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Abstract

Learning to evaluate and improve policies is a
core problem of Reinforcement Learning (RL).
Traditional RL algorithms learn a value function
defined for a single policy. A recently explored
competitive alternative is to learn a single value
function for many policies. Here we combine the
actor-critic architecture of Parameter-Based Value
Functions and the policy embedding of Policy
Evaluation Networks to learn a single value func-
tion for evaluating (and thus helping to improve)
any policy represented by a deep neural network
(NN). The method yields competitive experimen-
tal results. In continuous control problems with
infinitely many states, our value function mini-
mizes its prediction error by simultaneously learn-
ing a small set of ‘probing states’ and a mapping
from actions produced in probing states to the pol-
icy’s return. The method extracts crucial abstract
knowledge about the environment in form of very
few states sufficient to fully specify the behavior
of many policies. A policy improves solely by
changing actions in probing states, following the
gradient of the value function’s predictions. Sur-
prisingly, it is possible to clone the behavior of a
near-optimal policy in Swimmer-v3 and Hopper-
v3 environments only by knowing how to act in 3
and 5 such learned states, respectively. Remark-
ably, our value function trained to evaluate NN
policies is also invariant to changes of the policy
architecture: we show that it allows for zero-shot
learning of linear policies competitive with the
best policy seen during training.
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1. Introduction
Policy Evaluation and Policy Improvement are arguably the
most studied problems in Reinforcement Learning. They
are at the root of actor-critic methods (Konda & Tsitsiklis,
2001; Sutton, 1984; Peters & Schaal, 2008), which alter-
nate between these two steps to iteratively estimate the
performance of a policy and using this estimate to learn
a better policy. Several ways to estimate value functions
have been proposed, ranging from Monte Carlo approaches,
to Temporal Difference methods (Sutton, 1984), including
the challenging off-policy scenario where the value of a
policy is estimated without observing its behavior (Precup
et al., 2001). A limiting feature of value functions is that
they are defined for a single policy. When the policy is
updated, they need to keep track of it, potentially losing
useful information about old policies. By doing so, value
functions typically do not capture any structure over the
policy parameter space. While off-policy methods learn a
single value function using data from different policies, they
have no specific mechanism to generalize across policies
and usually suffer for large variance (Cortes et al., 2010).

Parameter Based Value Functions (PBVFs)(Faccio et al.,
2020) are a promising approach to design value functions
that overcome this limitation and generalize over multiple
policies. A crucial problem in the application of such value
functions is choosing a suitable representation of the policy.
Flattening the policy parameters as done in vanilla PBVFs
is difficult to scale to larger policies. Here we present an
approach that connects PBVFs and a policy embedding
method called "fingerprint mechanism" by Harb et al. (2020).
Using policy fingerprinting allows us to scale PBVFs to
handle larger NN policies and also achieve invariance with
respect to the policy architecture.

We show in visual classification tasks and in continuous con-
trol problems that our approach can identify a small number
of critical "probing states" that are highly informative of
the policies performance. Our learned value function gen-
eralizes across many NN-based policies. It combines the
behavior of many bad policies to learn a better policy, and
is able to zero-shot learn policies with a different architec-
ture. We compare our approach with strong baselines in
continuous control tasks, obtaining competitive results.



General Policy Evaluation and Improvement by Learning to Identify Few But Crucial States

2. Background
We consider a Markov Decision Process (MDP) (Puter-
man, 2014) M = (S,A, P,R, γ, µ0) where the state space
S ⊂ RnS and the action space A ⊂ RnA are assumed
to be compact sub-spaces. At each time-step t, the agent
observes a state st ∈ S, chooses an action at ∈ A, tran-
sitions into state st+1 with probability P (st+1|st, at), and
receives a reward rt = R(st, at). The initial state is cho-
sen with probability µ0(s). The agent’s behavior is repre-
sented by its policy π : S → ∆A: a function assigning
for each state s a probability distribution over the action
space. A policy is deterministic when for each state there
exists an action a such that a is selected with probability
one. Here we consider parametrized policies of the form
πθ, where θ ∈ Θ are the policy parameters. The return Rt

is the cumulative discounted reward from time step t, e.g.
Rt =

∑∞
k=0 γ

kR(st+k+1, at+k+1), where γ ∈ (0, 1] is the
discount factor. The agent’s performance is the expected re-
turn (i.e. the cumulative expected discounted reward) from
the initial state: J(θ) = Eπθ

[R0]. The state-value function
V πθ (s) = Eπθ

[Rt|st = s] of a policy πθ is the expected
return for being in a state s and following πθ. The expected
return can be expressed in terms of the state-value functions
by integration over the initial state distribution µ0(s):

J(θ) =

∫
S
µ0(s)V

πθ (s) ds. (1)

The goal of a RL agent is to find the policy parameters θ that
maximize the expected return. When πθ is differentiable,
the policy parameters can be learned by gradient ascent:
θ′ = θ + α∇θJ(θ). Instead of learning a value function
for a single target policy, here we try to estimate the value
function of any policy and maximize it over the initial states.

3. General Policy Evaluation
Recent work focused on extending value functions to allow
them to receive the policy parameters as input. This can
potentially result in single value functions defined for any
policy and methods that can perform direct search in the
policy parameters. We begin by extending the state-value
function, and define the parameter-based state-value func-
tion (PSVF) (Faccio et al., 2020) as the expected return
for being in state s and following policy πθ: V (s, θ) :=
E[Rt|st = s, θ]. Using this new definition, we can rewrite
the RL objective as J(θ) =

∫
S µ0(s)V (s, θ) ds. Instead of

learning V (s, θ) for each state, we focus here on the policy
evaluation problem over the set of the initial states of the
agent. This is equivalent to trying to model J(θ) directly as
a differentiable function V (θ), which is the expectation of
V (s, θ) over the initial states:

V (θ) := Es∼µ0(s)[V (s, θ)] =

∫
S
µ0(s)V (s, θ) ds = J(πθ).

(2)
V (θ) is a parameter-based start-state value function
(PSSVF). We consider the undiscounted case in our set-

ting (γ = 1). Once V (θ) is learned, direct policy search can
be performed by following the gradient ∇θV (θ) to update
the policy parameters. This learning procedure can be im-
plemented in the actor-critic framework, where a critic—the
PSSVF—iteratively uses the collected data to evaluate the
policies seen so far, and the actor follows the critic’s direc-
tion of improvement to update itself. The PSSVF actor-critic
framework is reported in Algorithm 1 (Appendix).

Policy fingerprinting While the algorithm described
above is straightforward and easy to implement, feeding
the policy parameters as inputs to the value function re-
mains a challenge. Recently Harb et al. (2020) showed that
a form of policy embedding can be suitable for this task.
Their policy fingerprinting creates a lower-dimensional pol-
icy representation. It learns a set of K ‘probing states’
{s̃k}Kk=1 and an evaluation function V —like the PSSVF. To
evaluate a policy πθ, we first compute the ‘probing actions’
ãk that the policy produces in the probing states. Then the
concatenated vector of these actions is given as input to
V : RK×nA → R. While the learned probing states remain
fixed when evaluating multiple policies, the probing actions
in such states depend on the policy we are evaluating. The
parameters of the value function V are the probing states
AND the weights of the MLP ϕ that maps the ‘probing ac-
tions’ to the return. When the policy πθ is deterministic, the
probing actions for such policy are the deterministic actions
{ãk = πθ(s̃k)} produced in the probing states. If the policy
is stochastic, the probing actions are the parameters of the
output distribution of the policy in such states (the vector of
probability distribution if the action space is discrete). This
mechanism has an intuitive interpretation: to evaluate the
behavior of an agent, the PSSVF with policy fingerprint-
ing learns a set of situations (or states), observes how the
agent acts in those situations, and then maps the agent’s
actions to a score. Arguably, this is also how a teacher
would evaluate multiple different students by simultane-
ously learning which questions to ask the students and how
to score the student’s answers. Therefore the parameters of
the value function (probing states and evaluator function)
can be learned by minimizing MSE loss LV between the
prediction of the value function and the observed return.
Setting w = {ϕ, s̃1, . . . s̃K}, we retrieve the common nota-
tion of Vw(θ) for the PSSVF with fingerprint mechanism.
Given a batch B of data (πθ, r) ∈ B, the value function
optimization problem is:

min
w

LV := min
w

E
(πθ,r)∈B

[(Vw(θ)− r)2] = (3)

min
ϕ,s̃1,...s̃K

E
(πθ,r)∈B

[(Vϕ([πθ(s̃1), . . . , πθ(s̃K)])− r)2]

(4)

If the prediction of the value function is accurate, policy
improvement can be achieved by changing the way a policy
acts in the learned probing states in order to maximize the
prediction of the value function. This process connects to
the same interpretation as before: a student (the policy) ob-
serves which questions the teacher asks and how the teacher
evaluates the student’s answers, and subsequently tries to
improve in such a way to maximize the score predicted by
the teacher. This iterative method is depicted in Figure 1.
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Algorithm 1 applies directly to this setting. The only distinc-
tion is that the probing states are part of the learned value
function. Throughout this work, with the exception of the
MNIST experiments, we consider deterministic policies.

Probing
States

Probing
Actions

concat.

Environment

Figure 1. General policy evaluation aims to evaluate any given
policy’s return based on the policy’s actions (referred to as probing
actions) in the learned probing states. The policy can be improved
through maximising the prediction of the learned value function
via gradient ascent.

4. Experiments
4.1. Motivating experiments on MNIST

We begin our experimental section with an intuitive demon-
stration of how PBVFs with fingerprinting work, using the
MNIST digit classification problem. The policy is a CNN,
mapping images to probabilities over digit classes. The en-
vironment simulation consists of running a forward pass of
the CNN on a batch of data and receiving the reward, which
in this case is the negative cross-entropy between the output
of the CNN and the labels of the data. The value function
learns to map CNN parameters to the reward (the negative
loss) obtained from the simulation. Then the CNN learns
to improve itself by following the prediction of the value
function, without access to the supervised learning loss. We
start with randomly initialized CNN and value function and
iteratively update them following Algorithm 1. We obtain a
test set accuracy of 82.5% and 87% when using 10 and 50
probing states respectively.

Visualisation of probing states Figure 2 shows some of
the probing states learned by our model, starting from ran-
dom noise. During learning, we observe that a different
number of digits—sometimes the same digit in different
shapes—appear. Since probing states are states from which
the action of the policy is informative about its global behav-
ior, it is intuitive that digits should appear. We highlight the
fact that here both the CNNs and the value function are start-
ing from random initialization, and all learning—including
the convolutional filters and the probing states—is due to
Algorithm 1, without using the supervised loss.

Offline policy improvement Using this setting, we per-
form another experiment. We collect one offline dataset

Figure 2. Samples of probing states learned by Alg. 1 on MNIST.

{πθi , li}Ni=1 of N randomly initialized CNN policies and
their losses. We constrain the maximum accuracy of these
CNNs in the training set to be 12%. We then use the dataset
to train a value function offline. After training, we ran-
domly initialize a new CNN and take many steps of gradient
ascent through the fixed value function, obtaining a final
CNN whose accuracy is around 65% on the test set. Our
experiments show that our value function can combine the
behavior of many bad NNs to produce a much better NN in a
zero shot manner. We found that also with randomly initial-
ized policies some digits appear as probing states, although
they are less evident than in the online framework. We
include learning curves and probing states in Appendix C.1.

4.2. Main experiments on MuJoCo

Here we present our main evaluation on continuous con-
trol problems from MuJoCo (Todorov et al., 2012). Since
our algorithm performs direct search in parameter space,
we choose Augmented Random Search (ARS) (Mania et al.,
2018) as baseline for comparison. Moreover, since our algo-
rithm employs deterministic policies, uses off-policy data
and an actor-critic architecture, a natural competitor is the
Deep Deterministic Policy Gradient (DDPG) algorithm (Lil-
licrap et al., 2015), a strong baseline for continuous control.
For the policy architecture, we use an MLP with 2 hidden
layers and 256 neurons for each layer. We use 200 prob-
ing states and later provide an analysis of them. We discuss
implementation details and hyperparameters in Appendix B.
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Figure 3. Return as a function of the environment interactions. The
solid curve represents the mean (across 20 runs), and the shaded
region represents a 95% bootstrapped confidence interval.

Results Figure 3 shows learning curves in terms of ex-
pected return (mean and 95% confidence interval) achieved
by our algorithm and the baselines across time in the envi-
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ronments. Our algorithm is very competitive with the se-
lected baselines. It outperforms DDPG in all environments
with the exception of HalfCheetah and Walker, and displays
faster initial learning than ARS. In Swimmer, DDPG fails to
learn an optimal policy due to the problem of discounting1.
On the other hand, in HalfCheetah, parameter-based meth-
ods take a long time to improve, and the ability of DDPG to
give credit to sub-episodes is crucial here to learn quickly.
Furthermore, the variance of our method’s performance is
less than DDPG’s and comparable to ARS’s.

4.3. Zero-shot learning of new policy architectures

Here we show that our method can generalize across policy
architectures. We train a PSSVF using NN policies as in
the main experiments. Then we randomly initialize a linear
policy and start taking gradient ascent steps trough the fixed
value function, finding the parameters of the policy that
maximizes the value function’s prediction. In Figure 4 we
observe that a near-optimal linear policy can be zero-shot-
learned through the value function even if it was trained
using policies with different architecture. It achieves an
expected return of 345, while the return of best NN used for
training was 360.
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Figure 4. Performance of a linear policy (in blue) zero-shot learned
(averaged over 5 runs, 95% bootstrapped CI). In orange the best
performance of the deep NN when training the PSSVF.

4.4. Fingerprint Analysis

Our experiments show that learning probing states helps
evaluating the performance of many policies, but how many
of such probing states are necessary for learning? We run
our main experiments again, with fewer probing states, and
discover that in many environments, a very small number of
states is enough to achieve good performance. In particular,
the PSSVF with 5 probing states achieves 314 and 2790 final
return in Swimmer and Hopper respectively, while Walker
needs at least 50 probing states to obtain a return above
2000. In general, we find that 200 probing states represent a
good trade-off between learning stability and computational
complexity. We show these results in Appendix C.3. The

1This is a common problem for Temporal Difference methods:
the policy optimizing expected return in Swimmer with γ = 0.99
is sub-optimal when considering the expected return with γ = 1.
See the ablation in Appendix A.3.1 of (Faccio et al., 2020).

most surprising result is that a randomly initialized policy
can learn near-optimal behaviors in Swimmer and Hopper
by knowing how to act only in 3 (5) such crucial learned
states (out of infinitely many in the continuous state space).
To verify this, we take 3 of the 5 learned probing states in
Swimmer, and compute the actions of an optimal policy
in such states. Then we train a new, randomly initialized
policy, to just fit these 3 data points minimizing MSE loss.
After many gradient steps, the policy obtains a return of
355, compared to the return of 364 of the optimal policy
that was used to compute such actions. We observe similar
behavior for other environments, although they need more
of such states to encode the behavior of an optimal policy.
Using a similar procedure, we are able to train a randomly
initialized policy in Hopper achieving 2200 return, using
only 5 state-action pairs. We provide a detailed discussion
and learning curves for this task in Appendix C.3.

Visualisation of RL probing states It is possible to visu-
alise the probing states learned by the PSSVF. To understand
the behaviour in probing states, we initialize the MuJoCo
environment to the learned probing state (when possible)
and let it evolve for a few time steps while performing no ac-
tion. In Appendix C.3 we show the crucial learned probing
states of our previous experiment. Additional probing states
for all environments can be seen in animated form on the
website https://policyevaluator.github.io.

5. Conclusion and Future Work
We presented an approach that connects PBVFs and the fin-
gerprinting mechanism of Policy Evaluation Networks. Our
method can efficiently evaluate large Neural Networks, is
suitable for off-policy data reuse and competitive with exist-
ing baselines for RL tasks. Zero-shot learning experiments
on MNIST and continuous control problems demonstrated
our method’s generalization capabilities. Our value func-
tion is invariant to policy architecture changes, and can
extract essential knowledge about a complex environment
by learning a small number of situations that are important
to evaluate the success of a policy. A randomly initialized
policy can learn optimal behaviors in Swimmer (Hopper) by
knowing how to act only in 3 (5) such crucial learned states.
This suggests that some of the most commonly used RL
benchmarks require to learn only a few crucial state-action
pairs. Our set of learned probing states is instead used to
evaluate any policy, while in practice different policies may
need different probing states for efficient evaluation. A nat-
ural direction for improving this method and scaling it to
more complex tasks is to generate probing states in a more
dynamically. Finally, PBVFs are a general framework that
also considers value functions that receive states and state-
action pairs as input. We plan to investigate how these value
functions behave with policy fingerprinting.

https://policyevaluator.github.io
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Algorithm 1 Actor-critic with PSSVF for V (θ)

Input: Differentiable critic Vw : Θ → R with parameters w; deterministic or stochastic actor πθ with parameters θ;
empty replay buffer D
Output : Learned Vw ≈ V (θ)∀θ, learned πθ ≈ πθ∗

Initialize critic and actor weights w, θ
repeat

Generate an episode s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT with policy πθ

Compute return r =
∑T

k=1 rk
Store (θ, r) in the replay buffer D
for many steps do

Sample a batch B = {(r, θ)} from D
Update critic by stochastic gradient descent: ∇w E(r,θ)∈B [r − Vw(θ)]

2

end for
for many steps do

Update actor by gradient ascent: ∇θVw(θ)
end for

until convergence

A. Related Work
There is a long history of RL algorithms performing direct search in parameter space or policy space. The most common
approaches include evolution strategies, e.g., (Rechenberg, 1971; Sehnke et al., 2010; 2008; Wierstra et al., 2014; Salimans
et al., 2017). They iteratively simulate a population of policies and use the result to estimate a direction of improvement
in parameter space. Evolution strategies, however, don’t reuse data: the information contained in the population is lost
as soon as an update is performed, making them sample-inefficient. Several attempts have been made to reuse past
data, often involving importance sampling (Zhao et al., 2013), but these methods suffer from high variance of the fitness
estimator (Metelli et al., 2018). Our method directly estimates a fitness for each policy observed in the history and makes
efficient reuse of past data without involving importance sampling.

Direct search can be facilitated by compressed network search (Koutnik et al., 2010) and algorithms that distill the knowledge
of an NN into another NN (Schmidhuber, 1992). Closely related to our fingerprint embedding is also the concept of Dataset
Distillation (Wang et al., 2018). However, in our RL setting, learning to distill crucial states from an environment is harder
due to the non-differentiability of the environment.

Estimating a global objective function is common in control theory, where usually a gaussian process is maintained over the
policy parameters. This allows to perform direct policy optimization during the parameter search. Such approaches are often
used in the Bayesian optimization framework (Snoek et al., 2015; 2012), where a tractable posterior over the parameter
space is used to drive policy improvements. Despite the soundness of these approaches, they usually employ very small
control policies and scale badly with the dimension of the policy parameters. Our method, however, is invariant to policy
parametrization.

It is based on a recent class of algorithms that were developed to address global estimation and improvement of policies. For
Policy Evaluation Networks (PVNs), an actor-critic algorithm for offline learning through policy fingerprinting was proposed.
This algorithm already exhibited good generalization capabilities in parameter space. Concurrently, Parameter-Based Value
Functions were developed to provide single value functions able to evaluate any policy, given a state, state-action pair,
or a distribution over the agent’s initial states. PBVFs did not use any dimensionality reductions techniques such as the
policy fingerprinting mechanism, but demonstrated sample efficiency in the online RL scenario, directly using the flattened
parameters of a neural network as inputs. They exhibited zero-shot learning for linear policies, but failed when the policy
parameters were high-dimensional. Here, however, we demonstrated that PBVFs with policy fingerprinting mechanisms can
be efficient. Fingerprinting itself is similar to a technique for "learning to think" (Schmidhuber, 2015) where one NN learns
to send queries (sequences of activation vectors) into another NN and learns to use the answers (sequences of activation
vectors) to improve its performance.

Recent work (Tang et al., 2020) learned Parameter-Based State-Value Functions which, coupled with PPO, improved
performance. The authors did not use the value function to directly backpropagate gradients through the policy parameters,
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but only exploited the general policy evaluation properties of the method. They also proposed two dimensionality reduction
techniques. The first, called Surface Policy Representation, consists of learning a state-action embedding that encodes
possible information from a policy πθ. This requires feeding state-action pairs to a common MLP whose output is received
as input to the value function. The MLP is trained such that it allows for both low prediction error in the value function
and low reconstruction error of the action, given a state and the embedding. This method is not differentiable in the policy
parameters, therefore it cannot be used for gradient-based policy improvement. The second method, called Origin Policy
Representation (OPR), consists of using an MLP that performs layer-wise extraction of features from policy parameters.
OPR uses MLPs to take as input direcly the weight matrix of each layer. This approach is almost identical to directly feeding
the policy parameters to the value function (they concatenate the state to the last layer of such MLP), and suffers from the
curse of dimensionality. Also, OPR was not used to directly improve the policy parameters, but only to provide better policy
evaluation.

Value functions conditioned on other quantities include vector-valued adaptive critics (Schmidhuber, 1991), General Value
Functions (Sutton et al., 2011), and Universal Value Function Approximators (Schaul et al., 2015). Unlike our approach
these methods typically generalize over achieving different goals, and are not used to generalize across policies.

B. Implementation details
B.1. MNIST Implementation

For our experiments with MNIST we adapt the official code for PSSVF to CNN policies and the MNIST classification
problem.

• Policy architecture: The policy consists of two convolutional layers with 4 and 8 output channels respectively, 3× 3
kernels and a stride of 1. Each convolutional layer is followed by ReLU activations. The output from the convolutional
layers is flattened and provided to a fully connected linear layer which outputs the logits for the ten MNIST classes.
The logits are fed into a categorical distribution; the outputs are interpreted as class probabilities.

• Value function architecture: MLP with 2 hidden layers and 64 neurons per layer with bias. ReLU activations.

• Batch size for computing the loss: 1024

• Batch size for value function optimization: 4

• Buffer size: 1000

• Loss: Cross entropy

• Initialization of probing states: uniformly random in [−0.5, 0.5)

• Update frequency: every time a new episode is collected

• Number of policy updates: 1

• Number of value function updates: 5

• Learning rate policy: 1e-6

• Learning rate value function: 1e-3

• Noise for policy perturbation: 0.05

• Priority sampling from replay buffer: True, with weights 1/x0.8, where x is the number of episodes since the data was
stored in the buffer

• Default PyTorch initialization for all networks.

• Optimizer: Adam
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B.2. RL Implementation

In some MuJoCo environments like Hopper and Walker, a bad agent can fail and the episode ends after very few time steps.
This results in an excessive number of bad policies in the replay buffer, which can bias learning. Indeed, by the time a good
policy is observed, it becomes difficult to use it for training when uniformly sampling experience from the replay buffer. We
find that by prioritizing more recent data we are able to achieve a more uniform distribution over the buffer and increase
the sample efficiency. We provide an ablation in Appendix C.2, showing the contribution of this component and of policy
fingerprinting.

Like in the original ARS and PBVF papers (Mania et al., 2018; Faccio et al., 2020), we use observation normalization and
remove the survival bonus for the reward. The survival bonus, which provides reward 1 at each time step for remaining alive
in Hopper, Walker and Ant, induces a challenging local optimum in parameter space where the agent would learn to keep
still.

For DDPG, we use the default hyperparameters, yielding results on par with the best reported results for the method. For
ARS, we tune for each environment step size, number of population and noise. For our method, we use a fixed set of
hyperparameters, with the only exception of Ant. In Ant, we observe that setting the parameter noise for perturbations to
0.05 results in very rare positive returns for ARS and PSSVF (after subtracting the survival bonus). Therefore we use less
noise for this environment.

Here we report the hyperparameters used for PSSVF and the baselines. For PSSVF, we use the open source implementation
provided by Faccio et al. (2020). For DDPG, we use the spinning-up RL implementation (Achiam, 2018), whose results are
on par with the best reported results. For ARS, we adapt the publicly available implementation (Mania et al., 2018) to Deep
NN policies.

Shared hyperparameters:

• Policy architecture: Deterministic MLP with 2 hidden layers and 256 neurons per layer with bias. Tanh activations for
PSSVF and ARS. ReLu activations for DDPG. The output layer has Tanh nonlinearity and bounds the action in the
action-space limit.

• Value function architecture: MLP with 2 hidden layers and 256 neurons per layer with bias. ReLU activations for
PSSVF and DDPG.

• Initialization for actors and critics: Default PyTorch initialization

• Batch size: 128 for DDPG. 16 for PSSVF

• Learning rate actor: 1e-3 for DDPG; 2e-6 for PSSVF

• Learning rate critic: 1e-3 for DDPG, 5e-3 for PSSVF

• Noise for exploration: 0.05 in parameter space for PSSVF; 0.1 in action space for DDPG

• Actor’s frequency of updates: every episode for PSSVF; every 50 time steps for DDPG; every batch for ARS

• Critic’s frequency of updates: every episode for PSSVF; every 50 time steps for DDPG

• Replay buffer size: 100k for DDPG; 10k for PSSVF

• Optimizer: Adam for PSSVF and DDPG

• Discount factor: 0.99 for DDPG; 1 for PSSVF and ARS

• Survival reward adjustment: True for ARS and PSSVF in Hopper, Walker, Ant; False for DDPG

• Environmental interactions: 300k time steps in InvertedDoublePendulum; 3M time steps in all other environments

Tuned hyperparameters:

• Step size for ARS: tuned with values in {1e− 2, 1e− 3, 1e− 4}
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• Number of directions and elite directions for ARS: tuned with values in
{[1, 1], [8, 4], [8, 8], [32, 4], [32, 16], [64, 8], [64, 32]}, where the first element denotes the number of directions
and the second element the number of elite directions

• Noise for exploration in ARS: tuned with values in {0.1, 0.05, 0.025}

Hyperparameters for specific algorithms:

PSSVF:

• Number of probing states: 200

• Initialization of probing states: uniformly random in [0, 1)

• Observation normalization: True

• Number of policy updates: 5

• Number of value function updates: 5

• Priority sampling from replay buffer: True, with weights 1/x1.1, where x is the number of episodes since the data was
stored in the buffer

ARS:

• Observation normalization: True

DDPG:

• Observation normalization: False

• Number of policy updates: 50

• Number of value function updates: 50

• Start-steps (random actions): 10000 time-steps

• Update after (no training): 1000 time-steps

• Polyak parameter: 0.995

B.3. GPU usage / Computation requirements

Each run of PSSVF in the main experiment takes around 2.5 hours on a Tesla P100 GPU. We ran 4 instances of our
algorithm for each GPU. We estimate a total of 75 node hours to reproduce our main RL results (20 independent runs for 6
environments).

C. Experimental details
C.1. MNIST experiments

Online learning through Algorithm 1 We use PSSVF (Algorithm 1) with the hyperparameters described in Appendix B.1.
Figure 5 shows the performance of PSSVF using CNNs on MNIST with 10 and 50 probing states as a function of the number
of interactions with the dataset. Each interaction consists of perturbing the current policy with random noise, computing the
loss of the perturbed policy on a batch of data, storing the perturbed policy and its loss, and updating.

Visualisation of learned probing states We plot the evolution of some of the probing states, starting from random noise,
until the PSSVF is learned. We consider one run of the previous experiment with 10 probing states and show how they
change during learning. This is depicted in Figure 6 where randomly initialized probing states slowly become similar to
digits.
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Figure 5. On the left: test accuracy of PSSVF as a function of the interactions with the dataset. On the right: loss of the perturbed CNN on
the training set. Average over 5 independent runs and 95% bootstrapped confidence interval.

Offline policy improvement This section describes the offline MNIST experiment of the main paper. Here every iteration
encompasses the following steps. We perturb a randomly initialized CNN with gaussian noise with standard deviation 0.1.
Then we compute the loss on a batch of 1024 training data. If the accuracy on such batch is below 12%, we store the CNN
and its loss, otherwise we discard the data. At every iteration we also train a PSSVF with 200 probing states, using the data
collected (whose accuracy is at most 12%). We repeat this for 90000 iterations. Then, we randomly initialize a new CNN
and train it by taking gradient steps through the fixed PSSVF, without further seeing training data. In Figure 7 we plot the
performance of the zero-shot learned CNN. Surprisingly, it achieves a test accuracy of 65%, although only CNNs with at
most 12% accuracy are used in training. From the same figure we also observe that the prediction of the PSSVF is quite
accurate up to 80 gradient steps, after which the performance degrades. We use a learning rate of 1e− 3 for the CNN.

Visualisation of learned probing states When training the PSSVF using CNNs whose accuracy is at most 12%, we also
observe the formation of "numbers" as probing states, although they are not as evident as in the online setting. We provide
some examples in Figure 8.

C.2. Main experiments on MuJoCo

To measure learning progress, we evaluate each algorithm for 10 episodes every 10000 time steps. We use the learned policy
for PSSVF and ARS and the deterministic actor (without action noise) for DDPG. We use 20 independent instances of the
same hyperparameter configuration for PSSVF and DDPG in all environments. When tuning ARS, we run 5 instances of the
algorithm for each hyperparameter configuration. Then we select the best hyperparameter for each environment and carry
out a further 20 independent runs. We report the best hyperparameters found for ARS in Table 1. In addition to the learning
curves of the main paper in Figure 3, we report the final return with a standard deviation in Table 2.

Table 1. Best hyperparameters for ARS
Environment step size directions noise
Walker2d-v3 0.01 [8,8] 0.05
Swimmer-v3 0.01 [8,4] 0.05
HalfCheetah-v3 0.01 [8,4] 0.05
Ant-v3 0.01 [32,16] 0.01
Hopper-v3 0.01 [8,4] 0.05
InvertedDoublePendulum-v2 0.01 [8,8] 0.025

Ablation on weighted sampling In Figure 9 we show the benefit of using non-uniform sampling from the replay buffer in
Hopper and Walker environments. We compare uniform sampling (no weight) to non uniform sampling with weight 1/xk,
where k ∈ {1.0, 1.1}, and x is the number of episodes since the data was stored in the buffer. We achieve the best results in
Hopper and Walker for the choice of x = 1.1. It is interesting to take this into consideration when comparing our approach
to vanilla PSSVF.
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Table 2. Final return (average over final 20 evaluations)
Environment PSSVF ARS DDPG
Walker2d-v3 2333± 343 1488± 961 2432± 1330
Swimmer-v3 349± 60 342± 21 129± 25
HalfCheetah-v3 3067± 820 2497± 611 10695± 1358
Ant-v3 1549± 240 1697± 225 466± 716
Hopper-v3 2969± 165 2340± 199 1634± 1036
InvertedDoublePendulum-v2 7649± 2640 4515± 2733 7377± 3770
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Figure 9. Comparison between our algorithm without weighted sampling from the replay buffer and with weight 1/xk, where k ∈
{1.0, 1.1}. Average over 10 independent runs and 95% bootstrapped confidence interval.

Comparison to vanilla PSSVF A direct comparison to the standard Parameter-Based Value function is unfeasible for
large NNs. This is because in the vanilla PSSVF, flattened policy parameters are directly fed to the value function. In our
policy configuration, the flattened vector of policy parameters contains about 70K elements, which is significantly more than
200× nA elements used to represent policies with fingerprinting. Nevertheless, we provide a direct comparison between the
two approaches using a smaller policy architecture which consists of an MLP with 2 hidden layers and 64 neurons per layer.

For vanilla PSSVF, we use the best hyperparameters reported by Faccio et al. (2020) when optimizing policies with 2 hidden
layers and 64 neurons per layer and optimizing over the final rewards. Our algorithm uses the policy architecture of vanilla
PSSVF and the hyperparameters of our main experiments, changing only the learning rate of the policy to 1e− 4 and the
noise for policy perturbations to 0.1. Figure 10 shows that while in Swimmer policy fingerprinting is enough to achieve an
improvement over vanilla PSSVF, in Hopper non-uniform sampling plays an important role. Note that in the vanilla PSSVF
paper, learning rates and perturbation noise are tuned for each environment, while in our experiments we keep a fixed set of
hyperparameters for all environments to maintain consistency. We expect the performance of our approach to also improve
by selecting hyperparameters separately for each environment.
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Figure 10. Comparison between vanilla PSSVF with no weighted sampling and no fingerprinting, PSSVF with policy fingerprinting, and
our final algorithm that uses also weighted sampling. The solid line is the average over 10 independent runs; the shading indicates 95%
bootstrapped confidence intervals.

Zero-shot learning of new policy architectures For this task we use the same hyperparameters as in the main experiments
(see Appendix B.2). We use a learning rate of 1e− 4 to zero-shot learn the linear policy.
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C.3. Fingerprint Analysis

Ablation on number of probing states We compare the performances of PSSVF versions with varying numbers of
probing states. We use the same hyperparameters as in the main experiments (see Appendix B.2), apart for the number of
probing states. Figure 11 shows that in Hopper and Swimmer 10 probing states are sufficient to learn a good policy, while
Walker needs a larger number of probing states to provide stability in learning.
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Figure 11. Average return of PSSVF with different number of probing states as a function of the number of time steps in the environment.
The solid line is the average over 10 independent runs; the shading indicates 95% bootstrapped confidence intervals.

Learning Swimmer with 3 states Figure 12 includes a detailed analysis of this experiment. The probing actions are the
vectors [−0.97,−0.86], [−0.18,−0.99], [0.86, 0.68]. In the plot we notice that when the agent’s state is close to the first
probing state (bottom plot, depicted in blue), then both components of the actions are close to -1, like the probing action in
such state. When the agent’s state is close to the second state (bottom plot, depicted in orange), the first component of the
action moves from -1 to 0 (and then to +1) in a smooth way, while the second component jumps directly to +1. This behavior
is consistent with the second probing action, since the second component is more negative than the first. Notably, although
the distance between the agent’s state and the third probing state (bottom plot, depicted in green) is never close to zero, such
a probing state is crucial: it induces the agent to take positive actions whenever the other probing states are far away.

In Figure 13 we can see that as the MSE loss goes to zero when fitting the 3 transitions, the return of the policy increases
until it almost matches the optimal value. In this experiment we train a PSSVF with 5 probing states following Algorithm 1
for 2M time steps. We manually select a subset of 3 probing states and act in those states using the learned policy. We then
fit a new policy over those 3 transition. We use a batch size of 3 and a learning rate of 2e− 5 to fit the new policy. The other
hyperparameters are the same as in the main experiments (see Appendix B.2).

Learning Hopper with 5 states We repeat the same experiment of cloning near-optimal behaviour from a few states in
the Hopper environment. Using the action of a good policy (whose return is 2450) in 5 probing states, we are able to fit
a new policy and obtain a final return of 2200. We use a batch size of 5 and a learning rate of 1e − 4 for the randomly
initialized policy. All other hyperparameters are like in the Swimmer experiment with 3 transitions. Figure 14 shows the
learning curve, while Figure 15 relates the behavior of the policy learned using the 5 transitions to the distance of the current
agent’s state to the probing states. The 5 probing actions {ãk}5k=1 are:

ã1 = [0.4859, 0.6492,−0.7818],

ã2 = [0.9251, 0.9100, 0.2322],

ã3 = [0.0405, 0.0475, 0.9091],

ã4 = [0.2925,−0.4677,−0.1329],

ã5 = [0.7578, 0.4327,−0.1521].

We observe a similar behavior of the Swimmer experiments (Figure 12), where the action chosen by the agent is similar
to the probing action of a probing state whenever the agent’s state is close to the probing state. Although the dynamics in
Hopper are more complex than in Swimmer, 5 probing states are enough to make the agent perform non-trivial actions in the
environment.
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Figure 14. On the left: return of the policy learned using 5 transitions in Hopper. On the right, MSE for fitting the 5 transitions. Average
over 5 independent runs and 95% bootstrapped confidence interval.

Visualisation of probing states in RL In Figure 12 we show the three probing states of the last experiment on Swimmer.
In environments like Hopper and Walker, probing states might not correspond to a real state in the environment (e.g. some
components of the probing state are outside a specific range). We notice that this is usually not the case and that the learned
probing states generally correspond to valid environmental states. Moreover, we observe that probing states tend to get
closer to certain critical situations over learning. These are states where certain actions have a significant effect on the future.
In the Ant environment, we notice that all components of the probing state vector from index 28 to 111 learn a value of
around 1e− 8. Interestingly, the process of fingerprinting discovers this ‘bug’ in MuJoCo 2.0.2.2 that sets all contact forces
in Ant to zero. Since these components of the state vector remain constant during the environmental interactions, and are
therefore not relevant for learning, the PSSVF learns to set them to zero as well.

Figure 16 shows the evolution of the Swimmer environment from the selected probing states when no action is taken. The 3
probing states reported are those used for the experiment of Figures 13 and 12.

Figure 16. From top to bottom: the three learned probing states in Swimmer. From left to right: Evolution of the environment over time
steps. The agent is initialized in the probing state and performs no action.
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Figure 17. From top to bottom: the 5 learned probing states on Hopper. From left to right: various time steps in the environment. The
agent is initialized in the probing state and performs no action.

Figure 17 shows 3 out of the 5 learned probing states on Hopper in the experiment of Figures 14 and 15. The other 2 probing
states do not correspond to valid states in Hopper and are therefore not visualized. No action is taken from the probing state
and the environment is allowed to evolve naturally from the probing state. The duration of interaction differs in each row of
the figure as termination occurs at different points from the probing states.

Figure 18. Evolution of the environment from a probing state when (Top) no actions taken, (Bottom) the first action in the probing state is
taken using a good policy. Then no action is performed.

Figure 18 supports our hypothesis that some probing states might capture critical scenarios. In the considered probing state
from Hopper we see that taking no action results in immediate failure as indicated by the shorter span of interaction in the
top panel of Figure 18. In contrast, acting for a single time-step with a successful policy in that situation helps the agent
survive and prolongs the interaction (bottom panel of Figure 18).

Additional probing states for all environments can be seen in animated form on the website https://
anonymous260522.github.io/.

D. Societal Impact
Our work makes algorithmic contributions to actor-critic approaches for reinforcement learning and does not focus on
specific real-world applications. Using our PSSVF for offline improvement of policies (as shown in our MNIST experiment)
could help mitigate risks from directly applying deep neural network policies to online situations in the real world.

E. Environment details
Mujoco is made available with Apache License 2.0. The MNIST dataset is available through the creative commons license
CC BY-SA 3.0.

https://anonymous260522.github.io/
https://anonymous260522.github.io/
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Figure 6. From left to right, the 10 probing states learned by the PSSVF using Algorithm 1. Each column represents 12500 interactions.
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Figure 7. On the left: test accuracy of a random initialized CNN zero-shot learned using a learned PSSVF. On the right, the prediction of
the performance of the CNN given by the PSSVF and the true performance on the test set. Average over 5 independent runs and 95%
bootstrapped confidence interval.

Figure 8. Samples of probing states learned by the PSSVF using CNNs with at most 12% training set accuracy.

Figure 12. Behavior of the policy learned from 3 probing state-probing action pairs in Swimmer. From top to bottom: each component of
the state vector across time steps in an environment simulation; each component of the action vector; L2 distance of the current state to
each of the 3 probing states used for learning.
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Figure 13. On the left: return of the policy learned using 3 transitions in Swimmer. On the right, MSE for fitting the 3 transitions. Average
over 5 independent runs and 95% bootstrapped confidence interval.

Figure 15. Behavior of the policy learned from 5 probing state-probing action pairs in Hopper. From top to bottom: each component of
the state vector across time steps in an environmental simulation; each component of the action vector; L2 distance of the current state to
each of the 5 probing states used for learning.


