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ABSTRACT

Phase retrieval is the inverse problem of recovering a signal from magnitude-only
Fourier measurements, and underlies numerous imaging modalities, such as Co-
herent Diffraction Imaging (CDI). A variant of this setup, known as holography,
includes a reference object that is placed adjacent to the specimen of interest be-
fore measurements are collected. The resulting inverse problem, known as holo-
graphic phase retrieval, is well-known to have improved problem conditioning
relative to the original. This innovation, i.e. Holographic CDI, becomes crucial
at the nanoscale, where imaging specimens such as viruses, proteins, and crys-
tals require low-photon measurements. This data is highly corrupted by Poisson
shot noise, and often lacks low-frequency content as well. In this work, we in-
troduce a dataset-free deep learning framework for holographic phase retrieval
adapted to these challenges. The key ingredients of our approach are the explicit
and flexible incorporation of the physical forward model into an automatic differ-
entiation procedure, the Poisson log-likelihood objective function, and an optional
untrained deep image prior. We perform extensive evaluation under realistic con-
ditions. Compared to competing classical methods, our method recovers signal
from higher noise levels and is more resilient to suboptimal reference design, as
well as to large missing regions of low frequencies in the observations. To the best
of our knowledge, this is the first work to consider a dataset-free machine learning
approach for holographic phase retrieval.

1 INTRODUCTION

Phase retrieval is a nonlinear inverse problem that arises ubiquitously in imaging sciences, and has
gained much recent attention (Shechtman et al., 2015). In this work we focus on a practical instance
of the problem that arises in Coherent Diffraction Imaging (CDI). Here, holographic phase retrieval
consists of recovering an image X0 ∈ Rm×n from a set of squared Fourier transform magnitudes

Y = |F (X0 +R0)|2 , (1)

where F denotes an oversampled Fourier transform operator and R0 ∈ Rm×n is a known reference
image whose support does not intersect the support of X0. The known reference image R0 distin-
guishes holographic phase retrieval from the (classical) phase retrieval setting, where the goal is to
recover X0 from |F (X0)|2 alone. We focus entirely on the holographic version of the problem in
realistic conditions: with high noise levels and missing low-frequency data. The advantage provided
by the holographic reference is briefly illustrated on in Figure 1.

In the remainder of this introduction we will situate this problem in the context of Coherent Diffrac-
tion Imaging, review related works, and list our contributions. Section 2 describes our setup in
detail, and Section 3 our reconstruction strategy. In Section 4, we describe extensive experiments
and compare to several baseline methods. Section 5 concludes with a general discussion.

1.1 HOLOGRAPHIC COHERENT DIFFRACTION IMAGING AND PHASE RETRIEVAL

Coherent Diffraction Imaging (CDI) is a scientific imaging technique used for resolving nanoscale
scientific specimens, such as viruses, proteins, and crystals (Miao et al., 1999). In CDI, an image
is sought to be reconstructed from X-ray diffraction measurements recorded on a CCD detector
plane. By the far-field approximation of optical theory, these measurements are approximately pro-
portional to the squared magnitude values of the Fourier transform of the electric field within the
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Figure 1: The advantage of using a reference for phase retrieval at Np = 1 photon/pixel. Two algo-
rithms, are applied to reconstruct from Fourier magnitude data of image alone and image+reference.
Comparing between algorithms, HIO and our HolOpt-P, observe the higher-quality reconstruction
when the reference is present. (VIRUS image courtesy of Ghigo et al. (2008))

diffraction area. Thus, the specimen structure (e.g., its electron density) can be determined, in prin-
ciple, by solving the phase retrieval problem. Holographic CDI is a popular setup to perform CDI
experiments in which the object undergoing diffraction physically consists of a specimen together
with a “reference”, i.e. a portion of the object a priori known. This setup is illustrated in Figure
2. The inclusion of a reference in the CDI setup both enhances the quality of image reconstruc-
tion, and greatly simplifies the analysis and solution of the corresponding phase retrieval problem
(Barmherzig et al., 2019).

Nevertheless, holographic CDI remains challenging in practice. Due to the quantum mechanical
nature of photon emission and absorption, CDI measurements are inherently corrupted by Poisson
shot noise. The severity of this noise corruption is inversely proportional to the strength of the X-
ray source in use, which is in turn quantified via Np, the number of photons per pixel reaching the
detector plane. Nanoscale applications of CDI often necessitate imaging in the low-photon regime,
where measurements are highly corrupted by noise. CDI measurements are also typically lacking
low-frequency data, due to the presence of a beamstop apparatus which occludes direct measurement
of these values (He et al., 2015).

The holographic phase retrieval problem is commonly solved by inverse filtering (Gabor, 1948;
Kikuta et al., 1972), which amounts to solving a structured system of linear equations. While
straightforward, this method is not well-suited for noisy data. Wiener filtering (Gorkhover et al.,
2018) is a variant on this method with some denoising ability. Yet Wiener filtering is derived to
account for an additive noise model — an assumption which is not true for Poisson shot noise at low
photon counts, and only holds as an approximation at high photon count levels (Salditt et al., 2020).
These methods do not account explicitly for missing low-frequency data, and require a minimum
separation between the specimen and the reference objects, the holographic separation condition
(see Section 4.3). The most popular algorithm for the classical phase retrieval problem is the Hybrid
Input-Output (HIO) algorithm (Fienup, 1978), which can as well be adapted to the holographic
setting.

1.2 RELATED WORK

Machine learning for inverse problems Increasing research effort has been devoted to addressing
inverse problems, even beyond phase retrieval, with deep learning approaches (see Ongie et al.
(2020) for a recent review). Supervised strategies can be broadly divided into four main categories:
end-to-end methods, (e.g. McCann et al. (2017)), “unrolling” algorithms (e.g. Meinhardt et al.
(2017)), pretrained image denoisers (e.g. Romano et al. (2017)), and learned generative models as
highly informative priors (e.g. Tramel et al. (2016)). All of these approaches require a training set,
containing either matched signal-observation pairs or simply typical signals, with a large number of
data points. The reconstruction improves drastically when this information is available. However,
it is often unrealistic to assume such prior knowledge on the measured signal. Recently, for the
reconstruction of images, it was found that untrained generative neural networks with appropriate
architectures can still be efficient priors (Lempitsky et al., 2018; Heckel & Hand, 2019). By adjusting
their parameters to fit a single output observation, they do not require a training set, and instead
encourage naturalistic images due to architecture alone. In this paper we focus on the last approach,
as it is widely applicable to image data and satisfies our requirement of applicability in a realistic
setting.
Machine learning for phase retrieval More specifically, several variants of the phase retrieval
problem have received attention in the context of machine learning for inverse problems. Com-
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(a) Experimental setup. (b) The zero-padded data and its
measured Fourier magnitudes.

Figure 2: Holographic CDI schematic. The upper portion of the diffraction area contains the speci-
men of interest X0, and the adjacent portion consists of a known “reference” R0. The recorded data
Y has its low frequencies occluded by a beamstop. (Image courtesy of Saliba et al. (2012).)

pressive Gaussian phase retrieval, where one observes the amplitude of random complex Gaussian
projections of the signal, is a popular setting in the machine learning community. It is easier than
the Fourier phase retrieval problem and often more amenable to theoretical analysis (see e.g. Aubin
et al. (2020)). For this version of the problem, trained generative models such as Generative Adver-
sarial Networks (Shamshad & Ahmed, 2018; Hand et al., 2018), as well as untrained priors (Jagatap
& Hegde, 2019), were found to be very effective on machine learning toy datasets. An increas-
ing number of works now consider the more realistic problem of Fourier phase retrieval. Using
pre-trained Gaussian denoisers and iterative algorithms, Deep prior-based sparse representation (Shi
et al., 2020), prDeep (Metzler et al., 2018) and Deep-ITA (Wang et al., 2020b), are solutions robust
to noise in the case where the corruption is small enough to be approximately Gaussian. The end-
to-end solution investigated by Uelwer et al. (2019) features some robustness to Poisson shot noise,
but struggles to generalize to complicated datasets. Meanwhile, the “physics-informed” architec-
ture of Goy et al. (2018), which includes information about the data generating process, is shown
to perform well on realistic signals at very low photon counts, but requires a few thousand training
examples. Closer to our work, Wang et al. (2020a) proposed a U-net and Bostan et al. (2020) tested
the deep decoder, both untrained neural networks, for Fourier phase retrieval, but did not consider
the holographic setting. To the best of our knowledge, Rivenson et al. (2018) is the only proposition
considering holography, showing that deep neural networks trained end-to-end on a dataset of a few
hundred images lead to state-of-the-art performance.
Other optimization approaches The use of auto-differentiation for Fourier phase retrieval was
initiated by Jurling & Fienup (2014), while the convenience of deep learning packages was exploited
later (Nashed et al., 2017; Kandel et al., 2019). However, none of these works considered the Poisson
likelihood objective, nor holography, nor neural network priors. Recently, Barmherzig & Sun (2020)
pointed at the potential of likelihood optimization for holographic phase retrieval.

1.3 OUR CONTRIBUTIONS

We address the holographic phase retrieval problem in the low-photon regime using a Poisson max-
imum likelihood framework and recent insights in machine learning for inverse problems. Our
strategy combines three key ideas: (i) a realistic physical and noise model for CDI, (ii) auto-
differentiation and efficient optimization readily available in a package like PyTorch (Paszke et al.,
2019), and lastly (iii) the option to add a neural network prior. We (a) compare these methods to
baselines exploring several experiment challenges; (b) demonstrate significant improvements at dif-
ferent noise levels; (c) investigate the impact of missing low-frequency data on our methods, and
show that ours are more robust than baseline methods; (d) investigate the impact of the distance
between object image and reference image on reconstruction quality, showing that our proposed
method can easily deal with distances below the holographic separation condition. Finally, we (e)
provide a Python package1 to run our implementation.

1URL to be disclosed after anonymous review, please find the code in the Supplementary Material.
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2 HOLOGRAPHIC CDI SETUP

The data generation process mimics the key components of a holographic diffraction experiment as
realistically as possible, namely by including two crucial ingredients: the Poisson shot noise model
and the beamstop occluding low-frequency measurements.
Coherent diffraction imaging Let Z ∈ Rm×n represent a realm×n-pixel image. As explained in
Section 1.1, the recorded CDI measurements can be approximated by the square of the oversampled
Fourier transform magnitude of the object image. Here, we assume an oversampling factor of two,
which is the minimum oversampling factor theoretically required for perfect reconstruction in the
noiseless setting (Hayes, 1982). Let F : Rm×n → C2m×2n be the doubly oversampled discrete
Fourier transform operator. F (Z) can be implemented as the discrete Fourier transform of a zero-

padded version of Z. Let Z̃ =

(
Z 0
0 0

)
∈ R2m×2n. Then let F (Z) = F(Z̃), where F

is the discrete Fourier transform operator. The intensity distribution at the detector is defined as
I(Z) = |F (Z)|2 (where the absolute value here is understood in the pointwise sense).
Beam stopping A beam stopping mask, or “beamstop”, is defined as B ∈ {0, 1}2m×2n such that
it takes the value 0 in a region of low frequency and 1 everywhere else. The beam-stopped intensity
image can then be written as I(Z)�B, where � represents pointwise multiplication.
Measurement process Let Np > 0 represent the expected mean number of photons incident per
detector pixel. Then (2m× 2n)Np is the expected total number of photons incident on the detector.
The measurement data Y ∈ R2m×2n is set to

Y ∼ C

Np
Poisson

(
Np
C
I(Z)�B

)
. (2)

The inner normalization constant Np/C ensures that the simulated setting corresponds on average
to the measurement of Np expected photons per pixel. The outer normalization constant is applied
to make Y be of the same order of magnitude as I(Z)�B.
Holography setup We structure Z into an unknown object X , and a known reference R. The
setting we will use throughout this paper is as follows (see also Figure 2). Let X,R ∈ Rm×m,
and set X0 = (X|0m×m|0m×m),R0 = (0m×m|0m×m|R) with X0,R0 ∈ Rm×3m. Then Z =
X0 +R0 = (X|0m×m|R). The region of zeros 0m×m separating object and reference represents
the holographic separation condition. It is not necessary for our proposed methods (see Section
4.3), but required for several baseline methods. Thus to ensure a fair comparison, the separation
setting will be our standard setting.

3 A RECONSTRUCTION STRATEGY ADAPTED TO LOW-PHOTON CDI
We propose to maximize the likelihood of the measurements Y given the underlying image X and
the CDI model above. This objective involves the likelihood of the Poisson-distributed measure-
ments, accounting for the nature of noise in the low-photon regime, as well as the full forward
model (including reference and beamstop): X̂ = argmax

X
log p(Y |X, Np), where the distribution

of Y conditional on X is given by Equation 2. Replacing the expression of the Poisson distribution
and dropping constants yields

X̂ = argmax
X

∑
ij|(B)ij=1

Yij log I ((X|0m×m|R))ij − I((X|0m×m|R))ij . (3)

where the sum is taken only over non-zero entries of the beamstop mask. The optimization of this
objective is performed directly using gradient ascent in PyTorch.

We investigate two strategies. The optimization is done either directly over the pixels of X , as in
Equation 3, or over the parameters of a deep decoder neural network prior encoding X (Heckel &
Hand, 2019). We refer to these two variants as HolOpt-P for holographic Poisson likelihood opti-
mization, and HolOpt-P-DD for holographic Poisson likelihood optimization with a deep decoder.

The deep decoder belongs to the class of untrained image priors: neural networks with image-shaped
outputs trained by gradient descent to output one single image. The architecture of the network
imposes an inductive bias favoring natural image statistics.
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Figure 3: Reconstructed CAMERA by the various compared algorithms as a function of photon
count Np, with binary random reference and without beamstop. Images correspond to the best of 10
runs in terms of residual error. See Figures 11, 12, and 14 in Appendix B for VIRUS, COIL1, and
COIL100 images.
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Figure 4: Reconstruction errors and residual errors for CAMERA (left two panels) and VIRUS
(right two panels), as a function of the photon count Np with a binary random reference and without
beamstop. See Figures 13 in Appendix B for a similar figure for COIL1 and COIL100.

To formally describe HolOpt-P-DD, we denote by σ(ϑ, z) the output of the deep decoder, where z
corresponds to a fixed latent image and ϑ = (ϑ1, · · · , ϑd) represents all the parameters ϑi of the
convolutional layers of a deep decoder of depth d. We review the architecture of these networks in
more detail in Appendix A. For HolOpt-P-DD, we set X = σ(ϑ, z) and train all ϑi in ϑ. In this
second case the objective can be re-written as

ϑ̂ = argmax
ϑ

∑
ij/(B)ij=1

Yij log I((σ(ϑ, z)|0m×m|R))ij − I((σ(ϑ, z)|0m×m|R))ij . (4)

The reconstructed image is then the output of the deep decoder X̂ = σ(ϑ̂, z) after training on a
single magnitude image Y .

4 EXPERIMENTS

Data Our strategy is demonstrated on the following images. CAMERA is a traditional benchmark
in signal processing, here resized to 128 × 128 pixels, while VIRUS (Ghigo et al., 2008), resized
to 256 × 256 pixels, is a more realistic biological sample. We also consider the COIL100 dataset
(Nene et al., 1996) which contains 100 objects on a black background with 128×128 pixels (COIL1
being the first image). We explicitly zero out the background such that the support of the objects
is not perfectly known. In contrast to non-holographic phase retrieval, a good reference should
disambiguate the position of the sample within the frame. Hence, COIL100 allows us to test the
robustness of the different algorithms to reference design. All images are converted to gray scale.
Benchmark setup The strategy proposed in this work is compared against three algorithms for
holographic CDI: inverse filtering, Wiener filtering and Hybrid Input-Output (HIO) modified for
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Figure 5: Our methods and baselines evaluated as in Figure 4 on the COIL100 dataset.

holographic phase retrieval, here referred to as HIO-Holo. We further augment HIO-Holo by select-
ing the best residual reconstruction over all iterations, to give it the fairest possible chance in our
comparison. As discussed in Section 1.2, there is no comparable machine learning method that can
be used here as a benchmark. However, we test variants of HolOpt-P and HolOpt-P-DD, termed
HolOpt-S and HolOpt-S-DD respectively, in which mean squared error (MSE) is optimized instead
of the Poisson likelihood. At high photon counts (low noise), Poisson noise is well-approximated by
Gaussian noise and the two objectives are expected to perform similarly. However, their difference
becomes significant at lower photon counts (high noise). The benefits of taking into account the
Poisson nature of the noise are shown in experiments below.
Hyperparameters We use the Adam optimizer (Kingma & Ba, 2015) and learning rates varying
between 0.01 and 0.1, depending on the loss and prior. For deep decoders, we observe the number
of channels to marginally change the outcome of the reconstruction, while varying the depth of
the prior trades off precision of the reconstructed edges and finer details (shallower) with spatial
regularity (deeper). Practitioners are encouraged to select it by visual inspection. Within image type
and noise level, we observed a fixed architecture to yield consistent results. For optimal settings
(Table 1) and a visualization of the effect of depth see Appendix A.2.
Evaluation Algorithms are compared in terms of relative reconstruction error, Euclidean distance
between the reconstructed X̂ and ground truth specimen X normalized by the `2-norm of X , and
relative residual error, understood as the Euclidean distance between the observations Y and the
noiseless output of the forward model for a specimen X̂ normalized by the `2-norm of Y . Errors
are averaged over 10 runs and error bars correspond to standard deviations. Comparisons in terms
of Structural Similarity Index (SSIM) are also reported in the Appendix, Figures 15, 18, 19, 22, 24,
and 36.

4.1 NOISY RECONSTRUCTION WITH AND WITHOUT THE DEEP DECODER

In a first series of experiments, we examine the robustness to noise of HolOpt-P and HolOpt-P-
DD. We set the reference R to a m × m binary array with entries 0 or 1 sampled uniformly and
independently, a reference design generally very favorable to the reconstruction (Candès et al., 2015;
Marchesini et al., 2008). No beamstop mask is included. In Figure 4, for all images and all but one
noise level, our optimization procedure reaches lower reconstruction errors than the baselines for
at least one of the variants. Interestingly, visual inspection of Figure 3 shows a clear qualitative
improvement in even the highest noise level Np = 0.1, where according to the error metric it
appears to be outperformed by the HIO-Holo baseline. It should also be observed that the residual
error reflects performance neither perceptually nor according to the error metric. An experiment on
the full COIL100 dataset (Figures 5 and 14) confirms our conclusions on a large dataset.

We distinguish several performance regimes for our method. At low noise (Np = 1000, 100), there
is no need for regularization by a deep decoder, and HolOpt-P-DD and HolOpt-S-DD achieve higher
error rates than HolOpt-P and HolOpt-S. Including a prior is not harmful, but unnecessary. At higher
levels of noise (Np ≤ 10), the denoising power of the deep decoder is beneficial.

We note finally that the difference between MSE and Poisson likelihood objectives is most drastic
when including the deep decoder prior. In particular, MSE sometimes creates artifacts in the images
reconstructed by HolOpt-S-DD (see Figures 11, 12 and 14 in Appendix B). Lastly, the reconstruction
loss and visual quality of the samples are in almost all cases better with HolOpt-P than with HolOpt-

6



Under review as a conference paper at ICLR 2021

10−4 10−1

Beamstop Area Fraction a

10−1

101

X
re

co
n

st
ru

ct
io

n
er

ro
r

Np=1000

10−4 10−1

Beamstop Area Fraction a

10−1

100

101

X
re

co
n

st
ru

ct
io

n
er

ro
r

Np=100

10−4 10−1

Beamstop Area Fraction a

10−1

100

101

X
re

co
n

st
ru

ct
io

n
er

ro
r

Np=10

10−4 10−1

Beamstop Area Fraction a

100

101

X
re

co
n

st
ru

ct
io

n
er

ro
r

Np=1

10−4 10−1

Beamstop Area Fraction a

10−1

100

101

X
re

co
n

st
ru

ct
io

n
er

ro
r COIL

10−4 10−1

Beamstop Area Fraction a

10−1

100

101

X
re

co
n

st
ru

ct
io

n
er

ro
r

10−4 10−1

Beamstop Area Fraction a

100

101

X
re

co
n

st
ru

ct
io

n
er

ro
r

10−4 10−1

Beamstop Area Fraction a

100

101

X
re

co
n

st
ru

ct
io

n
er

ro
r

10−4 10−1

Beamstop Area Fraction a

10−1

101

X
re

co
n

st
ru

ct
io

n
er

ro
r VIRUS256

10−4 10−1

Beamstop Area Fraction a

10−1

100

101

X
re

co
n

st
ru

ct
io

n
er

ro
r

10−4 10−1

Beamstop Area Fraction a

10−1

100

101

X
re

co
n

st
ru

ct
io

n
er

ro
r

10−4 10−1

Beamstop Area Fraction a

100

101

X
re

co
n

st
ru

ct
io

n
er

ro
r

HolOpt-P HolOpt-P-DD HIO-Holo Wiener Filt. Inverse Filt.

Figure 6: Reconstruction error on CAMERA as a function of beamstop area fraction. Errors and
error bars are computed as in Figure 4. The leftmost datapoints at a = 1e−6 correspond to no
missing data due to rounding, i.e. formally a = 0 at the leftmost points.

S, validating our adoption of the most realistic noise model and Poisson likelihood objective. Thus,
we focus only on the Poisson likelihood objective going forward.

4.2 RECONSTRUCTING WITH MISSING LOW FREQUENCIES

As discussed in Section 2, a universal feature of CDI experiments is a beamstop which obscures
low-frequency magnitudes. In Wiener and inverse filtering, one simply sets the missing magnitudes
to zero (Guizar-Sicairos & Fienup, 2007), whereas HIO-Holo can be made agnostic to the missing
magnitudes. We show here that our optimization-based methods can effectively incorporate an ar-
bitrary beamstop in the forward model, as defined in Equation 3. Moreover, we expect and indeed
observe that the deep decoder prior can be useful in compensating for the missing magnitudes.

We evaluate our methods HolOpt-P and HolOpt-P-DD at several noise levels and beamstop sizes,
with error plots and example reconstructions for CAMERA in Figures 6 and 7 respectively. Supple-
mental plots for all images and noise levels are in Figures 21-35 of the Appendix, including errors
in terms of SSIM and on the complete COIL dataset, which verify the trends observed here. We
consider square beamstop masks centered at the 0 frequency, identified by their area fraction a: the
fraction of the total measured magnitudes which are lost (visualized in Figure 20 of the Appendix).

We find that both HolOpt-P and HolOpt-P-DD vastly outperform HIO-Holo, Wiener and inverse
filtering at near-all noise levels, test images, and beamstop area fractions. The advantage of the
deep decoder prior is image-dependent: HolOpt-P-DD yields improved reconstruction relative to
HolOpt-P on CAMERA and COIL1, but not on VIRUS (see Figure 21). Even at Np = 1 and
a = 0.1 in Figure 6, the only setting for CAMERA at which any baseline (HIO-Holo) attains
marginally lower reconstruction error, visual inspection of Figure 7 shows that our methods cor-
rectly recover image motifs that HIO-Holo does not. In sum, the performances of our methods
smoothly degrade with increasing fraction of missing magnitudes a, and enable reconstructions
with lower error (Figure 7) and visually improved features (Figure 6) relative to baselines. This
provides powerful evidence that our method can enable vastly refined reconstructions given even 1

10
lost magnitude data at the highest noise levels.

4.3 ROBUSTNESS TO REFERENCE SEPARATION

The separation distance between the specimen and the reference limits the smallest resolution that
can be achieved (Salditt et al., 2020), and thus would ideally be minimized. For a specimen of
size m ×m pixels, the holographic separation condition dictates that inverse filtering and Wiener
filtering require a full separation (X|0m×m|R). In contrast, our approach only requires that the
forward model be differentiable, which is the case for any reference placement.

Here, we explore signal-reference association of the form (X|R|0m×m), where R is a random
binary block of small size: it is non-zero only on a box of size 0.1m × 0.1m with uniformly and
independently chosen entries in {0, 1}, and the box position is varied between experiments. No
beamstop is included. In Figure 8, we report reconstruction errors as a function of the relative
specimen-reference separation. Figure 9 displays reconstruction for Np = 1. The only applicable
baseline is HIO-Holo.

For VIRUS, the reconstruction appears equally good at all separations, and is comparable to the pre-
vious experiment with a full and well-separated random binary reference. At low photon counts,
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Figure 7: Reconstructed images as a function of beamstop area fraction a for fixed photon count
Np = 1. Images correspond to the best of 10 runs in terms of residual error.
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Figure 8: Reconstruction errors for decreasing photon counts Np with a 0.1m × 0.1m binary
random reference as a function of the relative separation. A separation of 0.5 implies that the left-
most non-zero pixel of the reference is 0.5n pixels away form the image. Dashed lines corresponds
to best run out of the 10 runs in terms of residual error.
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Figure 9: Reconstructed images as a function of the relative separation as described in caption of
Figure 8. Images correspond to the best of 10 runs in terms of residual error.

HIO-Holo errors are typically smaller than HolOpt-P errors, and sometimes even smaller than
HolOpt-P-DD errors. However, as in the previous experiments, our methods outperform HIO-Holo
in perceptual quality. Note that reconstruction with a deep decoder is generally less sensitive to the
separation than other methods. These observations are consistent with CAMERA (see Figures 16
and 17 in Appendix B). For COIL1, the impact of the separation distance is stronger. We observe
a degradation in reconstruction quality at low separation distances. The most likely reason is that
the zero background makes several support locations possible, because the Fourier interaction be-
tween the image and reduced reference is not strong enough to enforce the correct support. While
HIO does not seem to suffer from this difficulty, HolOpt-P and HolOpt-P-DD sometimes show two
shifted duplicates of COIL1 at small distances. Re-running the algorithm can yield reconstructions
much better than HIO-Holo, consistent with the best-run errors reported in Figure 8. The two pos-
sible outcomes explain the large standard deviations. Interestingly, the threshold separation above
which the optimization method can succeed is 0.5 for all noise levels for HolOpt-P, while the deep
decoder helps achieve good reconstruction for smaller separations with a threshold that decreases as
Np increases for HolOpt-P-DD. Analogous results for the full COIL dataset can be found in Figure
19 of the Appendix.

Overall, this more challenging experimental setting confirms the efficiency of our proposed method,
allowing reconstruction even if the holographic separation condition is broken. Moreover, a deep
decoder prior provides clear benefits even over direct optimization in certain cases. An additional
experiment, in Section C of the appendix, shows that for yet another challenge for reconstruction,
namely small oversampling ratios, HoloOpt-P and in particular HoloOpt-P-DD enables better re-
constructions than the baseline HIO-Holo.

5 DISCUSSION AND CONCLUSION

In this paper, we have shown that recent progress at the intersection of machine learning and in-
verse problems can yield highly successful algorithms which also account for realistic experimental
challenges. Our novel optimization framework for holographic phase retrieval improves on state-of-
the-art reconstruction, even in the most difficult experimental settings and without external training
data. Untrained image priors are confirmed to be powerful tools, especially when a significant
amount of information is missing from the measured data due to low photon counts and beamstop-
obscured frequencies. Due to its practicality and flexibility, we believe our methodology should
prove quite valuable for practitioners. While this work demonstrated our approach’s success on sim-
ulated observations, we expect to confirm its findings on experimental data in future work. Finally,
our framework is easily adaptable to different variants of the problem — even the mathematically
distinct non-holographic setting — and should enable similarly improved reconstruction with other
imaging modalities than Holographic CDI, such as optical holography (He et al., 2015), magnetic
holographic imaging (Hu et al., 2019), and ptychography (Wen et al., 2012).
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Figure 10: Impact of depth of a deep decoder prior on the reconstruction illustrated on VIRUS. Left:
Relative residual errors and reconstruction errors as a function of depth. Right: Best reconstruction
out of 10 runs.

A THE DEEP DECODER

In this section we provide further information regarding the deep decoder prior.

A.1 DEEP DECODER ARCHITECTURE

The deep decoder essentially consists of an alternation of two operations — convolutions with filter
size of 1 × 1 pixels, and upsampling by a factor of 2 using bilinear interpolation. The input is a
randomly initialized image of smaller size. In order to end up with a specific output image size,
either the input image size or the number of layers d is adjusted.

Let ci represent the number of channels at layer i and let ϑi ∈ Rci+1×ci×1×1 represent the convolu-
tion kernels at layer i. Denote by convϑi

the typical deep learning convolution with ϑi, by up2 the
bilinear upsampling operation, and by relu(x) = x1x>0(x). Then we can define one component as

blocki := up2 ◦ relu ◦ convϑi

and the full network as
net := blockd ◦ · · · ◦ block1.

For an input image z ∈ R1×c1×κ×λ, let

σ(ϑ, z) = σ(ϑd, . . . , ϑ1, z) = net(z),

where ϑ = (ϑd, . . . , ϑ1) collects all the convolution parameters. In our experiments we set X =
σ(ϑ, z) and train the parameters ϑi.

A.2 SELECTION OF DEPTH AND NUMBER OF CHANNELS

When using a deep decoder to reconstruct one needs to specify the number of channels of its con-
volutional filters, as well as the number of layers. Across images and noise levels, we observed that
the performance is marginally affected by the number of channels, except for the fact that it deterio-
rates for number of channels below a certain threshold (around 64 for our examples). To fine-tune a
specific reconstruction it can be useful to adjust this parameter, e.g. to limit the fitting power of the
model at high noise levels, as pointed out by Hand et al. (2018), yet its impact is much more subtle
than that of depth.

In Figure 10, we illustrate this fact by reporting errors and reconstructed images of VIRUS as a
function of depth for different noise levels. Visually, deeper decoders render smoother images. This
is a direct consequence of the upsampling layers which correlates the neighboring pixels. The deeper
the decoder, the smaller the latent representation z and the less independent the output pixels. Note
that at high noise levels (Np = 1.0) the smoothing reduces the reconstruction error estimated using
Euclidean distance. Perceptually however, the smoothing is only beneficial to some extent. Note that
while the sum of errors across pixels is greater for shallow models, large mistakes are more evenly
distributed whereas for the deep models they are concentrated on edges of the object in the picture.
Our eyes are found to be excellent denoisers for speckles. At lower noise levels (Np = 10.0), the
excess of depth can be spotted directly in the reconstruction error as we observe a dip in the curve.
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noise Np = 1000 Np = 100 Np = 10 Np = 1 Np = 0.1
CAMERA d2 c128 d3 c128 d2 c128 d1 c128 d1 c128
COIL1 d2 c128 d2 c128 d2 c128 d1 c128 d1 c128
VIRUS d3 c128 d3 c128 d2 c128 d2 c128 d2 c128
# iterations 10000 10000 5000 2500 1250

Table 1: Depth, number of channels, and number of steps of optimizer used for the deep decoder in
all experiments.

N
p

=
0
.1

Ground Truth HIO-Holo Inverse Filt. Wiener Filt. HolOpt-S HolOpt-P HolOpt-S-DD HolOpt-P-DD

N
p

=
1
0
.0

N
p

=
10

00
.0

Figure 11: Same as Figure 3. Corresponding errors can be found in Figure 4
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Figure 12: Same as Figure 3. Corresponding errors can be found in Figure 13

Following these observations, we select the parameters of the deep decoders used in our experiments
according to the best visual outcomes. These parameters are gathered in Table 1, which also includes
number of steps in the gradient descent. Some early stopping was found beneficial in order to avoid
overfitting at high noise levels. As a result we adapt the number of iterations to the photon count.

B ADDITIONAL FIGURES

In this section we provide additional figures for experiments presented in the main text.

B.1 NOISY RECONSTRUCTION EXPERIMENT

Figures 11 through 15 present results for the experiment described in 4.1 of the main text. The
superior visual quality of our algorithms is confirmed on VIRUS, COIL1 and COIL100. The trend
in errors achieved by the different algorithms is also show to be similar for COIL1. One particularity

15



Under review as a conference paper at ICLR 2021

10−1100101102103

Np

10−2

10−1

100

Y
re

si
d

u
al

er
ro

r

COIL1

HIO-Holo

Inverse Filt.

Wiener Filt.

HolOpt-S

HolOpt-P

HolOpt-S-DD

HolOpt-P-DD

10−1100101102103

Np

10−1

100

X
re

co
n

st
ru

ct
io

n
er

ro
r

COIL1

Figure 13: Same as Figure 4

of COIL1 is that HolOpt-P-DD provides the best reconstruction across noise levels on average,
while HolOpt-P has high variance.

On Figure 15 we compare methods in terms of Structural Similarity Index (SSIM) Wang et al.
(2004). This measures is more informative of the perceived similarity than MSE. At high photon
counts, the methods without deep decoder are typically performing best, while the deep decoder
proves useful at higher levels of noise. While more informative than the MSE, we note that this is
still not a perfect measure, for example focusing on COIL1 at low-photon counts and comparing
Figure 15 with Figure 12.

B.2 ROBUSTNESS TO SEPARATION EXPERIMENT

Figures 16 and 17 present results of the experiment presented in Section 4.3 for CAMERA. For
CAMERA the addition of a deep decoder prior is almost always beneficial in terms of reconstruction
error (HolOpt-P-DD achieves lower errors than HolOpt-P), but there is a clear crossover for VIRUS
between low and high noise (see Figure 8). One element of explanation for the difference can be that
CAMERA carries larger solid patches, for which the deep decoder acts as a good regularizer. For
VIRUS instead, the ground truth image itself presents many small speckles and the reconstruction
at low noise is better without the deep decoder regularization. This is also consistent with our first
experiment results presented in Figure 4. In Figure 19, we show analogous results to the previous
plots for the full COIL dataset.

B.3 MISSING LOW-FREQUENCIES (BEAMSTOP) EXPERIMENT

We now visualize the beamstop area fractions tested in Section 4.2, as well as show analogous plots
to Figures 6 and 7 for all three test images and for all noise levels, Np = 1, 10, 100, 1000. Figure 22
also plots all settings using the SSIM.

C OVERSAMPLING EXPERIMENT

We report an additional experiment varying the oversampling factor used to simulate observations.
For oversampling factors larger or equal to 2, the inverse problem can be solved exactly in the ab-
sence of noise. We test how our methods perform compared to HIO-Holo for oversampling ratios
around this critical value. Figures 36 and 37 display results for a well-separated binary reference
and without beamstop for CAMERA, VIRUS and statistics over the COIL100 datasets. All im-
ages reconstructed by HoloOpt methods are visually superior to images reconstructed by HIO-Holo
at oversampling factors both smaller and larger than 2, a phenomenon which is largely (although
imperfectly) captured by the MSE and SSIM as well.
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Figure 14: Representative reconstructed images from the COIL100 dataset. Same as Figure 3.
Mean error over COIL100 dataset can be found in Figure 5.
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Figure 15: Reconstruction SSIM for CAMERA (left), VIRUS (center), and COIL (right) as a
function of the photon count Np with a binary random reference and without beamstop.
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Figure 16: Same as Figure 8 for CAMERA.
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Figure 18: Same as Figure 16, but for all test images and with SSIM rather than MSE.
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Figure 19: Same as Figure 16, but for all images in the COIL dataset and with both SSIM and MSE.
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Figure 20: Examples of the measured magnitudes corresponding to varying beamstop area fractions
for the CAMERA image with Np = 10.
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Figure 21: Reconstruction error on all three images (one per row, as indicated by the leftmost row
levels) as a function of beamstop area fraction. Errors and error bars are computed as in Figure 4.
The leftmost datapoints at a = 1e−6 correspond to no missing data due to rounding, i.e. formally
a = 0 at the leftmost points.
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Figure 22: SSIM on all three images (one per row, as indicated by the leftmost row levels) as a
function of beamstop area fraction. Errors and error bars are computed as in Figure 4. The leftmost
datapoints at a = 1e−6 correspond to no missing data due to rounding, i.e. formally a = 0 at the
leftmost points.
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Figure 23: Reconstruction error on the full COIL dataset as a function of beamstop area fraction.
Errors and error bars are computed over all 100 images, one trial each. The leftmost datapoints at
a = 1e−6 correspond to no missing data due to rounding, i.e. formally a = 0 at the leftmost points.
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Figure 24: SSIM on the full COIL dataset as a function of beamstop area fraction. Errors and
error bars are computed over all 100 images, one trial each. The leftmost datapoints at a = 1e−6
correspond to no missing data due to rounding, i.e. formally a = 0 at the leftmost points.
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Figure 25: Reconstructed CAMERA image with varying beamstop at Np = 10 photons.
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Figure 26: Reconstructed CAMERA image with varying beamstop at Np = 100 photons.
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Figure 27: Reconstructed CAMERA image with varying beamstop at Np = 1000 photons.
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Figure 28: Reconstructed COIL image with varying beamstop at Np = 1 photons.

23



Under review as a conference paper at ICLR 2021

H
IO

-H
ol

o

Ground Truth a =0e+00 a =5e-05 a =1e-04 a =5e-04 a =1e-03 a =5e-03 a =1e-02 a =5e-02 a =1e-01

W
ie

n
er

F
ilt

.
In

ve
rs

e
F

ilt
.

H
ol

O
p

t-
P

H
ol

O
p

t-
P

-D
D

Figure 29: Reconstructed COIL image with varying beamstop at Np = 10 photons.
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Figure 30: Reconstructed COIL image with varying beamstop at Np = 100 photons.
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Figure 31: Reconstructed COIL image with varying beamstop at Np = 1000 photons.

H
IO

-H
ol

o

Ground Truth a =0e+00 a =5e-05 a =1e-04 a =5e-04 a =1e-03 a =5e-03 a =1e-02 a =5e-02 a =1e-01

W
ie

n
er

F
ilt

.
In

ve
rs

e
F

ilt
.

H
ol

O
p

t-
P

H
ol

O
p

t-
P

-D
D

Figure 32: Reconstructed VIRUS image with varying beamstop at Np = 1 photons.
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Figure 33: Reconstructed VIRUS image with varying beamstop at Np = 10 photons.
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Figure 34: Reconstructed VIRUS image with varying beamstop at Np = 100 photons.
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Figure 35: Reconstructed VIRUS image with varying beamstop at Np = 1000 photons.
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Figure 36: Reconstruction errors and SSIM for CAMERA, VIRUS and their averages over the
COIL100 dataset with varying oversampling factor at Np = 1 photon/pixel.
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Figure 37: Reconstructed images for CAMERA, VIRUS and their averages over the COIL100
dataset with varying oversampling factors (numbers above each column) at Np = 1 photon/pixel.
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