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ABSTRACT

Although input attribution methods are mainstream in understanding predictions
of DNNs for straightforward interpretations, the non-linearity of DNNs often
makes the attributed scores unreliable in explaining a given prediction, deterio-
rating the faithfulness of the explanation. However, the challenge could be miti-
gated by explaining groups of explanatory components rather than the individuals,
as interaction among the components can be reduced through appropriate group-
ing. Nevertheless, a group attribution does not explain the component-wise con-
tributions so that its component-interpreted attribution becomes less reliable than
the original component attribution, indicating the trade-off of dual reliabilities.
In this work, we first introduce the generalized definition of reliability loss and
group attribution to formulate the optimization problem of the reliability trade-
off. Then we specify our formalization to Shapley value attribution and propose
the optimization method G-SHAP. Finally, we show the explanatory benefits of
our method through experiments on image classification tasks.

1 INTRODUCTION

The advance in deep neural networks facilitates a training model to learn high-level semantic features
in a variety of fields, but intrinsic difficulties in explaining predictions of DNNs become a primary
barrier to real-world applications, especially for domains requiring trustful reasoning for model
predictions.

While various approaches have been proposed to tackle the challenge, which includes deriving
global behavior or knowledge of a trained model (Kim et al., 2018), explaining the semantics of
a target neuron in a model, (Ghorbani et al., 2019; Simonyan et al., 2013; Szegedy et al., 2015),
introducing self-interpretable models (Zhang et al., 2018; Dosovitskiy et al., 2020; Touvron et al.,
2020; Arik & Pfister, 2019), input-attribution methods became the mainstream of post-hoc explana-
tion methods since they explain a model prediction by assigning a scalar score to each explanatory
component (feature) of its input data, yielding the straightforward explanation for end-users through
data-corresponded visualization such as a heatmap.

However, since each explanatory component is explained with a single scalar score, the nonlinearity
in DNNs makes their scores less reliable in explaining a model’s prediction. It results in the discrep-
ancy between the explained and actual model behavior for a prediction, deteriorating the faithfulness
of the explanation.

As it is the inherent challenge of input attribution methods, the problem has been studied and tackled
with various approaches and perspectives: (Grabisch & Roubens, 1999) formalizes the axiomatic
interactions for cooperative games, (Tsang et al., 2018) explains the statistical interaction between
input features from learned weights in DNN, (Kumar et al., 2021) introduces Shapley Residuals to
quantify the unexplained contribution of Shapley values, (Janizek et al., 2021) extends Integrated
Gradients (Sundararajan et al., 2017) to Integrated Hessians to explain the interaction between input
features.

While these approaches have improved the explainability to the DNN’s nonlinearity, their explain-
ing scores are not corresponded to each explanatory components in many cases, reducing the inter-
pretability of explanations.
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Figure 1: Trade-off of the dual reliability loss of a group attribution for a simple non-linear function.
Grouping x1, x2 resolves their interaction so that it reduces the reliability loss of the group {x1, x2}
but increases those of component-interpreted scores. Here attribution score and its reliability loss are
defined as the input gradient and expected L2 error of its tangent approximation, which are ∂

∂xi
f(x)

and Et∼N (0,1)[(f(x + tei)− f(x)− tφi)2], respectively.

Instead, it can be alleviated by explaining a model’s prediction in terms of groups explanatory com-
ponents rather than the individuals, termed group attribution. Appropriate grouping can weaken
the interaction among the components, yielding more reliable explanation.

However, a group attribution does not attribute scores to the individual components so that interpret-
ing a group attribution in terms of the individual components results in less reliable explanation than
the original component attribution.

Therefore, both group-wise and component-interpreted attribution reliability should be considered
for deriving a group attribution, implying a trade-off optimization problem. Figure 1 illustrates this
problem with simple a non-linear function.

In this paper, we present our work as follows: In Section 2, we introduce the generalized definition
of reliability loss and group attribution to formulate the optimization problem of the reliability trade-
off. In section 3, we integrate our formalization with Shapley value attribution (Lundberg & Lee,
2017) and propose the grouping algorithm G-SHAP. We choose the Shapley value as our scoring
policy for two reasons: 1) it has been utilized as a popular attribution method for its model-agnostic
characteristic and well-founded axiomatic properties. 2) it becomes less reliable when there are
strong interactions among the explanatory component’s contribution, as it take the aggregation of
the contributions over all coalition states. In section 4, we show the explanatory benefits of our
method through experiments on image classification tasks as follows: 1) we verify the grouping
effect of G-SHAP through quantitative and visual analysis. 2) we validate our grouping approach by
comparing it with several baseline grouping method which would yield the similar grouping result
to ours. 3) we show the improvement in local explainability of a prediction through the estimation
game, which utilizes the deletion game (Petsiuk et al., 2018; Wagner et al., 2019) to measure the
error of model output changes.

Our contributions are summarized as follows:

1. We introduce two novel concepts to improve the limited reliability of input attribution meth-
ods: reliability loss that quantifies the discrepancy between the explained and the actual
model behavior for a prediction, group attribution that explains a prediction in terms of
groups of explanatory components. Since a group attribution becomes less reliable in ex-
plaining component-wise contributions, we formulate the optimization problem to resolve
the reliability trade-off. While we choose the Shapley value as our scoring policy, our
formulation consists of generalized terms, applicable for other input attribution methods.

2. We propose G-SHAP, a grouping algorithm for Shapley value attribution. We empirically
show that G-SHAP has better local explainability of a model prediction than SHAP. We also
validate the effectiveness of our grouping approach by comparing it with several baseline
grouping methods, which would yield the similar grouping results to ours.
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2 GENERAL FORMALIZATION FOR RELIABILITY LOSS AND GROUP
ATTRIBUTION

2.1 RELIABILITY LOSS OF AN ATTRIBUTION

Let y∗ = f(x∗) be a model prediction to explain, where x∗ = (x∗1, ..., x
∗
N ) ∈ RN and f : RN → R

are the input data and the model function, respectively. Let Φ be attributing (scoring) function that
takes a model function f and a target input x∗ and returns the attribution scores φ ∈ RN . As
we consider f and x∗ is fixed, we introduce the translated model function f∗(x) = f(x + x∗) to
simplify our henceforth definitions. Since explaining f(x) at x = x∗ is equivalent to explaining
f ∗ (x) at x = 0, we have

φ = (φ1, ..., φN ) = Φ(f,x∗) = Φ(f∗,0) ∈ RN (1)

Similarly, let Ξ be a function that quantifies the reliability loss in explaining the prediction with an
arbitrary attribution a = (a1, ..., aN ) ∈ RN as below.

ξ(a) = Ξ(f∗,a) ≥ 0 (2)
where the lower value implies the more reliable attribution in explaining the prediction. We note
that a = (a1, ..., aN ) can be arbitrary, not necessarily φ.

2.2 GROUP ATTRIBUTION AND ITS RELIABILITY LOSS

A group attribution attributes a score to each group of explanatory components, where the compo-
nents within each group are treated as one shared variable. Formally, let G = {G1, ..., GM} be a
grouping (partition) of the component set X = {x1, ..., xN}. Then the group-mapped function f∗G
assigns each group-variable gi to its corresponding components variables of X , defined as

f∗G(g1, ..., gM ) = f∗(gσ(1), ..., gσ(N)) (3)
where σ is the group map such that xi ∈ Gσ(i) for each 1 ≤ i ≤ N . For example, the group-mapped
function of of f(a, b, c) with the grouping G = {{a, b}, {c}} is fG(g1, g2) = f(g1, g1, g2).

Once we have a grouping G, its group attribution φG is defined as the attribution scores of f∗G,
which is

φG = (φG1
, ..., φGM

) = Φ(f∗G,0) ∈ RM (4)
By definition, each group score φGj

indicates the co-contribution of their components xi ∈ Gj .
Note that it is not necessarily equal to the sum of the component scores in general.

Similarly, we can derive the reliability loss of a group attribution φG as below,
ξ(φG) = Ξ(f∗G,φG) (5)

which tells that how reliable in explaining the prediction with the group attribution. From the def-
inition, we can say a group attribution φG is more reliable than the component attribution φ if
ξ(φG) < ξ(φ) and less reliable if ξ(φG) > ξ(φ).

2.3 COMPONENT-INTERPRETATION OF A GROUP ATTRIBUTION AND ITS RELIABILITY LOSS

As discussed in the introduction, a group attribution does not attribute scores to their belonging com-
ponents so that its component-interpreted scores would have larger reliability loss than the original
component attribution. To address this, we need to first formalize the score-interpreting function
ζ, which interprets a group attribution φG in terms of the individual components, denoted with the
tilde as below.

φ̃G = (φ̃1, ..., φ̃N ) = ζ(φG) ∈ RN (6)

It is notable that the interpreting policy can vary depending on the component or score’s semantics
but must not utilize any information of the prediction. For example, defining ζ(φG) = φ is not
acceptable.

Consequently, the component-wise reliability loss of a group attribution φG is given as below.

ξ(φ̃G) = Ξ(f∗, φ̃G) (7)
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2.4 FORMULATING THE OPTIMIZATION PROBLEM OF THE RELIABILITY TRADE-OFF

In order to formalize the trade-off of dual reliability of a group attribution, we first normalize the
improvement and deterioration of the reliability losses.

As the reliability loss of a group attribution ξ(φG) is expected to be lower than the that of the original
component attribution ξ(φ), we consider ξ(φ) as the baseline and define the normalized score for a
group attribution’s reliability (NGR) G as the ratio of the improved amount to the baseline, given as

G(G) =
ξ(φ)− ξ(φG)

ξ(φ)
(8)

It follows that higher G is better: it becomes 1 if ξ(φG) = 0 (maximum improvement) and 0 if
ξ(φG) = ξ(φ) (no improvement). It can be negative if the grouping is ill-chosen.

On the other hand, the component-interpreted reliability loss of a group attribution ξ(φ̃G) is ex-
pected to be higher than the original ξ(φ). Since the most uninformative grouping Gall that merges
all components into one group i.e., Gall = {G1} = {{z1, ..., zN}} is expected to have the largest
component-interpreted reliability loss, we define the normalized score for a group attribution’s
component-interpreted reliability (NCR) C as the ratio of the less-deteriorated (saved) amount to
Gall to the gap, given as

C(G) =
ξ(φ̃Gall)− ξ(φ̃G)

ξ(φ̃Gall)− ξ(φ)
(9)

It also follows that higher C is better: it becomes 1 if ξ(φ̃G) = ξ(φ) (no deterioration), 0 if ξ(φ̃G) =

ξ(φ̃Gall) (deteriorated as Gall).

Since there are two singular cases that should be avoided for searching the grouping, which are
singleton grouping (no-grouping) and the all-grouping Gall. As their (G, C) scores are (0, 1) and
(1, 0), respectively, we define the optimization objective L as the geometric mean of two scores,
given as

L(G) = max

{
G(G) + ε

1 + ε
, 0

} 1
2−β

max

{
C(G) + ε

1 + ε
, 0

} 1
2+β

(10)

where ε ≥ 0 is the tolerance hyperparameter for dealing with negative G and C values and β ∈
[−1/2, 1/2] is the balancing hyperparameter that positive β weighs more to C than G and vice versa.
It follows that larger L implies better group attribution.

3 APPLICATION TO SHAPLEY VALUE

3.1 SHAPLEY VALUE AND ITS RELIABILITY LOSS

Shapley value has originated from cooperative game theory, indicating the fair division of given
reward to each player. It has been utilized as the axiomatic attribution method for post-hoc model
explanations (Lundberg & Lee, 2017), where the players and the reward are corresponded to the
binary explanatory components and the output difference of the model prediction, respectively.

Formally, let Z = {z1, ..., zN} be the set of binary explanatory components and Z = {0, 1}N be
the set of the all possible coalition states z = (z1, ..., zN ), where each zi = 1, 0 indicates whether
zi is involved in the coalition or not, respectively. Once a model function f : Z → R is given,
contribution of zi at a coalition state z ∈ Z is defined as

hi(z) = f(zi=1)− f(z) (11)
where the notation zi=1 means z is assigned with zi = 1. Since hi(z) is trivially zero when zi = 1,
we restrict the domain of hi to Zi=0 := {z ∈ Z|zi = 0}.
Then Shapley value of zi is given as the weighted sum of contributions hi at all possible coalition
states, which is

φi =
∑

z∈Zi=0

wN (|z|)hi(z), wN (k) =
k!(N − k − 1)!

N !
(12)
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where |z| is termed coalition size, the number of 1s in z.

Since it follows that
∑

z∈Zi=0
wN (|z|) = 1, a Shapley value φi can be considered as the expected

value of hi by regarding the weights wN (|z|) as the probability, i.e., φi = EZi=0
[hi]. This perspec-

tive of defining Shapley values naturally leads to measure the expected L2 error of the contributions,
given as

ξ2i (ai) = EZi=0
[(hi − ai)2] =

∑
z∈Zi=0

wN (|z|)(hi(z)− ai)2 (13)

which is named Shapley error of attributing zi with a score ai. Now we define the reliability loss
of Shapley attribution as

ξ2(a) =

N∑
i=1

ξ2i (ai) (14)

where φ = (φ1, ..., φN ) and a = (a1, ..., aN ). Similar to the property of ordinary mean and
variance, it follows that ξ2i (ai) = ξ2i (φi) + (ai − φi)

2 so that the reliability loss consequently
satisfies

ξ2(a) = ξ2(φ) + ‖a− φ‖22 (15)

which implies that the reliability loss is minimized to ξ2(φ) when a = φ, showing the optimality of
Shapley value attribution.

3.2 SHAPLEY GROUP ATTRIBUTION

Let G = {G1, G2, ..., GM} be a partition (grouping) of the component set Z = {z1, ..., zN} with
non-empty groups. Then a group-wise coalition state z ∈ Z under the grouping G is restricted to the
cases that components in each group Gj are all involved or not, denoted as z[Gj ] = 1, z[Gj ] = 0,
respectively. Since each group Gj has a binary involvement state, the coalition state has M degree
of freedom and can be represented as a M -dimensional binary vector.

First, contribution of Gj at a coalition state z ∈ Z is defined as the output difference of f by
switching all zi ∈ Gj to 1, given as

hGj (z) = f(zGj=1)− f(z) (16)

where the notation zGj=1 means that z is assigned with zi = 1 for all zi ∈ Gj . Similar to hi, we
consider the domain of hGj as ZGj=0, defined as z ∈ Z satisfying z[Gj ] = 0 and z[Gm] ∈ {0, 1}
for all 1 ≤ m 6= j ≤M .

Consequently, the Shapley value and error of a group Gj is defined as

φGj
= EZGj=0

[hGj
], ξ2Gj

(aGj
) = EZGj=0

[(hGj
− aGj

)2] (17)

It is notable that the expectation operation EZGj=0
is not compatible with the component-wise case

EZi=0
since the dimension of coalition states chagned from N to M , which implies that Shapley

value of a group does not equal to the sum of its components’ Shapley values.

3.3 G-SHAP: ALGORITHM FOR SHAPLEY GROUP ATTRIBUTION

Since the number of groupsM can vary from [1, N ], it is difficult to evaluate the group-wise Shapley
terms from component-wise terms. Moreover, group-wise coalition states depend on not only the
number of groups but also the grouping itself. It implies that the optimization problem is more
challenging than the set-partitioning problem, where the target value of each subset is fixed.

However, as (Guanchu, 2022) has shown the effectiveness, Shapley statistics can be approximated
by excluding the components or groups which have little effect on the target. Despite the incompat-
ibility of Shapley weights, the weight decomposition property wN−1(k) = wN (k) + wN (k + 1)
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Figure 2: Illustration of the G-SHAP algorithm with corresponding NGR-NCR graph: (a) initial
stage: grouping starts with the singleton grouping (equal to component-attribution), where (G, C) =
(0, 1), (b) an arbitrary middle step, (c) the very next step: the optimal grouping of the core subset
K is applied (d) last step: remaining number of group is less than the core set size. Dotted curve
indicates contour line of the objective L and star mark indicates the best Shapley group attribution
which G-SHAP finally returns.

suggests that φi and ξ2i can be decomposed with zj-conditioned contributions as

φi =

N−2∑
l=0

∑
|z|=l

wN (l)hi(zj=0) + wN (l + 1)hi(zj=1)

ξ2i =

N−2∑
l=0

∑
|z|=l

wN (l)(hi(zj=0)− φi)2 + wN (l + 1)(hi(zj=1)− φi)2
(18)

where zj 6= zi can be chosen arbitrary. It implies that if hi(zj=0), hi(zj=1) ≈ hi(z) then
φi|j=0, φi|j=1 ≈ φi and ξi|j=0, ξi|j=1 ≈ ξi so that the appropriate exclusion would yield more
accurate approximation for Shapley statistics.

In our method G-SHAP, we take εi =
∑
j 6=i(φi|j=0 − φi)2 + (φi|j=1 − φi)2 the heuristic for the

exclusion. Components or groups with top-k εi values are considered as the core subset K of given
grouping G. Once we have K then we observe all binary states {0, 1}k of K to derive the optimal
grouping of K, where the excluded components or groups are fixed. Then we apply the optimal
grouping and continue the progress until |G| < k. Overall progress is illustrated in the Figure 2.

4 EXPERIMENTAL RESULTS

While there have been existing group or cluster-wise explanation methods (Masoomi et al., 2020;
Singh et al., 2018) their grouping criteria and objective are different from ours so that comparing
those explanations with ours would not be resonable. Therefore, as mentioned in the introduction,
we have focused on verifying the explanatory benefits of our group attribution (G-SHAP) through
comparison with the corresponding component attribution (SHAP).

4.1 EXPERIMENTAL SETUP

As mentioned in the introduction, we have applied the proposed method on the validation datasets of
Flower5(multi-class) (Mamaev, 2018), MS COCO 2014(multi-label) (Lin et al., 2014), and Pascal
VOC 2012(multi-label) (Everingham et al., 2012) with ImageNet 2012Russakovsky et al. (2015)
pretrained ResNet-50 (He et al., 2016) model, where Flower5 stands for subset of Flower dataset
with 5 distinctive classes (daisy, dandelion, rose, sunflower, tulip). We have fine-tuned the model to
each datasets as the average prediction accuracy is 94.7%, 82.9%, and 90.3%, respectively. For MS
COCO and Pascal VOC models, we have taken logit value of top-1 label as the output.

Since our heuristic of choosing the core subset requires conditional Shapley values which have
O(N2) terms, we have considered superpixels of a image as explanatory components. We have ex-
perimented with two superpixel methods, quick-shift (Vedaldi & Soatto, 2008) and graph-based
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Figure 3: G-SHAP results for the image classification task, taken from MS COCO, Flower5, Pascal
VOC dataset, where superpixels are chosen as graph-based, graph-based, and quick-shift, for each
image, respectively. The 3-5th columns stand for β = 0.25, 0.00 and −0.25, respectively. For each
image, heatmap of the upper row indicates the attribution score and the lower row indicates the
attribution reliability. Heatmaps are area-normalized ratio to their base values, which are their sum
divided by entire area of the image.

(Felzenszwalb & Huttenlocher, 2004) segmentation method, which existing attribution methods
LIME (Ribeiro et al., 2016) and XRAI (Kapishnikov et al., 2019) use. As Shapley value consid-
ers binary input states, we have defined the input map as mean-color masking function so that
zi = 0, 1 corresponds to the mean-colored and the original superpixel, respectively. We also
define the score estimating function ζ as distributing a group score according to pixel area, i.e.,
[ξ(φG)]j =

wj∑
zj∈G wj

φG for zj ∈ G. We set core subset dimension k = 10, β = 0.0, and ε = 0.1

as default.

4.2 OPTIMIZATION EFFECTS OF G-SHAP

We have observed NGR, and NCR to verify the improved and saved Shapley error of G-SHAP
attribution for β = −0.25, 0.00, 0.25, stated at Table 1 (left). As NGR, NCR indicates normalized
ratio of the amounts, it tells that 75% ∼ 91% of the baseline Ξ(φ) are resolved through grouping
while 62% ∼ 68% of the bound gap Ξ(φ̃Gall) − Ξ(φ) is saved for β = 0.00 case. It has also been
observed β considerably affect the NGR and NCR scores such that positive β weighs NCR much
than NGR, whereas the negative β weighs NCR much than NGR, agreeing with our expectation.

Figure 3 shows that the balancing effect can also be verified qualitatively, telling that higher β results
in higher NCR that the heatmap of G-SHAP is closer to the component attribution (SHAP) but lower
NGR that Shapley errors are less improved. On the other hand, lower β results in the opposite as well
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Figure 4: Comparison results of G-SHAP with various heuristic methods, where the images are
taken from COCO, Flower5, and Pascal VOC dataset, and the superpixels are chosen from quick-
shift, quick-shift, and graph-based method, respectively.

Superpixels Datasets β = 0.25 β = 0.00 β = −0.25
NGR NCR NGR NCR NGR NCR

Quick-shift
COCO 0.596 0.832 0.799 0.679 0.939 0.667

Flower5 0.593 0.831 0.758 0.642 0.919 0.616
VOC 0.602 0.829 0.824 0.670 0.942 0.680

Graph-based
COCO 0.704 0.779 0.892 0.630 0.973 0.692

Flower5 0.603 0.779 0.840 0.605 0.950 0.653
VOC 0.719 0.776 0.905 0.626 0.975 0.667

Methods Quick-Shift Graph-based
NGR NCR NGR NCR

2-grouping 0.786 0.552 0.818 0.558
3-grouping 0.696 0.646 0.754 0.635

K-means grouping 0.476 0.701 0.493 0.646
Adjacency greedy 0.443 0.720 0.423 0.711
G-SHAP greedy 0.678 0.584 0.648 0.561

G-SHAP porposed 0.794 0.664 0.879 0.620

Table 1: Reliability scores of the G-SHAP for β = 0.25, 0.00 and −0.25 (left) and comparison with
baseline heuristics, where scores are averaged on the datasets (right)

but also tells that G-SHAP attribution consists of a few groups with salient superpixels. It implies
that our method needs to be compare with baseline grouping methods to validate our approach as
the sanity-check, discussed in the later subsection.

4.3 VALIDATING THE GROUPING APPROACH

In order to show the validity of our grouping strategy, we have compared G-SHAP with various
grouping heuristics which would likely yield the similar results, stated in the Table 1 (right) and
illustrated in the Figure 4. The details for each grouping heuristics are described below.

First, we have employed 2-grouping and 3-grouping methods as G-SHAP with lower β yields
few groups. The 2-grouping method sorts the components by Shapley values and splits them into
two groups by merging the top 1 ≤ k ≤ N components and the others, and returns the best one.
Similarly, the 3-grouping method considers all grouping cases with of top-k, bottom-m, and the
middle-(N −k−m) components and picks the best one. While the results show that their NGR and
NCR are slightly lower than ours (less than 0.1), their explanation contains too minimal information
since the most intermediate-salient superpixels are neglected.

We have also employed K-means grouping and Adjacency-greedy grouping methods to test the
grouping performance of merging components with closer attribution scores, as the salient superpix-
els of G-SHAP attribution are often attributed with higher or closer Shapley values. The K-means
grouping method clusters of the components into 2 ≤ k ≤ 10 groups and returns the best group-
ing, where the distance metric is given as the difference of normalized Shapley value (divided by
superpixel area). The Adjacency-greedy method iteratively merges two groups with the closest
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min-deletion max-deletion random-deletion
Superixel method Attribution Flower5 COCO VOC Flower5 COCO VOC Flower5 COCO VOC

Quick-shift SHAP 0.476 0.566 0.671 0.444 0.438 0.515 0.446 0.465 0.587
G-SHAP 0.171 0.158 0.204 0.159 0.144 0.191 0.147 0.131 0.169

Graph-based SHAP 0.532 0.674 0.786 0.458 0.494 0.563 0.469 0.537 0.646
G-SHAP 0.223 0.176 0.223 0.191 0.161 0.190 0.177 0.149 0.180

Table 2: Estimation game result of component attribution (SHAP) and group attribution (G-SHAP)

normalized Shapley values, and returns the best grouping. As these strategies are expected to retain
higher NCR scores, both methods show that NCR is simlar or slightly higher than ours, whereas
NGR is clearly lower than ours. It implies that these two heuristics could not resolve group-wise
Shapley errors as any interaction statistics are utilized.

In addition, we have employed G-SHAP without core subset searching as the ablation study, named
G-SHAP greedy, which instead greedily merges two groups which are expected to improve the L
the most. As it shows that both NGR and NCR are around 0.1 lower than our method in average,
implying that the optimization problem is challenging to solve with simple greedy approach so that
optimal partition searching in the core subset is necessary.

4.4 ESTIMATION GAMES

Figure 5: Illustration of the
estimation game, measuring
the error of expected drop to
the actual drop

Deletion game (Petsiuk et al., 2018; Wagner et al., 2019) is the main
strategy to assess the attribution scores, which removes each com-
ponent of input data in sequence and evaluates the model output
drop through AUC of the curve. However, these methods usually
rely on the ranking of the attribution scores so that it does not as-
sess the reliability of the attribution in general. Therefore, we have
employed this idea in a different way, termed estimation game,
which aims to measure the error of expected output changes to the
actual one. As Shapley value indicates the expected model contri-
bution, this assessment approach is intuitive to understand has also
been utilized in (Guanchu, 2022). For the deletion process, we have
employed three types of deletions: min-deletion, max-deletion, and
random-deletion, which deletes (fills mean-color) inputs in increas-
ing, decreasing, and random order of attribution score, respec-
tively. Since model logits can be arbitrarily scaled depending on
the prediction, we have normalized as follows: (1) we have linearly
rescaled y-axis such that y = 0, 1 stands for ground image (mean-
colored image) and target image, respectively. (2) we have also
linearly rescaled x-axis as it indicates the ratio of removed pixels to
entire pixels. Therefore removal game always starts from (0, 1) and
ends with (1, 0), illustrated in the Figure 5. As shown in Table 2, G-SHAP resolves around 60% to
70% of the L2 estimation error of component attribution (SHAP), providing a better understanding
of the local behavior of the model.

5 CONCLUSION

Though input-attribution methods provide clear interpretation as the explanations correspond to the
data, non-linearity of deep models intrinsically hinders reliability of attribution. In this work, we
have presented novel perspective of quantifying the reliability, attributing groups, and formulating it
with the optimization problem. We have chosen Shapley value for the scoring policy to specify the
terms and propose the grouping algorithm G-SHAP. We have shown the explanatory benefits of our
group attribution in multiple perspectives. Its improvement of a group attribution’s reliability loss
is clearly larger than deterioration of component-interpreted reliability loss, and also improved local
explainability of a model’s prediction. However, since our method utilizes Shapley conditional terms
and search partition spaces with iteration, its computation cost is too high to start with pixel-wise
components. Deeper analytical approach and utilizing the prior information of input components
would improve the performance and feasibility, left as potential for future works.
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