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Abstract

In this paper, we propose semantic supervision
(SEMSUP) – a unified paradigm for training
classifiers that generalize over output spaces.
In contrast to standard classification, which
treats classes as discrete symbols, SEMSUP
represents them as dense vector features ob-
tained from descriptions of classes (e.g., “The
cat is a small carnivorous mammal”). This al-
lows the output space to be unbounded (in the
space of descriptions) and enables models to
generalize both over unseen inputs and unseen
outputs. Specifically, SEMSUP enables four
types of generalization, to – (1) unseen class
descriptions, (2) unseen classes, (3) unseen
super-classes, and (4) unseen tasks. Through
experiments on four classification datasets, two
input modalities (text and images), and two out-
put description modalities (text and JSON), we
show that our SEMSUP models significantly
outperform baselines. For instance, our model
outperforms baselines by 40% and 15% preci-
sion points on unseen descriptions and classes,
respectively, on a news categorization dataset
(RCV1). SEMSUP can serve as a pathway for
scaling neural models to large unbounded out-
put spaces and enabling better generalization
and model reuse for unseen tasks and domains.

1 Introduction
Most approaches to supervised classification have tradi-
tionally considered different output classes as abstract
symbols devoid of meaning (e.g., 0 , 1 , 2 ). This pre-
defines a rigid output space that inhibits models from
generalizing to unseen classes (e.g., “moth”), even if
it is similar to a class seen during training (e.g., “but-
terfly”). Some prior works have aimed to tackle this
problem by predicting classes based on semantic class
attributes (Palatucci et al., 2009), word vectors of class
names (Frome et al., 2013), or textual class descrip-
tions (Lei Ba et al., 2015). These works provide solu-
tions with a specific capability in mind, such as zero-
shot generalization or domain generalization.

♦Equaopl contribution – order decided over a game of
snake.

Figure 1: High-level overview of SEMSUP and different
types of generalization it enables. Instances (shown as
images) and outputs in the form of class descriptions are
embedded into a joint input-output space. This allows
models to generalize to unseen descriptions (“a large
orange striped carnivore”), new classes (penguin), super-
classes (felines), and new tasks (flower classification).

In this paper, we develop a general unifying paradigm
for supervised classification called semantic supervision
(SEMSUP) to leverage rich semantic information about
classes to enable better generalization over the output
space. SEMSUP allows models to learn better represen-
tations of output classes using multiple “descriptions”
that capture their semantics and neural output encoders
to represent them in vector space. SEMSUP can handle
different types of descriptions, and we experiment with
textual descriptions (e.g., “The cat is carnivorous mam-
mal”) and JSONs (e.g., {size:small, legs:4}).

Training models to predict over semantically informa-
tive choices has several advantages: (1) the number of
choices can be varied during inference, (2) the choices
can be described in several different ways (e.g., by dif-
ferent end-users), (3) new concepts can be provided as
choices by describing them in known terms, and (4)
the choices can span varying levels of granularity (e.g.,
classify between descriptions of vehicle, bus and wheel).

We demonstrate the general applicability of SEM-

mailto:asd@cs.princeton.edu
mailto:hjwang@cs.princeton.edu
mailto:karthikn@cs.princeton.edu


SUP to any standard classification task by considering
four existing benchmarks spanning text and image in-
puts, two different types of ‘descriptions’ (English text
and structured JSON), and two paradigms – multi-class
and multi-label classification. We show that SEMSUP
models generalize over output spaces in various ways,
including (1) new descriptions of seen classes, (2) un-
seen classes, (3) unseen high-level superclasses, and
(4) unseen tasks (Figure 1). In all tasks and scenarios
SEMSUP outperforms existing systems developed for
zero-shot generalization to unseen classes while also
remaining competitive with standard classifiers on seen
classes. For instance, SEMSUP achieves absolute im-
provements of 40% on unseen descriptions in RCV1,
15% on unseen classes in CIFAR, and 10% on unseen
superclasses in 20 Newsgroups. We recognize the im-
portance of using multiple descriptions and pre-trained
models for encoding semantic supervision (§ A), which
provides a recipe for users to adopt our work.

2 Related Work
SEMSUP unifies these works by using multiple rich
descriptions, multiple input (e.g., image and text) and
output (e.g., text and JSON) modalities, and exhibit-
ing numerous generalization capabilities to – unseen
descriptions, classes, superclasses, and tasks. We sum-
marize SEMSUP’s capabilities and prior work in Table 1.

Zero-shot learning with auxiliary information The
goal of zero-shot learning is to predict novel classes not
encountered at train time by using class specifications
(auxiliary information) of some form, like representative
images (Larochelle et al., 2008). At their core, these
works define a joint embedding space for inputs and
auxiliary information that represents classes. Subse-
quent papers like DeViSE (Frome et al., 2013) and oth-
ers Socher et al. (2013); Pappas and Henderson (2019);
Dauphin et al. (2014) used shallow averaged word em-
beddings corresponding to class names, which have
their shortcomings because they are oblivious to the
word order. Other papers have employed text descrip-
tions of classes, either crowdsourced or scraped from
Wikipedia. Some of these use simple bag-of-words fea-
tures to encode them (Nam et al., 2016; Lei Ba et al.,
2015; Qiao et al., 2016), which has the issue of ignoring
word order and a portion of semantics, while others use
deeper models (Reed et al., 2016; Bujwid and Sullivan,
2021). However, all these papers focus only on a single
input modality (images), a single output modality (text),
or a single generalization scenario (to unseen classes),
whereas SEMSUP handles a variety of these attributes.

Prompting pre-trained models SEMSUP is partly
related to a recent area of research which uses natural
language to prompt large pre-trained models (Liu et al.,
2021). Prompting contrastive models like CLIP (Rad-
ford et al., 2021) involves providing class names at
inference time (e.g., “Image of a dog”) and choosing the
description with the highest similarity to the instance.

However, SEMSUP differs from CLIP in major ways.
CLIP requires a large about of paired image-caption
data, which necessitates that different images (poten-
tially belonging to the same category) have different
captions. However, SEMSUP requires very inexpensive
class level descriptions which can be re-used for all
the images belonging to that class. Further, SEMSUP
can also operate on multiple types of output descrip-
tions like NL and JSON, whereas CLIP uses only NL
descriptions.

Learning with natural language descriptions The
body of work around natural language explanations (Sri-
vastava et al., 2017, 2018; Murty et al., 2020; Hancock
et al., 2018; Mu et al., 2020) aims to induce classifiers
with the help of explanations that describe rationales
for instances belonging to specific classes. Some weak
supervision studies use class-specific auxiliary informa-
tion (natural language descriptions or from knowledge
bases) to generate labeling functions which are used to
augment the training data by annotating unsupervised
data (Hancock et al., 2018; Ratner et al., 2017). But
unlike our paper, both these lines of work aim to im-
prove few-shot learning on a bounded set of classes,
whereas we enable even zero-shot learning on an un-
bounded set. Our work is also related to studies that
learn classifiers (Andreas et al., 2018), reinforcement
learning (RL) agents (Andreas et al., 2018; Zhong et al.,
2019; Narasimhan et al., 2018; Hanjie et al., 2021), and
programs (Acquaviva et al., 2021; Wong et al., 2021) by
“reading” natural language descriptions of the task. In
contrast to our work, these studies typically evaluate on
synthetic domains and only consider text descriptions.

3 Methodology

3.1 Background

Our paradigm (SEMSUP) is a modification of the stan-
dard supervised classification paradigm (SUP), which
involves using data to learn a model by minimizing
a loss function. The training data can be represented
as Dtrain = {(x1, y1), . . . , (xn, yn)}, where xi ∈ X
and yi ∈ Y denote the input and the categorical output
(Y = {1, . . . ,K}) sampled from a hidden underlying
distribution (xi, yi) ∼ Ptrue(X ,Y). We construct a
model Mθ which can predict the conditional probabil-
ity of outputs given the input – Ppred(y|xi) and learn it
by minimizing a loss function L (Ppred(y|xi), yi) like
cross-entropy or max margin loss.

Without loss of generality, let us assume Mθ to be a
neural network with a hidden representation of dimen-
sionality d and the number of output classes to be K.
Then, we can factorize Mθ to consist of (1) an input
encoder f(·) which encodes the input as f(xi) ∈ Rd

and an (2) output matrix O ∈ RK×d. This allows the
model to represent the conditional distribution over out-
put classes as:

PSUP(y|xi) = softmax (O × f (xi)) (1)



Categorization Papers Descriptions Multiple modalities Capabilities: Generalization to unseen

Multiple Rich Inputs Outputs Descriptions Classes Superclasses Tasks
Semantic supervision
using multiple descriptions
(Both text and JSON)

Ours (SEMSUP) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Shallow
bag-of-vectors
of class names
(Text only)

Frome et al. (2013) ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗
Mittal et al. (2021); Dauphin et al. (2014) ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗Wang et al. (2018); Socher et al. (2013)

Zhang et al. (2018) ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Deep embeddings
of class descriptions
(Text only)

Reed et al. (2016) ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Zhang et al. (2017); Qiao et al. (2016)

✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗Bujwid and Sullivan (2021)
Pappas and Henderson (2019)

Attribute annotation
(JSON only)

Koh et al. (2020) ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗Akata et al. (2015); Demirel et al. (2017)

Table 1: Summary of related work. SEMSUP provides a unified framework to handle multiple and rich descrip-
tions (referencing different attributes of the class), input modalities (image and text), and output modalities (text
descriptions and JSON). Unlike prior work SEMSUP handles multiple modalities for representing the output (text
and JSON) and exhibits several types of generalization (to unseen descriptions, classes, superclasses, and tasks).

3.2 Semantic Supervision

Our semantic supervision (SEMSUP) paradigm uses the
same data, loss functions, and input encoder (f(·)) used
in SUP, but changes the output matrix (O). Instead of
representing the ith class (say “cat”) using a randomly
initialized vector, SEMSUP encodes semantic informa-
tion about the class into O[i] (e.g., the sentence “The cat
is a small carnivorous mammal”). Hereon, we will use
the term “description” to refer to any kind of semantic
information (text or JSON).

SEMSUP requires access to descriptions for each
class C = (C1, . . . , CK), where the ith element con-
tains a set of descriptions corresponding to the ith

class: Ci = {ci1, . . . , ciL}. Our SEMSUP model in-
dependently samples a description for each class (cij)
and employs an output encoder g(·) to encode it as
g(cij) ∈ Rdout , which make up rows of the output ma-
trix OSEMSUP[i] = g(cij). Since the last dimension of
OSEMSUP∈ RK×dout doesn’t necessarily match the di-
mensionality of the input encoder f(xi) ∈ Rd, we learn
an intermediate projection matrix P ∈ Rdout×d. The
final prediction is obtained as:

PSEMSUP(y|xi) = softmax
(
OSEMSUP × P × f (xi)

)
(2)

Training and testing with SEMSUP During training,
we sample a description for each class uniformly at
random and construct an output matrix (OSEMSUP ∈
RK×dout ) such that the ith row representing the ith class
is OSEMSUP[i] = g(cij), cij ∼ U(Ci). We learn the
input encoder (f(·)), the output encoder (g(·)), and the
label projection matrix (P) together. Descriptions are
sampled uniformly at random for each class and batch.
During testing, we predict the class corresponding to the
class description with the highest softmax probability.

4 Experimental Setup

4.1 Datasets

We evaluate SEMSUP on four diverse datasets chosen
to test generalization on different scenarios (§ 3). 20
Newsgroups (20NG) (Lang, 1995) consists of 20,000
newsgroup documents in 20 classes. We partition simi-
lar classes into 5 superclasses. CIFAR-100 (Krizhevsky
et al., 2009) consists of 60K images in 100 classes, each
assigned to one of 20 superclasses (e.g. aquatic mam-
mals). Animals with Attributes 2 (AWA2) (Xian et al.,
2018) is an animal classification dataset with 37K im-
ages and 50 classes. The dataset also includes 85 animal
attributes (e.g. fur, swims). Each class is annotated with
binary values indicating whether the attribute is present
in the class. RCV1 (Lewis et al., 2004) is a multi-label
news classification dataset (multiple correct classes pos-
sible) with 103 classes. We withhold 17 parent classes
in the provided hierarchy to test unseen superclass gen-
eralization. We evaluate using the label ranking average
precision (LRAP) metric (Pappas and Henderson, 2019).

4.2 Collecting output supervision

We collect textual output descriptions for RCV1,
20NG, and CIFAR-100 by converting class names
into queries: “what is a class” and issuing them to
two popular search engines, Google and DuckDuckGo.
We scrape the resulting preview snippets, automati-
cally remove scraper artifacts and partial descriptions,
and manually filter any remaining off-topic descrip-
tions. To construct JSON descriptions of an animal
in AWA2, we use types of attributes as the keys (e.g.
color) and the actual attribute lists as values (e.g.,
{color:[orange, black]} for a tiger). To im-
prove the robustness of the model, we automatically aug-
ment the descriptions by randomly removing attribute
values and permuting the key and value list orders, and
divide them into training, validation, and test sets. We
provide examples of textual and JSON descriptions and



collection and filtering in Appendix C.

4.3 Models
For text datasets, we encode input features (f(·))
using the [CLS] representation from a pretrained
BERT-small model (Turc et al., 2019). For im-
age datasets, we use the activations of a ResNet-18
model (He et al., 2016) immediately preceding the fully-
connected final layer. For each dataset, the input en-
coders are identical across our models and baselines.
While the standard supervised baseline (SUP) uses an
output matrix to obtain the logits, for our SEMSUP mod-
els, we encode output features (g(·)) using the [CLS]
representations from a pretrained BERT-small model
for text descriptions and a pretrained CodeBERTa-
small (HuggingFace) model for AWA2 JSONs. We
evaluate three SEMSUP variations: SEMSUP-ALL sam-
ples from all available class descriptions during train-
ing. SEMSUP-SINGLE uses a single fixed randomly
selected description for each class during training. SEM-
SUP-NAMES is a SEMSUP variant using class names
instead of descriptions (e.g. “computer graphics”). We
consider two strong baselines from prior work. DE-
VISE (Frome et al., 2013) and GILE (Pappas and
Henderson, 2019) which use word-embeddings of class
names. For all models, we use the cross-entropy loss for
multi-class datasets and the binary cross-entropy loss
for the multi-label dataset. We provide additional details
about training in Appendix E.

5 Results
We now report our main results and refer the reader
to Section A for ablation experiments.

5.1 Generalizing to unseen descriptions (S1)
In this scenario, the input classes are identical between
train and test time, but the model is given unseen de-
scriptions at test time. The ability to generalize to novel
descriptions enables users to define classification prob-
lems over subsets of train classes simply by providing
their own list of class descriptions. For each dataset,
we keep train and test descriptions consistent for our
models and baselines. Notably, for DEVISE and GILE
we use the same train and test descriptions as SEMSUP
rather than class names in this scenario.

We present the results in Table 2. For all models
other than SEMSUP-ALL, there is a large gap between
the performance when unseen descriptions (UN) and
seen descriptions (S) are used, with similar trends on all
datasets. Interestingly, SEMSUP-SINGLE also performs
poorly with a drop of 25 points compared to SEMSUP-
ALL on CIFAR-100. This result suggests that training
with a multiple descriptions is important for generaliza-
tion in the output encoder.

5.2 Generalizing to unseen classes (S2)
In this case, classes are partitioned into training (Ytrain)
and test (Ytest) classes, where (Ytrain ∩ Ytest = ∅). The

Model RCV1 20 NG CIFAR AWA2

UN S UN S UN S UN S

SUP × 96 × 92 × 74 × 94

DEVISE 52 91 84 91 55 73 92 92
GILE 53 91 85 92 53 73 93 93

SEMSUP-SINGLE 38 96 71 92 47 72 61 93
SEMSUP-ALL 91 96 93 93 71 73 93 93

Table 2: (S1) Model performance on seen descriptions
(S) and unseen descriptions (UN) at test time. SUP –
supervised learning baseline. SEMSUP-ALL drops ≤ 5
points across all datasets when switching from seen to
unseen class descriptions whereas the next best model
(GILE) loses almost 40 points on RCV1. We report
performance on the test set (all classes included) for all
datasets. RCV1 uses the LRAP metric and other datasets
use ACCURACY. Decimal places removed for clarity.

Model RCV1 20 NG CIFAR AWA2

LRAP ACC. ACC. ACC.

DEVISE 27.1 (±3.0) 71.2 (±1.5) 46.6 (±3.5) 25.0 (±3.1)

GILE 35.2 (±0.2) 70.4 (±0.2) 51.0 (±1.3) ✗
SEMSUP-NAMES 44.6 (±0.9) 74.0 (±4.5) 58.5 (±2.3) 27.6 (±1.9)

SEMSUP-SINGLE 29.8 (±3.5) 63.8 (±1.0) 47.7 (±3.5) 33.6 (±2.1)

SEMSUP-ALL 48.0 (±2.4) 72.5 (±0.9) 61.0 (±1.7) 40.0 (±4.1)

Table 3: (S2) Mean performance on unseen test classes,
which are a subset of classes not seen during training.
The test classes are at the same level of hierarchy as train
classes. SEMSUP models consistently outperform DE-
VISE and GILE. Bracketed numbers are standard devi-
ation over 3 seeds and bolded numbers are statistically
significantly higher than other numbers (p < .05). The
GILE baseline is invalid for AWA2 because the word
vectors used cannot handle JSON descriptions.

models generalize to unseen classes in Ytest by using
corresponding class descriptions for the test classes.

We present the results in Table 3. SEMSUP mod-
els significantly outperform DEVISE and GILE on
three out of the four datasets, with performance im-
provements of 13 points on RCV1 and 10 points on
CIFAR. SEMSUP-ALL is also able to generalize better
to unseen classes in AWA2 while using JSON attributes,
beating DEVISE and GILE which use the class name,
validating that our framework can use different kinds of
output descriptions effectively.

5.3 Generalizing to unseen superclasses (S3)

In this scenario, the classes at test time are unseen super-
classes of the classes from the training set. For example,
if Ytrain includes foxes, lions, and frogs, Ytest can consist
of mammals and reptiles. This task is more challenging
because of the change in the granularity of classification.

We present the results in Table 4. Like in the previ-
ous scenarios, our SEMSUP models consistently outper-
form DEVISE and GILE, with improvements ranging
from 10 points on 20 NG to 16 points on CIFAR-100.



Model RCV1 20 NG CIFAR

LRAP Acc. Acc.

DEVISE 47.0 (±4.1) 76.1 (±2.7) 43.1 (±2.6)

GILE 46.2 (±0.1) 74.3 (±2.5) 41.9 (±1.9)

SEMSUP-NAMES 56.1 (±3.0) 80.5 (±1.8) 54.8 (±2.9)

SEMSUP-SINGLE 44.6 (±2.4) 80.4 (±2.4) 53.2 (±2.5)

SEMSUP-ALL 56.2 (±1.4) 86.1 (±0.8) 59.4 (±1.9)

Table 4: (S3) Mean performance of models on test su-
perclasses, which consist of unseen supersets of train
classes. SEMSUP-ALL outperforms all other models by
significant margins on 20 NG and CIFAR and our SEM-
SUP models outperform baselines on all datasets. We
do not report AWA2 scores because it is not provided
with a hierarchical arrangement of the classes.

Model RCV1→20 NG

MAJORITY 5.0 (±0.0)

DEVISE 7.9 (±1.2)

GILE 10.9 (±1.0)

SEMSUP-NAMES 20.5 (±1.3)

SEMSUP-SINGLE 14.8 (±0.9)

SEMSUP-ALL 19.5 (±1.0)

Table 5: (S4) Model transfer performance (Acc.) when
trained on RCV1 and tested on 20NG (unseen task).
SEMSUP outperforms DEVISE and GILE by approx
2×. MAJORITY always predicts the majority class.

5.4 Generalizing to unseen tasks (S4)
In this final scenario, we evaluate models under the
condition of task transfer by training on the source task
RCV1 and evaluating on the target task 20NG.

Table 5 shows that SEMSUP achieves over 2× the ac-
curacy of DEVISE and GILE, demonstrating the strong
transfer performance of our model even though RCV1
and 20NG are very different types of classification tasks
(multi-label and multi-class respectively) and contain
different sets of classes. While there is scope for im-
provement, SEMSUP’s unseen task generalization which
will lead to model reuse in related tasks and domains.

5.5 Analysis: The effect of number of descriptions
We study four variants of SEMSUP which use n =
1, 5, 10 text descriptions at train time each. The mod-
els use the same set of descriptions at test time, and
we evaluate them on two different scenarios, unseen
descriptions and unseen classes, and report the results
in Table 7.

Using a single description leads to poor performance
for both scenarios, around 50 and 15 points lower than
when 10 descriptions are used. This is likely because
the output encoder learns spurious discriminative fea-
tures from a single description that do not generalize.
However, the likelihood of learning spurious features

No. of desc. Unseen descriptions Unseen classes

n = 1 38.3 (±2.6) 35.6 (±1.2)

n = 5 81.9 (±1.1) 49.3 (±3.0)

n = 10 90.5 (±1.0) 50.5 (±2.4)

Table 6: Mean performance on RCV1 when we vary the
number of descriptions used to train SEMSUP models.
We evaluate on two scenarios – (a) unseen descriptions
and (b) unseen classes. Increasing the number of train-
ing descriptions significantly improve generalization
performance, especially to unseen descriptions.

decreases as we increase the number of descriptions.
Indeed, for both scenarios, we observe that the perfor-
mance steadily increases as we increase the number of
descriptions.

6 Discussion

We proposed semantic supervision (SEMSUP), a uni-
fied paradigm for providing semantic supervision to
enable generalization over output spaces. SEMSUP rep-
resents output classes as dense feature vectors obtained
from class ‘descriptions’, which allows models to gen-
eralize over unseen output spaces during training. Our
results demonstrate the ability of models trained with
SEMSUP to generalize to unseen descriptions, classes,
superclasses, and tasks, while significantly outperform-
ing prior work across four different datasets and two
variants of supervision (text and JSON).

We view SEMSUP as a generalization of the stan-
dard supervised learning setup currently prevalent in the
field (since classes can always be ‘described’ as abstract
numbers). We believe this approach will enable better
re-use of trained models for new tasks, new downstream
applications, and by new end users, without requiring
expensive re-training or fine-tuning procedures.
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No. of desc. Unseen descriptions Unseen classes

n = 1 38.3 (±2.6) 35.6 (±1.2)

n = 5 81.9 (±1.1) 49.3 (±3.0)

n = 10 90.5 (±1.0) 50.5 (±2.4)

Table 7: Mean performance on RCV1 when we vary the
number of descriptions used to train SEMSUP models.
We evaluate on two scenarios – (a) unseen descriptions
and (b) unseen classes. Increasing the number of train-
ing descriptions significantly improve generalization
performance, especially to unseen descriptions.

A Analysis

We corroborate in the following sections that the reasons
for strong performance of SEMSUP are three-fold – mul-
tiple diverse descriptions of classes, pre-trained output
encoders, and fine-tuning the output encoder. We use the
RCV1 dataset for the following ablation experiments
(§ A.1,A.2). We also compare the effect of different out-
put modalities (natural language text v.s. JSONs with
attributes) on AWA2 (§ A.3).

A.1 The effect of number of descriptions

We study four variants of SEMSUP which use n =
1, 5, 10 text descriptions at train time each. The mod-
els use the same set of descriptions at test time, and
we evaluate them on two different scenarios, unseen
descriptions and unseen classes, and report the results
in Table 7.

Using a single description leads to poor performance
for both scenarios, around 50 and 15 points lower than
when 10 descriptions are used. This is likely because
the output encoder learns spurious discriminative fea-
tures from a single description that do not generalize.
However, the likelihood of learning spurious features
decreases as we increase the number of descriptions.
Indeed, for both scenarios, we observe that the perfor-
mance steadily increases as we increase the number of
descriptions.

A.2 The effect of the output encoder

The output encoder, which encodes the descriptions cor-
responding to classes, is crucial to the success of SEM-
SUP, because it should learn discriminative yet gener-
alizable features. We evaluate different encoders and
report the results in Table 8. We use a 4 layer pre-trained
model as our reference SEMSUP (L = 4) and consider
generalization to unseen classes (§ 5.2).

Varying the encoder complexity In the first seg-
ment of the table Table 8, we notice that using a lin-
ear model SEMSUP (Linear), which computes a bag-
of-vectors representation of the class descriptions, per-
forms poorly when compared to non-linear models like
SEMSUP (L = 2). We experiment with three differently
sized (non-linear) BERT (Devlin et al., 2019) models
released by (Turc et al., 2019) which have 2, 4, and 8

Output encoder Pre-trained Fine-tuned Unseen classes

SEMSUP (Linear)

✓ ✓

34.7 (±0.5)

SEMSUP (L = 2) 47.2 (±1.5)

SEMSUP (L = 4) ⋆ 48.0 (±2.4)

SEMSUP (L = 8) 45.4 (±2.9)

SEMSUP (R. I.) ✗ ✓ 37.4 (±1.5)

SEMSUP (Frozen) ✓ ✗ 36.0 (±1.0)

Table 8: Mean performance on RCV1 when we vary the
output encoder and evaluate on unseen classes. L repre-
sents the number of layers, R. I. means that the model
is randomly initialized, and Frozen indicates that the
output encoder’s weights are fixed. Jointly optimizing
the input and output encoders and using pretrained out-
put encoders are both important for strong performance.

layers, respectively, and notice no significant difference
between their performance. While increasing the depth
of the model typically leads to gains in performance,
we speculate that the small number of class descriptions
used (10 per class for 103, 10×103 = 1030) when com-
pared to the number of instances (480, 000 for RCV1)
means that a very deep model is unnecessary. Thus,
we conclude that while it is extremely crucial to use a
non-linear output encoder, its depth is less important.

Pre-trained v.s. randomly initialized In the second
segment, we notice that a 4 layer output encoder which
is initialized using random weights – SEMSUP (R. I.)
performs 10 points lower than our reference – SEM-
SUP (L = 4), a pre-trained model of a comparable size.
This underscores the importance of pre-training, which
gives models a better semantic understanding of sen-
tences than their randomly initialized counterparts.

Freezing the output encoder In the third segment, we
consider SEMSUP (Frozen), which initializes the output
encoder using a pre-trained model, but freezes all the
weights throughout training (no gradients are passed).
We notice that even though this variant has the benefits
of a pre-trained model, it is worse than our reference by
over 10 points. This highlights the importance of fine-
tuning, which adapts the weights of the pre-trained mod-
els to the task at hand. Interestingly, SEMSUP (Frozen)
performs similar to the randomly initialized model –
SEMSUP (R. I.). Both these models are missing a key
ingredient required for good generalization, with the
former missing fine-tuning and the latter missing pre-
training, and our reference (SEMSUP (L = 4)) which
includes both these aspects performs the best.

These experiments validate that the following three
aspects are useful for strong generalization in SEMSUP
models – (a) multiple diverse descriptions of classes,
(b) pre-trained output encoders, and (c) fine-tuning the
output encoder.



Supervision Model AWA Heldout

NL SEMSUP-NAMES 20.5 (±1.3)

SEMSUP-SINGLE 21.9 (±3.7)

SEMSUP-ALL 32.3 (±2.42)

JSON SEMSUP-SINGLE 33.6 (±2.1)

SEMSUP-ALL 40.0 (±4.1)

Table 9: Mean performance (Acc.) on test classes for
SEMSUP models trained on natural language (NL) and
(JSON). Numbers in brackets are stddev. over 3 seeds.

A.3 Comparing output supervision: NL vs. JSON
To compare the effect of different types of output su-
pervision for SEMSUP, we evaluate its performance on
AWA2 test classes using natural language and JSON
supervision (Table 9). The best performing JSON
model (SEMSUP-ALL) outperforms its corresponding
model trained using natural language model by 8 points,
demonstrating the utility of using structured data for-
mats to provide class descriptions on this particular task.
For AWA2, this performance gap between natural lan-
guage and JSON could be due to two reasons: (1) the
JSON class descriptions directly list all of the most
salient features of each class making it more informa-
tion dense than natural language descriptions, and (2)
its structure is more consistent between training and test
descriptions (since the keys are identical for example).

These results demonstrate the flexibility of the SEM-
SUP framework in allowing users to pick a type of se-
mantic supervision that suits their task needs the best
and hint at the possibility of developing more sophisti-
cated forms of semantic supervision, which may even
be a combination of both freeform text and more struc-
tured representations, to maximize generalization per-
formance.

B Experimental Setup
B.1 Datasets
We evaluate SEMSUP on four diverse datasets chosen
to test generalization on different scenarios (§ 3). 20
Newsgroups (20NG) (Lang, 1995) consists of 20,000
newsgroup documents in 20 classes. We partition simi-
lar classes into 5 superclasses 1. We further partition the
classes into 12 train, 4 validation and 4 test classes, and
evaluate using accuracy. CIFAR-100 (Krizhevsky et al.,
2009) consists of 60K images in 100 classes, each as-
signed to one of 20 superclasses (e.g. aquatic mammals).
We partition the dataset into 80 train, 10 validation, and
10 test classes, and evaluate using accuracy. Animals
with Attributes 2 (AWA2) (Xian et al., 2018) is an
animal classification dataset with 37K images and 50
classes. The dataset also includes 85 animal attributes
(e.g. fur, swims). Each class is annotated with binary

1We follow the division from: http://qwone.com/
˜jason/20Newsgroups/

values indicating whether the attribute is present in the
class. We follow the split of classes into 27 train, 13
validation, and 10 test classes provided in the dataset.
RCV1 (Lewis et al., 2004) is a multi-label news classi-
fication dataset (multiple correct classes per instance)
with over 800, 000 articles. We hold out 25 of the 103
niche classes to test unseen class generalization. We
withhold 17 parent classes in the provided hierarchy to
test unseen superclass generalization. We evaluate using
the label ranking average precision (LRAP) metric (Pap-
pas and Henderson, 2019). Further details about the
experimental setup are provided in

B.2 Collecting output supervision
Text output supervision We collect textual output
descriptions for RCV1, 20NG, and CIFAR-100 by con-
verting class names into queries: “what is a class” and
issuing them to two popular search engines2. We scrape
the resulting preview snippets, automatically remove
scraper artifacts and partial descriptions, and manually
filter any remaining off-topic descriptions.3

JSON output supervision To construct JSON de-
scriptions of an animal in AWA2, we use types of at-
tributes as the keys (e.g. color) and the actual attribute
lists as values (e.g., {color:[orange, black]}
for a tiger). To improve the robustness of the model,
we automatically augment the descriptions by randomly
removing attribute values and permuting the key and
value list orders, and divide them into training, valida-
tion, and test sets. We provide examples of textual and
JSON descriptions and details regarding their collection
and filtering in Appendix C.

B.3 Models
For text datasets, we encode input features (f(·))
using the [CLS] representation from a pretrained
BERT-small model (Turc et al., 2019). For im-
age datasets, we use the activations of a ResNet-18
model (He et al., 2016) immediately preceding the fully-
connected final layer. For each dataset, the input en-
coders are identical across our models and baselines,
to ensure fair comparison. While the standard super-
vised baseline (SUP) uses an output matrix to output the
logits, the other models use output encoders, which we
describe below.

For our SEMSUP models, we encode output fea-
tures (g(·)) using the [CLS] representations from a
pretrained BERT-small model (Turc et al., 2019) for
text descriptions and a pretrained CodeBERTa-small4

model for AWA2 JSONs. We propose three SEMSUP
models:

1. SEMSUP-ALL samples from all available class
descriptions during training.

2www.google.com and www.duckduckgo.com
3We do not manually filter RCV1 descriptions due to a

large number of descriptions and classes.
4https://huggingface.co/huggingface/

CodeBERTa-small-v1

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
www.google.com
www.duckduckgo.com
https://huggingface.co/huggingface/CodeBERTa-small-v1
https://huggingface.co/huggingface/CodeBERTa-small-v1


2. SEMSUP-SINGLE uses a single fixed randomly
selected description for each class during training.

3. SEMSUP-NAMES is a SEMSUP variant using class
names instead of descriptions (e.g. “computer
graphics”).

We consider two strong baselines from prior work.

1. DEVISE (Frome et al., 2013) uses the mean of the
word vectors of the class names.

2. GILE (Pappas and Henderson, 2019) uses the
mean of the word vectors of class descriptions,
with modeling similar to DEVISE other than the
tanh activation applied to the output embeddings.

For both the models, we use GloVe (Pennington
et al., 2014) vectors which are fixed throughout train-
ing (Frome et al., 2013) to represent the output.

Training We train all models end-to-end and back-
propagate gradients both through the input and output
encoder. For all models, we use the cross-entropy loss
for multi-class datasets and the binary cross-entropy
loss for the multi-label dataset. We provide additional
details about training in Appendix E.

C Output Supervision
We show example class descriptions for the datasets in
table 10. The results were scraped from www.google.
com and www.duckduckgo.com using a third-party
scraping tool5. Data collection was conducted between
September 2021 and January 2022. To reduce vari-
ability, personalized results were turned off and re-
gions were fixed to United States. Safe search was
enabled for www.google.com and set to moderate
on www.duckduckgo.com. The number of search
returns for www.google.com was varied between 10
and 50. While we obtained more descriptions using
a higher number of search returns, we found that the
quality and relevance was often lower.

[h]
An example scraping target is presented in Figure 2.

We automatically filter the scraped preview blocks by
removing any incomplete sentences. For multi-sentence
descriptions, we only take the first sentence. Sentences
that are less than 5 words are discarded. After automatic
filtering, we manually inspect the descirptions and re-
move irrelevant descriptions. The mean number and
lengths of the collected descriptions is presented in Ta-
ble 11. On all datasets, we divide the class descriptions
into a 60-20-20 train-val-test split.

D Dataset Details
D.1 RCV1
RCV1 contains 800, 000 articles and we create a
60:20:20 split for train, validation, and test respectively.
It contains 103 classes.

5www.webscraper.io

Dataset (class) Description

RCV1
(Consumer
Prices)

A consumer price index is a price index,
the price of a weighted average market
basket of consumer goods and services
purchased by households.

20-NG
(Cryptogra-
phy)

Cryptography is the study and practice
of sending secure, encrypted messages
between two or more parties

CIFAR-100
(Flatfish)

A category of fish that are characterized
by their narrow bodies that are flat and
oval-shaped.

AWA2
(Killer Whale)

{appendages: [flippers, tail], behavior:
[fierce, smart, group], color: [black,
white], diet: [fish, meat, plankton,
hunter], habitat: [arctic, coastal, ocean,
water], mobility: [swims, fast, strong,
active, agility], shape: [big, bulbous,
lean], skin: [patches, spots, hairless,
toughskin], teeth: [meatteeth, strain-
teeth]}

Table 10: Randomly selected example class descriptions
for RCV1, 20-NG, CIFAR-100, and AWA2 for a ran-
domly selected class in each dataset.

Figure 2: Example scraper selection from the search
query for the class tulip in CIFAR100.

Dataset Num Descriptions Description Lengths

RCV-1 17.9± 4.3 17.4± 9.7
20 NG 19.2± 3.8 17.7± 7.1
CIFAR-100 20.3± 5.9 16.7± 7.1
AWA2 1250± 0.0 30.6± 5.9

Table 11: Statistics of the collected class descriptions
including mean number of descriptions per class and
mean lengths per description. Note that on AWA2 we
automatically augment the descriptions, so there is no
variance in the number of descriptions between classes.

www.google.com
www.google.com
www.duckduckgo.com
www.google.com
www.duckduckgo.com
www.google.com
www.webscraper.io


Val Classes alt.atheism
comp.sys.mac.hardware
rec.motorcycles
sci.electronics,

Test Classes comp.os.ms-windows.misc
rec.sport.hockey
sci.space
talk.politics.guns

Val Superclasses recreation
religion

Test Superclasses computer
science
politics

Table 12: Details for the 20 NG dataset. Training classes
are the remaining 12 classes not in val classes or test
classes.

Val Classes streetcar, rabbit, man
lamp, forest, otter
crab, crocodile, house
orchid

Test Classes motorcycle, pine tree, bottle
trout, chair, butterfly
chimpanzee, orange, leopard
possum

Val Superclasses large omnivores and herbivores
medium mammals, people
large man-made outdoor things
insects, household electrical devices
food containers, fish
flowers, vehicles 2

Table 13: Details for CIFAR-100. Training classes are
the remaining 80 classes not in val classes or test classes.
The test superclasses are the remaining 10 superclasses
not listed in the val superclasses above.

D.2 20NG

We use the 18828 variant for each newsgroup. Since
the original dataset does not define train-test splits, we
construct our own 80-20 train test split. We further
divide the training set into training and validation sets
with a porportion of 80-20.

We present details of the 20 NG dataset splits in table
12. When evaluating generalization to superclasses on
20 NG we remove the misc.forsale class since it
is its own superclass.

D.3 CIFAR-100

. We use the provided train-test split, but divide the train
set 80-20 into training and validation examples.

D.4 AWA2

We use the predefined train-val-test splits of classes
provided in the paper (Xian et al., 2018). We use only
the second of the three train-val splits provided. We
split the instances into train and test examples 80-20
and further divide the training set 80-20 into training

and validation examples.
To construct the JSON, we first assign each attribute

to a parent attribute. The final class-level JSON con-
sists of the parent attributes as keys, and the values
are attributes that are present in the class. We aug-
ment this dataset by first adding 50 samples per class
of corrupted examples, by randomly deleting attributes
independently with probability 0.15, and then further
multiplying this by 25 permutations.

E Model Training and Evaluation
All models are end-to-end differentiable and we train
them using the AdamW optimizer (Loshchilov and Hut-
ter, 2017). We use a constant learning rate of 1× 10−4

for all the vision experiments on AWA2 and CIFAR-100
and a constant learning rate of 2× 10−5 for all experi-
ments on 20 NG. For efficiency, the class descriptions
are encoded into the output matrix OSEMSUP at each mini-
batch, so that all instances in the batch share the same
output matrix. We use the validation set for early stop-
ping, and test checkpoints saved at the point of highest
validation accuracy. All implementation was done in
PyTorch and PyTorch Lightning and experiments were
run on either a single NVIDIA RTX2080 or a single
NVIDIA RTX3090.


