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ABSTRACT

This paper is concerned with learning the input-output mapping of general nonlinear
dynamical systems. While the existing literature focuses on Gaussian inputs and
benign disturbances, we significantly broaden the scope of admissible control
inputs and allow correlated, nonzero-mean, adversarial disturbances. With our
reformulation as a linear combination of basis functions, we prove that the /5-norm
estimator overcomes the challenges posed by an adversary with access to the full
information history, provided that the attack times are sparse, i.e., the probability
that the system is under adversarial attack at a given time is smaller than a certain
threshold. We provide an estimation error bound that decays with the input memory
length and prove its optimality by constructing a problem instance that suffers from
the same bound under adversarial attacks. Our work provides a sharp input-output
analysis for a generic nonlinear and partially observed system under significantly
generalized assumptions compared to existing works.

1 INTRODUCTION

Dynamical systems describe how the state of a system evolves over time according to specific laws.
Such systems are ubiquitous in scientific and engineering disciplines, including computer networks
(Low et al.} 2002), deep learning (Meunier et al., 2022)), portfolio management (Grinold & Kahn,
2000), biology (Murray, 2007), and optimal control (Dorf & Bishop,[2011). In many practical settings,
however, the underlying dynamics are too complex to be explicitly characterized, resulting in models
with partially or entirely unknown parameters. Designing controllers or making predictions without
first identifying these unknowns can lead to suboptimal or even unsafe outcomes. To address this
challenge, the field of system identification focuses on identifying system dynamics from observed
input-output data.

There has been extensive research in system identification under various structural and disturbance
assumptions (Simchowitz et al., 2018}; |[Faradonbeh et al., 2018} Simchowitz et al., 2019; Jedra &
Proutierel 2020; [Sarkar et al.| 2021} |(Oymak & Ozayl, 2022; |Bakshi et al.| 2023} |Yalcin et al.| 2024}
Zhang et al.| [2025} |Kim & Lavaei), [2025ajc) While these works provide strong theoretical guarantees
and practical algorithms, the majority of them concentrate on linear systems. However, many real-
world systems are inherently nonlinear (Grinold & Kahnl 2000; Low et al., [2002; Murray, [2007),
which motivates us to develop identification methods that go beyond the linear setting.

We consider a generic partially observed nonlinear system
Te1 = [ (@, up, we), ye =gz, ur), t=0,1,....,T—1, ()

where x; € R" is the state, u; € & C R™ is the control input, and y; € R" is the observation at
time ¢. The set U consists of admissible control inputs, and 7" is the time horizon. The states evolve
according to f, and (partial) observations from states are obtained from the states via g. Under
adversarially chosen disturbances w; € R?, our goal is to identify the input-output mapping of the
system (I)) based on the collected data {uy, yt}tTgol. To be specific, given an input memory length
7 > 0, we study the mapping from the recent input sequence (u, . . ., us—,) to the observation y;.

In this paper, we approximate the input-output behavior of the system (I) using a finite-memory
reformulation, which offers a tractable representation of the system under mild assumptions:

(schematic) y; = G* - ®(uy, ..., us—_.) + residual terms + approximation error vector,  (2)
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Figure 1: Input-output analysis of linearly parameterized mappings under clean and corrupted outputs. (a) We
reformulate the input-output behavior of nonlinear systems as a linearly parameterized nonlinear system, which
can be approximated to arbitrary precision €, given a sufficiently expressive set of basis functions ¢, ..., ¢n.
(b) We assume that most attacks are detectable and produce clean outputs, whereas undetectable attacks occur
infrequently but can have arbitrarily large magnitudes, producing completely corrupted outputs. Our goal is to
identify a linearly parameterized input-output mapping from this partially corrupted output trajectory.

where M is the number of basis functions, ® : (U)™"! — RM is the stack of basis functions,
G* € R™*M represents the matrix governing the true input-output mapping, 7 > 0 is input memory
length, and the residual terms are functions of disturbances w;_1,...,w;—, and “far” past states
4. Note that the far past states x;_, are exponentially small with the exponent 7 under stability
conditions. We will formalize this schematic form in Section[2l

In particular, given that the basis functions ®(-) are sufficiently expressive, it is guaranteed from
the function approximation theory that a wide class of nonlinear mappings can be approximated
to arbitrary precision, up to an approximation error vector of an arbitrarily small norm, using a
finite set of appropriately chosen basis functions such as radial basis functions (RBF)

1991), Volterra kernels (Boyd & Chual [19835)), and random feature models (Rahimi & Recht, 2007).
Motivated by this, we focus on analyzing the corresponding linearly parameterized approximation of
the input—output mapping (see Figure for an overview and in Section for the details).
Allowing for a small approximation error, we reduce the system identification task to estimating
G*. However, adversarial disturbances w;, combined with the partial observability of the nonlinear
system, introduce significant challenges to accurately recovering G*. In cyberphysical systems,
adversarial disturbances can be categorized as either detectable or undetectable attacks: the former
are reliably detected and corrected by a well-designed detector and feedback controller
et all, 2014} [Shoukry & Tabuadal, 2016}, [Pajic et al, [2017), whereas the latter—though injected
occasionally—corrupt the outputs and hinder the identification of the mapping G* (see Figure[I(D)).

Furthermore, it is natural to ask whether restrictions on admissible control inputs u; may also impede
the identification task. To this end, we pose the following central question:

When and how can we accurately estimate the true G* under
nonzero-mean, non-Gaussian inputs and correlated, nonzero-mean, adversarial disturbances?

In this paper, we address the question posed above and summarize our contributions as follows:

1) Our work focuses on Lipschitz continuous nonlinear systems with partially observed outputs,
non-Gaussian control inputs, and correlated, nonzero-mean, possibly adversarial disturbances. This
setting significantly broadens the scope of existing literature, each of which assumes at least one of
Gaussian control inputs, i.i.d. disturbances, or zero-mean disturbances. A detailed comparison of the
problem setups is provided in Table [T}

2) We reformulate the problem as estimating G* - ®(uy, ..., us—, ), which represents a general
form of modeling the system output as a linear combination of basis functions applied to a truncated
input history of length 7. When disturbances are fully adversarial at every time step, the matrix G*
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Table 1: Comparison of problem settings in existing literature with our work: N/A in Gaussian input
means that they consider the system without inputs.

Dynamics Available Ggussian . iid. Z.ero—mean Identification
Outputs input Disturbance | Disturbance Approach
Our Work Nonlinear Partial No No No Parametric
Sarkar et al.|{(2021) Linear Partial Yes Yes Yes Parametric
Oymak & Ozay|(2022) Linear Partial Yes Yes Yes Parametric
Ziemann et al.|(2022) Nonlinear Full N/A No Yes Nonparametric
Zhang et al.|(2025) Nonlinear Full N/A No Yes Parametric
Kim & Lavaei|(2025¢) Linear Partial Yes No No Parametric

becomes non-identifiable. Thus, within this framework, we characterize the class of problems for
which the true G* can accurately be identified. In particular, we focus on the problems where the
attack probability p at each time (namely, the probability of w; being nonzero) is restricted to p < %

3) We establish that the estimation error of identifying G* using the ¢3-norm estimator is O(p7),
where 0 < p < 1 is the contraction factor of the function f. Notably, we further provide a matching
lower bound of £2(p") on the estimation error, showing that the presented bound is indeed optimal.

Related works. We focus on identifying the input-output mapping of the system, since in many
settings it suffices to capture how control actions influence observable outcomes (Abbeel et al., 2006
Deisenroth & Rasmussen, 2011). For instance, in model-based reinforcement learning (RL), the agent
first learns an input—output model of the environment and subsequently uses it to make informed
decisions (Moerland et al.,[2023)). To ensure tractability of our analysis, we adopt a parameterized
system with a finite-memory approximation, which yields interpretable and computationally efficient
models—particularly when the chosen function class closely aligns with the true system dynamics
(Chenl |1995}; (Giannakis & Serpedinl 2001). The finite-memory approach is consistent with classical
nonlinear system identification methods, such as Volterra series truncations (Boyd & Chual [1985)
and NARMAX models (Billings, [2013)). Further details on related works are in Appendix

Outline. The paper is organized as follows. In Section [2] we formulate the problem and state
the relevant assumptions. In Section [3] we prove that the ¢5-norm estimator achieves the optimal
estimation error and provides the analysis outline. In Section[d], we present numerical experiments to
validate our main results. Finally, concluding remarks are provided in Section 5}

Notation. Let R™ denote the set of n-dimensional vectors and R™*™ denote the set of n X n matrices.
For a matrix A, | A||» denotes the Frobenius norm of the matrix. For a vector z, ||z||2 denotes the
£o-norm of the vector. For a set S, the k-fold Cartesian product S x S x --- x S (with k factors) is
denoted by (S)¥. For an event E, the indicator function I{ '} equals 1 if E occurs, and 0 otherwise.
P(E) denotes the probability that the event occurs. We use O(-) for the big-O notation and §2(+)
for the big-(2 notation. Let I,, denote the n x n identity matrix. The notation >~ denotes positive
semidefiniteness. Let N (u, ) denote the Gaussian distribution with mean g and covariance ¥, and
Unif{a, b]"™ denote the uniform distribution on the hypercube [a, b]"* C R™. Finally, let E denote the
expectation operator.

2 PROBLEM FORMULATION

In (1), we study a nonlinear dynamical system x;1 = f(2¢, ut, wy) and y¢ = g(2¢, u), where the
state equation is governed by the dynamics f : R™ x U x R? — R™ and the observation equation is
determined by the measurement model g : R™ x U/ — R”. We have the discretion to design control
inputs ug, u1, . .., ur—1 and we have access to a single observation trajectory consisting of partial
observations o, Y1, - - . , Yy7—1. We assume the Lipschitz continuity of the measurement model g and
the contraction property for the dynamics f to ensure system stability and prevent the explosion of
the nonlinear system, which is common in control theory literature (Tsukamoto et al., 2021} |Lin et al.|
2023)). The formal assumption on the dynamics is given below.

Assumption 2.1 (Lipschitz Continuity). g is Lipschitz continuous; i.e., there exists L > 0 such that

l9(x,u) — g(Z, @)ll2 < Ll — Z[l2 + [lu —ul2) )



Under review as a conference paper at ICLR 2026

for all z,z € R", u,u € U. Moreover, note that for k > 1, the k-fold composition of the dynamics
f. denoted by f*), maps (g, Utk -+ Us—1,Ws_k, ..., w;_1) to ;. We assume that f*) is
Lipschitz continuous in its oldest arguments (z;_g, U, Wr—) With constant Cpk for some C' > 0
and 0 < p < 1, with later inputs and disturbances fixed. In other words, we have

I8 @ty e, weeis wy w) — FEN @y, Ty, i3 w, W) 2

< OPpP(|lwemr — Fe—rlla + we—p — Gr—ill2 + [|wi—g — De—gll2), (4

forall z; 5, % p € R™ us_p, @ € U, wi_p, W € RY, withany w = (uy_py1,...,u_1) €
U1t and w = (wi_pa1,...,wi—1) € (RY)F~L We further make the standard assumption
£(0,0,0) = 0.

Remark 2.2. The contraction property in Assumption [2.1]is analogous to Gelfand’s formula in
linear systems. For any matrix A € R™*", the formula guarantees the existence of the absolute
constant c(n) (which only depends on the system order n) such that || A¥||3 < ¢(n) - [Amax(A)]¥ for
all kK > 0, where || - ||2 denotes the spectral norm and Ay, () denotes the spectral radius. We adopt
this analogous setting in our nonlinear system by interpreting Amax(A) as p, and assume that f (%) has
a Lipschitz constant of Cp*.

In this work, we focus on input-output analysis and aim to identify the model governing the mapping
from (truncated) control inputs (u, . .., us—,) to observation outputs y;, where 7 denotes the input
memory length specified by the user to construct the mapping. As described in the introduction,
we will reformulate the true mapping to a linearly parameterized input-output mapping with a
finite-memory approximation. To this end, we outline the following four steps.

Step 1| By recursively applying the system dynamics (I), the observation y; can be represented as

Yt = g(ﬂUt, Ut) = g(f(fvt—hut—h wt—l),ut) =
= g(f( o f(f(xt—Ta Ut—1, wt—‘f‘)a ut—T+17 wt—T-‘rl)a ceey Ut—1, wt—l)7 ut) (5)
for all ¢ > 7, where the right-hand side considers the control inputs ws, Us—1, ..., Ut—r.

We next separate the effect of disturbances and the oldest state with the effect of inputs,
which allows us to establish the input-output mapping. The result is summarized in the following
lemma (see the proof in Appendix [C).

Lemma 2.3. Under Assumption the equation () for each t > T implies that there exist
Wlt(T)7 a:,(f) € R” such that

Yt = g(f( o f(ovut—'ra 0)7 e aut—lvo)aut) + Wt(T) + mtT)v (6)
where W™ ||y < CLY Gy p*llwi—yll> and [|2{7 [l < CLp|l24—<|2.

For the equation (6)), note that the term g o fo---o f is a function of ws, us—1, ..., us—r. We
convert this nonlinear function to a linear combination of basis functions taking a truncated number
of control inputs, in which we establish a time-invariant system in the sense that the input memory
length is fixed. We allow for a universal approximation tolerance € > 0, such that ||&;(-)||2 < &

g FO,u—r,0), - s 1,0),ug) = G- [31(UT)) -+ o (U +(UT), (D)

where U™ = (uy,...,us_r) € (U)™+" is the stack of inputs from the time ¢ — 7 to ¢, the basis
functions ¢; : (R™)™*! — R are distinct nonlinear mappings for i = 1,..., M, and the matrix
G* € R™*M explains how the nonlinear transformation of the inputs is mapped to the observation
outputs. The number of basis functions M and how to design them can be chosen at the discretion of
the user. We note that such a matrix G* is well-defined (though not necessarily unique) to represent
the true input-output mapping within a small €, given sufficiently expressive basis functions.

Step 4| Let ®(U") := [ (U™) -+ ¢ (U)]T. Considering the relationships (6) and (7), we
nally arrive at the equation

Yy =G q’(Ut(T)) + Wt(T) + th) + et(Uf,T)) ®

for all ¢ > 7. This provides an equivalent representation of y; via a linearly parameterized mapping

(see Figure[I(a)), with the goal of accurately estimating the true matrix G* that governs the input-

output mapping from the control inputs Ut(T) = (ug,...,us_,) to the observation y;. [
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Function approximation theory ensures that the relationship (7)) is valid since our function go fo---o f
is continuous. In particular, Assumption[2.T](Lipschitz continuity) makes it natural to choose Lipschitz
continuous basis functions such as polynomials or radial basis functions.

Assumption 2.4 (Basis functions). Each basis function ¢; is designed to be Lg-Lipschitz, namely,
6:(U7) = (O] < Lo | UL =T o, Vi=1,..., M, ©)

forall U™, U™ € (U)™!. Also, each basis function with inputs should excite the system for the
exploration in learning the system. In other words, there exists a universal constant A > 0 such that

E [@(Ut“))@(Ut(T))T} = A2y (10)

holds for all ¢ > 7. We further assume that ®(0) = 0, meaning that zero input results in zero basis
function values.

We also consider both inputs and disturbances on the system to be sub-Gaussian variables. For
example, any bounded variables automatically satisfy this assumption. We use the definition given
in |[Vershynin| (2018) (see the definition, the 1)5-norm, and properties of sub-Gaussian variables
in Appendix [B). Note that we do not require each input or disturbance to have a zero mean (see
Definitions and[B.4). The formal assumptions are given below.

Assumption 2.5 (sub-Gaussian control inputs). We design our control input to be independent
sub-Gaussian variables, meaning that ug, u1, . .., u7—1 are independent of each other and there exists
a finite o, > 0 such that ||u¢||y, < oy, forallt =0,..., T — 1.

Assumption 2.6 (sub-Gaussian disturbances). Define a filtration
.Ft = O'{IEO,U(), ey U, Wy ... ,wt_l}.
Then, there exists o, > 0 such that |||y, < oy and |Jwe||y, < 04, conditioned on F; for all
tZO,...,T—land]:t.
Remark 2.7. While prior literature typically assumes zero-mean Gaussian inputs, we significantly
b3)

relax these conditions by only requiring u; to be sub-Gaussian (see Assumption|2.5)), and <I>(Ut(7)) to
be Lipschitz and excite the system (see Assumption[2.4). These assumptions characterize general
conditions on control inputs for nonlinear system identification. In practice, control inputs are often
of the form K (y;) + [excitation term] to improve performance (e.g., minimize costs), where K is a
controller and y; is the observation at time ¢. Our characterization allows nonzero-mean K (y;) and
non-Gaussian [excitation term|, providing a secondary benefit for system identification.

If the disturbance w; is always adversarial with nonzero-mean, any estimator may be misled. For
example, the adversary can always inject an attack w, that drives the next state ;1 to be irrelevant
to the current state x;, preventing any valid estimation method from extracting useful information
(Kim & Lavaei, [2025a). Hence, we may need to restrict the time instances ¢ in which the adversary
may be able to fully attack the system via w;. We now formally present the additional restriction on
our disturbances w;, under which the input-output mapping in (8) is accurately estimated.

Assumption 2.8 (Attack probability). w; is an adversarial attack at each time ¢ with probability
p < 5= conditioned on F;; i.e., there exists a sequence (&;);>¢ of independent Bernoulli(p) variables,
each independent of any F;, such that

{& =0} C {w, =0}, Vt>0. (11)

Assumption [2.8]specifies that the system is not under attack (case 1 in Figure[I(b)) with probability at
least 1 — p, since & = 0 implies w; = 0. At attack times (case 2 in Figure[1(b)), the adversary uses
the information in the filtration JF; to generate disturbances w;, which can therefore be correlated and
possibly adversarial.

Remark 2.9 (Choice of 7). In Assumption the attack probability depends on a user-defined
constant 7, which represents an input memory length. As discussed in the introduction, it is inevitable
1

to consider a finite-memory approximation, and the permissible attack probability 5——which depends

on the memory length 7—will accordingly restrict the ability of the adversary. It is worth noting that
the term W, ) in @) is identically zero if the system is not under attack for 7 consecutive periods; i.e.
wy_1 = -+ = w;_, = 0, which happens with probability at least (1 — p)™. We have (1 — p)™ > 0.5
with the restriction on attack probability p < %, which we will leverage to prove the useful results
on the estimation error.
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Given a time horizon T, we aim to learn the true system G* in (7)-(8), using the following ¢3-norm
estimator based on partial observations {y; }7_." and control inputs {u;}7_":

T—1
Gr = argénin ; ‘ y — G- (I)(Ut(f))H2 (12)

Under the stated assumptions, we will show in the next section that the £5-norm estimator achieves
the optimal estimation error O(pT™), where p is the contraction factor in Assumption and T is the
input memory length.

3 MAIN THEOREMS AND ANALYSIS OUTLINE

In this section, we will state our main theorems on bounding the estimation error to identify G* and
provide the analysis outline. Note that any G* satisfying (7) is regarded as a valid approximation to
the true input-output mapping of the system (IJ).

3.1 MAIN THEOREM

Our main theorem holds under the stated assumptions, which incorporates non-Gaussian inputs and
correlated, nonzero-mean, adversarial disturbances, with an attack probability p no greater than %

Theorem 3.1. Suppose that Assumptions and|2.8hold. Consider v := %

and an approximation tolerance € > 0. Let G* be any matrix that satisfies (7)) with Het(Ut(T)) Il <€

forall t. Also, let GT denote a solution to the {y-norm estimator given in . Given § € (0,1],
when

T8 TV 1
r=a ((2(1 EySTISYE {’“Mbg (2(1 s T 1) +log (6>D ’ (1)
we have
. A - p’L o,+o0, € V3
Ie GT”F—O(<A'1_pU>‘Z(1—w—1> .

with probability at least 1 — 0.

Remark 3.2. Our main theorem states that after the time given in and with a sufficiently small
€, the estimation error of O(p7) is achieved, considering that additional polynomial terms in 7 are
dominated by the exponential decay in 7. However, notice that the estimation error does not decay as
the time 7" increases, and thus cannot converge to zero. While this error bound decreases as 7 grows,
the memory length 7 will be chosen as a finite number at the user’s discretion, and thus the bound
should be treated as a positive constant. This suggests that the user may want to choose a sufficiently
long 7 to obtain a smaller estimation error. However, increasing 7 has three drawbacks: First, it
restricts the attack probability as stated in Remark [2.9] Second, the required time (T3) implies that it
takes longer to arrive at the desired estimation estimation bound. Third, the basis function ® may
become significantly complex to incorporate longer history, and naturally the optimization problem
needs far more computations. Thus, even though the estimation error may decrease with increasing 7,
the aforementioned demerits create an inherent trade-off in selecting an appropriate value for 7.

3.2 ANALYSIS OUTLINE

We now provide the outline of proof analysis. The proof details can be found in Appendix [D]

3.2.1 ANALYSIS WITHOUT PAST STATE AND APPROXIMATION EFFECT

Our proof technique starts from a special case where the term a:,gT) and € in the equation () are zero.
This auxiliary setting will later be generalized to the case where they can take nonzero values. In
the following theorem, we establish a sufficient condition for the true matrix G* to be the unique

solution to the /5-norm minimization problem (12)).
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()

Theorem 3.3. Suppose that ;' = 0 and €; = 0 for all t. Then, G* is the unique solution to the
ly-norm estimator if
T-1 T—1
Sz, - qw ) =0} = Y|z, W £0} >0, (15)
t=1 t=1

holds for all Z € R"™M such that | Z||p = 1.

Theorem [3.3|implies that if the left-hand side given in equation (T3)) is positive for all Z € R™*M
such that | Z||p = 1, we will actually be able to exactly recover the true matrix G* with the ¢3-norm
estimator. In particular, thanks to Lemma [2.3]and (TT), we have

PW, ) =0)>Pw;_1 =0,...,wr =0) >P(&_1=0,...,6_,=0)=(1—p)” > 0.5.

Then, for a fixed Z, the sub-Gaussianity of control inputs u;, Lipschitzness of ®(-), and the excitation
condition (TO) ensures that the left-hand side of (I3]) will be sufficiently positive after a finite time.

We now analyze how the term in (15]) changes when evaluated at two different points 7, Z e R™M,
We show that the difference is indeed small when the points are close. Thus, if one can select a
sufficient number of points for which the term in is simultaneously positive with high probability,
then their surrounding neighborhoods will also yield positive values. This implies that the term in
(T3) is universally positive for all points in R"*™ with unit Frobenius norm. To quantify how many
such points are needed, we invoke a well-known covering number argument (Vershynin, [2018)). [J

3.2.2 BEYOND THE ZERO PAST STATE AND APPROXIMATION EFFECT

In general, ng) in (B) is nonzero since ||z;—||2 # 0 (see Lemma . Moreover, we may face a
nonzero approximation error vector €;, whose magnitude depends on the expressiveness of the chosen
basis functions. Thus, we need to extend the previous analysis in Section to general cases. From

the optimality of G'p for the £5-norm estimator (T2)) and the input-output mapping (8), we have

T-1 T—1
doll@ = GneW ) + W+ 2 telo < Y IWT a7 el (16)
t=T1 t=T1
where the right-hand side is the result of substituting G* into G in (I2). Using the triangle inequality,
we can arrive at

T-1 T-1
S lG =G0 + Wl = W e <23 (el +llellz) a7
t=T1 t=1

where the left-hand side turns out to be the perturbation of /2-norm estimator without the effect of

1:2(57) and e;. This can be lower-bounded by using the positive constant lower bound Q(T') of the term

in constructed in the previous Section The right-hand side is also upper-bounded by O(T')
since disturbances and control inputs are sub-Gaussian variables (see Lemma[D.9). Accordingly, we

can bound the estimation error ||G* — G || using (T7) to obtain the results in Theorem O

Remark 3.4. We note that any ¢,,-norm estimator with o > 1 can ensure the left-hand side of (T3)
remains universally positive even though ¢5-norm is replaced by other norms. However, the resulting
estimation error bound is weaker than that of the />-norm estimator. We analyze two different cases:
Case ]l — 1 < a < 2: In this regime, the final estimation error bound (I4) suffers from an
additional multiplicative factor, at most /7. This arises from the inequality HCCET) I+ el <

T (||:1:,(f) l2 + |l€t]|2), which will appear in (I7) and ultimately worsens the estimation error bound.

Case 2 — 2 < a < oo: Our analysis hinges on E[\\Z@(Ut(T)) 13] > A2 (see (38)) for the f>-norm
estimator. Using o > 2 also introduces an additional factor of /7, since the term of interest in the
worst case is |\Z<I>(Ut(7))|\oo > # HZ<I>(Ut(T))H2 > 2=, which negatively affects the estimation
error bound.

Consequently, the /2-norm estimator yields a tighter estimation bound O (”TTL) than those based on

other norms since it does not depend on the observation dimension r. This will further be supported
by the lower bound presented in the next subsection, which is also independent of r.
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3.3 LOWER BOUND

In this section, we claim that there is no estimator that can improve the constant bound in Theorem
[3.1lin the worst case.

Theorem 3.5. Given ¢ € (0, 1], suppose that adversarial attacks w; are designed by an adversary

; Q(7log(T/8 . . . ,
to satisfy o, :(%) (r tog(T/ )), where 0 < p < 1 is the contraction factor of f, and T is the input
memory length. Then, there exists a problem instance satisfying Assumptions 2.3 2.6] and
that suffers from Q(%) estimation error with probability at least 1 — 0 for any estimator.

Proof Sketch. Consider the case of an approximation tolerance € = 0. Under the attack probability
O(1/7) in Assumption[2.8] the maximum consecutive attack-free length is bounded by O(7 log(7'/6))
with probability at least 1 — d. Then, the adversarial attacks enable the property x; > 1 for all £ with
high probability. This implies that y; in (5)) can be written in two different functions h; # ha such
that

Yt = hl(‘rtf'rvutfﬁ sy Uty Wy gy e v 7wt71) = hz(xtfr, Up—rye v ey Uty Wt—7y. - »wt—l) (18)

for all x;_, > 1, which implies that h; and ho are not distinguishable under adversarial attacks.
However, the corresponding input-output mappings (see (6)) will be

hi(0,wp—ry. .. u,0,...,0) and  ho(0,us—r,...,us0,...,0), (19)

where x;_, and the disturbances are set to 0. Choose the functions h; and hs to have different
function values for (I9), while satisfying the equation (I8) for all z;—, > 1. As a result, any
estimator may recover either one of the mappings h; or hy arbitrarily, given the same observation
trajectory Yo, Y1, - - - , yr—1. In particular, the two expressions in can differ by Q(p" L), leading

to an estimation error Q(”TTL) The proof details can be found in Appendix O

Remark 3.6. We have established the lower bound Q(pTTL) which implies that the estimation error
is bounded below by a positive constant for any estimator due to adversarial attacks. While this
matches the upper bound up to the same order, the assumption on the sub-Gaussian norm of the
attacks depends on 7. If this norm is required to be uniformly bounded over all 7' > 0, it remains
unclear whether the gap between the upper and lower bounds can be further tightened. Meanwhile,
the proof in Appendix [E|relies on specially designed nonlinear basis functions to achieve the desired
lower bound. It remains an intriguing open question whether there exists a linear system instance for
which the upper and lower bounds match under the constraint that all basis functions are linear in
control inputs.

4 NUMERICAL EXPERIMENTS

In this section, we provide the numerical experiments that show the effectiveness of the ¢2-norm
estimator and illustrate how the results align with our theoretical findings. To this end, we consider
the following dynamics with the states 2, € R0, the inputs u, € R?, the disturbances w; € R,
and the observations i, € R'® fort =0,...,T — 1:

Tep1 = f(ze,up, wy) = o(Axy + Bug +wy), v = g(x¢, up) = Cay + Duy, (20)

where A € R100%x100 B ¢ R100X5 7 ¢ RIOX100 1) ¢ R10X5 are randomly selected matrices and
the function o(x) = tanh(x) is 1-Lipschitz and is applied elementwise to each coordinate. Each
entry of A, B, C and D is randomly selected from Unif[—1, 1] and A is normalized subsequently to
have a spectral radius less than one (see Assumption [2.Tand Remark [2.2)). As a result, the 7-fold
composition of f will have the form of a feedforward neural net, where o(-) works as an activation
function. For the system (20), the relevant input-output mapping in (6)) can be written as

o(Co(Ao(---0(Ac(Bui—r) + Bug—r41) -+ ) + Bug_1) + Duy). 20

We first reformulate the true input-output mapping as a linear combination of basis functions G* - ®(-)
(see (B)). Our chosen basis functions are polynomial kernels up to degree 3, using randomly sampled
tuples (uy, ..., us—,) whose entries are drawn from Unif[—15, 15]. We then use kernel regression to
estimate the true matrix G*. The number of kernels used as basis functions is set to M = 25.



Under review as a conference paper at ICLR 2026

(;-norm, Gaussian inputs — =5 =05
=025
— =10, p=05

Least-squares, Gaussian inputs

cast-sqquares, Unif; {ynorm, Uniform inputs

/. . -] Gaussia 40+
frnorm, Gaussian inputs {ynorm, Gaussian inputs

Crnorm, Uniform inputs

1T

£omorm, Uniform inputs — =10, p=025

{,-norm, Gaussian inputs
{xnorm, Uniform inputs

e = Grllr

30 100 150 200 250 300 20 40 60 S0 100 130 140 50 100 150 200 250 300
time T' time T' time T'

(a) Comparison of Least-squares (b) Comparison of the /,-norm esti- (c) Analysis of 7 and p effects under
and {2-norm estimator mators (« = 1,2, 00) non-Gaussian inputs

Figure 2: Estimation error of the input-output mapping (21)) under adversarial attacks.

Experiment 1. The first experiment compares the ¢5-norm estimator with a standard least-squares
estimator. The attack probability is set to ﬁ, with sub-Gaussian attack w; designed to have a
covariance 25719 and a mean vector whose entries are either 300 or 1000 depending on the sign of
the corresponding coordinate of x,. Figure2(a)] shows that least-squares is vulnerable to attacks and
fails to recover the system, while the /5-norm estimator closely identifies the system after finite time.
Results are provided under both Gaussian inputs N (0, 100/5) and non-Gaussian (nonzero-mean)
inputs Unif[—8, 10]°. Our theory only requires Assumptions and on the inputs, which is
supported by our results showing that the ¢5-norm estimator converges to the same stable region for
the Gaussian inputs even when using the nonzero-mean non-Gaussian inputs (see Table|[T).

Experiment 2. Under the same experimental settings, we now present experiments comparing
the /,-norm estimators, where o = 1, 2, 0o. As discussed in Remark all norm estimators are
expected to recover the true matrix G* to some extent, but only the /2-norm estimator theoretically
achieves the optimal error O(p") that matches the lower bound Q(p7) (see Theorems [3.1]and3.5).
Figure[2(b)|indeed verifies that the {5-norm estimator outperforms the other norm estimators, although
the empirical differences are relatively small.

Experiment 3. We finally provide experiments under different hyperparameters: the contraction
factor p and the input memory length 7, using the ¢5-norm estimator. Figure demonstrates
how the estimation error evolves over time under non-Gaussian inputs considered in Experiment 1.
The figure illustrates that a larger p results in a higher estimation error, while a larger 7 leads to a
smaller eventual estimation error. These two observations align precisely with an estimation error of
O(p™ )—increasing with p and decreasing with 7. It is worth noting that this estimation error does not
decay over time in the figures, which strongly supports the constant lower bound ©2(p™). In Appendix
[Fl we provide experimental details along with additional results for the case where an unbounded
function is designed as the activation function o.

In Appendix [G] we present real-world experiments to identify the input-output mapping of the
nonlinear swing dynamics in a power grid with n generators, where an adversary can occasionally
apply arbitrary power injections.

5 CONCLUSION

In this paper, we study the identification of the input-output mappings of nonlinear dynamical systems,
where control inputs are not necessarily Gaussian and the disturbances are potentially adversarial. We
formulate a time-invariant input-output mapping using a linear combination of basis functions taking
the input history, where we decouple the control inputs and disturbances. We propose a problem
class that accurately identifies the input-output mapping, characterized by a restriction on the attack
probability. We then prove that the estimation error using ¢2-norm estimator amounts to O(p”) under
the presence of adversarial attacks and show that this bound is optimal by providing a matching lower
bound §2(p7). Future directions include extending our analysis to a nonparametric approach under
the same assumptions, where the estimator inherently involves an infinite-dimensional problem such
as optimization over a function class.
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A DETAILS ON RELATED WORKS

Fully and Partially Observed Systems. In system identification, based on the degree of state
observability, systems are often categorized as fully observed and partially observed systems. In fully
observed systems, all states are measured, thus the outputs are identical to the states. In such systems,
numerous methods have been proposed to recover the underlying system, e.g., least-squares methods
(Simchowitz et al., 2018} [Faradonbeh et al.| 2018 Jedra & Proutierel, [2020), ¢5-norm estimator
(Yalcin et al 2024} Zhang et al., [2025)), and #/;-norm estimator (Kim & Lavaei, 2025a). However, in
many real-world applications—such as robotics (Lauri et al.,[2023)), healthcare (Alagoz,[2014), and
safety-critical systems (Bensoussan, |1992)—not all states are observable, giving rise to the partially
observed system setting. In this case, system identification becomes substantially more challenging.
A growing body of research has addressed this challenge: for instance, |Sarkar et al.|(2021)); Oymak
& Ozay|(2022) used least-squares and |Bakshi et al.| (2023)) used a method-of-moments estimator to
identify the system, all under the assumption that disturbances are independent and follow Gaussian
or sub-Gaussian distribution with zero-mean. [Simchowitz et al.| (2019)) extended the least-squares
method to setups where the disturbances can be selected by an oblivious adversary with access to
past history (but not full information history). However, little research has been conducted in the
partially observed systems when the disturbances are adversarially selected based on full information
history. Only recently, |Kim & Lavaei (2025bic) investigated system identification using the /5-norm
or /1-norm estimator and allowed adversarial disturbances to leverage full information history, while
restricting the number of attack times. Our work adopts a similar assumption in Assumption 2.8]

Nonparametric and Parametric approaches. Nonlinear system identification approaches can gener-
ally be classified into two broad categories: nonparametric and parametric methods. Nonparametric
approaches operate over infinite-dimensional function spaces, often leveraging techniques such as
kernel methods and deep learning to model complex system dynamics (Greblicki & Pawlakl 2008}
Ziemann et al [2022)). These methods are highly flexible, making them well-suited for capturing
behaviors without strong structural assumptions. However, they often come with significant com-
putational overhead and reduced interpretability. In contrast, our approach is based on parametric
methods that approximate the system using a finite set of basis functions, typically chosen based
on prior knowledge or structural insights. This approach yields models that are more interpretable,
computationally efficient, and easier to analyze—especially when the chosen function class aligns
well with the true system dynamics (Chenl (1995} (Giannakis & Serpedin, [2001). Moreover, the
parametric framework facilitates model selection and regularization, enabling effective control over
model complexity and reducing the risk of overfitting through techniques such as cross-validation or
penalization.

Finite-memory approximation. For a tractable identification of input-output mappings, we adopt a
finite-memory approximation strategy with length 7, consistent with classical system identification
techniques such as Volterra series truncations (Boyd & Chual |1985)) and NARMAX models (Billings|
2013). These methods are grounded in the assumption that the dynamics of a nonlinear system can
effectively be represented using a fixed window of past inputs.

Input-output mapping. In many cases, it suffices to focus on the input-output relationship—how
control actions affect observable outcomes—rather than attempting to recover the full latent state
dynamics (Abbeel et al., 2006; Deisenroth & Rasmussen, 2011). Similarly, to identify the input-output
mapping, we design the basis functions to depend solely on the control inputs, thereby decoupling
the control inputs and disturbances. This separation has proven effective and is widely adopted in
various settings. For example, in model-based reinforcement learning (RL), it is common to alternate
between system identification and control policy design, where the agent first learns an input-output
model of the environment and then uses it to make informed decisions (Moerland et al.,|2023)). This
simplification is particularly valuable in high-stakes applications like autonomous driving, where
control inputs such as throttle and steering are mapped to observations such as heading direction,
position, and velocity (Paden et al.|[2016).

B PRELIMINARIES ON SUB-GAUSSIAN VARIABLES

In this work, we consider both inputs and attacks on the system to be sub-Gaussian variables in which
the tail event rarely occurs. We use the definition given in|Vershynin/(2018).

12
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Definition B.1 (sub-Gaussian scalar variables). A random variable w € R is called sub-Gaussian if

there exists ¢ > 0 such that )

E[exp(%ﬂ <9 (22)
C
Its sub-Gaussian norm is denoted by ||w/||,, and defined as

2

wlly, = inf {c >0: E[exp(%)} < 2} . (23)

Note that the )2-norm satisfies properties of norms: positive definiteness, homogeneity, and triangle
inequality. We have the following properties for a sub-Gaussian variable w:

E[Jw*] < (CiVE)E Vk=1,2,..., (24a)
P(|lw| > s) < 2exp(—s?/C3), Vs >0, (24b)
Elexp(fw)] < exp(#*C3), VO € R if Elw] =0, (24¢)

where C, C, Cs, and ||w/|,, are positive absolute constants that differ from each other by at most
an absolute constant factor. For example, there exist K, X' > 0 such that ¢, ¢z, c3 < K||w]|y,
and ||w||y, < K max{ci, ¢z, c3}. Note that the property is also called Hoeffding’s inequality,

which can be split into two inequalities if E[w] = 0:
P(w > s) < exp(—s?/C3), Vs >0, (25a)
P(w < —s) < exp(—s%/C3), Vs> 0. (25b)

We introduce the following useful lemmas to analyze the sum of independent noncentral sub-
Gaussians (Vershynin, 2018)).

Lemma B.2 (Centering lemma). If w is a sub-Gaussian variable satisfying 22), then w — E[w] is
also a sub-Gaussian variable with

lw = Efw][ly, = Oflwlly,)- (26)

Lemma B.3 (Sum of mean-zero independent sub-Gaussians). Lef wy, ..., wy be independent, mean
. . N . . . .
zero, sub-Gaussian random variables. Then, Zi:l w; is also sub-Gaussian and its sub-Gaussian

norm is O((Zi\il ||wi||12pz)1/2)'

To provide the analysis of high-dimensional systems, we introduce the notion of sub-Gaussian vectors
below.

Definition B.4 (sub-Gaussian vector variables). A random vector w € R? is called sub-Gaussian if
for every x € R?, w”'x is a sub-Gaussian variable. Its norm is defined as

[wlly, = sup  [w @[y, (27)
lz]|2<1,2€R?

For example, if w is a sub-Gaussian vector with a norm -, then the sub-Gaussian norm of ||w||2 is

also +y, considering that w’ s = lwll.

Throughout the paper, we will assume that the inputs and attacks injected into the system are indeed
sub-Gaussian vectors. For example, the m-dimensional Gaussian variables and the r-dimensional
bounded attacks are indeed sub-Gaussian vectors.

We finally define a notion of subexponential, which is essentially a squared sub-Gaussian.

Lemma B.5. w is sub-Gaussian if and only if w? is subexponential, and it holds that

lwll, = llw? [y,

where the 11 -norm is defined as

2
w?||y, = inf {c >0:E [exp <U;>} < 2} . (28)

13
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C PROOF OF LEMMA 2.3

We first provide the proof of Lemma[2.3] which states that the observation equation can be separated

into the input term consisting of (uy, . .., us—, ), the attack term Wt(T), and the oldest state term SCET).

Proof. We iteratively apply @) to the equation (3)) for k = 7,7 — 1,..., 1. For k = 7, one can write
Ny —g(f (- FOFO e, 0)s Up—rits We—rg1)s oo+ s Up—1, We—1), Ut )[l2 < C LT (|27 |2+l wi—r |2),
since the composition of g and f(*) yields a Lipschitz function with Lipschitz constant L - C'p*. In
turn, for K = 7 — 1, we have
Ng(f (- FOFQO, g7, 0), Ut mr 1, Wemr 1)y 5 Up1, W), U )

= g(fC o fFO =7, 0), =741, 0), -y up—1, w1 ), ) 2 < CLp™HJwp—rg |2

Similarly, one can derive the similar inequalities for K = 7 — 2, ..., 2 and finally arrive at k = 1:
lg(f (- FOfQO 7, 0), 7 41,0), -+ up—1, wi—1), )
—g(f (- FU0, U7, 0), tp—r11,0), -+ U1, 0), ) [|2 < CLpl|we—1 |-

Note that g(f(--- f(f(0,ut—r,0),ut—r41,0),- -+ ,us—1,0), u) is the auxiliary observation, where
the attacks and the oldest state are assumed to be zero. Let 4j; denote the difference between the true
observation and the auxiliary observation:

gt =Y — g(f( o f(f(o,utf‘rvo)autf'fﬂrlvo)a e 7ut71a0),ut)~

Then, summing up all the inequalities for £k = 7, ..., 1 and applying the triangle inequality to the
left-hand side implies that

lgills < CLo™ v lo + CLS pFllws—ilz- (29)
k=1

Now, we define the following random variables:
2z A llweill2 0 P ]

Yt, €T - Yt.
! J | E I +E;:1 PFllwe—k]l2
(30)

W, =
! Pzt |2 +Z£:1 PFlwi—r |2

Notice that 7, = W™ + @™ This implies that ||7[|2 = |[W\" + 27 |2 < [|[W, ||z + =7 |2,

where each term ||Wt(7) |2 and H-’EET) |l2 is bounded by the quantity in the lemma due to (29) and
: O

D PROOF OF THEOREM

For convenience, we define It (-) as the indicator function that equals 1 if the event occurs and —1
otherwise.

Theorem D.1 (Restatement of Theorem . Suppose that azET) = 0 and €; = 0 for all t. Then, G*
is the unique solution to the {2-norm estimator if

T-1
ST {w” = o} zeW )|, > 0 31)

t=1

holds for all Z € R™M such that | Z||p = 1.

Proof. Since a:f) = 0 and €; = 0, an equivalent condition for G* to be the unique solution of the
convex optimization problem is the existence of some A > 0 such that

T—1 T—1

SoIWle < DA -2 + W o, VAR M0 < AlF <A, (D)

t=1 t=1

14
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since a strict local minimum in convex problems implies the unique global minimum. Observe that
we have

T—1
ZHA o(U) + W, — ZHWJ’HQ

—ZH{Wt =0} A o) + W, £ 0} - (18- @) + Wl — W)

= S HWE =0} A S + 1w £ 0} (~1a-2@)2)
t=1
T-1

—Zh{Wt =0}a- oW, (33)

Thus, a sufficient condition for (32) is to satisfy

T-1
ST {w” =0} |a- e, >0, VAER*M:0<||A|p <A (34)

t=r1

For each A, dividing both sides of (34) by ||A||r > 0 leads to the set of inequalities in (3T). O

We will now analyze the sub-Gaussian norm of ||U )H

Lemma D.2. UnderAssumption we have || ||Ut(T HQsz <VTH+1:-04

Proof. We will use Lemma[B.3] which connects sub-Gaussian and subexponential variables. Since
the sub-Gaussian norms of ||u¢|| for all ¢ are bounded by o,, we equivalently have

llcl3ll,, <02, ve>o.

It follows that
[l = H;HUtng < ZHllut ilBll,, < ¢+ 1o
We again hinge on Lemma [B-3]to arrive at the conclusion. O

Lemma D.3. Suppose that Assumptions H ﬂ and . hold. Define v : LW“ . Then, for a
fixed Z € R™M sych that | Z||p = 1, we have

E (LW = oy ze@{")]},] = ((2(1_73)7_1)“). (35)

v3

Proof. We first analyze the sub-Gaussian norm of || Z® (U, )H2 From (9) in Assumptlonuwith
®(0) = 0, we have

6: U = 16:(0;7) = 6:(0)] < Lo | U2 (36)
Due to Lemma[D.2] it follows that

Jls: @, < Lo 10t

2 =LyvVT+1 04
Y2

Thus, one can obtain

llze@). <
2

<Z

G

M
S 1z (U)]l2
=1

15
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-3l Jle@| < VMLoTFT -, &)
i=1 2

where z; is the i column of Z. The inequalities follow from the triangle inequality and the Cauchy-
Schwarz inequality.

Then, due to the property (24a), we have E [||Z<I>(Ut(T)) ||§} = O((VMT1Lyoy,)?).
From (I0) in Assumption[2.4] we have
E ||20U) 3] = Blrace(27 Z - o(U” )@ (U))]

= trace(Z7 Z - E[@(U")®(UT)) > A - trace(ZTZ) = A2 (38)

Note that
Eflzew)3] <E[j1zew).] -E[1zew )] (39)
due to the Cauchy-Schwarz inequality. Combining the above two inequalities yields
)\4
zoU” : 40
E[120@)] = (o) (40)

Now, recall the relationship
(W =0} 2 {wemy =0, wr = 0} 2{&-1 =0, &, = 0},
which follows from Assumption From the independence of ¢;’s, we also have
P(&-1=0,...,6&—+=0)=(1—p)" >0.5,

since p < % Then, one can write
E (AW = 01| 2o 7)||,] 2 E [Lfg 1 =0,....& - =0} zo@)],] @D

=E[I+{&-1=0,...,&—> =0} [HZ@ t(T))HQ}

> ((1-p) — (1= (1 -p)7)-E[|22@W)],]
)\4
=(2(1—- 7—1-9<7). 42
21-p)" 1) (VAT Lyou)? (42)
We finally note that the term given in (@2) is indeed positive since (1 —p)™ > 0.5. Using the definition
of v completes the proof. O

We have defined v in the above lemma. We will show that the value of v is bounded below by a
positive constant.

Lemma D.4. Define v := M. Then, v = Q(1).

Proof. Forany Z € R"™M guch that || Z||r = 1, we have

1zeU )3 < 12)% - |9UT)3 = |oUT)3 < ML2|UT|3, (43)

where the last inequality comes from (36). The expectation of the left-hand side of (43) is lower-
bounded by A? due to (39). Noting that the expectation and the 1)o-norm of a nonnegative variable have
the same order (see (24a)), the expectation of the right-hand side is upper-bounded by O (M Lfbroi)

2 2
due to Lemma Thus, we have MLiTU“ = Q(1); in other words, v = Q(1). This completes the
proof. O

Now, we provide the crucial lemma to ensure that for a fixed Z, the term ]Ii{Wt(T) =

0}-||Z® W) )||, is positive with probability at least 1 — 4.
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Lemma D.5. Suppose that Assumptwns!and. hold. Define v := qu . Given § € (0,1],
when
8

= k’g(cls)) / -

we have

T—1 T )
S {w” = o} zeWT), = <(2(1 _p)w o) AT) 45)
t=r1

for afixed Z € R™M such that | Z||p = 1.

Proof. Similar to (36) and (37), we have

T T-1 7

Z 1z )|, < \FL¢Z S i3 < VMLs Y > fluelo. (46)
0

=7 \ i= t=7 j=0

Now, we define a Bernoulli variable Z!™ such that {E{”) = 0} < {&_1 =0,...,&_, = 0}. From
@T), we know that {W,”) =0} D {:§T = 0}. Thus, it suffices to prove the desired result with
=) in place of W,".

Consider the constants A1, ..., A7 > 0. Then, for all § € R, we have

T-1 9
arg max E{exp(@( Z a/t'(]Ii{EtT) =0} — E[]Ii{EET) = 0}])) )}
la| <A, t=1
t=7,....,7—1
C{FA} x - x{+Ar},  @47)
since the function on the left-hand side is convex in (aq,...,ar) and the maximum of the convex
function is attained at extreme points. Due to (@6), subst1tut1ng Z ||Z (U, (T))||2 into a; and

VMLy(T+1)>, E;‘:o lui—;||2 into A in (@7) yields

T-1
> 120U 7) e - (L= = 0} - EL{E{"” = 0})

t=1 P2
T—-1 7
< VMLyr+ 1) D03 lueslle - (LABT = 0} —ElL{= = 0}]) | @8)
t=1 j=0

P2

—( ) s {-—(T) _

considering that =, is independent of any other variables and the expectation of IL{E;
0} — E[Hi{”(T = O}] is zero, in which case the sub-Gaussian norm can be determined by (24c).

Now, we analyze the right-hand side of (@8). For simplicity, we define
0, t=0,....,7—1,
S = QI {ET = 0} —E[I{E" =0}], t=71,....,T—1,
0, t=T,....T+717—1.
Then, we have

T-1 7 +7
DO el B = Z <ZE> - [lue]2- (49)

t=1 j=0 t=0

For all ¢, we have

T—1 / t+1
3 (z) N R
j=t

t=0
2

17



Under review as a conference paper at ICLR 2026

due to Assumption[2.5] Given the filtration F* = o{Z; : t = 0,. — 1} and considering that
E[Z¢] = 0, we can apply the property (24c) to obtain

ool () )] =2 GXP(GE(Z%)-MM)

T-1
< H exp(0%(1 + 1)%02) = exp(0*T (1 + 1)%02), (50)
for all # € R, which implies that the mean-zero variable (#9) is sub-Gaussian and its norm is
O(WT(r + 1)0,). In turn, due to (@8], we arrive at

t=0
T-1
S zew) =,
t=1

Finally, we can apply the property (25b)) to obtain

P(EZ(@(U}T)) Z,> 0 ((2(1 _p)2:/3_ 1)- AT))
=)

S ()

:Q((2(1 ) =-1)- AT).

v3

= O(VTMLy(+1)0,). 51)

P2

We derive from (@2) that

Z zoU") 142" =0}

Since =, = I {E!”) = 0} — E[Hi{”(T 0}]. we arrive at

(ZZ(I) U 1{E"” —0}>Q((2(1_p)2;3_ UAT))
zl—exp<—9<(2(1p)Tgl)z'T». (52)

TV

Since we have {Wt(T) =0} 2 {E,ET) = 0}, establishing a lower bound of 1 — § on the right-hand
side of suffices to conclude the proof. O

We now study the effect of perturbing Z € R™*M

Lemma D.6. Suppose that Assumptions[2.4)and[2.5hold. Given § € (0, 1], when T = Q(log(2/4)),
the inequality

T—1 T-—1
Z]Ii{Wt =0}-||zeW )|~ Zﬂi{wﬁ =0} ||ZeU )|, = —O(T||Z~Z| r LoV M70,)
t=7 t=71

holds for every Z, Z € R™*M with probability at least 1 — g.

Proof. For simplicity, we define f;(2) = Lo {W") = 0}-| 2&(U")||,. For Z,Z € R"*M, we
have

T—-1 T—-1
SN2 =Y [(2) = an 2)e(U)]|2

18
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T-1 -
> = 12— Zllr - LoVM -y [lujl
t=1 7=0
T—1 B
> =Y 1Z = Z||pLoVM (1 + 1) ||ur 2, (53)
t=0

where the first inequality is due to the triangle inequality and the second comes from (@6)). Assumption
R2.3]tells that ||[|u¢]|2|| < o, and thus, we have

12 = Z1lp LoV G+ 1) el = ElJuella))| | =12 = Z)r LoV M (7 +1) - Ofou)

due to Lemma[B.2] In turn, due to Lemma[B.3|and the independence of control inputs, we have

S 12 = ZpLoVAT(r + V(e — Elllwllal|| = 17 = ZIrLoVAT(r +1) - OV o).
t=0

2

Using the property (23a), one can obtain

T—1
P( ™12 - ZlleLyV/A(r + 1) (lurlls — Eluela]) < |12 — 2] LoVAT(r +1) 0<Tau>)

t=0

T2|Z — Z|Z L2 M (1 + 1)202
zl—exp<—Q( || HF ) ( ) u

T||Z — Z|3L3 M (7 + 1)%02 )) = 1= exp(=U(T)).

Note that E[||u||2] = O(oy,) due to (24a). Thus, we can write

T—1
P(Z \Z = ZpLoV/FI(r + Dlluells < 2017 — 2| pLoV/FE(r + 1) ~0<Tau>) > 1~ exp(—(T)).

(54)

When T = Q(log(2/6)), the probability in (54) is lower-bounded by 1 — $. Considering the lower
bound of (53) completes the proof. O

Now, we will achieve that the inequality (3T) in Theorem holds for all Z € R™M gsuch that
|Z]|p = 1, after finite time. To take advantage of Lemma [D.6| which states the difference of
>+ ft(Z) depending on Z, we introduce the important lemma presented in|Vershynin|(2010).

Lemma D.7 (Covering number of the sphere). Define S™*M~1 .= {7 ¢ R"™*M . || Z||p = 1}. For
e > 0, consider a subset N of STXM=1" quch that for all Z € STXM—1"there exists some point
Z € N satisfying || Z — Z||2 < e. The minimal cardinality of such a subset is called the covering
number of the sphere and is upper-bounded by (1 + %)TM .

The covering number argument states that if you select (1 + %)TM number of points which achieve

the sufficient positiveness of >, f;(Z), and show that the difference of >, _f_t(Z ) is small enough
within the distance e, then all the points will achieve the positiveness of ), f;(Z).

Theorem D.8. Suppose that Assumptions and hold. Consider v := M and
SHM=1.— {7 e R™*M .|| Z||p = 1}. Given § € (0, 1], when

T8 TV 1
T:Q<<z<1—p>7—1>2 [TMI"g(m—p)T—l) *loe (6>D 6
we have
T—1 1.
ST {w” = o} zeW)|, =0 <(2(1 _pzw D AT) >0, VZeS*M-1 (56
t=1

with probability at least 1 — 4.

19



Under review as a conference paper at ICLR 2026

Proof. As in the previous lemma, we define f,(Z) := L {W,") = 0}~HZ<I>(UtT))H2. Also, define

€ = 10(%) From Lemma forall Z, Z € S”*M~1 satisfying | Z — Z||r < €*, we
have

— . i 1 2(1—p)™ — 1 Lyv/Mro,
Z;ft th )= —O(T€ LyVMra,) > —10(T - S 2V o)
1 /(201 —p)T — 1)AT
:710(( ( pi?) ) ). (57)

with probability at least 1 — $, when 7' = Q(log(2/5)). If we select (1 + 2)" points

{21, 24 2 yrar } satisfying (43) with probability at least 1 — W, then it follows that

1%

= 1 /(201 —p)" — AT .
E ft(Z):2Q<( ( p)3 ) )7 VZGZ:{Zl,...,Z(1+%)NW} (58)
t=1

erMfl

with probability at least 1 — g. Then, due to Lemma , every point in is within a distance

of €* from at least one point in Z. In turn, by (57), we have

Z fi(Z i ((2(1 _p; — MT) >0, VZesM-t (59)
holds with probability at least 1 — §. Thus, we replace ¢ in (@4) with W to arrive at
8 2\rM
S ((2(1 ,TpZ;T - 1Og(Q(l +5€*) ))
= (e s (14 2) + s (7))
(@ e () v (5)]) @

where we leveraged Lemma D .4 for the last equality. Note that 7' = Q(log(2/6)) required for (57) is
automatically satisfied with the recovery time (60). This completes the proof. O

In Theorem D.8} we achieve that Do f:(Z) is sufficiently positive after the recovery time given in

(33). Thus, we arrive at the conclusion that when a:( ™) = 0and ¢ = 0 forall £, G* is the unique
solution to the ¢5-norm estimator @ after finite time due to Lemma

We will now generalize for the case of nonzero ng) and €;. Before presenting the main theorem, we
provide the following useful lemma.

Lemma D.9. Suppose that Assumptions and hold. Given § € (0,1], when T =
Q(log(1/9)),

T—7—1
3 |xt||2=o(<““;w>-T) 61)

t=0 1

holds with probability at least 1 — 0.

Proof. Due to the inequality (@) in Assumption 2.1} we have

lzelle = If (@e—1, w1, win)l[2 = - - = [[F(f (- f(f (@0, w0, w0 ), wr, wr), -+ ), o+ )y w1, wi—1) 2
= || f(f(f(zo, w0, wo), ur, w1), -+ ), ), U2y We—2), Ug—1, We—1)
—f(f(f(O,O,O),O,O),“'),"’),0,0),0,0)”2
< ff(f (o, w0, wo), wr, wi), -+ )+ ), U2, We—2), Ug—1, Wi—1)
— f(f(f(z0, uo, wo), w1, wi), -+ ), + ), Up—2, wi—2),0,0)]|2
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+ ||f(f(f(£ro,uo,wo),U1,w1), T )7 T )7ut727wt72)7070)
_’f(f(f($0au03u@)aulvuﬂ)v”')7"')7070)a0,0)”2
+ e
47|Lf(f(f(x07u071U0)7070)7"')7"')70’0)7070)

_'f(f(f(070’0)7070)’"')7"')70’0)7070)”2
(62)

where the equality in the second line comes from f(0,0,0) = 0 and the inequality is due to the
triangle inequality. By Assumption[2.1] the terms in (62) are bounded by

Co(llur—1ll2 + we-1ll2),  CP*(llue—2ll2 + [|we—2])2), - .-,
Co Y (Jlurllz + [[will2),  Cp'(lzoll2 + [luollz + [Jwoll2)-

Thus, we have

t—1
el < Cpllwolla + C D p" (Jluall2 + lJwill2).
i=0
Summing up fort =0,...,T — 7 — 1 yields
T—7—1 T—1—1 T—1—1t—-1

> lmll<C Z p'llzollz +C Z Zp“i(llmllﬁllwi\lz)
t=0 = i=
0o T—7-2

<CZP||$0||2+CZP > (luallz + llwsll2)

i=0
T—1-2 T—7-2

C
Zm[||330||2+ > lwilla+ D> lualls] (63)

i=0 i=0
Consider that
T—1-2

E|exp (0ol ~ Elllzoll) + 3 lwills ~ Effwila]])

E[E[exp (6] leollz — Ellwolls] + Y lhwillz = Ellwilla]] ) | Fr—r—s]|

i=0
E{]E{exp (9(H7~UT72H2_E[||WT72H "FT T— 2}

T—1-3

X exp (9[||:I:o||2 — E[[|zoll2] Z lwill2 — Ef[Jwi||2 ]D]

1=

T—7-3
< exp(0? - 0(02)) - E| exp (0] lwollz — Ellwollo] + > lwilla —~ ElJwill]] )]
i=0
<o <exp(6?-O(To?))
for all § € R, where the inequalities come from applying Lemma [B.2|to Assumption Thus, the

sub-Gaussian norm of ||z |2 — E[[|zo|j2] + X iy l[will2 — E[Jwill2] is O(vTo,). Furthermore,
since the sub-Gaussian norm of ||u;||2 is oy, due to Assumption the sub-Gaussian norm of

U uille — B[Sy uillz] is O(VT ) by applymgLemmaslandl

Denote the term in (63) as S7. Considering the aforementioned sub-Gaussian norms, the sub-
Gaussian norm of Sp — E[S7] is O(\/T "w“’” ) due to the triangle inequality and the homogeneity.
Due to the property (23a), one arrives at

P (50 Bisr) 2 0 (257 1)) 21—y (0 (lr b2 2
=1 —exp(—Q(T)) (64)
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We additionally have
C T—71-2
E[Sr] = fp Elllzolla] + > (Ellluillz] + Eflwill2])]
=0
C Ow + 0y
< — = . A
<1 p[O(Tow +To,)] =0 ( T, T> : (65)

where the last inequality is obtained by applying the property (24a) to Assumptions [2.5] and 2.6
Combining (64) and (63) yields

P(Sng-o(”'i’jZ“-T))21_exp(—Q(T))zl—5 (66)
when T = Q(log(1/6)). Recall from (63) that 3" ||| is bounded above by Sr. This
completes the proof. O

Now, we present our main theorem, which states that the estimation error to identify G* in the system
(B) is bounded by O(p™) when using the £5-norm estimator.

Theorem D.10 (Restatement of Theorem [3.1). Suppose that Assumptions2.1] [2:6] and 28|
VMTtLyoy

—
Let G* be the true matrix governing the system () and G denote a solution to the 5-norm estimator

given in (I12). Given ¢ € (0,1], when

hold, and that the approximation error vector satisfies ||€;||2 < € for all t. Consider v :=

T8 TV 1
r=9 <<2<1 1 [’"Mbg (2(1 - 1) o (6>D ’ ©n
we have
cplp=o((fL qutow EY ¥
I _GT”F_O(< A 1y +A> 2(1—p)T—1> ©®

with probability at least 1 — 0.

Proof. The optimality of G to the £5-norm estimator (T2)) for the system (8) yields

T—1
Gr = argmin Z H(G* -G)- @(Ut(T)) + Wt(T) +ai” 4 et‘ 0
@ t=r1
which implies that
T—1
> @ = Gr2@”) + W7o 7 + ez (69)

T-1 T-1
<M E = e+ W +a” tell: < ST IWST + 27 + el (70)

t=1 t=1

< STUW o + [l + ell2, (71)

where (70) uses the optimality of G and the other inequalities are from the triangle inequality. By
rearranging, we have

T—1
STIGE = Gn)eUT) + W s — Wl <237 a7l + e, (72)

t=7
where the inequality i () 4
quality is by (69) and (7I). Recall from Lemma [2.3[that ||, |2 < CLp"||@i—+||2.
Then, we can establish that
T—71-1

22 {7l < 22 CLp"||2i—r |2 = 2 Z CLp" |[at|- (73)
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Given the time (67), the right-hand side of is upper bounded by

2o (S te) )

with probability at least 1 — Wthh follows from Lemma- and ||et |2 <&
We now aim to lower bound the left-hand side of (72) given the time (67). Inspired by (33), we have

T-1

Zn DU+ Wl — W2 2 Y 1AW, = 0} (G — Gr) - (U)],
t=T1
= |G* = Grlr - L AW, = 0} | ——=L— . o(U")
||G* GTHF ",
. (2(1 —p)” —1)-AT
— 16"~ Gl -0 (2

where the first equality comes from the homogeneity of the ¢5-norm, and the second equality holds
for any G* — G with probability at least 1 — § due to Theorem

Thus, with probability at least 1 — §, we have

|G*_GT|F~Q((2(1_ . AT) 2'0(<W+G>T>’

which can be rearranged to

6=l =0 ((“Hp ) ) i)

This completes the proof. O

E PROOF OF THEOREM

Proof. Let Mt denote the maximum consecutive attack-free time length during¢ = 0,...,7 —1
under the attack probability Tlﬂ’ which satisfies Assumption E Then, due to the union bound, we
have

T—1 T-1 l
1
P(Mr >1) < P(no attack occurs from time ¢ to ¢ + 1) = Z <1 = 1> . (74)
t=0 t=0 T+
For the right-hand side to be less than §, we have
l
1 log(T'/6
T(1- <d = 1> L/)l
Since we have —log(1 — ) :m+m—;+%3+-~- <z+a?+ad4. =75 < 2zfor|z| < 3, it
follows that
log (T'/6 T
leg(Q/)zrlog<>.
27+1 6
Thus, we arrive at
T
IP’(MT<Tlog<5)> >1-9 (75)
Now, consider the following functions f,g : R — R:
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which satisfies Assumption [2.1] Then, as in (3)), the observation y; can be written as

ytzg(f(~-~f(f(xt o Uty Wy )y U 1, Wy—gg 1)y 5 U1, We—1), Uy )
=L(p(---plp(xt—r + Up—r +Wer) F Up—rq1 + Werp1) - F U1 +we—1) + 1) (77)

Suppose that control inputs u; are chosen independently from {—1,1} with equal probability for

allt =0,...,T — 1, which satisfies Assumption Given a finite o, = (%)Q(T log(T/ 6)), start the
system with x¢ = o, and let the disturbance w; also be o, whenever the attack occurs at each time ¢,
which satisfies Assumption [2.6] Note that the dynamics f shrinks the system by a factor of p. Then,
considering (73), one can ensure that adversarial attacks yield z; > 1 forallt = 0,...,7 — 1 with
probability at least 1 — . In this case, we can also rewrite (77) as:

yr = L(p(--- p(B(p(xi—r + Ut—r + Wi—r)) + Upmrp1 + We—rg1) -+ Upm1 + Wi1) + Uy),

(78)
where
tanh(x), fol<a<l,
B(x) = ¢ tanh(1) (79
x, otherwise,

which is a Lipschitz continuous function. The expressions in (77) and (78) have exactly the same
function value since p(zt—r + ut—r + We—r) = T¢+—r41 > 1 under adversarial attacks. In other
words, one cannot distinguish between the two expressions (77) and (78). For each expression, the
natural input-output mapping as in (6)) would be

Lp(- - p(p(tt—r) + w—ry1) -+ +up—1) +up) and (80a)
L(p(- - p(B(p(wt—7)) + Ut—ri1) -+ ug—1) +ut), (80b)
respectively. Define the constant
el tanh(p) ’
ptanh(1)

where one has 0 < ¢ < 1 under 0 < p < 1. Then, the absolute difference of (80a) and (80b) is

calculated as
Lp™ pus—r — Blpus—r)| = L™ Hp = Blp)| = Lp"¢,
since u;_, is selected from —1 and 1, and 3(z) is an odd function. Now, let the basis function be

My _ | LpC - plp(ue—r) + wp—rg1) -+ 4 ws—1) + we)
e = [L(P(' —p(B(p(ur—r)) + Ut—t+1) cotug) Fug) |

which consists of (80a)) and (80b). This implies that the approximation error vector is designed to be
€ — 0.

Since the expression (80a) is the input-output mapping of the true system (77)), the true matrix G* in
@) is[1 0]. However we again recall that under adversarial attacks, any estimator cannot distinguish
(78) from (77), and may instead recover the input-output mapping of the alternative system (78),

resulting in the estimate Gy = [0 1]. This always leads to an estimation error of v/2.

Now, it remains to calculate \ in Assumption[2.4] Let y denote the variable in (80a). Then, we have
E [o@)oU”)] = [ CARtIASH | |

)
= B [W (y+ LpTc) (§V++Lipc)c )] 3 { (v ’ 2L,OTC) (y LipC)C)H

= Hvz 0a +ZL2P mc)? ” e

Note that E[vy?] = L >"7_, p* due to the independence of control inputs and the fact that E[u?] = 1
for all ¢. Let fimin denote the minimum eigenvalue of @) We have

o E[2v2] + (Lp"c)? \/IE 2922 + (Lp7e)* _ E[2+?] - (LpTc)?
- E[29?] + (Lp7e)? + VERY?]? + (Lp7c)*
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9E[2] - (Lp™c)? _ B’ (Lpe)’
E[2y?] + (Lp7c)? + E[292] + (LpTc)?  E[292] + (LpTc)?
ER?] - (LpT¢)* _ (LpTe)

>

~ E[29?] + E[?] 37
where the first inequality comes from E[2v2] + (Lp7c)? > ‘]E[272]2 + (LpTc)* and the second

inequality is due to E[y?] > Lp™ > Lp"c. Thus, Assumption|2.4is satisfied with A\ > L”—\/%C. In other
words, the derived estimation error v/2 is always lower-bounded by
Lp™ 2 Lp™
alZe=0
AN ( ) ) ’
which completes the proof. O

F NUMERICAL EXPERIMENT DETAILS

In this section, we will present experiment details on Section4] Apple M1 Chip with 8-Core CPU
is sufficient for the experiments. The error bars (shaded area) in all the figures in the paper report
95% confidence intervals based on the standard error. We calculate the standard error by running 10
different experiments by generating 10 random sets of matrices A, B, C, and D and using random
adversarial disturbances for each experiment.

We use the following parameters for the system (20): the state dimension n = 100, the control
input dimension m = 5, the observation dimension r = 10, and the time horizon T = 500. For
the function o that defines f(x, u;, w¢) = o(Axs + Buy + wy), we run the experiments with two
different o

o(x) =tanh(z) or o(z) =sgn(z)-log(|z|+1). (82)

Both functions are symmetric around the origin, monotonic, and 1-Lipschitz, which are desirable
for activation functions of a neural net. Note that the first function is bounded within [—1, 1], while
the second function is unbounded. We analyze both options to determine whether the boundedness
affects the behavior of the estimation error.

Based on random matrices A € R100x100 B ¢ R100x5 & ¢ RI0X100 459 D ¢ R10%5 for each
experiment, we build the true input-output mapping for different o options and approximate the
mapping to be a linear combination of basis functions as:

o(Co(Ao(--o(Ao(Bus_r) + Buy_r41) -+ ) + Bug_1) + Duy) = G* - o(U'”).  (83)

To this end, we use kernel regression to estimate the true G* and construct the kernels (basis functions)
®. The number of kernels used as basis functions is set to M/ = 25. We leverage polynomial kernels
of degree up to 3, and select the regularization parameter from [0.0001,0.001,0.01,0.1, 1, 10, 100]
based on the one that minimizes the test mean-squared-error. The training and test datasets, split in
an 80:20 ratio, are randomly generated from the control inputs whose entries are Unif[—15, 15] and
the corresponding function values based on the left-hand side of (83).

Starting from the initial state xyp = 1001149, we generate the observation trajectory yo, - - . , Y7—1.
Here, 1) is the vector of ones with a relevant dimension. Defining acf5 as the it coordinate of z;,
when the system is under attack, the adversary selects each coordinate w; of the disturbance w; to be
sgn(xl) - 7, where v ~ N(300, 25) if ¢ > 0, and v ~ N (1000, 25) otherwise. The control inputs
uy are selected as either one of the following:

u; ~ N(0,100I5) or w; ~ Unif[—8,10]°. (84)

The first is standard zero-mean Gaussian inputs, and the second is nonzero-mean non-Gaussian inputs.
We show that both inputs work properly in our setting, in contrast to prior literature that requires
zero-mean Gaussian inputs (see Table|[T).

The observation trajectory yo, . . . , yr—1 generated by (20) depends on the hyperparameters 7 and p.
The input memory length 7 affects not only the complexity of (B3] but also the attack probability p at

each time. We set p = ﬁ, which satisfies Assumption Moreover, note that p is generated by
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Least-squares, Gaussian inputs £ynorm, Gaussian inputs T=5 p=05

£y-norm, Uniform inputs

=35 p=02
=10, p=05
=10, p=0.25

Least-sqqares, Uniform inputs

200 £ynorm, Gaussian inputs 40

Lrnorm, Gaussian inputs

£rnorm, Uniform inputs

—— Cynorm, Uniform inputs
—— C.norm, Gaussian inputs

{,-norm, Uniform inputs

50 100 150 200 250 300 20 10 60 30 100 120 110 50 100 150 200 250 300
time 7 time T time T

(a) Comparison of Least-squares (b) Comparison of the £,-norm es- (c) Analysis of 7 and p effects un-
and /2-norm estimator timators (o = 1, 2, 00) der non-Gaussian inputs

Figure 3: Estimation error of the input-output mapping (21)) under adversarial attacks under the
activation function sgn(z) - log(|z| + 1).

—— fnorm, 5 obs —— ¢rnorm, 5 obs
“ —— foenorm, 5 obs ) —— fynorm, 5 obs
’ —— Cymorm, 5 obs —— ¢;norm, 5 obs
= {y-norm, 100 obs —— {y-norm, 100 obs
- 40 = {,-norm, 100 obs . 10 —— {oenorm, 100 obs
= —— {ynorm, 100 obs ? —— {ynorm, 100 obs
“‘7 30 ~ 30
& I8
T2 T2
10 10
0 0
50 100 150 200 230 300 50 100 150 200 250 300
time 7' time T'
(a) Activation function tanh(z) (b) Activation function sgn(zx) -
log(|z| + 1)

Figure 4: Estimation error of the input-output mapping (ZI) under adversarial attacks with the
two activation functions to analyze how the observation dimension r affects £,-norm estimators
(a=1,2,00).

adjusting the spectral radius of the matrix A. Since both ¢ are 1-Lipschitz functions, p in Assumption
2.1]coincides with the spectral radius of A (see Remark [2.2).

Our first experiment compares the /5-norm estimator with the commonly used least-squares under
7 =5 and p = 0.5. We consider both cases of control inputs given in (84). Based on the observation
trajectory, we evaluate the following two estimators using the MOSEK solver (MOSEK ApS| [2025):

T-1
argming ’
G t=1

Our second experiment additionally compares the {5-norm estimator with the ¢;-norm estimator and
the /.,-norm estimator:
T-1 T-1

argénin Z Hyt -G- (I)(Ut(T))H1 and argénin Z Hyt -G- <I)(Ut(7))H
t=1 t=1

v~ o).

T-1
y— G- (IJ(Ut(T))Hz VS. argénin ; ’

o

Our third experiment analyzes the effect of 7 and p on the /5-norm estimator under nonzero-mean
uniform inputs, where we consider 7 € [5,10] and p € [0.25,0.5]. Note that all experiments were
conducted for both activation functions given in (82)).

The experiments using o(z) = tanh(z) are shown in Figure [2] and those with o(z) = sgn(z) -
log(]x| + 1) are presented in Figure As noted earlier, the two functions differ in their boundedness.
In both Figures 2(a)] and 3(a)} one can observe that the {>-norm estimator accommodates both
Gaussian and uniform inputs and arrive at a similar stable region, unlike the least-squares estimator.

Furthermore, both Figures[2(b)|and [3(b) demonstrate that all norm estimators accurately recover the
true matrix G*, with the /3-norm estimator achieving the smallest error among them. This supports
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the findings in Remark [3.4] which states that only the ¢5-norm estimator attains the optimal error (T4)
that matches the lower bound presented in Theorem 3.5]

The discrepancy in the estimation error with respect to 7 and p can clearly be observed in Figures
and[3(c)] where the estimation error using the ¢>-norm estimator decreases as 7 increases and p
decreases, which is consistent with our theoretical optimal error of O(p™). These findings remain
valid regardless of the boundedness of the activation function o.

The last experiment given in Figure f] shows how the observation dimension r may affect the
performance of the estimators. In addition to the second experiment comparing the {5-norm estimator
with the ¢1-norm and ¢.,-norm estimators, we also test the effect of r. To be specific, we compare the
partially observed case with the fully observed case; using the observation dimension = 5 or 100.
Note that » = 5 represents the partially observed case, whereas » = 100 represents the fully
observed gase since r = n. Accordingly, the dimension of relevant matrices will be C' € R"*1%0 and
D e R"™°.

The results presented in both Figures fi(a)] and [A(b)] show that increasing r leads to higher estimation
error for all three estimators (¢, 1, and ¢, ), which agrees with the theoretical results for the ¢1-norm
and /,.-norm estimators, while the trend for the /5-norm is somewhat milder (see Remark @)
Although not perfectly consistent with the analysis that the />-norm estimator may not suffer from
increasing r, the -norm estimator remains the least susceptible among the three and continues to
achieve the lowest estimation error for a large value of r—fully observed case.

G NUMERICAL EXPERIMENT ON POWER SYSTEMS

The core assumption of this paper is Assumption[2.8] which states that attack times are sparse, yet the
adversary can exploit the full information history at each attack instance. In this section, we illustrate
how our setting applies to the real-world systems, and aim to identify the input-output mapping
of nonlinear swing dynamics in power grids to show how control inputs to the power system (i.e.,
mechanical power injections to each node) influence outputs in the presence of adversarial attacks,
given only partial observations (i.e., frequencies and rotor angles measured at a limited number of
nodes). Below are the symbols related to the power grid.

Symbol Description

M; Inertia constant

D; Damping coefficient
|E;| Magnitude of the internal voltage of the generator ¢
B;; Susceptance between nodes ¢, j

w; Mechanical power injection to generator ¢

w; Adbversarial attack applied to generator ¢

0; Rotor angle of generator %

0; Rotor speed of generator ¢

In the power grid applications, consider nonlinear swing dynamics consisting of n different generators:

Mzél + Dl(Sz = h(uz,wz) — Z |El||E7|B” sin(éi — 5]‘), 1=1,...,n, (85)

j=1

where M;, D, |E;|, B;;, Gi; are unknown parameters of generators, and d;, §; are states (generator’s
rotor angle and rotor speed), u; is the control input (mechanical power injection to each generator) at
node 7, and wy; is the disturbance applied to each node . The dynamics imply how ¢th generator is
affecting and being affected by jth generator, forall 7,57 =1,...,n.

Given the dynamics (83), the goal of the control is to settle every generator’s rotor speed d; to the
nominal grid frequency (e.g. 60Hz in the US); synchronization to turn a collection of individual
rotating machines into a single, coherent power-delivery system. Each machine in the grid is
dynamically coupled to every other machine, since when you speed up one generator, then the extra
power is also applied to every other generator, and then they shift their angles to propagate that power
into the rest of the loop, aiming to settle to new angles and back to 60Hz.
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Most of the time, the system remains robust, but if undetected disturbances slip through, the system
may become destabilized. To this end, we need system identification in the presence of infrequent
attacks, where each attack can have an extremely large magnitude. In particular, we need to find the
input-output mapping regarding all generators ¢ = 1, ..., n. The goal is to identify the input-output
mapping of the power grid even in the presence of adversarial attacks, where an adversary gains
access to the mechanical power injection channel and can inject a malicious perturbation. When a
stealthy attack is injected, it will propagate across all grids, causing growing oscillation.

We approximate the dynamicsto a discrete-time dynamics with approximating sin(d; — d;) ~
d; — ¢;. With a sampling time of ¢, = 0.001, the approximation of sin and cos functions are justified.
For time ¢, we can write

1

(1) = v () +ts - —
wlt+1) = () + 1

(i (t), wi(t)) — Z |Eil|E5] Bij (6:(t) — 6;(t)) — Divi(t) |
where v; = 51

For parameter values, we set M; € [2,9],D; € [0.2,1.8], |E;| € [0.95,1.10], B;; € [5,15](B;; =
Bj;) for n different nodes.

The relevant system is then

Fo1(t 4 1)7 [01()]
1 tsl
Gn(t+1)| _ ° dn ()
mt+1)| = K I—t.M-D ny| TE®, (86)
_Vn(t.+ ]-)_ _Vn:(t)_

where M = diag(M,,...,M,), D = diag(D1,...,D,), and K € R™ "™ has entries of

Ky = -2 Z?_?, |Ej|Bi; and K 1+ |Ei||Ej|Bij for i # j. Finally, H(t) =
Ve
0, ---,0, ﬁh(m(t), w(t)), -+, Jffn h(un (1), w, ().
Alternatively define H(t) = [0, -+, 0, G2h(ui(t),0), -+, GP2h(un(t),0)]”, and let A =
1 0.011 . .
B 7_M'D| Recursively applying the system (86) leads to
100
_(51 (t)_ _51 (t — T)_
5.0 Hal B P
n(t)| _ 2 r—1 . o —17
n( | THAAT AT AT )
) H(t—7) .
Ln(t)] Ln(t —7)]
We assume that we can only observe first 7 < n generators; i.e.~51, ceeOpy v, oy Ure Thus, the goal
is to retrieve Ist to rth row, (n + 1)th to (n + r)th row, given H(t — 1),---, H(t — 7), where each
H is a unattacked version of H and we know the structure of /(-,0). The £2-norm estimator finds
[61()]
_ 5 H(t—1)
T+7—1
. 0r (1) .
cein, D | ¢
t=r . H(t—1)
LVr (t)_ 2
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Figure 5: Estimation error of the input-output mapping of nonlinear swing dynamics (83)) under
adversarial attacks. We compare the performance of the ¢5-norm estimator, ordinary least-squares
method, and the pre-filtered least-squares method.

We design the attack vector w; () to leverage the information of the control input u;(¢). At attack
times, the adversary selects

100
0 | sin(100¢ — 200)],

wi(t) = 1 1 ¢—10000u;

which yields a large positive value when u;(¢) > 0, and a large negative value otherwise.

To identify the input-output mapping [I A A? --. A7~!], we now compare three methods: the
{5-norm estimator, ordinary least-squares (OLS), and the pre-filtered least-squares method. The
{o-norm estimator and OLS can respectively be written as

[61(t)] [01(1)]
B : At —1) B : H(t—1)
T+7—1 T+7—1
. 5. (t , . 5, (t .
e DO | et ) B I S et el B
ek t=r : At — ) ek t=r : A(t—7)
v (1) ] 2 Lvr (1)

. We also test the performance of a simple version of the pre-filtered least-squares proposed in
Simchowitz et al.|(2019) can be written as the two-stage least-squares:

[61(2)7 o1 (t— )77
T+7-1 .
. . 0r(t) on(t —7) )
K = K %
mgmin 3| =K = ||+ 1K
Lvr (1) L (t—7) )
[o1(t) [0y (t —7) 2
i 5 : H(t—1
. T+7—1 (5T<t) i 67‘(t —7) . ( ' )
— GingQEIQET vi(t)| nt—7)| ~ i
t=71 . . H(t _ 7_)
o Lt — 7). )

Figure | demonstrates that the £>-norm estimator outperforms the other estimators, which supports
the main theme of our paper. In contrast, ordinary least squares is designed to handle only i.i.d.
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zero-mean disturbances, and thus its poor performance is expected. Moreover, the pre-filtered least
squares method requires the disturbance w; to be F;_--adapted (see Eq. (1.1) in|Simchowitz et al.|
(2019))), meaning that each disturbance cannot depend on the most recent 7 steps of information
history, which is indeed not completely adversarial. In our experiments, attacks were designed to use
the most recent inputs, violating this requirement. This explains why the ¢5-norm estimator performs
well under Assumption 2.8} sparse attack times, yet each attack is F;-adapted at attack times ¢.
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