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Abstract

AI-generated images have become pervasive, raising critical concerns around con-
tent authenticity, intellectual property, and the spread of misinformation. Invisible
watermarks offer a promising solution for identifying AI-generated images, preserv-
ing content provenance without degrading visual quality. However, their real-world
robustness remains uncertain due to the lack of standardized evaluation protocols
and large-scale stress testing. To bridge this gap, we organized “Erasing the In-
visible,” a NeurIPS 2024 competition and newly established benchmark designed
to systematically stress testing the resilience of watermarking techniques. The
competition introduced two attack tracks—Black-box and Beige-box—that simu-
late practical scenarios with varying levels of attacker knowledge on watermarks,
providing a comprehensive assessment of watermark robustness. The competi-
tion attracted significant global participation, with 2,722 submissions from 298
teams. Through a rigorous evaluation pipeline featuring real-time feedback and
human-verified final rankings, participants developed and demonstrated new at-
tack strategies that revealed critical vulnerabilities in state-of-the-art watermarking
methods. On average, the top-5 teams in both tracks could remove watermarks
from ≥ 89% of the images while preserving high visual quality, setting strong
baselines for future research on watermark attacks and defenses. To support contin-
ued progress in this field, we summarize the insights and lessons learned from this
competition in this paper, and release the benchmark dataset, evaluation toolkit, and
competition results. “Erasing the Invisible” establishes a valuable open resource
for advancing more robust watermarking techniques and strengthening content
provenance in the era of generative AI.

1 Introduction

Recent advances in text-to-image generation have captivated the AI community and the general
public alike. Open-source models like Stable Diffusion and proprietary models such as DALL-E,
Midjourney, and GPT-4o allow users to create images that are virtually indistinguishable from those
crafted by humans. This surge in AI-generated content has prompted the AI/ML community, as well
as policymakers, to focus on developing mechanisms to identify and attribute AI-generated content -
as highlighted in recent guidance from the EU AI Act and Executive Office of the President.

Watermarks offer a promising solution to identify AI-generated images. A watermark is a signal
embedded in an image to signify its origin or ownership, ideally without degrading image quality.
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Modern watermarks, especially those invisibly embedded within images by generative AI models,
are designed with the best intentions. However, they are not without their pitfalls.

Pitfall I A primary concern is the false sense of security they may impart. Users might believe that
a watermark’s detection accuracy, largely measured by the recall rate of watermarked instances, is
reliably high. But what happens when these images are slightly altered using readily available editing
tools? Can watermarks withstand such modifications?

Despite the robustness of many watermarks against common image manipulations, determined
attackers can sometimes succeed in removing them. Unfortunately, a lack of standardized evaluations
in the literature and the absence of large-scale stress tests have led to an incomplete understanding of
the true robustness of these watermarking techniques.

Pitfall II Furthermore, ensuring the precision remains high is vital to avoid false positives, where
genuine, non-AI-generated images are mistakenly flagged as synthetic. Some researchers are con-
cerned that the damage from a false positive, incorrectly accusing someone of using generative AI,
could be much greater than that of a false negative, where an AI-generated image goes undetected.
Therefore, the robustness to spoofing attacks [Saberi et al., 2024] is also important.

In this work, we address Pitfall I by conducting a large-scale, standardized stress test to rigorously
evaluate watermark robustness against removal attacks. In this vein, WAVES (Watermark Analysis
via Enhanced Stress-testing) [An et al., 2024] introduced a benchmark with a standardized evaluation
protocol and 26 attacks, ranging from classical image distortions to sophisticated adversarial methods,
to systematically probe watermark robustness. Although WAVES revealed notable vulnerabilities in
several watermarks, its attack suite remained relatively small-scale, limiting the breadth of insights
into real-world threats. To overcome this limitation and to gather the most potent removal tech-
niques available, we extended WAVES by organizing Erasing the Invisible (ETI), a global NeurIPS
competition that serves as a large-scale stress test for state-of-the-art watermarking methods.

The ETI competition comprises two tracks, Black-box and Beige-box, that emulate practical deploy-
ment scenarios with varying levels of attacker knowledge. The Black-box track mirrors industry
settings where watermark algorithms are proprietary and undisclosed, challenging participants to
disrupt unseen watermarks while preserving image fidelity. The Beige-box track, by contrast, provides
labels on the watermarking methodology, enabling attackers to tailor their strategies to known embed-
ding processes. Attracting 2,722 submissions from 298 teams worldwide, ETI employed a rigorous,
standardized evaluation pipeline complete with a real-time leaderboard and human-verified final
rankings. Through this large-scale effort, we uncovered new vulnerabilities. Top teams succeeded in
removing ≥ 89% of watermarks on average without perceptible quality loss. The innovative attack
strategies serve as strong baselines for future research. To drive continued progress in digital content
provenance, we summarize the insights and lessons learned in this paper and open-source the ETI
benchmark, including the dataset, evaluation toolkit, and complete competition results. Moreover, the
competition pipeline can be effortlessly extended to live or rolling benchmarks, enabling continual
evaluation of emerging watermarking techniques.

2 Recap of the Competition

2.1 Competition Structure and Design
Images for the competition were generated via a hybrid approach using both the Flux. 1 [dev]
model and Stable Diffusion 2.1. We incorporated watermarking methods spanning two fundamental
paradigms: in-processing techniques (embedding the watermark during the image generation process)
and post-processing techniques (applying the watermark to already generated images). To establish a
standardized baseline, we calibrated the false-positive rate (FPR) for each deployed watermark. For
every decoder, we computed continuous detection scores on 10,000 unwatermarked images and set
the decision threshold to yield an FPR of 0.1%; this threshold was then held fixed for all subsequent
evaluations. Under this fixed threshold, all watermarking methods achieved a true-positive rate (TPR)
of at least 99.9% on clean, un-attacked watermarked images. This provided a consistent foundation
for assessing participants’ removal efficacy. The competition featured two distinct tracks, differing in
the level of knowledge afforded to attackers regarding the employed watermarks.
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Figure 1: Overview of competition design, including track structure (Left) and evaluation metrics
(Right).

Beige-box Track. In this track, participants were informed of the specific watermarking algorithms
applied to the images, facilitating more targeted attack strategies. Two representative methods were
employed, distributed across 300 images: (1) Gaussian Shading [Yang et al., 2024], an in-processing
watermark, was applied to 150 images generated by Stable Diffusion 2.1. This method embeds a
unique pattern within the initial noise vector integral to the diffusion model’s synthesis process. (2)
StegaStamp [Tancik et al., 2020], a post-processing watermark, was applied to 150 images generated
by Flux. 1 [dev]. It utilizes a deep neural network trained for robust, invisible watermark embedding
via learned encoding and decoding.

Black-box Track. Participants in this track received 300 images with a more complex and en-
tirely confidential mix of watermarks: (1) Single Watermark: Four sets of 50 images were each
watermarked using one distinct method: JigMark [Pan et al., 2024], PRC [Gunn et al., 2023], Sta-
bleSignature [Fernandez et al., 2023], or the Trufo watermark. (2) Double Watermark: 50 images
featured a combination of Gaussian Shading + JigMark, and another 50 combined StableSignature
+ StegaStamp. All images within this track were shuffled to prevent participants from inferring
watermarking methods based on image order or batching.

2.1.1 Evaluation Metrics and Scoring.

To rigorously evaluate the trade-off between watermark removal success and image quality preser-
vation, we implemented a sophisticated evaluation system based on principles from the WAVES
benchmark [An et al., 2024]. Each participant submission was assigned a final score, calculated
as the Euclidean distance in a 2D space defined by two core metrics: image quality degradation
(Q) and post-attack watermark detection performance (A). We set Score =

√
Q2 +A2. The

primary objective for participants (attackers) was to minimize this score. A low score signifies an
effective attack that significantly degrades or removes the watermark (low A) while incurring minimal
perceptible damage to image quality (low Q).

Image Quality Degradation (Q). The visual impact of an attack was quantified by comparing
each attacked image to its original watermarked (but unattacked) version. The normalized score Q
aggregated information from eight distinct image quality metrics (IQMs): (1) Peak Signal-to-Noise
Ratio (PSNR), (2) Structural Similarity Index (SSIM) [Wang et al., 2004], (3) Normalized Mutual
Information (NMI), (4) Frechet Inception Distance (FID) [Heusel et al., 2017], (5) CLIP Image
Fidelity (CLIP-FID) [Kynkäänniemi et al., 2019], (6) Learned Perceptual Image Patch Similarity
(LPIPS) [Zhang et al., 2018], (7) Delta Aesthetics Score (∆Aesthetics) [Xu et al., 2023], and (8) Delta
Artifacts Score (∆Artifacts) [Xu et al., 2023]. A lower Q indicates less visual degradation. Details
on IQM normalization and weighting are provided in the Appendix.

Watermark Detection Performance (A). A critical aspect of our evaluation was the precise and effi-
cient calculation of the post-attack watermark detection performance (A). To achieve this, for each
distinct watermarking method (including superpositions), we first pre-calculated a specific detection
score threshold for its decoder. This threshold was carefully determined by evaluating the decoder on
a large, held-out set of 10,000 diverse unwatermarked images (per watermark type/superposition) and
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identifying the raw detection score that corresponded to a False Positive Rate (FPR) of 0.1%. This
pre-calibration provided an accurate estimation of the 0.1% FPR operating point and enabled efficient
computation of A for incoming participant submissions (each typically containing 300 images). The
metric A for a submission was then defined as the True Positive Rate (TPR) achieved by the original
watermark detector on the participant’s attacked images, using this pre-calibrated 0.1% FPR score
threshold; thus, A = TPR@0.1%FPR. Consequently, A represents the fraction of attacked images
where the watermark is still successfully detected. For an attacker, a lower value of A is desirable, as
it signifies that their attack has rendered the watermark undetectable in a larger proportion of images.
An A value approaching 0 indicates near-complete success in watermark removal, while an A value
approaching 1 suggests the watermark largely withstood the attack.

2.1.2 Competition Platform and Deliverables.

The competition was hosted on Codabench [Farragi et al., 2020–], an open-source platform for
computational challenges. The core evaluation logic was implemented in an open-source Python
program and docker image open sourced at Github 12, executed by custom, containerized compute
workers built upon the standard Codabench architecture. For each submission of attacked images,
the evaluation pipeline automatically performed watermark decoding and image quality assessment
(following verification and standardized preprocessing). It then computed the final score from Q
and A, reporting it to the real-time Codabench leaderboard. Key deliverables for future research
include the original watermarked image datasets and the complete set of participant submissions with
detailed evaluation results, all publicly released on HuggingFace 3.

3 Major Insights via Result Analysis
3.1 Submission Statistics Overview and Understanding
The competition ran from September 16 to November 5, 2024, attracting significant global engage-
ment. A total of 2,722 submissions were received across both tracks. Specifically, the Beige-box
Track saw 1,072 submissions from 65 distinct teams, while the Black-box Track recorded 1,650
submissions from 77 distinct teams. This broad participation highlights the community’s strong
interest in the challenge of evaluating and breaking image watermarks. Figure 2 provides a visual
summary of key submission statistics and outcomes.

Varied Robustness of Black-Box Watermarks. Figure 2a presents the distribution of watermark
detection rates for the six distinct watermark algorithms (GaussianShading, JigMark, PRC, Sta-
bleSignature, StegaStamp, and Trufo) within the Black-box track, aggregated across all participant
submissions. These results offer a broad overview of each method’s resilience when subjected to a
diverse array of attack strategies, ranging from simple edits to more sophisticated techniques. Notably,
GaussianShading exhibited the highest median detection rate, suggesting it was, on average, the most
challenging watermark for participants to successfully remove or degrade across all submissions (i.e.,
attacks resulted in higher residual watermark detection performance). Conversely, StableSignature
and Trufo displayed the lowest median detection rates, indicating they were more frequently compro-
mised (i.e., attacks achieved lower watermark detection performance). This aggregation reflects how
these watermarks fare against a wide spectrum of attacker efforts, including potentially less polished
or casual attempts.

Watermark Detection Performance versus Image Quality Degradation Trade-offs. The scatter
plots in fig. 2b illustrate the crucial trade-off between watermark detection performance (axis A,
lower is better for an attacker, signifying more effective watermark removal) and image quality
degradation (axis Q, lower is better for an attacker, signifying better preservation of image quality)
for submissions in both the Beige-box (left panel) and Black-box (right panel) tracks. The red lines
delineate the Pareto frontiers, representing the best-achieved compromises by participants.

For the Beige-box track, a distinctive step-like feature is evident on its Pareto frontier around a
watermark detection performance level of A ≈ 0.5. This track comprised images watermarked with
either GaussianShading or StegaStamp. The observed step likely indicates that one of these methods

1https://github.com/erasinginvisible/eval-program
2https://github.com/erasinginvisible/worker-container
3https://huggingface.co/datasets/furonghuang-lab/ETI_Competition_Data
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(b) Submission Performance: Beige-Box and Black-Box Pareto Frontiers.

Figure 2: Overview of competition submission statistics. (a) Detection rate distributions for six
Black-box track watermarks (GaussianShading, JigMark, PRC, StableSignature, StegaStamp, Trufo),
revealing their relative resilience to participant attacks. (b) Scatter plots illustrating the trade-off
between watermark detection performance (A, lower is better for attackers, indicating successful
removal) and image quality degradation (Q, lower is better) for Beige-box (left) and Black-box (right)
track submissions, with achieved Pareto frontiers highlighted in red.

(e.g., StegaStamp) was comparatively easier for many participants to break. Thus, submissions
successfully attacking only this more vulnerable watermark type, thereby significantly lowering its
detection performance, would cluster around A ≈ 0.5, while the detection performance for the other,
more robust watermark remained high.

In the Black-box track, the Pareto frontier appears smoother. The distribution of submissions,
particularly those forming the frontier, clearly demonstrates that optimal solutions necessitate a
balance between minimizing residual watermark detection performance and minimizing visual
distortion. Submissions excelling in one metric at the extreme expense of the other are generally
suboptimal. This outcome validates the design of our overall scoring metric (Euclidean distance
to the origin in the Q − A space), as it effectively encouraged participants to develop attacks that
simultaneously achieve low watermark detection performance (high removal) and high image fidelity
(low degradation), even under the rigorous stress-testing conditions of the competition.

3.2 Advantages of Watermark Superposition

A key exploration within the competition’s black-box track was the efficacy of watermark super-
position as a strategy to enhance robustness. The underlying hypothesis is that combining two
distinct watermarking techniques onto a single image could create a more resilient defense, as an
attacker would need to successfully neutralize both embedded signals. This approach is conceptually
straightforward and potentially offers a practical, low-overhead method for bolstering watermark
security against increasingly sophisticated removal attacks. Our findings indicate that this strategy
indeed holds considerable promise, particularly when the combined watermarks leverage diverse
operational principles.
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Superposition as a Layered Defense Strategy. In our black-box track, superposition was im-
plemented by independently injecting two different watermarks (referred to as Watermark A and
Watermark B) into each test image. During the evaluation, an image was considered to still possess a
valid watermark if either Watermark A or Watermark B was successfully detected by their respective
decoders after an attack. Consequently, for an attack to be deemed successful in removing the
watermark from a superposed image, the attacker must simultaneously eradicate or disable both
Watermark A and Watermark B. This requirement inherently increases the complexity and effort
needed for successful watermark removal.

Evaluating Superposition: Setup and Metrics. We tested two specific pairs of superposed wa-
termarks: (1) GaussianShading combined with JigMark, and (2) StableSignature combined with
StegaStamp. Table 1 summarizes the average percentage of watermarks removed by the top-5 partici-
pating teams. This metric represents the attack success rate, where a lower percentage indicates higher
robustness of the watermarking scheme. The table is organized to facilitate comparison between
individual watermarks and their superposed versions.

Table 1: Effectiveness of watermark superposition in the black-box track. The table shows the
average percentage of watermarks removed by top-5 teams (lower is better). We tested two primary
superposition pairs: (GaussianShading + JigMark) and (Stable Signatur + StegaStamp).

Watermark Method GaussianShading JigMark
GaussianShading

+ JigMark
Stable Signature StegaStamp

Stable Signature
+ StegaStamp

% Watermark Removed 97.5% 98.4% 61.2% 100.0% 90.2% 93.6%

Significant Robustness Gains with Dissimilar Pairings. The results in Table 1 strikingly demon-
strate the power of superposition, particularly with the GaussianShading + JigMark pairing. While
GaussianShading and JigMark individually exhibited high removal rates of 97.5% and 98.4% re-
spectively, their superposition drastically reduced the removal rate to just 61.2%. This remarkable
improvement—an absolute reduction in successful attacks by over 36% compared to their individ-
ual vulnerabilities—highlights a strong synergistic effect. It suggests that combining watermarks
leveraging fundamentally different operational principles, as these two methods arguably do, can
significantly elevate the difficulty of successful removal by forcing attackers to overcome multiple,
varied defense layers.

3.3 Modern Watermarks are Far from Robust

From Section 3.1, we can see that the state-of-the-art watermarks are far from robustness. The winning
teams are able to remove a large part of the watermarks. Table 2 summarizes the vulnerabilities
of each watermark identified by the winning teams. Note that StegaStamp and GaussianShading
are tested in the beige-box setting where the attacks are more tailored, and others are tested in the
black-box setting where attacks are more general.

Most effective attacks. The most effective attacks include geometric manipulation such as shifting
and cropping, image regeneration through off-the-shelf models or specifically trained models, and
watermark overwriting utilizing the white-box watermark encoder and decoders. Among them, the
regeneration attack is the most widely applied and effective. Although many participants explored
similar strategies, success was often hidden in subtle implementation details. For example, two
teams independently identified 7 or 8 as the “magic number”: shifting the image by exactly 7 or 8
pixels produces the strongest attack on GaussianShading while preserving quality. In the black-box
track, many teams first group images according to their watermark patterns, whether in the spatial or
frequency domain, and then tailor distinct attack strategies to each cluster.

Strategies to maintain quality. The main challenge in watermark removal is preserving visual
quality. To address this, nearly every team introduced bespoke techniques to minimize degradation
while erasing the watermark. For example, some teams applied a pixel shift and then employed a
diffusion model to in-paint the resulting edge artifacts; one team dynamically adjusted their attack
strength based on each image’s entropy; and yet another team fine-tuned a variational autoencoder
(VAE) specifically to reduce quality loss.

We defer details of the winning solutions to the Appendix but highlight the insights in Table 2.
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3.3.1 Insights from the Winning Beige-Box Attacks

In the beige-box track, the participants tailored their attacks for each watermark.

StegaStamp is vulnerable to tailored attacks. Teams predominantly leveraged the open sourced
StegaStamp encoder and decoder to design targeted approaches. The first place team generated a
custom dataset using images processed with StegaStamp and their inverted messages to fine-tune
a VAE that removes invisible watermarks by minimizing MSE loss between images with opposite
messages [Shamshad et al., 2025]. The second place team confused the StegaStamp decoder by
encoding random messages multiple times with varying perturbation strengths into the target images,
effectively overwriting the original watermark. The fourth place team also performed a watermark
overwriting attack by extracting, inverting, and re-embedding the hidden messages using StegaStamp’s
encoder and decoder networks [Serzhenko et al., 2025]. The third and fifth place teams found that
regeneration attacks [Jafari, 2024] and resize-crop distortions also work on StegaStamp.

GaussianShading, a TreeRing variant, is vulnerable to simple geometric manipulations. For the
TreeRing watermark variant, the GaussianShading, we are surprised that many successful attacks only
used simple geometric manipulations. The 1st and the 2nd teams both use shifting, and they found
shifting by 7-8 pixels has the best attack-quality trade-off. Due to the special design of Tree-Ring,
they identified a significant vulnerability of it to phase attacks in the frequency domain, which equals
to the shifting in the spatial domain. The 3rd and 5th team applied cropping and rescaling distortion
method. Besides, the 4th team also found rinsing regeneration attack effective.

These diverse strategies underline the vulnerability of current watermarking techniques to both
targeted attacks and surprisingly simple geometric distortions. We see innovative attacks include
dataset-driven VAE training, message overwriting through perturbations, entropy-guided diffusion
model adjustments, and straightforward yet highly effective geometric manipulations.

3.3.2 Insights from the Winning Black-Box Attacks

In the black-box track, participants designed hybrid attacks and made use of image clustering by
visual artififacts.

Watermarks Leave Distinct Visual Artifacts. Several teams clustered images into groups based on
spatial and frequency domain artifacts. Then, they would apply tailored attacks according to each
cluster. This suggests that watermarks which are known to produce consistent image alterations are
easier to identify and remove. For example, teams who could identify that a Tree-Ring watermark
was likely present utilized pixel shifts and/or cropping which found success in the beige-box track.

GaussianShading + JigMark is a resilient watermark. Images using compositions of Gaussian-
Shading and JigMark were strikingly resilient. Teams 2, 4, and 5, who achieved >90% removal for
all other methods, struggled to remove this type of watermark. Notice that in the beige-box track
teams were very successful at removing GaussianShading, while in the black-box track all JigMark
images were successfully attacks. This suggests that watermarks may synergistically improve each
other’s integrity.

4 Discussions
4.1 Lessons Learned
Based on the most successful attacks, we describe some of the most obvious vulnerabilities of
watermarks and how they may be exploited. While the setup of this competition was “red teaming” in
nature, our hope is that this analysis may help inform stronger defenses and robust watermark design.

Beware of “Simple” Geometric Attacks. In-processing watermarks, or those which construct
watermarks as part of the image generation, such as Tree-Ring [Wen et al., 2023] and Gaussian
Shading [Yang et al., 2024] are considered particularly resilient [An et al., 2024, Zhao et al., 2024].
However, teams demonstrated that even simple geometric manipulations, such as pixel shifting,
cropping, resizing and rotation can effectively destroy these watermarks. The creators of the Gaussian
Shading were aware of the potency of phase attacks on Tree-Ring in the frequency domain, which is
equivalent to spatial shifting, and subsequently inherited this vulnerability. Although naive a shift
or crop would generally be detectable by the human eye (by leftover black columns/rows), circular
shifting and in-painting to fill in disturbed pixels can eliminate these artifacts.

8



Post-processing Boosts Regenerative Attacks. Several teams used fine-tuned VAEs, Stable Diffu-
sion Refiner models, and ControlNets to disturb the latent structure of images in an attempt to erase
the watermark. Despite their best attempts at hyperparameter tuning, additional post-processing was
still required to further restore image quality. The winning team of both the beige-box and black-box
tracks used optimized color-contrast restoration in CIELAB space [Shamshad et al., 2025]. The
black-box second place team and beige-box third place team [Jafari, 2024] developed their own
customized tool to fine-tune color properties (exposure, gamma, brightness, hue, tint, etc.) to improve
PSNR and MS-SSIM [Wang et al., 2003] loss.

Vanilla Bases of Custom Models Can Defeat Beige Boxes. Our goal in revealing the general
watermarking type for images in the beige-box track was to assess how effectively attackers could
work in the absence of the watermarking model itself. Despite the usage of custom StegaStamp and
Gaussian Shading models for our images, off-the-shelf versions of these models could be successfully
fine-tuned to transfer attacks. For the StegaStamp images, the fifth place team of the beige-box track
synthetically encoded images with random binary messages via a vanilla encoder and then fine-tuned
a vanilla decoder to invert the messages [Serzhenko et al., 2025]. The winner of the beige-box track
improved upon this approach by fine-tuning a VAE and CIELAB color transfer to bring these images
closer together in visual quality.

Combining Watermarks Can Improve Robustness. Winning teams on the black-box track achieved
an average >90% attack success rate on all watermarking types with the lone exception of Gaussian
Shading + JigMark (see Table 6). The winning teams could only remove 76.5% of this type of
watermark on average, excluding an outlier team that could not remove it from any of the images. As
detailed in Section 3.3.2, these watermarks were individually easy to defeat, thus their combination
appears to emergently produce a stronger watermark.

4.2 Open Questions

Organizing this competition motivated us to think deeper about the future of watermarks. Despite
significant progress, the field faces a number of unresolved challenges that call for further exploration.
Below are some of the many challenges.

Detectability in Open-Source Models. As open-source generative models reach the sophistication
of proprietary “black-box” systems, how can we reliably embed and detect invisible watermarks in
their outputs—especially when there is no unified interface and community-driven forks?

Verifiability of “Non-Generation” Claims. If a given model asserts that it did not generate an image,
by what means can we demonstrate that no other model (proprietary or open-source) produced it?
Excluding every known watermark fingerprint represents an almost intractable, large-scale challenge.

Feasibility of a Universal Invisible Watermark Scheme. Given the diversity of existing algorithms,
is it possible to design a single, cross-model standard watermark that remains imperceptible, robust
against attacks, and easy to integrate?

Tamper-Resistance and Security. Open-access detection APIs facilitate broader research and
deployment but also empower adversaries to reverse-engineer and strip watermarks (e.g., via noise
injection or geometric transforms). How can embedding mechanisms (e.g., stronger encryption,
randomized seeding) and detection pipelines (e.g., robust machine-learning classifiers) be co-designed
to resist such attacks end-to-end?

5 Conclusion

Watermarks are a useful tool for establishing image provenance. We organized the NeurIPS 2024
“Erasing the Invisible" competition to determine the robustness of many popular watermarking
algorithms. We created a beige-box and black-box track to determine how attack strategies would
evolve in the presence of information (or lack thereof). In fact, teams were able to successfully
remove most watermarks while minimally disturbing image quality. This necessitates further research
into stronger watermarks and defenses. One potential path forward is to study combinations of
watermarks, which our competition has shown to improve robustness.
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Ethical Statement

Our work proceeds from the principle that resilient defenses emerge from a clear understanding of
plausible attacks. We detail vulnerabilities entirely in the spirit of responsible disclosure to catalyze
a more robust generation of watermarking technology. By focusing on open-source watermarking
algorithms, we can inform the academic community about weaknesses without directly threatening
systems using watermarks. We intentionally do not release attack implementations. We remind
the reader that our results contain strong defensive takeaways, in particular by demonstrating that
combining dissimilar watermarks offers a powerful defense. We also note that simple geometric
attacks, while effective, can leave traces detectable by forgery-detection networks. We believe that
our released dataset is a resource for developing such tools.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately describe the paper’s contribution as a
report on the "Erasing the Invisible" NeurIPS 2024 competition, including the benchmark
design, participant statistics, key findings on watermark vulnerabilities, and the release of
associated datasets and tools.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section "Limitations" (page 10, lines 306-313) discusses limitations regarding
how attacks were tailored to image clusters, the dataset size enabling manual labeling by
some teams, and how a single watermark type by a database owner might not show such
artifact variation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper is a technical report on a competition and benchmark. It describes
empirical results and insights derived from the competition, rather than presenting new
theoretical results with formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper details the competition setup (Section 2.1), evaluation metrics
(Section 2.1.1, Appendix A), and plans to release the benchmark dataset, evaluation toolkit,
and full participant submissions (Abstract, Introduction, Section 2.1.2). This should allow
reproduction of the reported analyses and rankings, though local bulk evaluation may require
minor adaptations to the CodaBench-interfaced toolkit.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper states the evaluation toolkit is on GitHub (footnote 1) and the
benchmark dataset and participant submissions/results will be released on Hugging Face
(placeholder URL line 127 to be updated). These will be public with MIT (code) and CC
BY 4.0 (data) licenses.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 2.1 (Competition Structure and Design) and Section 2.1.1 (Evaluation
Metrics and Scoring) describe the dataset generation (models, watermarks), competition
tracks, and evaluation setup. Appendix A provides further details on evaluation metrics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: The paper reports aggregated results (e.g., average removal rates for top teams
in Table 1, submission counts). It does not include error bars or formal statistical significance
testing for comparisons between attack strategies or teams, which is common for competition
overview papers focusing on observed outcomes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper mentions the competition was hosted on Codabench using custom
UMIACS compute workers (lines 120-121, 328-330). Based on 2700 submissions, with
beige-box tasks taking 10-15 mins and black-box 30-40 mins on a single NVIDIA 2080Ti
GPU, the total evaluation compute is estimated around 1070 GPU hours.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors (ETI Team) confirm they have reviewed the NeurIPS Code
of Ethics and believe the competition design, execution, and reporting conform to these
guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper’s introduction discusses positive impacts (identifying AI images,
content provenance) and pitfalls (false sense of security, lines 3-6, 31-36). Section 4.2
"Open Questions" also implicitly touches on challenges related to broader adoption and
robustness, which have societal dimensions. The "Broader Impact" section (line 314) will
further elaborate.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The paper mentions that the released dataset of attacks and results aims to
support future research on defenses (Abstract, Introduction). While not specific technical
safeguards on the data itself, a simple "term of use" will be associated with the dataset
on Hugging Face, and the paper’s analytical nature promotes responsible research into
vulnerabilities.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper credits the generative models (Flux.1, Stable Diffusion 2.1) and
cites original papers for the watermarking methods used (Section 2.1, References). Licenses
for generative models are typically permissive (e.g., Stable Diffusion 2.1 uses CreativeML
Open RAIL++-M License), and academic watermarking code often uses MIT or similar,
though Trufo is closed-source and its usage respects this.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new assets: the benchmark dataset (watermarked images),
the evaluation toolkit, and the dataset of participant submissions/results. These will be
released with detailed READMEs/dataset cards on GitHub/Hugging Face, under MIT (code)
and CC BY 4.0 (data) licenses.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
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Justification: The competition itself was a form of crowdsourcing (participant submissions).
Instructions were provided via the Codabench platform. The paper also mentions "human-
verified final rankings" (line 13) performed by organizers. Compensation for participants
was via competition prizes (standard for such events).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: The paper does not describe obtaining formal IRB approval for the "human-
verified final rankings" as this verification was performed by the competition organizers
(co-authors) as part of the organizational duties and not formal human subjects research
involving external participants for this specific verification task. No risks to these internal
verifiers were incurred beyond normal research/organizational activities.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper describes the use of text-to-image diffusion models (Flux.1, Stable
Diffusion 2.1) as a central component for generating the watermarked images that form the
benchmark dataset (Section 2.1). This is an important and original aspect of the work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendices
A Limitations

As described in Sections 4 and 6, users would tailor attacks to image clusters. In the case of beige
box, we outright provided these clusters by disclosing which image indices corresponded to which
general watermark type. For the black-box track, several winning teams clustered images into groups
by artifact varieties and did so by hand. For the latter, this was made possible because (1) our data set
was relatively small, enabling this type of manual data labeling, and (2) they were made aware that
the dataset contained mixtures of several watermarks. A database owner who uses only one type of
watermark will unlikely produce such variation in artifacts.

Additionally, we use the watermark models and setting provided in the original papers and do not
calibrate the strength of watermarks. Therefore, the comparison of watermarks’ robustness could
be biased. For example, images watermarked by StegaStamp shown visible artifacts that hurt the
image quality and provide clues of the watermark used. Calibration watermarks is challenging since
different watermarks use different strategies. One promising solution that future work could consider
is adjusting the strength of watermarks (e.g., message length) so that the quality degradation of
watermarked images are the same.

B Broader Impact

Erasing the Invisible brings together a global community to rigorously evaluate the resilience of
invisible watermarks in AI-generated images, uncovering critical vulnerabilities in methods once
deemed robust. These findings will directly inform the design of next-generation watermarking
schemes, helping content creators, platforms, and policymakers deploy more reliable provenance
tools to combat misinformation, copyright infringement, and evidence tampering.

Moreover, the competition pipeline can be effortlessly extended to live or rolling benchmarks, enabling
continual evaluation of emerging watermarking techniques. By providing an open, standardized
benchmark, we enable reproducible progress in both attack and defense, ultimately strengthening
trust in digital media.
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D Related Work

D.1 Benchmarking Attacks.

The authors of a new watermark will typically demonstrate their robustness by subjecting them to
a large number of attacks. A survey of few modern methods [Fernandez et al., 2023, Tancik et al.,
2020, Wen et al., 2023, Pan et al., 2024, Yang et al., 2024] reveals that they were benchmarked over
differing datasets, attack types (and intensities), and p-values for attack rejection (i.e., the threshold
for not accepting a watermark was removed). Attack authors similarly did not assess the same
watermark types [Nie et al., 2022, Saberi et al., 2024] and/or knowledge scenarios [Lukas et al., 2023,
Jiang et al., 2023]. This spurred the creation of this competition [Ding et al., 2024], to catalog a
greater collection of user-submitted attacks according to the principles of a standardized robustness
benchmark, WAVES [An et al., 2024]. Although winners had to disclose their attack algorithms,
with several already publicly available as pre-prints or notes [Shamshad et al., 2025, Serzhenko
et al., 2025, Jafari, 2024], the general user was not required to describe any submitted attack. A
pseudo-anonymous, publicly-available leaderboard of attacks is novel.4

D.2 Modern Watermarks

Watermark design is an active area of research. We refer the reader to [Zhao et al., 2024, Fernandez
et al., 2023, Gunn et al., 2023, An et al., 2024] for surveys of modern generative watermarks. For
our competition, we selected watermarks of in-processing and post-processing types, (following the
taxonomy of [Ding et al., 2024, An et al., 2024]).

For post-processing watermarks, we used (1) the StegaStamp [Tancik et al., 2020], a watermark
designed for preventing photographic theft, with enhanced robustness via attack-discrete adversarial
training (2) the JigMark [Pan et al., 2024] which resists image editing by using an encoder which
learns to embed a watermark in Fourier low-frequency bands. (3) an industry watermark developed
by Trufo. It is a Y-channel watermark which targets the noisier regions of images. The exact method
is proprietary.

For in-processing watermarks, we used (1) the Stable Signature [Fernandez et al., 2023], which
trains the decoder module of a Stable Diffusion pipeline to embed a message. (2) Gaussian shading
[Yang et al., 2024] embeds a message into the latent representation of image which follows a
Gaussian distribution, thus preserving the latent space. (3) PRC [Gunn et al., 2023], which embeds
a cryptographically pseudorandom pattern into the latent space and can be decoded via an error-
correcting code.

E Detailed Recap of the Competition

E.1 Competition Structure and Design

The competition was structured into two distinct tracks designed to probe watermark robustness
under different attacker knowledge scenarios: the Beige-box Track and the Black-box Track. This
dual-track approach allowed for a nuanced evaluation, assessing resilience both when attackers have
partial information and when they operate with minimal knowledge, simulating diverse real-world
conditions.

A fundamental distinction in watermarking techniques lies between in-processing methods, which
embed the watermark during the generative process (typically within AI models), and post-processing
methods, which apply the watermark to an already generated image (whether AI-generated, natural,
or human-crafted). Our competition incorporated examples of both paradigms.

The images used across both tracks were generated using a hybrid approach, employing both the
Flux. 1 [dev] model and Stable Diffusion 2.1. Prompts were designed to elicit diverse content and

4OpenAI developed their own Detection Classifier Program, which was a whitelist of testers to attack and
challenge the detectability of DALL-E-generated content. However, these results are currently not available.
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styles, ensuring a broad testbed for the watermarking techniques. A critical aspect of the competition
design was the alignment of watermark strength. Prior to the competition, we meticulously tuned the
hyperparameters for each deployed watermark method to achieve a standardized baseline robustness,
targeting a False-Positive Rate (FPR) of 0.1%. This ensured that, without any attack, approximately
99.9% of watermarked images could be correctly detected, providing a consistent starting point for
evaluating removal efficacy.

E.1.1 Beige-box Track Details

In the Beige-box track, participants were provided with the names of the watermarking algorithms
applied, enabling more targeted attacks and testing the fundamental limits of these specific techniques.
We employed two representative methods, distributed across 300 images:

• Gaussian Shading Yang et al. [2024]: An in-processing watermark applied to 150 images
generated by Stable Diffusion 2.1. This method embeds a unique pattern within the initial
noise vector used by the diffusion model during image synthesis. Detection involves
reversing the diffusion process to recover the noise vector and check for the embedded
pattern.

• StegaStamp Tancik et al. [2020]: A post-processing watermark applied to 150 images
generated by Flux. 1 [dev]. StegaStamp utilizes a deep neural network trained to create
robust, invisible watermarks via learned encoding and decoding mechanisms, designed to
withstand various distortions, including print-scan operations.

Providing the method identity allowed participants to potentially leverage public knowledge or
implementations to devise sophisticated removal strategies.

E.1.2 Black-box Track Details

The Black-box track aimed to simulate a more realistic adversarial scenario where the attacker
possesses limited or no prior knowledge about the specific watermarking technology employed. This
track featured a total of 300 images, comprising a more complex mix of watermarks kept entirely
confidential from the participants:

• Singly-Watermarked Images (200 total): 50 images each were watermarked using one
of four distinct methods: JIGMARK Pan et al. [2024], PRC Gunn et al. [2023], Stable
Signature Fernandez et al. [2023], and the Trufo watermark.

• Doubly-Watermarked Images (100 total): To increase the challenge and reflect potential
real-world practices, we included images watermarked with combinations: 50 images with
Gaussian Shading + JIGMARK, and 50 images with Stable Signature + StegaStamp.

All images in this track were shuffled, preventing participants from inferring methods based on order
or batching. We intentionally maintained secrecy around the methods used in this track because
real-world watermarking deployments often rely on confidentiality, alongside other engineering
enhancements like proprietary implementations, randomized keys, multi-watermark layering, and
potential (though not explicitly tested here) anti-tampering defenses. Evaluating robustness under
these conditions provides a more practical assessment of watermark resilience against uninformed
attacks.

E.2 Evaluation Metrics and Scoring

The competition aimed to rigorously assess the trade-off between watermark removal efficacy and the
preservation of image quality. To quantify this, we developed a sophisticated, automated evaluation
system based on the principles established in the WAVES benchmark An et al. [2024]. Each
submission was assigned a final score calculated as the Euclidean distance in a 2D performance-
quality space:

Score =
√

Q2 +A2

where Q represents the normalized image quality degradation and A represents the watermark detec-
tion performance (specifically, 1− TPR@0.1%FPR). The primary goal for participants (attackers)
was to minimize this score, signifying successful watermark removal (A ≈ 1) with minimal impact
on image quality (Q ≈ 0).
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E.2.1 Performance Metric

Watermark detection performance was measured by the True Positive Rate (TPR) at a stringent False
Positive Rate (FPR) of 0.1% (TPR@0.1%FPR). This metric reflects the ability to correctly identify
watermarked images while maintaining an extremely low rate of misclassifying unwatermarked
images.

• Threshold Determination: For each watermarking algorithm used in the competition, we
first established a detection threshold. This involved running the specific watermark decoder
on a large set of 10,000 diverse, unwatermarked images (generated from the same prompt
distribution as the competition data). The distribution of detection scores (e.g., message
distance d(m,m′) from the expected message m) from these unwatermarked images was
analyzed, and the score corresponding to the 0.1 percentile (i.e., the value below which only
0.1

• TPR Calculation: During evaluation, participants’ attacked images were processed using
the relevant watermark decoders. An image was considered "detected" if its decoding score
fell below the pre-calculated 0.1

• Final Metric A: The value used in the scoring formula is A = 1 − TPR@0.1%FPR,
representing the watermark removal rate. A value of A = 1 indicates complete removal
(TPR=0), while A = 0 indicates no removal (TPR=1).

E.2.2 Normalized Image Quality Degradation

To comprehensively assess the visual impact of the attacks, we computed a normalized image quality
degradation score, Q. This score aggregates information from eight distinct image quality metrics
(IQMs), comparing the attacked image to its original, unattacked (but potentially watermarked)
version: (i) Peak Signal-to-Noise Ratio (PSNR) (ii) Structural Similarity Index (SSIM) Wang et al.
[2004] (iii) Normalized Mutual Information (NMI) (iv) Frechet Inception Distance (FID) Heusel et al.
[2017] (v) CLIP Image Fidelity (CLIP-FID) Kynkäänniemi et al. [2019] (vi) Learned Perceptual
Image Patch Similarity (LPIPS) Zhang et al. [2018] (vii) Delta Aesthetics Score (∆Aesthetics) Xu
et al. [2023] (viii) Delta Artifacts Score (∆Artifacts) Xu et al. [2023] The normalization procedure,
detailed in An et al. [2024], involved:

• Establishing baseline distributions for each IQM by applying a diverse set of 26+ known
attacks to a large image corpus.

• Determining the 10th and 90th percentile scores for each metric within this corpus, repre-
senting low and high degradation levels, respectively.

• Normalizing the IQM score for each submitted attacked image to the range [0.1, 0.9] based
on these percentiles (scores outside this range were clamped).

• Calculating the final Q score as a weighted average of these normalized IQM scores, using
empirically derived coefficients:

Q = + 1.53× 10−3 FID + 5.07× 10−3 CLIP FID − 2.22× 10−3 PSNR

− 1.13× 10−1 SSIM − 9.88× 10−2NMI + 3.41× 10−1 LPIPS

+ 4.50× 10−2∆Aesthetics − 1.44× 10−1∆Artifacts

A higher Q value indicates greater image degradation (poorer quality relative to the original).

E.3 Competition Platform and Infrastructure

The competition was hosted on the Codabench platform Farragi et al. [2020–], an open-source system
for computational challenges, utilizing dedicated instances for the Beige-box 5 and Black-box 6

tracks.

To handle the computationally intensive evaluation process involving deep learning models and
numerous metrics, we deployed custom compute workers. These workers were built upon the

5https://www.codabench.org/competitions/3821/
6https://www.codabench.org/competitions/3857/
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standard Codabench worker architecture but packaged within Docker containers equipped with GPU
support via the NVIDIA Container Toolkit. This ensured reproducible environments with necessary
libraries (PyTorch, ONNXRuntime-GPU, Transformers, Diffusers, etc.) and allowed for parallel
processing across multiple GPU devices, managed via Docker Compose and coordinated through a
Celery message queue connected to the Codabench backend.

The core evaluation logic was implemented in a dedicated open-source Python package7, executed by
the compute workers. Upon receiving a submission (consisting of 300 attacked PNG images), the
evaluation pipeline performed the following steps automatically:

1. Input Verification: Checked submission format compliance.
2. Standardized Preprocessing: Applied minor, standardized image manipulations (3x3

median blur, JPEG compression at QF=98) to simulate common distribution conditions.
3. Watermark Decoding: Executed the relevant decoding algorithms for the track (Beige-box

known methods or Black-box secret methods).
4. Quality Assessment: Computed the eight IQMs described in the Evaluation Metrics section

by comparing the preprocessed submission to pristine reference images. Required models
for metrics like LPIPS and CLIP-FID were dynamically fetched from the Hugging Face
Hub.

5. Scoring & Output: Calculated the performance metric A and quality metric Q, computed
the final score

√
Q2 +A2, and reported results back to Codabench.

This automated backend enabled a real-time rolling leaderboard, providing participants with
immediate feedback on their submission’s performance and ranking. To complement the automated
metrics and ensure fairness, especially in cases of close scores or potential metric exploitation, the
top-ranked submissions in each track underwent an additional layer of human evaluation by the
organizers, focusing on subjective visual quality assessment.

F Competition Submission Statistics and Activity

The “Erasing the Invisible” competition, hosted on the Codabench platform8, ran from September 16
to November 5, 2024. It attracted significant global engagement, with a total of 2,722 submissions
received from 298 participating teams worldwide, underscoring the community’s strong interest in
evaluating and advancing image watermark robustness. The Beige-box track saw 1,072 submissions
from 65 distinct teams, while the Black-box track recorded 1,650 submissions from 77 distinct teams.

The competition’s progression and outcomes are further illustrated by the following figures. Figure 3
provides a comparative look at the final score distributions for both tracks, highlighting the range and
concentration of participant performance. Figure 4 details the engagement dynamics, showcasing
the daily and cumulative submission counts throughout the competition period, reflecting bursts
of activity and sustained effort from the participants. Finally, Figure 5 visualizes the evolution
of the best-achieved scores over time, demonstrating the competitive landscape and the gradual
improvement in attack efficacy as teams refined their strategies. These statistics collectively depict a
highly active and competitive challenge.

G Public Dataset Release

To foster continued research and transparency, all data generated from the “Erasing the
Invisible” competition has been publicly released on Hugging Face under the dataset ID
furonghuang-lab/ETI_Competition_Data9. This comprehensive dataset is licensed under Cre-
ative Commons Attribution 4.0 International (CC BY 4.0) and serves as a valuable resource for
researchers in digital watermarking, adversarial machine learning, and content authenticity.

The dataset is structured into four primary subsets:
7https://github.com/erasinginvisible/eval-program
8Beige-box track: https://www.codabench.org/competitions/3821/, Black-box track: https://

www.codabench.org/competitions/3857/
9https://huggingface.co/datasets/furonghuang-lab/ETI_Competition_Data
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Figure 3: Final score distributions for the Beige-box and Black-box tracks. The violin plots illustrate
the density of participant scores (lower is better, Score =

√
Q2 +A2), including median and in-

terquartile ranges, providing insight into overall performance and score clustering within each track.
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Figure 4: Submission activity throughout the competition (September 29, 2024 - November 10,
2024, as shown in figure). The top panel displays the number of daily submissions for both Beige-
box (brown) and Black-box (black) tracks, indicating periods of heightened activity. The bottom
panel shows the cumulative number of submissions over time for each track, illustrating the overall
engagement.

• Beige_Track_Images: Contains the 300 original images used in the Beige-box track,
watermarked with either Gaussian Shading (150 images from Stable Diffusion 2.1) or
StegaStamp (150 images from Flux.1 [dev]). Each entry includes the image_index and the
watermarked_image.

• Black_Track_Images: Contains the 300 original images for the Black-box track, featuring
a confidential mix of watermarks. This includes 50 images each for single watermarks (Jig-
Mark, PRC, StableSignature, Trufo) and 50 images each for double watermarks (Gaussian
Shading + JigMark, StableSignature + StegaStamp). Each entry includes the image_index
and the watermarked_image.

• Beige_Track_Submissions: Provides detailed evaluation metadata and scores for all
1,072 valid submissions to the Beige-box track. Key features include submission_id,
submission_time, dictionaries with per-watermark (gaussianshading, stegastamp)
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Figure 5: Evolution of submission scores over the competition period (September 29, 2024 - Novem-
ber 10, 2024, as shown in figure). Each point represents a submission, with beige indicating Beige-box
track submissions and black indicating Black-box track submissions. The solid lines (brown for
Beige-box, black for Black-box) trace the evolution of the best achieved score (Pareto frontier)
over time, demonstrating continuous improvement in attack strategies. Lower scores indicate better
performance.

and per-image IQM scores (aesthetics, artifacts, clip_fid, legacy_fid (FID),
lpips, nmi, psnr, ssim), and the final performance (A), quality (Q), and overall
score.

• Black_Track_Submissions: Contains corresponding evaluation metadata and scores for
the 1,650 valid submissions to the Black-box track. Features are similar to the Beige-box
submissions, with per-watermark score dictionaries for gaussianshading, jigmark, prc,
stablesig, stegastamp, and trufo.

The dataset includes not only the evaluation scores but also allows access to the actual attacked image
files submitted by participants, enabling in-depth analysis of attack strategies. Users can load specific
subsets or the entire dataset using the Hugging Face datasets library. For detailed instructions on
accessing attacked images and the full schema, please refer to the dataset card on Hugging Face. This
resource is intended to support the development of more robust watermarking techniques and better
evaluation methodologies.

H Open-Source Evaluation Toolkit

To ensure transparency, reproducibility, and facilitate future research, the complete evaluation infras-
tructure for the competition is open-sourced under the Apache License 2.0. This includes the core
evaluation program and the Codabench worker container setup.

H.1 Evaluation Program

The core evaluation logic is available on GitHub at erasinginvisible/eval-program10. This
Python-based program was responsible for processing each participant submission (a set of 300
attacked images). Its functionalities include:

• Input Verification: Ensuring submissions adhere to the specified format.

• Standardized Preprocessing: Applying minor image manipulations (e.g., median blur,
JPEG compression) to simulate common distribution conditions.

10https://github.com/erasinginvisible/eval-program
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• Watermark Decoding: Executing the relevant watermark decoding algorithms. Separate
entry points (beige.py and black.py) handle the distinct logic for Beige-box (known
watermarks) and Black-box (secret watermarks) tracks.

• Image Quality Assessment: Computing eight distinct Image Quality Metrics (IQMs) by
comparing attacked images to their original watermarked versions. Models for metrics like
LPIPS and CLIP-FID were dynamically fetched.

• Scoring and Output: Calculating the final performance metric A (watermark removal rate)
and quality metric Q (image degradation), combining them into the overall competition
score

√
Q2 +A2, and reporting these to Codabench.

The repository includes all necessary helper functions, metric calculation scripts, and dependencies
(listed in requirements.txt, which specifies onnxruntime-gpu, indicating GPU optimization).
While designed for Codabench, the program can also be run locally for testing or further research.

H.2 Codabench Worker Container

The Dockerized environment used to run the evaluation program on Codabench is available at
erasinginvisible/worker-container11. This setup builds upon the standard Codabench
worker architecture but is specifically configured for GPU-accelerated tasks using the NVIDIA
Container Toolkit. Key aspects include:

• Custom Docker Image: The repository provides Dockerfile.nvidia to build a custom
worker image (johnding1996/codabench-erasinginvisible:latest) equipped with
necessary libraries like PyTorch, ONNXRuntime-GPU, Transformers, and Diffusers.

• GPU Configuration: The docker-compose.yml file is configured to manage multiple
worker instances, allowing for parallel execution and assignment of specific GPUs to
different workers.

• Reproducible Environment: Ensures that all submissions were evaluated in a consistent
and reproducible computational environment.

These open-source tools, in conjunction with the public dataset released as described in appendix G,
provide a comprehensive benchmark and a foundation for future advancements in image watermarking
security and evaluation.

I Winners’ Solutions

I.1 Beige-Box Solutions

Table 3: Beige-box winners’ scores.

Team Prev Overall
Score [↓]

Watermark
Detect Perf [↓]

Quality Degrad
(Machine) [↓]

Quality Degrad
(Human) [↓]

Final
Score [↓]

Team-MBZUAI 0.1570 0.0367 0.1526 0.1526 0.1570
asky30 0.1834 0.0500 0.1764 0.1683 0.1756
mohammadjafari 0.2558 0.1267 0.2223 0.2221 0.2557
hesiyang 0.3434 0.0567 0.3387 0.2719 0.2777
leiluk1 0.3197 0.1000 0.3036 0.3387 0.3532

The 1st team Shamshad et al. [2025] generated a custom dataset using images processed with
StegaStamp and their inverted messages to fine-tune a VAE that removes invisible watermarks by
minimizing MSE loss between images with opposite messages. They then applied post-processing
techniques, including test-time VAE optimization and color and contrast transfer, to enhance image
quality. Uniquely, for the TreeRing watermarked images, they discovered a vulnerability to phase
attacks and effectively removed the watermark by horizontally translating images by 7 pixels, a
simple yet effective method compared to other submissions.

11https://github.com/erasinginvisible/worker-container
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The 2nd team confused the StegaStamp decoder by encoding random messages multiple times with
varying perturbation strengths into the target images, effectively overwriting the original watermark.
For the TreeRing watermarked images, they shifted the images 8 pixels upwards and used Stable
Diffusion to inpaint the resulting blank space, disrupting the watermark. Uniquely, they combined
message overwriting with varying strengths and advanced inpainting techniques to remove watermarks
compared to other teams.

The 3rd team Jafari [2024] utilized a FLUX.1-dev model with ControlNet Canny for edge preservation
during image manipulation. For StegaStamp images, they performed a multi-pass Img2Img pipeline
with strengths adjusted based on image entropy, and added a precomputed average watermark
pattern during each iteration to weaken the embedded messages. For TreeRing watermarks, they
applied cropping and rescaling techniques. Uniquely, their approach included entropy-based strength
adjustments and the addition of average watermark patterns, which differed from other teams’
methods.

The 4th team used a resize-crop distortion method, adjusting the cropping scale dynamically based on
a strength parameter to effectively remove watermarks while preserving image content. They applied
different strength values for StegaStamp and TreeRing watermarked images, finding that both were
vulnerable to this distortion-based attack. Uniquely, they demonstrated that even robust watermarks
are susceptible to simple distortions like resize-crop, which other teams did not focus on.

The 5th team performed a Watermark Overwriting Attack Serzhenko et al. [2025], on StegaStamp
images by extracting, inverting, and re-embedding the hidden messages using StegaStamp’s encoder
and decoder networks, effectively removing the watermark. For TreeRing images, they applied
a Rinsing Regeneration Attack using multiple cycles of noising and denoising with a pretrained
diffusion model (FLUX-dev). Uniquely, they combined message inversion and re-embedding with
regeneration attacks to remove watermarks, which was distinct from other submissions.

Table 4: Winning teams’ attacks in the Beige-box track.

Team Attacks on StegaStamp Attacks on GaussianShading
ASR Method ASR Method

1 97.3% VAE fine-tuned with paired
datasets, test-time optimiza-
tion, color-contrast transfer

95.3% Horizontal shift by 7 pixels
(phase attack vulnerability)

2 90.0% Overwriting watermark with
repeated random message en-
coding at varying perturbation
strengths

100.0% Vertical shift by 8 pixels
with Stable Diffusion-based
inpainting

3 98.6% Multi-pass Img2Img with
entropy-based strengths,
addition of average watermark
pattern

76.0% Cropping and rescaling ma-
nipulations

4 100.0% Message extraction, inversion,
and re-embedding using Ste-
gaStamp encoder-decoder

80.0% Rinsing regeneration with
pretrained diffusion model
(FLUX-dev)

5 99.3% Resize-crop distortion with dy-
namically adjusted cropping
parameters

89.3% Resize-crop distortion with
dynamically adjusted crop-
ping parameters

I.2 Black-Box Solutions

The 1st team Shamshad et al. [2025] clustered the watermarked images into four groups based on
observed artifacts and applied tailored methods to each. They used a Stable Diffusion Refiner Model
with cluster-specific strength parameters, and for some clusters, applied their VAE-based watermark
removal method, including test-time VAE optimization and color/contrast transfer. Additionally, they
exploited a vulnerability by horizontally translating images by 7 pixels to perform phase manipulation.
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Figure 6: Examples of top 5 teams’ attacks in the beige-box track.
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Table 5: Black-box winners’ scores.

Team Prev Overall
Score [↓]

Watermark
Detect Perf [↓]

Quality Degrad
(Machine)[↓]

Quality Degrad
(Human) [↓]

Final
Score [↓]

Team-MBZUAI 0.1430 0.0433 0.1363 0.1420 0.1485
mohammadjafari 0.1699 0.0633 0.1576 0.1363 0.1503
asky30 0.2088 0.0667 0.1979 0.1413 0.1563
yepengliu 0.1973 0.0867 0.1773 0.1979 0.2161
egorkov 0.2339 0.1900 0.1365 0.1432 0.2379

Uniquely, their method combined clustering with multiple tailored approaches, including phase
manipulation and VAE-based removal, setting them apart from other teams.

The 2nd team Jafari [2024] employed a FLUX.1-dev model with ControlNet Canny for controlled
image manipulation, adjusting attack strength based on image entropy calculations to preserve quality.
They maintained image structure using edge detection and resized images to improve processing.
They performed purification with varying parameters and enhanced visual similarity using PairOp-
timizer, which fine-tunes images with differentiable adjustments. For TreeRing watermarks, they
applied cropping and slight rotation. Uniquely, their method integrated entropy-based adjustments,
ControlNet, and a custom post-processing tool, PairOptimizer, differing from other submissions.

The 3rd team categorized the images into two groups and for Group 1, they applied denoising using
Stable Diffusion with a ’denoise: 1.0’ prompt, then resized the output to the original dimensions.
For Group 2, they denoised images with different prompts (’denoise’, ’dehaze’, ’clean’), shifted the
images 7 pixels upwards, and selected the best output based on SSIM. Uniquely, they combined
diffusion-based denoising with spatial shifting and optimization based on structural similarity, which
was different from other teams.

The 4th team proposed Controllable Regeneration (CtrlRegen+) Liu et al. [2025], a no-box watermark
removal attack that adds adjustable noise to the latent representation to disrupt watermark information.
They introduced semantic control by encoding the watermarked image into an image embedding
and used cross-attention mechanisms to preserve semantic content during regeneration. Additionally,
they incorporated spatial control using edge-detected images to maintain structural layout via a
spatial control network. Uniquely, their method combined semantic and spatial controls in a unified
framework to effectively remove watermarks while preserving image quality, which was distinct from
other teams.

The 5th team hypothesized that the watermark was embedded in the image’s latent representation and
aimed to perturb this latent vector to remove the watermark with minimal quality loss. They applied
image-to-image regeneration using the FLUX model, adjusting parameters like guidance scale, noise
magnitude, and inference steps to optimize results. Uniquely, they focused on perturbing the latent
space via FLUX model regeneration to remove watermarks, differing from other teams’ approaches.

Table 6: Winning teams’ attacks in the Black-box track.
Method Attacked ASR

Team 1 Team 2 Team 3 Team 4 Team 5
JigMark 100.0% 98.0% 98.0% 100.0% 96.0%
PRC 88.0% 96.0% 96.0% 100.0% 96.0%
StableSig 100.0% 100.0% 100.0% 100.0% 100.0%
Trufo 100.0% 100.0% 100.0% 88.0% 100.0%
GaussianShading + JigMark 90.0% 74.0% 56.0% 86.0% 0.0%
StableSig + StegaStamp 96.0% 94.0% 98.0% 86.0% 94.0%

J Competition Resources

Official recordings on the competition, including descriptions and announcement of winners, are avail-
able at https://neurips.cc/virtual/2024/competition/84795. Further technical material
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Figure 7: Examples of top 5 teams’ attacks in the black-box track.
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describing methodology and basis material is available at https://erasinginvisible.github.
io/
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