CL

τ∑
k=1

ρk∥wt−k∥2. (29)

Now, we define the following random variables:

W
(τ)
t :=

∑τ
k=1 ρ

k∥wt−k∥2
ρτ∥xt−τ∥2 +

∑τ
k=1 ρ

k∥wt−k∥2
ȳt, x

(τ)
t :=

ρτ∥xt−τ∥2
ρτ∥xt−τ∥2 +

∑τ
k=1 ρ

k∥wt−k∥2
ȳt.

(30)

Notice that ȳt = W
(τ)
t + x

(τ)
t . This implies that ∥ȳt∥2 = ∥W (τ)

t + x
(τ)
t ∥2 ≤ ∥W (τ)

t ∥2 + ∥x(τ)
t ∥2,

where each term ∥W (τ)
t ∥2 and ∥x(τ)

t ∥2 is bounded by the quantity in the lemma due to (29) and
(30).

D PROOF OF THEOREM 3.1

For convenience, we define I±(·) as the indicator function that equals 1 if the event occurs and −1
otherwise.
Theorem D.1 (Restatement of Theorem 3.3). Suppose that x(τ)

t = 0 and ϵt = 0 for all t. Then, G∗

is the unique solution to the ℓ2-norm estimator (12) if

T−1∑
t=τ

I±{W (τ)
t = 0}·

∥∥ZΦ(U (τ)
t )

∥∥
2
> 0 (31)

holds for all Z ∈ Rr×M such that ∥Z∥F = 1.

Proof. Since x
(τ)
t = 0 and ϵt = 0, an equivalent condition for G∗ to be the unique solution of the

convex optimization problem (12) is the existence of some ∆̄ > 0 such that

T−1∑
t=τ

∥W (τ)
t ∥2 <

T−1∑
t=τ

∥∆ · Φ(U (τ)
t ) +W

(τ)
t ∥2, ∀∆ ∈ Rr×M : 0 < ∥∆∥F ≤ ∆̄, (32)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

since a strict local minimum in convex problems implies the unique global minimum. Observe that
we have
T−1∑
t=τ

∥∆ · Φ(U (τ)
t ) +W

(τ)
t ∥2 −

T−1∑
t=τ

∥W (τ)
t ∥2

=

T−1∑
t=τ

I{W (τ)
t = 0} · ∥∆ · Φ(U (τ)

t )∥2 + I{W (τ)
t ̸= 0} ·

(
∥∆ · Φ(U (τ)

t ) +W
(τ)
t ∥2 − ∥W (τ)

t ∥2
)

≥
T−1∑
t=τ

I{W (τ)
t = 0} · ∥∆ · Φ(U (τ)

t )∥2 + I{W (τ)
t ̸= 0} ·

(
−∥∆ · Φ(U (τ)

t )∥2
)

=

T−1∑
t=τ

I±{W (τ)
t = 0}·

∥∥∆ · Φ(U (τ)
t )

∥∥
2
. (33)

Thus, a sufficient condition for (32) is to satisfy

T−1∑
t=τ

I±{W (τ)
t = 0}·

∥∥∆ · Φ(U (τ)
t )

∥∥
2
> 0, ∀∆ ∈ Rr×M : 0 < ∥∆∥F ≤ ∆̄. (34)

For each ∆, dividing both sides of (34) by ∥∆∥F > 0 leads to the set of inequalities in (31).

We will now analyze the sub-Gaussian norm of ∥U (τ)
t ∥2.

Lemma D.2. Under Assumption 2.5, we have
∥∥∥U (τ)

t ∥2
∥∥
ψ2

≤
√
τ + 1 · σu.

Proof. We will use Lemma B.5, which connects sub-Gaussian and subexponential variables. Since
the sub-Gaussian norms of ∥ut∥2 for all t are bounded by σu, we equivalently have∥∥∥ut∥22∥∥ψ1

≤ σ2
u, ∀t ≥ 0.

It follows that ∥∥∥∥U (τ)
t ∥22

∥∥∥
ψ1

=

∥∥∥∥∥
τ∑
i=0

∥ut−i∥22

∥∥∥∥∥
ψ1

≤
τ∑
i=0

∥∥∥ut−i∥22∥∥ψ1
≤ (τ + 1)σ2

u.

We again hinge on Lemma B.5 to arrive at the conclusion.

Lemma D.3. Suppose that Assumptions 2.4, 2.5, and 2.8 hold. Define ν :=
√
MτLϕσu

λ . Then, for a
fixed Z ∈ Rr×M such that ∥Z∥F = 1, we have

E
[
I±{W (τ)

t = 0}·
∥∥ZΦ(U (τ)

t )
∥∥
2

]
= Ω

(
(2(1− p)τ − 1) · λ

ν3

)
. (35)

Proof. We first analyze the sub-Gaussian norm of ∥ZΦ(U (τ)
t )∥2. From (9) in Assumption 2.4 with

Φ(0) = 0, we have

|ϕi(U (τ)
t )| = |ϕi(U (τ)

t )− ϕi(0)| ≤ Lϕ∥U (τ)
t ∥2. (36)

Due to Lemma D.2, it follows that∥∥∥|ϕi(U (τ)
t )|

∥∥∥
ψ2

≤ Lϕ

∥∥∥∥U (τ)
t ∥2

∥∥∥
ψ2

= Lϕ
√
τ + 1 · σu

Thus, one can obtain∥∥∥∥ZΦ(U (τ)
t )∥2

∥∥∥
ψ2

≤

∥∥∥∥∥
M∑
i=1

∥ziϕi(U (τ)
t )∥2

∥∥∥∥∥
ψ2

≤
M∑
i=1

∥∥∥∥ziϕi(U (τ)
t )∥2

∥∥∥
ψ2
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=

M∑
i=1

∥zi∥2
∥∥∥|ϕi(U (τ)

t )|
∥∥∥
ψ2

≤
√
MLϕ

√
τ + 1 · σu, (37)

where zi is the ith column of Z. The inequalities follow from the triangle inequality and the Cauchy-
Schwarz inequality.

Then, due to the property (24a), we have E
[
∥ZΦ(U (τ)

t )∥32
]
= O((

√
MτLϕσu)

3).

From (10) in Assumption 2.4, we have

E
[
∥ZΦ(U (τ)

t )∥22
]
= E[trace(ZTZ · Φ(U (τ)

t )Φ(U
(τ)
t )T )]

= trace(ZTZ · E[Φ(U (τ)
t )Φ(U

(τ)
t )T ]) ≥ λ2 · trace(ZTZ) = λ2. (38)

Note that

E
[
∥ZΦ(U (τ)

t )∥22
]2

≤ E
[
∥ZΦ(U (τ)

t )∥2
]
· E
[
∥ZΦ(U (τ)

t )∥32
]

(39)

due to the Cauchy-Schwarz inequality. Combining the above two inequalities yields

E
[
∥ZΦ(U (τ)

t )∥2
]
= Ω

( λ4

(
√
MτLϕσu)3

)
. (40)

Now, recall the relationship

{W (τ)
t = 0} ⊇ {wt−1 = 0, . . . , wt−τ = 0} ⊇ {ξt−1 = 0, . . . , ξt−τ = 0},

which follows from Assumption 2.8. From the independence of ξi’s, we also have

P(ξt−1 = 0, . . . , ξt−τ = 0) = (1− p)τ > 0.5,

since p < 1
2τ . Then, one can write

E
[
I±{W (τ)

t = 0}·
∥∥ZΦ(U (τ)

t )
∥∥
2

]
≥ E

[
I±{ξt−1 = 0, . . . , ξt−τ = 0}·

∥∥ZΦ(U (τ)
t )

∥∥
2

]
(41)

= E [I±{ξt−1 = 0, . . . , ξt−τ = 0}] · E
[∥∥ZΦ(U (τ)

t )
∥∥
2

]
≥ ((1− p)τ − (1− (1− p)τ ) · E

[∥∥ZΦ(U (τ)
t )

∥∥
2

]
= (2(1− p)τ − 1) · Ω

( λ4

(
√
MτLϕσu)3

)
. (42)

We finally note that the term given in (42) is indeed positive since (1−p)τ > 0.5. Using the definition
of ν completes the proof.

We have defined ν in the above lemma. We will show that the value of ν is bounded below by a
positive constant.

Lemma D.4. Define ν :=
√
MτLϕσu

λ . Then, ν = Ω(1).

Proof. For any Z ∈ Rr×M such that ∥Z∥F = 1, we have

∥ZΦ(U (τ)
t )∥22 ≤ ∥Z∥2F · ∥Φ(U (τ)

t )∥22 = ∥Φ(U (τ)
t )∥22 ≤ML2

ϕ∥U
(τ)
t ∥22, (43)

where the last inequality comes from (36). The expectation of the left-hand side of (43) is lower-
bounded by λ2 due to (39). Noting that the expectation and theψ2-norm of a nonnegative variable have
the same order (see (24a)), the expectation of the right-hand side is upper-bounded by O(ML2

ϕτσ
2
u)

due to Lemma B.5. Thus, we have
ML2

ϕτσ
2
u

λ = Ω(1); in other words, ν2 = Ω(1). This completes the
proof.

Now, we provide the crucial lemma to ensure that for a fixed Z, the term I±{W (τ)
t =

0}·
∥∥ZΦ(U (τ)

t )
∥∥
2

is positive with probability at least 1− δ.
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Lemma D.5. Suppose that Assumptions 2.4 and 2.5 hold. Define ν :=
√
MτLϕσu

λ . Given δ ∈ (0, 1],
when

T = Ω

(
τν8

(2(1− p)τ − 1)2
log
(1
δ

))
, (44)

we have
T−1∑
t=τ

I±{W (τ)
t = 0}·

∥∥ZΦ(U (τ)
t )

∥∥
2
= Ω

(
(2(1− p)τ − 1) · λT

2ν3

)
(45)

for a fixed Z ∈ Rr×M such that ∥Z∥F = 1.

Proof. Similar to (36) and (37), we have

T−1∑
t=τ

∥ZΦ(U (τ)
t )∥2 ≤

√
MLϕ

T−1∑
t=τ

√√√√ τ∑
i=0

∥ut−i∥22 ≤
√
MLϕ

T−1∑
t=τ

τ∑
j=0

∥ut−j∥2. (46)

Now, we define a Bernoulli variable Ξ(τ)
t such that {Ξ(τ)

t = 0} ⇔ {ξt−1 = 0, . . . , ξt−τ = 0}. From
(41), we know that {W (τ)

t = 0} ⊇ {Ξ(τ)
t = 0}. Thus, it suffices to prove the desired result with

Ξ
(τ)
t in place of W (τ)

t .

Consider the constants A1, . . . , AT > 0. Then, for all θ ∈ R, we have

argmax
|at|≤At,

t=τ,...,T−1

E
[
exp
(
θ
( T−1∑
t=τ

at·
(
I±{Ξ(τ)

t = 0} − E[I±{Ξ(τ)
t = 0}]

))2)]
⊆ {±A1} × · · · × {±AT }, (47)

since the function on the left-hand side is convex in (a1, . . . , aT ) and the maximum of the convex
function is attained at extreme points. Due to (46), substituting

∑T−1
t=τ ∥ZΦ(U (τ)

t )∥2 into at and√
MLϕ(τ + 1)

∑T−1
t=τ

∑τ
j=0 ∥ut−j∥2 into At in (47) yields∥∥∥∥∥

T−1∑
t=τ

∥ZΦ(U (τ)
t )∥2 ·

(
I±{Ξ(τ)

t = 0} − E[I±{Ξ(τ)
t = 0}]

)∥∥∥∥∥
ψ2

≤

∥∥∥∥∥∥√MLϕ(τ + 1)

T−1∑
t=τ

τ∑
j=0

∥ut−j∥2 ·
(
I±{Ξ(τ)

t = 0} − E[I±{Ξ(τ)
t = 0}]

)∥∥∥∥∥∥
ψ2

(48)

considering that Ξ(τ)
t is independent of any other variables and the expectation of I±{Ξ(τ)

t =

0} − E[I±{Ξ(τ)
t = 0}] is zero, in which case the sub-Gaussian norm can be determined by (24c).

Now, we analyze the right-hand side of (48). For simplicity, we define

Ξt :=


0, t = 0, . . . , τ − 1,

I±{Ξ(τ)
t = 0} − E

[
I±{Ξ(τ)

t = 0}
]
, t = τ, . . . , T − 1,

0, t = T, . . . , T + τ − 1.

Then, we have
T−1∑
t=τ

τ∑
j=0

∥ut−j∥2 · Ξt =
T−1∑
t=0

(
t+τ∑
j=t

Ξj

)
· ∥ut∥2. (49)

For all t, we have ∥∥∥∥∥∥
T−1∑
t=0

(
t+τ∑
j=t

Ξj

)
· ∥ut∥2

∥∥∥∥∥∥
ψ2

≤ (τ + 1)σu
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due to Assumption 2.5. Given the filtration F i = σ{Ξt : t = 0, . . . , T − 1} and considering that
E[Ξt] = 0, we can apply the property (24c) to obtain

E

[
exp

(
θ

T−1∑
t=0

(
t+τ∑
j=t

Ξj

)
· ∥ut∥2

)]
≤ E

[
E

[
exp

(
θ

T−1∑
t=0

(
t+τ∑
j=t

Ξj

)
· ∥ut∥2

)] ∣∣∣∣∣ F i

]

≤
T−1∏
t=0

exp(θ2(τ + 1)2σ2
u) = exp(θ2T (τ + 1)2σ2

u), (50)

for all θ ∈ R, which implies that the mean-zero variable (49) is sub-Gaussian and its norm is
O(

√
T (τ + 1)σu). In turn, due to (48), we arrive at∥∥∥∥∥

T−1∑
t=τ

ZΦ(U
(τ)
t ) · Ξt

∥∥∥∥∥
ψ2

= O(
√
TMLϕ(τ + 1)σu). (51)

Finally, we can apply the property (25b) to obtain

P
( T−1∑
t=τ

ZΦ(U
(τ)
t ) · Ξt > −Ω

(
(2(1− p)τ − 1) · λT

2ν3

))
≥ 1− exp

(
− Ω

(
(2(1− p)τ − 1)2λ2T 2

(
√
TMLϕ(τ + 1)σu)2ν6

))
= 1− exp

(
− Ω

(
(2(1− p)τ − 1)2 · T

τν8

))
.

We derive from (42) that

E

[
T−1∑
t=τ

ZΦ(U
(τ)
t ) · I±{Ξ(τ)

t = 0}

]
= Ω

( (2(1− p)τ − 1) · λT
ν3

)
.

Since Ξt = I±{Ξ(τ)
t = 0} − E

[
I±{Ξ(τ)

t = 0}
]
, we arrive at

P
( T−1∑
t=τ

ZΦ(U
(τ)
t ) · I±{Ξ(τ)

t = 0} > Ω

(
(2(1− p)τ − 1) · λT

2ν3

))
≥ 1− exp

(
− Ω

(
(2(1− p)τ − 1)2 · T

τν8

))
. (52)

Since we have {W (τ)
t = 0} ⊇ {Ξ(τ)

t = 0}, establishing a lower bound of 1− δ on the right-hand
side of (52) suffices to conclude the proof.

We now study the effect of perturbing Z ∈ Rr×M .

Lemma D.6. Suppose that Assumptions 2.4 and 2.5 hold. Given δ ∈ (0, 1], when T = Ω(log(2/δ)),
the inequality

T−1∑
t=τ

I±{W (τ)
t = 0}·

∥∥ZΦ(U (τ)
t )

∥∥
2
−
T−1∑
t=τ

I±{W (τ)
t = 0}·

∥∥Z̃Φ(U (τ)
t )

∥∥
2
≥ −O(T∥Z−Z̃∥FLϕ

√
Mτσu)

holds for every Z, Z̃ ∈ Rr×M with probability at least 1− δ
2 .

Proof. For simplicity, we define f̄t(Z) := I±{W (τ)
t = 0}·

∥∥ZΦ(U (τ)
t )

∥∥
2
. For Z, Z̃ ∈ Rr×M , we

have
T−1∑
t=τ

f̄t(Z)−
T−1∑
t=τ

f̄t(Z̃) ≥ −
T−1∑
t=τ

∥(Z − Z̃)Φ(U
(τ)
t )∥2
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≥ −
T−1∑
t=τ

∥Z − Z̃∥F · Lϕ
√
M ·

τ∑
j=0

∥ut−j∥2

≥ −
T−1∑
t=0

∥Z − Z̃∥FLϕ
√
M(τ + 1)∥ut∥2, (53)

where the first inequality is due to the triangle inequality and the second comes from (46). Assumption
2.5 tells that ∥∥ut∥2∥ ≤ σu and thus, we have∥∥∥∥Z − Z̃∥FLϕ

√
M(τ + 1)(∥ut∥2 − E[∥ut∥2])

∥∥∥
ψ2

= ∥Z − Z̃∥FLϕ
√
M(τ + 1) ·O(σu)

due to Lemma B.2. In turn, due to Lemma B.3 and the independence of control inputs, we have∥∥∥∥∥
T−1∑
t=0

∥Z − Z̃∥FLϕ
√
M(τ + 1)(∥ut∥2 − E[∥ut∥2])

∥∥∥∥∥
ψ2

= ∥Z − Z̃∥FLϕ
√
M(τ + 1) ·O(

√
Tσu).

Using the property (25a), one can obtain

P
( T−1∑
t=0

∥Z − Z̃∥FLϕ
√
M(τ + 1)(∥ut∥2 − E[∥ut∥2]) ≤ ∥Z − Z̃∥FLϕ

√
M(τ + 1) ·O(Tσu)

)

≥ 1− exp

(
− Ω

(T 2∥Z − Z̃∥2FL2
ϕM(τ + 1)2σ2

u

T∥Z − Z̃∥2FL2
ϕM(τ + 1)2σ2

u

))
= 1− exp(−Ω(T )).

Note that E[∥ut∥2] = O(σu) due to (24a). Thus, we can write

P
( T−1∑
t=0

∥Z − Z̃∥FLϕ
√
M(τ + 1)∥ut∥2 ≤ 2∥Z − Z̃∥FLϕ

√
M(τ + 1) ·O(Tσu)

)
≥ 1− exp(−Ω(T )).

(54)

When T = Ω(log(2/δ)), the probability in (54) is lower-bounded by 1− δ
2 . Considering the lower

bound of (53) completes the proof.

Now, we will achieve that the inequality (31) in Theorem D.1 holds for all Z ∈ Rr×M such that
∥Z∥F = 1, after finite time. To take advantage of Lemma D.6, which states the difference of∑
t f̄t(Z) depending on Z, we introduce the important lemma presented in Vershynin (2010).

Lemma D.7 (Covering number of the sphere). Define Sr×M−1 := {Z ∈ Rr×M : ∥Z∥F = 1}. For
ϵ > 0, consider a subset Nϵ of Sr×M−1, such that for all Z ∈ Sr×M−1, there exists some point
Z̃ ∈ Nϵ satisfying ∥Z − Z̃∥2 ≤ ϵ. The minimal cardinality of such a subset is called the covering
number of the sphere and is upper-bounded by (1 + 2

ϵ )
rM .

The covering number argument states that if you select (1 + 2
ϵ )
rM number of points which achieve

the sufficient positiveness of
∑
t f̄t(Z), and show that the difference of

∑
t f̄t(Z) is small enough

within the distance ϵ, then all the points will achieve the positiveness of
∑
t f̄t(Z).

Theorem D.8. Suppose that Assumptions 2.4 and 2.5 hold. Consider ν :=
√
MτLϕσu

λ and
Sr×M−1 := {Z ∈ Rr×M : ∥Z∥F = 1}. Given δ ∈ (0, 1], when

T = Ω

(
τν8

(2(1− p)τ − 1)2

[
rM log

(
τν

2(1− p)τ − 1

)
+ log

(
1

δ

)])
, (55)

we have
T−1∑
t=τ

I±{W (τ)
t = 0}·

∥∥ZΦ(U (τ)
t )

∥∥
2
= Ω

(
(2(1− p)τ − 1) · λT

4ν3

)
> 0, ∀Z ∈ Sr×M−1 (56)

with probability at least 1− δ.
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Proof. As in the previous lemma, we define f̄t(Z) := I±{W (τ)
t = 0}·

∥∥ZΦ(U (τ)
t )

∥∥
2
. Also, define

ϵ∗ = 1
4O
( 2(1−p)τ−1

τ1/2ν4

)
. From Lemma D.6, for all Z, Z̃ ∈ Sr×M−1 satisfying ∥Z − Z̃∥F ≤ ϵ∗, we

have
T−1∑
t=τ

f̄t(Z)−
T−1∑
t=τ

f̄t(Z̃) ≥ −O(Tϵ∗Lϕ
√
Mτσu) ≥ −1

4
O
(
T · 2(1− p)τ − 1

τ1/2ν3
Lϕ

√
Mτσu
ν

)
= −1

4
O
( (2(1− p)τ − 1)λT

ν3

)
. (57)

with probability at least 1 − δ
2 , when T = Ω(log(2/δ)). If we select (1 + 2

ϵ∗ )
rM points

{Z1, . . . , Z(1+ 2
ϵ∗ )rM } satisfying (45) with probability at least 1− δ

2·(1+ 2
ϵ∗ )rM

, then it follows that

T−1∑
t=τ

f̄t(Z) =
1

2
Ω

(
(2(1− p)τ − 1)λT

ν3

)
, ∀Z ∈ Ẑ = {Z1, . . . , Z(1+ 2

ϵ∗ )rM } (58)

with probability at least 1− δ
2 . Then, due to Lemma D.7, every point in Sr×M−1 is within a distance

of ϵ∗ from at least one point in Ẑ. In turn, by (57), we have

T−1∑
t=τ

f̄t(Z) ≥
1

4
Ω

(
(2(1− p)τ − 1)λT

ν3

)
> 0, ∀Z ∈ Sr×M−1 (59)

holds with probability at least 1− δ. Thus, we replace δ in (44) with δ
2·(1+ 2

ϵ∗ )rM
to arrive at

T = Ω

(
τν8

(2(1− p)τ − 1)2
log
(2(1 + 2

ϵ∗ )
rM

δ

))
= Ω

(
τν8

(2(1− p)τ − 1)2

[
rM log

(
1 +

2

ϵ∗

)
+ log

(
1

δ

)])
= Ω

(
τν8

(2(1− p)τ − 1)2

[
rM log

(
τν

2(1− p)τ − 1

)
+ log

(
1

δ

)])
, (60)

where we leveraged Lemma D.4 for the last equality. Note that T = Ω(log(2/δ)) required for (57) is
automatically satisfied with the recovery time (60). This completes the proof.

In Theorem D.8, we achieve that
∑
t f̄t(Z) is sufficiently positive after the recovery time given in

(55). Thus, we arrive at the conclusion that when x
(τ)
t = 0 and ϵt = 0 for all t, G∗ is the unique

solution to the ℓ2-norm estimator (12) after finite time due to Lemma D.1.

We will now generalize for the case of nonzero x
(τ)
t and ϵt. Before presenting the main theorem, we

provide the following useful lemma.

Lemma D.9. Suppose that Assumptions 2.1, 2.5, and 2.6 hold. Given δ ∈ (0, 1], when T =
Ω(log(1/δ)),

T−τ−1∑
t=0

∥xt∥2 = O

(
(σu + σw)

1− ρ
· T
)

(61)

holds with probability at least 1− δ.

Proof. Due to the inequality (4) in Assumption 2.1, we have

∥xt∥2 = ∥f(xt−1, ut−1, wt−1)∥2 = · · · = ∥f(f(· · · f(f(x0, u0, w0), u1, w1), · · · ), · · · ), ut−1, wt−1)∥2
= ∥f(f(f(x0, u0, w0), u1, w1), · · · ), · · · ), ut−2, wt−2), ut−1, wt−1)

− f(f(f(0, 0, 0), 0, 0), · · · ), · · · ), 0, 0), 0, 0)∥2
≤ ∥f(f(f(x0, u0, w0), u1, w1), · · · ), · · · ), ut−2, wt−2), ut−1, wt−1)

− f(f(f(x0, u0, w0), u1, w1), · · · ), · · · ), ut−2, wt−2), 0, 0)∥2
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+ ∥f(f(f(x0, u0, w0), u1, w1), · · · ), · · · ), ut−2, wt−2), 0, 0)

− f(f(f(x0, u0, w0), u1, w1), · · · ), · · · ), 0, 0), 0, 0)∥2
+ · · ·

+ ∥f(f(f(x0, u0, w0), 0, 0), · · · ), · · · ), 0, 0), 0, 0)
− f(f(f(0, 0, 0), 0, 0), · · · ), · · · ), 0, 0), 0, 0)∥2

(62)

where the equality in the second line comes from f(0, 0, 0) = 0 and the inequality is due to the
triangle inequality. By Assumption 2.1, the terms in (62) are bounded by

Cρ(∥ut−1∥2 + ∥wt−1∥2), Cρ2(∥ut−2∥2 + ∥wt−2∥2), . . . ,
Cρt−1(∥u1∥2 + ∥w1∥2), Cρt(∥x0∥2 + ∥u0∥2 + ∥w0∥2).

Thus, we have

∥xt∥2 ≤ Cρt∥x0∥2 + C

t−1∑
i=0

ρt−i(∥ui∥2 + ∥wi∥2).

Summing up for t = 0, . . . , T − τ − 1 yields
T−τ−1∑
t=0

∥xt∥2 ≤ C

T−τ−1∑
t=0

ρt∥x0∥2 + C

T−τ−1∑
t=0

t−1∑
i=0

ρt−i(∥ui∥2 + ∥wi∥2)

< C

∞∑
t=0

ρt∥x0∥2 + C

∞∑
t=0

ρt
T−τ−2∑
i=0

(∥ui∥2 + ∥wi∥2)

=
C

1− ρ

[
∥x0∥2 +

T−τ−2∑
i=0

∥wi∥2 +
T−τ−2∑
i=0

∥ui∥2
]

(63)

Consider that

E
[
exp

(
θ
[
∥x0∥2 − E[∥x0∥2] +

T−τ−2∑
i=0

∥wi∥2 − E[∥wi∥2]
])]

= E
[
E
[
exp

(
θ
[
∥x0∥2 − E[∥x0∥2] +

T−τ−2∑
i=0

∥wi∥2 − E[∥wi∥2]
]) ∣∣∣FT−τ−2

]]
= E

[
E
[
exp

(
θ(∥wT−2∥2 − E[∥wT−2∥2])

) ∣∣FT−τ−2

]
× exp

(
θ
[
∥x0∥2 − E[∥x0∥2] +

T−τ−3∑
i=0

∥wi∥2 − E[∥wi∥2]
])]

≤ exp(θ2 ·O(σ2
w)) · E

[
exp

(
θ
[
∥x0∥2 − E[∥x0∥2] +

T−τ−3∑
i=0

∥wi∥2 − E[∥wi∥2]
])]

≤ · · · ≤ exp(θ2 ·O(Tσ2
w))

for all θ ∈ R, where the inequalities come from applying Lemma B.2 to Assumption 2.6. Thus, the
sub-Gaussian norm of ∥x0∥2 −E[∥x0∥2] +

∑T−τ−2
i=0 ∥wi∥2 −E[∥wi∥2] is O(

√
Tσw). Furthermore,

since the sub-Gaussian norm of ∥ui∥2 is σu due to Assumption 2.5, the sub-Gaussian norm of∑T−τ−2
i=0 ∥ui∥2 − E[

∑T−τ−2
i=0 ∥ui∥2] is O(

√
Tσu) by applying Lemmas B.2 and B.3.

Denote the term in (63) as ST . Considering the aforementioned sub-Gaussian norms, the sub-
Gaussian norm of ST − E[ST ] is O(

√
T σw+σu

1−ρ ) due to the triangle inequality and the homogeneity.
Due to the property (25a), one arrives at

P
(
ST − E[ST ] ≤ O

(
σw + σu
1− ρ

· T
))

≥ 1− exp

(
−Ω

(
T 2(σw + σu)

2/(1− ρ)2

T (σw + σu)2/(1− ρ)2

))
= 1− exp(−Ω(T )) (64)
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We additionally have

E [ST ] =
C

1− ρ

[
E[∥x0∥2] +

T−τ−2∑
i=0

(E[∥ui∥2] + E[∥wi∥2])
]

≤ C

1− ρ
[O(Tσw + Tσu)] = O

(
σw + σu
1− ρ

· T
)
, (65)

where the last inequality is obtained by applying the property (24a) to Assumptions 2.5 and 2.6.
Combining (64) and (65) yields

P
(
ST ≤ 2 ·O

(
σw + σu
1− ρ

· T
))

≥ 1− exp(−Ω(T )) ≥ 1− δ (66)

when T = Ω(log(1/δ)). Recall from (63) that
∑T−τ−1
t=0 ∥xt∥2 is bounded above by ST . This

completes the proof.

Now, we present our main theorem, which states that the estimation error to identify G∗ in the system
(8) is bounded by O(ρτ ) when using the ℓ2-norm estimator.
Theorem D.10 (Restatement of Theorem 3.1). Suppose that Assumptions 2.1, 2.4, 2.5, 2.6, and 2.8
hold, and that the approximation error vector satisfies ∥ϵt∥2 ≤ ϵ̄ for all t. Consider ν :=

√
MτLϕσu

λ .
LetG∗ be the true matrix governing the system (8) and ĜT denote a solution to the ℓ2-norm estimator
given in (12). Given δ ∈ (0, 1], when

T = Ω

(
τν8

(2(1− p)τ − 1)2

[
rM log

(
τν

2(1− p)τ − 1

)
+ log

(
1

δ

)])
, (67)

we have

∥G∗ − ĜT ∥F = O

((
ρτL

λ
· σu + σw

1− ρ
+
ϵ̄

λ

)
· ν3

2(1− p)τ − 1

)
. (68)

with probability at least 1− δ.

Proof. The optimality of ĜT to the ℓ2-norm estimator (12) for the system (8) yields

ĜT = argmin
G

T−1∑
t=τ

∥∥∥(G∗ −G) · Φ(U (τ)
t ) +W

(τ)
t + x

(τ)
t + ϵt

∥∥∥
2
,

which implies that
T−1∑
t=τ

∥(G∗ − ĜT )Φ(U
(τ)
t ) +W

(τ)
t ∥2 − ∥x(τ)

t + ϵt∥2 (69)

≤
T−1∑
t=τ

∥(G∗ − ĜT )Φ(U
(τ)
t ) +W

(τ)
t + x

(τ)
t + ϵt∥2 ≤

T−1∑
t=τ

∥W (τ)
t + x

(τ)
t + ϵt∥2 (70)

≤
T−1∑
t=τ

∥W (τ)
t ∥2 + ∥x(τ)

t + ϵt∥2, (71)

where (70) uses the optimality of ĜT and the other inequalities are from the triangle inequality. By
rearranging, we have

T−1∑
t=τ

∥(G∗ − ĜT )Φ(U
(τ)
t ) +W

(τ)
t ∥2 − ∥W (τ)

t ∥2 ≤ 2

T−1∑
t=τ

∥x(τ)
t ∥2 + ∥ϵt∥2, (72)

where the inequality is by (69) and (71). Recall from Lemma 2.3 that ∥x(τ)
t ∥2 ≤ CLρτ∥xt−τ∥2.

Then, we can establish that

2

T−1∑
t=τ

∥x(τ)
t ∥2 ≤ 2

T−1∑
t=τ

CLρτ∥xt−τ∥2 = 2

T−τ−1∑
t=0

CLρτ∥xt∥2. (73)
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Given the time (67), the right-hand side of (72) is upper bounded by

2 ·O
((

CLρτ (σu + σw)

1− ρ
+ ϵ̄

)
T

)
with probability at least 1− δ

2 , which follows from Lemma D.9 and ∥ϵt∥2 ≤ ϵ̄.

We now aim to lower bound the left-hand side of (72) given the time (67). Inspired by (33), we have

T−1∑
t=τ

∥(G∗ − ĜT )Φ(U
(τ)
t ) +W

(τ)
t ∥2 − ∥W (τ)

t ∥2 ≥
T−1∑
t=τ

I±{W (τ)
t = 0}·

∥∥(G∗ − ĜT ) · Φ(U (τ)
t )

∥∥
2

= ∥G∗ − ĜT ∥F · I±{W (τ)
t = 0}·

∥∥∥∥∥ G∗ − ĜT )

∥G∗ − ĜT ∥F
· Φ(U (τ)

t )

∥∥∥∥∥
2

= ∥G∗ − ĜT ∥F · Ω
(
(2(1− p)τ − 1) · λT

4ν3

)
where the first equality comes from the homogeneity of the ℓ2-norm, and the second equality holds
with probability at least 1− δ

2 due to Theorem D.8.

Thus, with probability at least 1− δ, we have

∥G∗ − ĜT ∥F · Ω
(
(2(1− p)τ − 1) · λT

4ν3

)
≤ 2 ·O

((
CLρτ (σu + σw)

1− ρ
+ ϵ̄

)
T

)
,

which can be rearranged to

∥G∗ − ĜT ∥F = O

((
ρτL(σu + σw)

1− ρ
+ ϵ̄

)
· ν3

(2(1− p)τ − 1)λ

)
.

This completes the proof.

E PROOF OF THEOREM 3.5

Proof. Let MT denote the maximum consecutive attack-free time length during t = 0, . . . , T − 1
under the attack probability 1

2τ+1 , which satisfies Assumption 2.8. Then, due to the union bound, we
have

P(MT ≥ l) ≤
T−1∑
t=0

P(no attack occurs from time t to t+ l) =

T−1∑
t=0

(
1− 1

2τ + 1

)l
. (74)

For the right-hand side to be less than δ, we have

T

(
1− 1

2τ + 1

)l
< δ ⇐⇒ l ≥ log(T/δ)

− log
(
1− 1

2τ+1

) .
Since we have − log(1− x) = x+ x2

2 + x3

3 + · · · ≤ x+ x2 + x3 + · · · = x
1−x < 2x for |x| < 1

2 , it
follows that

l ≥ log (T/δ)
2

2τ+1

≥ τ log

(
T

δ

)
.

Thus, we arrive at

P
(
MT < τ log

(
T

δ

))
≥ 1− δ (75)

Now, consider the following functions f, g : R → R:

f(x, u, w) = ρ(x+ u+ w), g(x, u) = L(x+ u), (76)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

which satisfies Assumption 2.1. Then, as in (5), the observation yt can be written as

yt = g(f(· · · f(f(xt−τ , ut−τ , wt−τ ), ut−τ+1, wt−τ+1), · · · , ut−1, wt−1), ut)

= L(ρ(· · · ρ(ρ(xt−τ + ut−τ + wt−τ ) + ut−τ+1 + wt−τ+1) · · ·+ ut−1 + wt−1) + ut) (77)

Suppose that control inputs ut are chosen independently from {−1, 1} with equal probability for
all t = 0, . . . , T − 1, which satisfies Assumption 2.5. Given a finite σw =

(
1
ρ

)Ω(τ log(T/δ))
, start the

system with x0 = σw and let the disturbance wt also be σw whenever the attack occurs at each time t,
which satisfies Assumption 2.6. Note that the dynamics f shrinks the system by a factor of ρ. Then,
considering (75), one can ensure that adversarial attacks yield xt ≥ 1 for all t = 0, . . . , T − 1 with
probability at least 1− δ. In this case, we can also rewrite (77) as:

yt = L(ρ(· · · ρ(β(ρ(xt−τ + ut−τ + wt−τ )) + ut−τ+1 + wt−τ+1) · · ·+ ut−1 + wt−1) + ut),
(78)

where

β(x) =


tanh(x)

tanh(1)
, if −1 ≤ x ≤ 1,

x, otherwise,
(79)

which is a Lipschitz continuous function. The expressions in (77) and (78) have exactly the same
function value since ρ(xt−τ + ut−τ + wt−τ ) = xt−τ+1 ≥ 1 under adversarial attacks. In other
words, one cannot distinguish between the two expressions (77) and (78). For each expression, the
natural input-output mapping as in (6) would be

L(ρ(· · · ρ(ρ(ut−τ ) + ut−τ+1) · · ·+ ut−1) + ut) and (80a)
L(ρ(· · · ρ(β(ρ(ut−τ )) + ut−τ+1) · · ·+ ut−1) + ut), (80b)

respectively. Define the constant

c :=

∣∣∣∣1− tanh(ρ)

ρ tanh(1)

∣∣∣∣ ,
where one has 0 < c < 1 under 0 < ρ < 1. Then, the absolute difference of (80a) and (80b) is
calculated as

Lρτ−1|ρut−τ − β(ρut−τ )| = Lρτ−1|ρ− β(ρ)| = Lρτ c,

since ut−τ is selected from −1 and 1, and β(x) is an odd function. Now, let the basis function be

Φ(U
(τ)
t ) =

[
L(ρ(· · · ρ(ρ(ut−τ ) + ut−τ+1) · · ·+ ut−1) + ut)

L(ρ(· · · ρ(β(ρ(ut−τ )) + ut−τ+1) · · ·+ ut−1) + ut)

]
,

which consists of (80a) and (80b). This implies that the approximation error vector is designed to be
ϵt = 0.

Since the expression (80a) is the input-output mapping of the true system (77), the true matrix G∗ in
(8) is [1 0]. However, we again recall that under adversarial attacks, any estimator cannot distinguish
(78) from (77), and may instead recover the input-output mapping of the alternative system (78),
resulting in the estimate ĜT = [0 1]. This always leads to an estimation error of

√
2.

Now, it remains to calculate λ in Assumption 2.4. Let γ denote the variable in (80a). Then, we have

E
[
Φ(U

(τ)
t )Φ(U

(τ)
t )T

]
= E

[
E
[
Φ(U

(τ)
t )Φ(U

(τ)
t )T

] ∣∣∣ ut−τ]
= E

[
1

2

[
γ2 γ(γ + Lρτ c)

γ(γ + Lρτ c) (γ + Lρτ c)2

]
+

1

2

[
γ2 γ(γ − Lρτ c)

γ(γ − Lρτ c) (γ − Lρτ c)2

]]
= E

[[
γ2 γ2

γ2 γ2 + (Lρτ c)2

]]
(81)

Note that E[γ2] = L
∑τ
i=0 ρ

i due to the independence of control inputs and the fact that E[u2t ] = 1
for all t. Let µmin denote the minimum eigenvalue of (81). We have

µmin =
E[2γ2] + (Lρτ c)2 −

√
E[2γ2]2 + (Lρτ c)4

2
=

E[2γ2] · (Lρτ c)2

E[2γ2] + (Lρτ c)2 +
√
E[2γ2]2 + (Lρτ c)4
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≥ 2E[γ2] · (Lρτ c)2

E[2γ2] + (Lρτ c)2 + E[2γ2] + (Lρτ c)2
=

E[γ2] · (Lρτ c)2

E[2γ2] + (Lρτ c)2

≥ E[γ2] · (Lρτ c)2

E[2γ2] + E[γ2]
=

(Lρτ c)2

3
,

where the first inequality comes from E[2γ2] + (Lρτ c)2 ≥
√

E[2γ2]2 + (Lρτ c)4 and the second
inequality is due to E[γ2] > Lρτ > Lρτ c. Thus, Assumption 2.4 is satisfied with λ ≥ Lρτ c√

3
. In other

words, the derived estimation error
√
2 is always lower-bounded by

Lρτ

λ
·
√

2

3
c = Ω

(
Lρτ

λ

)
,

which completes the proof.

F NUMERICAL EXPERIMENT DETAILS

In this section, we will present experiment details on Section 4. Apple M1 Chip with 8-Core CPU
is sufficient for the experiments. The error bars (shaded area) in all the figures in the paper report
95% confidence intervals based on the standard error. We calculate the standard error by running 10
different experiments by generating 10 random sets of matrices A,B,C, and D and using random
adversarial disturbances for each experiment.

We use the following parameters for the system (20): the state dimension n = 100, the control
input dimension m = 5, the observation dimension r = 10, and the time horizon T = 500. For
the function σ that defines f(xt, ut, wt) = σ(Axt + But + wt), we run the experiments with two
different σ:

σ(x) = tanh(x) or σ(x) = sgn(x) · log(|x|+ 1). (82)

Both functions are symmetric around the origin, monotonic, and 1-Lipschitz, which are desirable
for activation functions of a neural net. Note that the first function is bounded within [−1, 1], while
the second function is unbounded. We analyze both options to determine whether the boundedness
affects the behavior of the estimation error.

Based on random matrices A ∈ R100×100, B ∈ R100×5, C ∈ R10×100, and D ∈ R10×5 for each
experiment, we build the true input-output mapping for different σ options and approximate the
mapping to be a linear combination of basis functions as:

σ(Cσ(Aσ(· · ·σ(Aσ(But−τ ) +But−τ+1) · · · ) +But−1) +Dut) = G∗ · Φ(U (τ)
t ). (83)

To this end, we use kernel regression to estimate the trueG∗ and construct the kernels (basis functions)
Φ. The number of kernels used as basis functions is set to M = 25. We leverage polynomial kernels
of degree up to 3, and select the regularization parameter from [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
based on the one that minimizes the test mean-squared-error. The training and test datasets, split in
an 80:20 ratio, are randomly generated from the control inputs whose entries are Unif[−15, 15] and
the corresponding function values based on the left-hand side of (83).

Starting from the initial state x0 = 1001100, we generate the observation trajectory y0, . . . , yT−1.
Here, 1(·) is the vector of ones with a relevant dimension. Defining xit as the ith coordinate of xt,
when the system is under attack, the adversary selects each coordinate wit of the disturbance wt to be
sgn(xit) · γ, where γ ∼ N(300, 25) if xit ≥ 0, and γ ∼ N(1000, 25) otherwise. The control inputs
ut are selected as either one of the following:

ut ∼ N(0, 100I5) or ut ∼ Unif[−8, 10]5. (84)

The first is standard zero-mean Gaussian inputs, and the second is nonzero-mean non-Gaussian inputs.
We show that both inputs work properly in our setting, in contrast to prior literature that requires
zero-mean Gaussian inputs (see Table 1).

The observation trajectory y0, . . . , yT−1 generated by (20) depends on the hyperparameters τ and ρ.
The input memory length τ affects not only the complexity of (83) but also the attack probability p at
each time. We set p = 1

2τ+1 , which satisfies Assumption 2.8. Moreover, note that ρ is generated by
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(a) Comparison of Least-squares and
ℓ2-norm estimator

(b) Comparison of the ℓα-norm esti-
mators (α = 1, 2,∞)

(c) Analysis of τ and ρ effects under
non-Gaussian inputs

Figure 3: Estimation error of the input-output mapping (21) under adversarial attacks under the
activation function sgn(x) · log(|x|+ 1).

adjusting the spectral radius of the matrix A. Since both σ are 1-Lipschitz functions, ρ in Assumption
2.1 coincides with the spectral radius of A (see Remark 2.2).

Our first experiment compares the ℓ2-norm estimator with the commonly used least-squares under
τ = 5 and ρ = 0.5. We consider both cases of control inputs given in (84). Based on the observation
trajectory, we evaluate the following two estimators using the MOSEK solver (MOSEK ApS, 2025):

argmin
G

T−1∑
t=τ

∥∥∥yt −G · Φ(U (τ)
t )

∥∥∥
2

vs. argmin
G

T−1∑
t=τ

∥∥∥yt −G · Φ(U (τ)
t )

∥∥∥2
2
.

Our second experiment additionally compares the ℓ2-norm estimator with the ℓ1-norm estimator and
the ℓ∞-norm estimator:

argmin
G

T−1∑
t=τ

∥∥∥yt −G · Φ(U (τ)
t )

∥∥∥
1

and argmin
G

T−1∑
t=τ

∥∥∥yt −G · Φ(U (τ)
t )

∥∥∥
∞
.

Our third experiment analyzes the effect of τ and ρ on the ℓ2-norm estimator under nonzero-mean
uniform inputs, where we consider τ ∈ [5, 10] and ρ ∈ [0.25, 0.5]. Note that all experiments were
conducted for both activation functions given in (82).

The experiments using σ(x) = tanh(x) are shown in Figure 2 and those with σ(x) = sgn(x) ·
log(|x|+ 1) are presented in Figure 3. As noted earlier, the two functions differ in their boundedness.
In both Figures 2(a) and 3(a), one can observe that the ℓ2-norm estimator accommodates both
Gaussian and uniform inputs and arrive at a similar stable region, unlike the least-squares estimator.

Furthermore, both Figures 2(b) and 3(b) demonstrate that all norm estimators accurately recover the
true matrix G∗, with the ℓ2-norm estimator achieving the smallest error among them. This supports
the findings in Remark 3.4, which states that only the ℓ2-norm estimator attains the optimal error (14)
that matches the lower bound presented in Theorem 3.5.

The discrepancy in the estimation error with respect to τ and ρ can clearly be observed in Figures
2(c) and 3(c), where the estimation error using the ℓ2-norm estimator decreases as τ increases and ρ
decreases, which is consistent with our theoretical optimal error of O(ρτ ). These findings remain
valid regardless of the boundedness of the activation function σ.
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