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ABSTRACT

We design simple, explicit, and flexible per-sample re-weighting schemes for
learning deep neural networks in a variety of tasks that require robustness of some
form. These tasks include classification with label imbalance, domain adaptation,
and tabular representation learning. Our re-weighting schemes are simple and
can be used in combination with any popular optimization algorithms such as
SGD, Adam. Our techniques are inspired by max-margin learning, and rely on
mirror maps such as log-barrier and negative entropy, which have been shown to
perform max-margin classification. Empirically, we demonstrate the superiority
of our approach on all of the aforementioned tasks. Our techniques provide state-
of-the-art results in tasks involving tabular representation learning and domain
adaptation.

1 INTRODUCTION

Deep learning has revolutionized artificial intelligence and machine learning with significant advance-
ments in various domains such as image recognition Brock et al. (2021), natural language processing
Schulman et al. (2022), drug discovery Vamathevan et al. (2019), and reinforcement learning Mnih
et al. (2013). One of the most crucial aspects of their success is the suite of optimization algorithms
used to train deep networks. In convex machine learning, optimization algorithms are deployed
with pre-conditioning and per-sample weighting, boosting the convergence of learning algorithms.
Our work aims to design simple, computationally efficient per-sample weighting schemes for deep
learning by adapting update rules from mirror descent for binary classification tasks.

We begin by noting that the loss functions are usually designed as the population means of in-
distribution samples. This can cause neural networks trained with SGD on such loss functions do
not learn well on rare samples. This has been studied extensively in various domains, including
computer vision, tabular data, meta-learning, and many more. Our goal is to minimize average
losses, not individual sample losses. To address this, two related techniques have gained attention:
pre-conditioning and per-sample re-weighting. These techniques improve model performance and
make optimization more efficient. Pre-conditioning adjusts gradient step sizes in specific directions,
with the Newton method being the most famous approach. Per-sample re-weighting adjusts the
importance of each sample based on its loss value, with some approaches giving more weight to
samples with higher loss and others giving more weight to samples with lower loss. This often
involves training a second neural network to compute weights.

In this work, we propose MAX-MARGIN INSPIRED RE-WEIGHTED GRADIENT DESCENT (RGD).
This modifies the gradient of the loss from

∑
i∇li to

∑
i g(li)∇li for some appropriately chosen
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function scalar function g(). We derive a simple and exact form for g() by drawing inspiration
from mirror descent algorithms designed to obtain max-margin classifiers. In our experiments, we
show that RGD outputs models with various robustness properties, including robustness to domain
shifts, class imbalance, and label noise. Unlike many previous approaches, RGD does not require a
separate neural network for re-weighting and thus has the same computational complexity as training
without RGD. This allows each sample’s weight to change dynamically based on its current loss
while reducing the computational overhead.

Our approach is tested on the CIFAR dataset with class imbalance and label noise, demonstrating
superior performance compared to specialized techniques like class-balanced loss and focal loss.
Our approach also improves upon the state-of-the-art in two challenging tasks, DomainBed and
tabular representation learning, by simply applying our method on top of the current state-of-the-art
approach.

Domain generalization is a task where test data has a different distribution than training data. Max-
margin type robust classifiers are expected to improve performance in this task. Gulrajani & Lopez-
Paz (2020) showed that Empirical Risk Minimization applied over a deep network was highly effective
and remained the state-of-the-art for a long time. Recent works such as Cha et al. (2022); Addepalli
et al. (2022) showed improvement on this challenging task. Our method, RGD, improves upon the
state-of-the-art results by being applied on top of the methods in Addepalli et al. (2022).

Learning with tabular data is a task where traditional machine learning methods, like random forests
and GBDT, remain highly competitive against deep learning methods. Majmundar et al. (2022)
recently introduced tabular representation learning methods, MET-S and MET, which improved upon
the state-of-the-art performance of GBDT. Adversarial training, used in MET, indirectly promotes
max-margins. Our re-weighting technique, RGD, provides a more direct and principled approach
to learn max-margin classifiers. MET-S augmented with RGD significantly improves upon MET,
providing a much more significant boost in performance.

Below, we present the main contributions of our paper:
A new per-sample weight formulation: We derive RGD by considering re-weighting schemes in
general and deriving computationally efficient approximations for deep learning. We then connect
our method to max-margin classification and mirror descent. We use this connection to choose our
re-weighting scheme. This change is easy and efficient to implement with a few lines of code. Unlike
many prior works, this does not require additional neural networks to learn per-sample weighting.
Flexible Weight Schemes: Our weighting schemes are flexible - some of the schemes improve
the classification of rare data points by giving more weight to data points with a large loss while
others improve robustness to label noise by giving more weight to samples with a smaller loss. This
flexibility can be seen in our empirical studies on CIFAR classification with label imbalance (which
reduces the occurrence of some classes, Section 3.1) and CIFAR classification with label noise
(which adds noise to the labels, Section 3.2) respectively.
Better Performance Against SOTA: Our experimental results demonstrate that our proposed
approach, RGD, significantly outperforms the state-of-the-art on various domains such as
DomainBed (out-of-domain generalization), Tabular Representation Learning, Class Imbalance and
Noisy Label domains with simple off-the-bat addition to the current SOTA techniques. As mentioned
in the introduction, we show improvements on notoriously challenging problems and push the SOTA
further on DomainBed and Tabular benchmarks by +0.7% and +1.44% respectively. Furthermore,
we also show an average improvement of +0.79% on Class Imbalance experiments and +2.33% on
Noisy Label experiments over their respective SOTA approach.(see Section 3)

In consideration of limited space, a comprehensive overview of related works can be found in
Appendix 6.

2 ALGORITHM AND DERIVATION

Our main algorithm is given in Algorithm 1. The main idea is that whenever a learning algorithm
requests a mini-batch gradient, instead of sending 1

B

∑
i∇`i, we send the weighted stochastic

gradient 1
B

∑
i g(`i)∇`i for some approriately chosen function g : R+ → R. In this work we

consider the following choices for g: g(x) = 1

1−min(x,M)
M+1

, g(x) = exp(min(x,M)), for some
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Algorithm 1 Our Proposed Max-Margin inspired Re-weighted Gradient Descent (RGD)
1: Input: Data {Xi, Yi}ni=1, learning rate η, number of iterations T , loss function `, per-sample weighting

function g, mini-batch size B
2: for t = 1 . . . T do
3: Sample minibatch {Xi, Yi}Bi=1

4: Compute losses for points in the minibatch: `i ← `(Xi, Yi; θ), ∀i ∈ 1 . . . B
5: Compute per-sample weights using our proposed approach: wi ← g(`i) ∀i ∈ 1 . . . B

6: Compute the weighted pseudo-gradient: v ← 1
B

∑B
i=1 wi∇`i

7: Update weights of neural network: θ ← θ − ηv
8: end for

constant M > 0. These functions are inspired by max-margin learning. We defer the derivation of
these functions to Section 2.1. Observe that these functions give more weight to samples with high
loss, which helps to learn with rare examples. However, this can be detrimental when the data is
noisy. In such a scenario, we need to give more weight to low-loss samples to remove the noisy data
points from hindering the learning process. In this scenario, we consider g(x) = exp(−min(x,M))

and g(x) = (1− min(x,M)
M+1 ).

For brevity and future references across the paper, we will denote our approach with g(x) =
1

1−
min(x,M)
M+1

as RGD-1, and g(x) = exp(min(x,M)) as RGD-EXP. Their respective inverses (i.e,

g(x) = 1− min(x,M)
M+1 and g(x) = exp(−min(x,M))) by inv RGD-1and inv RGD-EXP.

In the rest of this section, we present the framework of prioritized gradient descent and then derive
our weighting function by appealing to the max-margin theory.

Suppose we are given (X,Y ) ∈ X × Y from a joint distribution µ(X,Y ) = P (X)Q(Y |X) and our
task is to fit Y to X by minimizing the parametric loss `(X,Y ; θ), where θ describes the parameters
of an ML model. We assume that θ → `(X,Y ; θ) is sufficiently smooth (i.e., continuously differen-
tiable). We minimize the expected population loss: L(θ;P,Q) =

∫
`(X,Y ; θ)P (dX)Q(dY |X).

We will call the model well-specified if there exists θ∗ such that θ∗ ∈ arg minθ
∫
`(X,Y ; θ)Q(dY |X)

for every X . This model is good for every X and robust to co-variate distribution shifts. To give
a simple example, if the ground truth satisfies Y = f(X, θ∗) + η where η is a zero mean noise
independent of X , this model is well-specified under the square loss `(X,Y ; θ) = E(Y − f(X, θ))2.

Suppose we have a current estimate for θ; we consider changing the distribution of X from P (·) to a
distribution dependent on θ, which prioritizes points where the learning has not progressed. Below
we show that θ∗ remains the risk minimizer under this new distribution.

Lemma 1. Suppose the model is well specified as defined above. Then, given any class of
measures (not necessarily probability distributions) P (; θ) over X , parametrized by θ, we have:
L(θ∗;P (; θ), Q) ≤ L(θ;P (; θ), Q).

By Lemma 1, we argue that we can run GD-type methods by picking the data points X from the
distribution P (X; θ)Q(Y |X) instead of P (X)Q(Y |X) and still have θ∗ to be a fixed point. More
precisely, define Prioritized Gradient Descent (PGD) as:

θt+1 = θt − α
∫
P (dX; θt)Q(dY |X)∇θ`(X,Y ; θt) (1)

Lemma 2. θ∗ is a fixed point of equation 1.

With empirical risk minimization, we consider labeled pairs (Xi, Yi)
n
i=1 instead of the population.

Given the prioritization distribution Pt(Xi) such that
∑n
i=1 Pt(Xi) = 1, we write PGD for the

empirical risk as:

θt+1 = θt − α
n∑
i=1

Pt(Xi)∇θ`(Xi, Yi; θt) (2)
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Since we want a mini-batch SGD-style algorithm which approximates equation 2, at each time t,
draw a random batch Bt of size B uniformly at random from {X1, . . . , Xn} and run:

θt+1 = θt − α
n

B

∑
i∈Bt

Pt(Xi)∇θ`(Xi, Yi; θt) (3)

Note that this is more computationally efficient than sampling a batch size of B from the distribution
Pt(Xi) since the latter option has to parse the entire sample.
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Figure 1: Ablation Study of RGD over the baseline Cross Entropy Loss (CE) on CIFAR-10 and
CIFAR-100 datasets. We use the difference of accuracy (over the performance obtained when the
baseline model is trained on Cross Entropy loss) to show that our proposed approach outperforms
SOTA methods such as Focal Loss and Class Balanced Loss. ? highlights the best-performing model
in both settings. The x-axis refers to the Imbalance factor which is defined as the number of training
samples in the largest class divided by the smallest. For more details refer to Table 11.1 in Appendix.

2.1 MAX-MARGIN INSPIRED RE-WEIGHTING

In this section, we design a weighting function inspired by max-margin learning. Consider the
binary classification problem with linear separator, where we are given n samples {Xi, Yi}ni=1. Here
Xi ∈ Rd is the feature vector and Yi ∈ {−1, 1} is the label. We aim to find a linear classifier θ ∈ Θ
that best fits the data. The minimum margin of θ over the data is given by mini∈[n] Yi 〈θ,Xi〉 . In
max-margin learning, we aim to learn a classifier with the largest possible minimum margin. This
leads us to the following objective: maxθ∈Θ mini∈[n] Yi 〈θ,Xi〉 .
Since the cross-entropy loss is a strictly monotonic function of its argument, one could replace
Yi 〈θ,Xi〉 in the above objective with cross-entropy loss and obtain the following equivalent opti-
mization problem: maxθ∈Θ mini∈[n]−`CE (Yi 〈θ,Xi〉) , where `CE(s) = log(1 + e−s). The above
problem can be rewritten as

min
θ∈Θ

max
P∈∆n

Ei∼P [`CE (Yi 〈θ,Xi〉)] .

Note that the above optimization problem is convex in θ and concave in P . A popular and widely
used approach for solving such problems is to rely on online learning algorithms (Hazan, 2016;
Cesa-Bianchi & Lugosi, 2006). In this approach, the minimization player and the maximization
player play a repeated game against each other. Both players rely on online learning algorithms to
choose their actions in each round of the game, intending to minimize their respective regret. Such a
procedure is known to converge to a Nash equilibrium of the game (see Remark 7.4 of Cesa-Bianchi
& Lugosi, 2006). In this section, we use projected gradient descent for the minimization player and
Online Mirror Descent (OMD) with regularizerR for the maximization player (Foster et al., 2016)
(the updates for OMD with entropic regularizer can be found in the Appendix). Letting (θt, Pt) be
the actions chosen by both the players in the tth iteration of this repeated gameplay, we have

θt ← arg min
θ∈Θ

〈
θ,Ei∼Pt−1

[∇θ`CE(Yi 〈Xi, θt−1〉)]
〉

+
1

2η
‖θ − θt−1‖22,

Pt = arg max
P∈∆n

t∑
s=1

Ei∼P [`CE(Yi 〈Xi, θs〉)] +
1

γ
R(P ).

Here η, γ are the learning rates of θ, P .
Log-barrier regularizer: Picking R(P ) =

∑n
i=1 logP (i), we obtain the following closed-form
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Table 1: Results on CIFAR-10 and CIFAR-100 dataset with flip noise.
Dataset CIFAR-10 CIFAR-100
Loss 0% 20% 40% Avg. 0% 20% 40% Avg.
Focal Loss 93.03 ± 0.16 86.45 ± 0.19 80.45 ± 0.97 86.64 70.02 ± 0.53 61.87 ± 0.30 54.13 ± 0.40 62.01
D2L 92.02 ± 0.14 87.66 ± 0.40 83.89 ± 0.46 87.86 68.11 ± 0.26 63.48 ± 0.53 51.83 ± 0.33 61.14

Cross Entropy (CE)

Default 92.89 ± 0.32 76.83 ± 2.30 70.77 ± 2.31 80.16 70.50 ± 0.12 50.86 ± 0.27 43.01 ± 1.16 54.79
inv RGD-1 (Ours) 93.13 ± 0.17 90.91 ± 0.21 86.05 ± 0.28 90.03 71.31 ± 0.21 67.09 ± 0.23 54.06 ± 0.38 64.15
inv RGD-EXP (Ours) 93.21 ± 0.26 91.19 ± 0.14 86.39 ± 0.61 90.26 71.40 ± 0.18 67.32 ± 0.24 54.08 ± 0.77 64.27

expressions for the above updates

θt ← ΠΘ

(
θt−1 − ηEi∼Pt−1

[∇θ`CE(Yi 〈Xi, θt−1〉)]
)
, Pt(i) =

1

−γ
∑t
s=1 `CE(Yi 〈Xi, θs〉) + Zt

.

where Zt is the normalization constant which ensures
∑n
i=1 Pt(i) = 1. Algorithm 2 in the Appendix

describes this procedure. This suggests the following re-weighting of points in Equation equation 3:
Pt(Xi) = 1

−γ
∑t

s=1 `(Xi,Yi;θs)+Zt
. However, this re-weighting is computationally expensive as it

requires computing the losses of all the points in the minibatch w.r.t all the iterates {θs}ts=1. To make
this update more tractable, we replace

∑t
s=1 `(Xi, Yi; θs) in the denominator with `(Xi, Yi; θt). This

gives us the following re-weighting scheme: Pt(Xi) = 1
−γ`(Xi,Yi;θt)+Zt

This suggests picking the
following weighting function g(x) = 1

1−min(x,M)
M+1

. Here M acts as a normalization constant.

Negative Entropy Regularizer: Picking R(P ) =
∑n
i=1 P (i) logP (i), we get: Pt(i) =

exp(γ
∑t
s=1 `CE(Yi〈Xi, θs〉) − Zt), for some Zt which ensures normalization. This suggests the

weight function g(x) = exp(max(x,M)) for some M > 0.

3 EXPERIMENTS

Our proposed solution can be applied to various domains and shows improvements over SOTA ap-
proaches in Class Imbalance (+0.79%), Corrupted Label (+2.33%), Tabular Representation Learning
(+1.44%), and DomainBed (+0.7%).

3.1 CLASS IMBALANCE EXPERIMENTS

This section uses the Long-Tailed CIFAR dataset Cui et al. (2019), reducing the number of training
samples per class according to an exponential function, and a ResNet-32 architecture for training.
Besides Cross Entropy loss, we also evaluate Focal Loss (Lin et al., 2017) and Class Balanced Loss
(Cui et al., 2019) as baselines. Our proposed approach outperforms both Focal Loss and Class
Balanced Loss and can be combined with any other loss. Our approach also shows significant
improvements on the long-tailed CIFAR-100 dataset. Results and accuracy scores are provided
in Appendix 11.1. In comparison to the SOTA (Class Balanced Loss), our approach improves by
+0.79%. A comparison with L2RW (Ren et al., 2018) and Meta-Weight-Net (Shu et al., 2019)
is illustrated in Table 5, where our approach outperforms L2RW and is roughly competitive with
Meta-Weight-Net.

3.2 CORRUPTED LABEL EXPERIMENTS

We study the use of invRGD weighting for domains with corrupted labels. The idea is that low-error
samples, less likely to be corrupted, should be learned from more. We conduct experiments on
CIFAR-10 and CIFAR-100 with flip noise, using ResNet-32, and present basic results in Table 1.
Compared to state-of-the-art methods, including Reed-Hard Reed et al. (2014), S-Model Goldberger
& Ben-Reuven (2016), Self-Paced Learning Kumar et al. (2010), MentorNet Jiang et al. (2018), and
Meta-Weight-Net Shu et al. (2019), we show a +2.33% improvement for those without additional
data and a +0.12% improvement for those with additional data in Appendix 11.2. No additional data
is used in our approach.
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Table 2: Top table presents results on benchmark binary tabular datasets (AUROC). Bottom table
presents results for multi-class datasets( Accuracy). The bottom partition of each table shows
performance of RGD. Our reweighting significantly outperforms existing methods, as well as SOTA.

Algorithm FMNIST CIFAR10 MNIST CovType Avg.
MLP 87.62 16.50 96.95 65.47 66.64
RF Breiman (2001) 88.43 42.73 97.62 71.37 75.04
MET Majmundar et al. (2022) 91.68 47.82 99.19 76.71 78.85

MET-S

Default Majmundar et al. (2022) 90.94 48.00 99.01 74.11 78.02
RGD-1 (Ours) 91.12 49.17 99.28 79.41 79.75
RGD-EXP (Ours) 91.54 49.54 99.69 79.72 80.12

Algorithm Obesity Income Criteo Thyroid Avg.
MLP 52.3 89.39 79.82 62.3 70.95
RF Breiman (2001) 64.36 91.53 77.57 99.62 83.27

MET-S

Default Majmundar et al. (2022) 71.84 93.85 86.17 99.81 87.92
RGD-1 (Ours) 76.23 93.90 86.92 99.82 89.22
RGD-EXP (Ours) 76.87 93.96 86.98 99.92 89.43

3.3 TABULAR REPRESENTATION LEARNING

Our approach improves accuracy in multi-class classification and AUROC performance in binary
classification tasks on tabular datasets, compared to previous state-of-the-art. We integrate RGD with
MET-S (representation learning without adversarial training) from Majmundar et al. (2022), instead of
adversarial training. Our results show +1.37% improvement in multi-class classification and +1.5%
improvement in binary classification, compared to previous SOTA. We compare with more baselines
in the appendix. Our experiments on ”permuted” MNIST, ”permuted” CIFAR, and ”permuted”
FMNIST were motivated by recent works in tabular representation learning, including Majmundar
et al. (2022).

3.4 OUT OF DOMAIN GENERALIZATION

We tested the robustness of a max-margin classifier to distribution shifts (e.g. real vs cartoon pictures)
using DomainBed benchmark (Appendix 10). For a long time, the simplest approach, Empirical
Risk Minimization (ERM) was the SOTA method (Gulrajani & Lopez-Paz (2020)). However, recent
breakthroughs such as MIRO (Cha et al. (2022)) and FRR (Addepalli et al. (2022)) have improved
the benchmarks significantly. Our proposed approach RGD integrated with FRR shows improved
performance (+0.7% avg) as shown in Table3. A more comprehensive comparison with other
baselines (IRM Arjovsky et al. (2019), CORAL Sun & Saenko (2016), MTL Blanchard et al. (2021),
SagNet Nam et al. (2021)) can be found in Table 10. The environment-wise accuracy of each baseline
is in Appendix 11.4.

Table 3: Results on DomainBed (Model selection: training-domain validation set): The bottom
partition shows results of our method with RGD loss. In both cases, with (top) and without (bottom)
fixed linear layer, the proposed approach outperforms existing methods, as well as SOTA.

Algorithm PACS VLCS OfficeHome DomainNet Avg.
ERM Gulrajani & Lopez-Paz (2020) 85.5 ± 0.1 77.5 ± 0.4 66.5 ± 0.2 40.9 ± 0.1 67.6
MIRO Cha et al. (2022) 85.4 ± 0.4 79.0 ± 0.0 70.5 ± 0.4 44.3 ± 0.2 69.8

ERM + FRR-L

Default Addepalli et al. (2022) 85.7 ± 0.1 76.6 ± 0.2 68.4 ± 0.2 44.2 ± 0.1 68.73
RGD-1 (Ours) 87.6 ± 0.3 78.6 ± 0.3 69.8 ± 0.2 46.00 ± 0.0 70.48
RGD-EXP (Ours) 87.2 ± 0.3 78.6 ± 0.3 69.4 ± 0.2 45.8 ± 0.0 70.25

ERM + FRR

Default Addepalli et al. (2022) 87.5 ± 0.1 77.6 ± 0.3 69.4 ± 0.1 45.1 ± 0.1 69.90
RGD-1 (Ours) 88.2 ± 0.2 78.6 ± 0.3 69.8 ± 0.2 45.8 ± 0.0 70.60
RGD-EXP (Ours) 87.6 ± 0.3 78.1 ± 0.1 69.9 ± 0.1 45.8 ± 0.0 70.35
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4 CONCLUSION

Classical machine learning techniques are very insightful and usually mathematically rigorous. By
revisiting these algorithms, and their basics, we can improve our current state-of-the-art deep learning
methods in various domains as highlighted in Section 3. We adapted mirror descent-based algorithms
for max-margin binary classification in this work to obtain MAX-MARGIN INSPIRED RE-WEIGHTED
GRADIENT DESCENT (RGD). This improves performance significantly in tasks requiring robustness,
as expected from a max-margin classifier. Our approach is advantageous since the modifications are
straightforward and can be easily implemented with a single line of code on top of existing algorithms.
While we obtained robustness to noisy labels separately in an ad-hoc way, in future work, we plan
to deal with noise tolerance and class imbalance via a single framework. This also requires novel
algorithm design and theoretical analysis. We also want to evaluate this technique in various tasks
and understand its utility and limitations.
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Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of computing, 8(1):121–164, 2012.

Peter Bartlett. For valid generalization the size of the weights is more important than the size of the
network. Advances in neural information processing systems, 9, 1996.

Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E Schapire. Boosting the margin: A new
explanation for the effectiveness of voting methods. The annals of statistics, 26(5):1651–1686,
1998.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.
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APPENDIX

5 REPRODUCIBILITY STATEMENT

Our proposed loss function is a single line of change. However, one would have to play around with
a given task’s learning rate (generally lower than the initial setting). Our experiments are based on
public datasets and open-source code repositories. The proposed final formulation RGD-1 and
RGD-EXP requires one line of code change.

Suppose the per-sample loss is given. Example code for applying RGD-1 is shown below.

def rgd_t(loss, temp=alpha, reduce=True):
# alpha >0.
out = loss * (

(1 - torch.clamp(loss.detach(), min=0, max=temp) / (temp + 1)) ** (-1)
)
return out.sum() / len(out) if reduce else out

Similarly, for applying RGD-EXP per-sample weighting, we could use the following modification.

def rgd_e(loss, temp=alpha, reduce=True):
# alpha >0.

out = loss * torch.exp(
torch.clamp(loss.detach(), min=0, max=temp) / (temp + 1)

)
return out.sum() / len(out) if reduce else out

6 RELATED WORKS

In this section, we describe prior studies that are broadly related to our problem at hand. Below,
we divide prior research under three prominent subheadings: (a) Per-Sample Re-weighting, (b)
Pre-Conditioning, and (c) Max-Margin Learning.

6.1 PER-SAMPLE REWEIGHTING

The idea of re-weighting samples can be dated back to the works of Chawla et al. (2002); Dong
et al. (2017); Zadrozny (2004). These works involved pre-evaluating per-sample weights as a pre-
processing step using some prior knowledge. To alleviate this need for human domain supervision,
recent approaches have moved towards dynamically computing the per-sample weights using another
class of functions, such as a neural network. Many approaches, such as Freund & Schapire (1997);
Kumar et al. (2010); Kahn & Marshall (1953), have considered using necessary samples for better
model training. Other works, such as Wu et al. (2018), proposed a dynamic loss function that works
on the intuition of using a student network to learn the task at hand and a teacher network that updates
the logits from the student network. Both networks are trained in an interleaved fashion. Here, the per-
sample re-weighting takes place at the logit level instead of the typical loss level. Recently, there has
been a growing research interest in using meta-learning and reinforcement learning based-approaches
for re-weighting samples. For instance, Ren et al. (2018); Shu et al. (2019) use meta-learning methods
such as MAML to output weights of each sample. Another work uses a history buffer which stores
a snapshot of the trajectory of each point, facilitating giving more importance to points which led
to more learning in our model Zhang & Pfister (2021). Other approaches, such as Zhu et al., use
reinforcement learning to learn the per-sample weights using a ”pretraining-boosting” two-stage
MDP curriculum where the agent network is firstly pre-trained and optimized for deployment in the
classification problem.

There are predominantly two paradigms for re-weighting samples:

• Works such as Freund et al. (1999); Malisiewicz et al. (2011); Lin et al. (2017) consider
re-weighting samples as monotonically increasing functions of the loss helps emphasize
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samples with larger loss values. These samples are more likely to be uncertain, complex
samples close to our classification model’s decision boundary.

• Other approaches such as Kumar et al. (2010); De La Torre & Black (2003); Jiang et al.
(2014a;b); Wang et al. (2017) re-weight the samples as a monotonically decreasing function
of the loss to take samples with smaller loss values as important ones. This rationality lies in
the idea that these low loss-value samples are more likely to be confident with clean labels,
thus allowing the model to learn better.

Furthermore, works such Castells et al. (2020) propose a confidence-aware loss proportional to the
lowest loss of that sample. They also use a threshold (γ) to decide how practical each point is, i.e., the
importance the easy and hard samples should have instead of being equal. In this work, we consider
both of these scenarios.

6.2 PRE-CONDITIONING

Generally, pre-conditioning can be the normalization of inputs, batch normalization, scaling gradients
in a few directions, and other approaches that help aid learning. This work predominantly discusses
the sub-domain, which focuses on scaling gradients in a few directions for efficient backpropagation.
Although deep learning presents various computational challenges, such as the non-convex learning
objectives, prior works have studied their behavior and come up with various solutions to alleviate
some of these limitations. A common technique to improve the efficiency of our model is to use
adaptive step-size methods for optimization, such as the Newton method, which takes advantage of
the second-order gradients. However, computing the Hessian matrix is computationally intensive,
leading to Quasi-Newton methods: methods that approximate the value of the Hessian instead of
computing them every time Le et al. (2011). Another popular alternative is to use an element-wise
adaptive learning rate, which has shown great promise in ADAgrad Duchi et al. (2011), RMSProp
Ruder (2016), ADAdelta Zeiler (2012). For instance, ADAgrad is a diagonal pre-conditioning
technique where the pre-conditioning across each dimension is computed as the inverse square root
of the norms of gradients along that dimension accumulated over training. Unfortunately, due to
this accumulation of gradients, it is often susceptible to falling in a saddle point as the scaling factor
decreases monotonically. Another important work is RProp by Riedmiller & Braun (1993), which,
unlike ADAgrad, does not worry about the magnitude of gradients. Instead of taking different step
sizes across various dimensions, it only uses the gradient sign, thus guaranteeing that each dimension
will have weight updates of the same step size.

6.3 MAX-MARGIN LEARNING AND MIRROR DESCENT

Margin is a fundamental machine learning notion that is known to govern the generalization per-
formance of a model (Bartlett, 1996). Max-margin learning has been attributed to the success of
popular ML techniques such as SVMs and boosting (Bartlett et al., 1998; Mason et al., 2000). Max
margin classifiers (i.e., where the decision boundary is chosen to be far away from all the points being
classified) are favored for their robustness, and generalization since small perturbations in the data
does not lead to misclassification. These ideas are also helpful in designing and understanding the
performance of deep learning algorithms. For instance, max-margin learning has been used to design
learning algorithms robust to adversarial corruptions (Zhang et al., 2022). In this work, we derive a
re-weighting scheme based on this idea.

Max-margin learning has a game-theoretic flavor to it. In particular, the objective function can be
written as a min-max problem, where we want to learn a classifier with the best worst-case margin.
Mirror descent is a popular algorithm often used to solve such games. The optimization community
originally proposed Mirror descent as a generalization to gradient descent (Beck & Teboulle, 2003).
Recent works have shown its utility for solving min-max games (Hazan, 2016; Cesa-Bianchi &
Lugosi, 2006). The re-weighting schemes we derive in our work are developed using mirror descent
with negative entropy and log-barrier regularizers.

Our approach has close connections to boosting. In boosting, we learn an ensemble of classifiers that
can perform well on the learning task. Popular boosting algorithms such as AdaBoost (Arora et al.,
2012) rely on the exponential re-weighting mechanism, which is built using mirror descent with
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entropy regularizer, to learn the ensembles. However, unlike AdaBoost, we do not build ensembles.
Our algorithm learns a single model that does well on the learning task.

7 PROOF OF LEMMA 1

Proof. Notice that for every X and θ, we have:
∫
Q(dY |X)`(X,Y ; θ) ≥

∫
Q(dY |X)`(X,Y ; θ∗).

Hence, by monotonicity of expectation,
∫
P (dX; θ)

[∫
Q(dY |X)`(X,Y ; θ)

]
≥∫

P (dX; θ)
[∫
Q(dY |X)`(X,Y ; θ∗)

]
8 PROOF OF LEMMA 2

Proof. This follows from the fact that∇θ`(X,Y ; θ∗) = 0 for every X .

9 ALGORITHMS FOR MAX-MARGIN LEARNING

Algorithm 2 Max-Margin Learning using Online Mirror Descent with log-barrier regularizer
1: Input: Data {Xi, Yi}ni=1, learning rates η, γ for min and max players
2: for t = 1 . . . T do
3: Update θt using projected gradient descent

θt ← ΠΘ

(
θt−1 − ηEi∼Pt−1 [∇θ`CE(Yi 〈Xi, θt−1〉)]

)
4: Update Pt using online mirror descent with log-barrier regularizer

Pt = arg max
P∈∆n

t∑
s=1

Ei∼P [`CE(Yi 〈Xi, θs〉)] +
1

γ

n∑
i=1

logP (i)

The solution of this optimization problem has the following analytical expression

Pt(i) =
1

−γ
∑t
s=1 `CE(Yi 〈Xi, θs〉) + Zt

,

where Zt is the normalization constant which ensures
∑n
i=1 Pt(i) = 1.

5: end for
6: Output: 1

T

∑T
t=1 θt.

10 DOMAINBED BENCHMARK

In this section, we describe the DomainBed benchmark, a challenging benchmark used to study the
out-of-domain generalization capabilities of our model. To briefly explain, consider the dataset PACS,
which consists of Photos, Art, cartoons, and sketches of the same set of classes (for instance, dogs,
and cats, amongst others). The goal of the task is to learn from three of these domains and evaluate
the performance of the left-out domain (similar to a k-fold cross-validation). By doing so, we can
evaluate the out-of-domain generalization performance of our models. In general, the metric used
in this domain involves taking an average of the performance of the different k-fold splits. More
information about this benchmark is available at Gulrajani & Lopez-Paz (2020).

11 ADDITIONAL RESULTS

This section briefly discusses more elaborated tables and findings from our research.

11.1 CLASS IMBALANCE EXPERIMENTS

This section briefly discusses additional results from our experiments on the Class Imbalance domain
with datasets such as CIFAR-10 and CIFAR-100. Table 4 depicts the accuracy metric of models
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on various levels of the imbalance factor. From Table 4, we show that our proposed approach
RGD-EXP outperforms other baselines such as Focal Loss and Class Balanced Loss by +0.79%.
Furthermore, when models are trained on additional data, either by fine-tuning or by using a meta-
learning framework to learn weights (such as Meta-Weight-Net and L2RW), we show that our
proposed approach is competitively similar (-0.22%). Table 5 illustrates this analysis further. The
performance metrics of the baseline approaches were taken from Shu et al. (2019).

Table 4: Test Accuracy of ResNet-32 on Long-Tailed CIFAR-10, and CIFAR-100 dataset.

Dataset CIFAR-10 CIFAR-100
Loss / Imbalance Factor 200 100 50 20 10 1 Avg. 200 100 50 20 10 1 Avg.
Focal Loss Lin et al. (2017) 65.29 70.38 76.71 82.76 86.66 93.03 79.14 35.62 38.41 44.32 51.95 55.78 70.52 49.43
Class Balanced Loss Cui et al. (2019) 68.89 74.57 79.27 84.36 87.49 92.89 81.25 36.23 39.60 45.32 52.59 57.99 70.50 50.21

Cross Entropy (CE)

Default 65.98 70.36 74.81 82.23 86.39 92.89 78.78 34.84 38.32 43.85 51.14 55.71 70.50 49.06
RGD-1 (Ours) 64.16 72.56 77.86 83.88 86.84 92.99 79.72 36.22 39.87 43.74 51.86 56.9 70.80 49.90
RGD-EXP (Ours) 67.90 73.75 79.63 85.44 88.00 93.27 81.33 38.62 41.89 46.40 53.48 58.5 71.30 51.70

Table 5: Test Accuracy of ResNet-32 on Long-Tailed CIFAR-10, and CIFAR-100 dataset. We use
the symbol ? to denote approaches that use additional data (as the meta-dataset). We use underline
symbol to depict performances which are second-best across baselines. Our experiments show that
we can get competitively similar performance to such models as well without training a second neural
network.

Dataset CIFAR-10 CIFAR-100
Loss / Imbalance Factor 200 100 50 20 10 1 Avg. 200 100 50 20 10 1 Avg.
Fine-tuning ? 66.08 71.33 77.42 83.37 86.42 93.23 79.64 38.22 41.83 46.40 52.11 57.44 70.72 51.12
L2RW Ren et al. (2018) ? 66.51 74.16 78.93 82.12 85.19 89.25 77.69 33.38 40.23 44.44 51.64 53.73 64.11 47.92
Meta-Weight-Net Shu et al. (2019) ? 68.91 75.21 80.06 84.94 87.84 92.66 81.60 37.91 42.09 46.74 54.37 58.46 70.37 51.65

Cross Entropy (CE)

Default 65.98 70.36 74.81 82.23 86.39 92.89 78.78 34.84 38.32 43.85 51.14 55.71 70.50 49.06
RGD-1 (Ours) 64.16 72.56 77.86 83.88 86.84 92.99 79.72 36.22 39.87 43.74 51.86 56.9 70.80 49.90
RGD-EXP (Ours) 67.90 73.75 79.63 85.44 88.00 93.27 81.33 38.62 41.89 46.40 53.48 58.5 71.30 51.70

11.2 CORRUPTED LABEL EXPERIMENTS

This section briefly discusses additional results from our experiments on label corruption on datasets
such as CIFAR-10 and CIFAR-100. Table 6 depicts our proposed approach’s accuracy metric
compared to various state-of-the-art baselines. From the above table, we show that our proposed
inv RGD-EXP and inv RGD-1 approach outperforms other state-of-the-art baselines which do not
use additional data by +2.33%. Furthermore, our approach is competitively similar (+0.12%) to
approaches that use additional data (using meta-learning) as shown in Table 7. The performance
metrics of the baseline approaches were taken from Shu et al. (2019).

Table 6: Results on CIFAR-10 and CIFAR-100 dataset with flip noise.

Dataset CIFAR-10 CIFAR-100
Loss 0% 20% 40% Avg. 0% 20% 40% Avg.
Reed-Hard Reed et al. (2014) 92.31 ± 0.25 88.28 ± 0.36 81.06 ± 0.76 87.22 69.02 ± 0.32 60.27 ± 0.76 50.40 ± 1.01 59.90
S-Model Goldberger & Ben-Reuven (2016) 83.61 ± 0.13 79.25 ± 0.30 75.73 ± 0.32 79.53 51.46 ± 0.20 45.45 ± 0.25 43.81 ± 0.15 46.91
Self-Paced Kumar et al. (2010) 88.52 ± 0.21 87.03 ± 0.34 81.63 ± 0.52 85.73 67.55 ± 0.27 63.63 ± 0.30 53.51 ± 0.53 61.56
Focal Loss Lin et al. (2017) 93.03 ± 0.16 86.45 ± 0.19 80.45 ± 0.97 86.64 70.02 ± 0.53 61.87 ± 0.30 54.13 ± 0.40 62.01
Co-Teaching Han et al. (2018) 89.87 ± 0.10 82.83 ± 0.85 75.41 ± 0.21 82.70 63.31 ± 0.05 54.13 ± 0.55 44.85 ± 0.81 54.20
D2L Ma et al. (2018) 92.02 ± 0.14 87.66 ± 0.40 83.89 ± 0.46 87.86 68.11 ± 0.26 63.48 ± 0.53 51.83 ± 0.33 61.14

Cross Entropy (CE)

Default 92.89 ± 0.32 76.83 ± 2.30 70.77 ± 2.31 80.16 70.50 ± 0.12 50.86 ± 0.27 43.01 ± 1.16 54.79
inv RGD-1 (Ours) 93.13 ± 0.17 90.91 ± 0.21 86.05 ± 0.28 90.03 71.31 ± 0.21 67.09 ± 0.23 54.06 ± 0.38 64.15
inv RGD-EXP (Ours) 93.21 ± 0.26 91.19 ± 0.14 86.39 ± 0.61 90.26 71.40 ± 0.18 67.32 ± 0.24 54.08 ± 0.77 64.27
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Table 7: Results on CIFAR-10 and CIFAR-100 dataset with flip noise. We use the symbol ? to
denote approaches that use additional data (as the meta-dataset). We use underline symbol to
depict performances which are second-best across baselines. Our experiments show that we can get
competitively similar performance to such models as well without training a second neural network.

Dataset CIFAR-10 CIFAR-100
Loss 0% 20% 40% Avg. 0% 20% 40% Avg.
Fine-Tuning ? 93.23 ± 0.23 82.47± 3.64 74.07 ± 1.56 83.26 70.72 ± 0.22 56.98 ± 0.50 46.37 ± 0.25 58.02
MentorNet Jiang et al. (2018) ? 92.13 ± 0.30 86.36 ± 0.31 81.76 ± 0.28 86.75 70.24 ± 0.21 61.97 ± 0.47 52.66± 0.56 61.62
L2RW Ren et al. (2018) 89.25 ± 0.37 87.86 ± 0.36 85.66 ± 0.51 87.59 64.11 ± 1.09 57.47 ± 1.16 50.98 ± 1.55 57.52
GLC Hendrycks et al. (2018) ? 91.02 ± 0.20 89.68 ± 0.33 88.92 ± 0.24 89.87 65.42 ± 0.23 63.07 ± 0.53 62.22 ± 0.62 63.57
Meta-Weight-Net Shu et al. (2019) ? 92.04 ± 0.15 90.33 ± 0.61 87.54 ± 0.23 89.97 70.11 ± 0.33 64.22 ± 0.28 58.64 ± 0.47 64.32
Cross Entropy (CE)

Default 92.89 ± 0.32 76.83 ± 2.30 70.77 ± 2.31 80.16 70.50 ± 0.12 50.86 ± 0.27 43.01 ± 1.16 54.79
inv RGD-1 (Ours) 93.13 ± 0.17 90.91 ± 0.21 86.05 ± 0.28 90.03 71.31 ± 0.21 67.09 ± 0.23 54.06 ± 0.38 64.15
inv RGD-EXP (Ours) 93.21 ± 0.26 91.19 ± 0.14 86.39 ± 0.61 90.26 71.40 ± 0.18 67.32 ± 0.24 54.08 ± 0.77 64.27

Table 8: Results on standard multi-class tabular datasets (Accuracy): The bottom partition shows re-
sults of our method with RGD loss. We show that the addition of our proposed approach significantly
outperforms existing methods, as well as SOTA.

Algorithm FMNIST CIFAR10 MNIST CovType Avg.
MLP 87.62 16.50 96.95 65.47 66.64
RF Breiman (2001) 88.43 42.73 97.62 71.37 75.04
GBDT Friedman (2001) 88.71 45.7 100 72.96 76.84
RF-G Rahimi & Recht (2008) 89.84 29.32 97.65 71.57 72.10
MET-R Majmundar et al. (2022) 88.84 28.94 97.44 69.68 71.23
VIME Yoon et al. (2020) 80.36 34.00 95.77 62.80 68.23
DACL+ Verma et al. (2021) 81.40 39.70 91.40 64.23 69.18
SubTab Ucar et al. (2021) 87.59 39.34 98.31 42.36 66.90
TabNet Arik & Pfister (2019) 88.18 33.75 96.63 65.13 70.92
MET Majmundar et al. (2022) 91.68 47.82 99.19 76.71 78.85

MET-S

Default Majmundar et al. (2022) 90.94 48.00 99.01 74.11 78.02
RGD-1 (Ours) 91.12 49.17 99.28 79.41 79.75
RGD-EXP (Ours) 91.54 49.54 99.69 79.72 80.12

11.3 TABULAR REPRESENTATION LEARNING

This section discusses a few additional results from our experiments on Tabular Representation
Learning. Table 8 depicts our proposed approach’s accuracy compared to other baselines on multi-
class tabular datasets. Our approach outperforms previous SOTA in this problem by +1.37%.
Furthermore, Table 9 illustrates the AUROC score of our proposed approach in comparison to
state-of-the-art baselines on binary-class tabular datasets. Our approach shows an improvement of
+1.5% in this setting as well. The performance metrics of the baseline approaches were taken from
Majmundar et al. (2022).

11.4 DOMAINBED

In this section, we briefly discuss additional results from our DomainBed experiments. Table 10
depicts a complete table and comparison of our proposed approach to a multitude of state-of-the-art
approaches in this field. Furthermore, we also show that our proposed approach outperforms previous
SOTA by +0.7%. Furthermore, we also present the per-environment breakdown of our approach
in various datasets in Table 11, Table 12, Table 13, and Table 14 for PACS, VLCS, OfficeHome,
and DomainNet respectively. The performance metrics of the baseline approaches were taken from
Gulrajani & Lopez-Paz (2020).
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Table 9: Results on standard binary-class tabular datasets (AUROC): The bottom partition shows re-
sults of our method with RGD loss. We show that the addition of our proposed approach significantly
outperforms existing methods, as well as SOTA.

Algorithm Obesity Income Criteo Thyroid Avg.
MLP 52.3 89.39 79.82 62.3 70.95
RF Breiman (2001) 64.36 91.53 77.57 99.62 83.27
GBDT Friedman (2001) 64.4 92.5 78.77 99.34 83.75
RF-G Rahimi & Recht (2008) 54.45 90.09 80.32 52.65 69.37
MET-R Majmundar et al. (2022) 53.2 83.54 79.17 82.03 74.49
VIME Yoon et al. (2020) 57.27 87.37 74.28 94.87 78.45
DACL+ Verma et al. (2021) 61.18 89.01 75.32 86.63 78.04
SubTab Ucar et al. (2021) 64.92 88.95 76.57 88.93 79.00
TabNet Arik & Pfister (2019) 69.40 77.30 80.91 96.98 81.15

MET-S

Default Majmundar et al. (2022) 71.84 93.85 86.17 99.81 87.92
RGD-1 (Ours) 76.23 93.90 86.92 99.82 89.22
RGD-EXP (Ours) 76.87 93.96 86.98 99.92 89.43

Table 10: Results on DomainBed (Model selection: training-domain validation set): The bottom
partition shows results of our method with RGD loss. In both cases, with (top) and without (bottom)
fixed linear layer, the proposed approach outperforms existing methods, as well as SOTA.

Algorithm PACS VLCS OfficeHome DomainNet Avg.
ERM Gulrajani & Lopez-Paz (2020) 85.5 ± 0.1 77.5 ± 0.4 66.5 ± 0.2 40.9 ± 0.1 67.6
IRM Arjovsky et al. (2019) 83.5 ± 0.8 78.5 ± 0.5 64.3 ± 2.2 33.9 ± 2.8 65.1
GroupDRO Sagawa et al. (2019) 84.4 ± 0.8 76.7 ± 0.6 66.0 ± 0.7 33.3 ± 0.2 65.1
Mixup Yan et al. (2020) 84.6 ± 0.6 77.4 ± 0.6 68.1 ± 0.3 39.2 ± 0.1 67.33
MLDG Li et al. (2018a) 84.9 ± 1.0 77.2 ± 0.4 66.8 ± 0.6 41.2 ± 0.1 67.53
CORAL Sun & Saenko (2016) 86.2± 0.3 78.8± 0.6 68.7± 0.3 41.5 ± 0.1 68.8
MMD Li et al. (2018b) 84.6 ± 0.5 77.5 ± 0.9 66.3 ± 0.1 23.4 ± 9.5 62.95
DANN Ganin et al. (2016) 83.6 ± 0.4 78.6 ± 0.4 65.9 ± 0.6 38.3 ± 0.1 66.6
CDANN Li et al. (2018c) 82.6 ± 0.9 77.5 ± 0.1 65.8 ± 1.3 38.3 ± 0.3 66.05
MTL Blanchard et al. (2021) 84.6 ± 0.5 77.2 ± 0.4 66.4 ± 0.5 40.6 ± 0.1 67.2
SagNet Nam et al. (2021) 86.3 ± 0.2 77.8 ± 0.5 68.1 ± 0.1 40.3 ± 0.1 68.13
ARM Zhang et al. (2021) 85.1 ± 0.4 77.6 ± 0.3 64.8 ± 0.3 35.5 ± 0.2 65.75
VREx Krueger et al. (2021) 84.9 ± 0.6 78.3 ± 0.2 66.4 ± 0.6 33.6 ± 2.9 65.8
RSC Huang et al. (2020) 85.2 ± 0.9 77.1 ± 0.5 65.5 ± 0.9 38.9 ± 0.5 66.68
MIRO Cha et al. (2022) 85.4 ± 0.4 79.0 ± 0.0 70.5 ± 0.4 44.3 ± 0.2 69.8

ERM + FRR-L

Default Addepalli et al. (2022) 85.7 ± 0.1 76.6 ± 0.2 68.4 ± 0.2 44.2 ± 0.1 68.73
RGD-1 (Ours) 87.6 ± 0.3 78.6 ± 0.3 69.8 ± 0.2 46.0 ± 0.0 70.48
RGD-EXP (Ours) 87.2 ± 0.3 78.6 ± 0.3 69.4 ± 0.2 45.8 ± 0.0 70.25

ERM + FRR

Default Addepalli et al. (2022) 87.5 ± 0.1 77.6 ± 0.3 69.4 ± 0.1 45.1 ± 0.1 69.9
RGD-1 (Ours) 88.2 ± 0.2 78.6 ± 0.3 69.8 ± 0.2 45.8 ± 0.0 70.6
RGD-EXP (Ours) 87.6 ± 0.3 78.1 ± 0.1 69.9 ± 0.1 45.8 ± 0.0 70.35
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Table 11: Out-of-domain accuracies (%) on PACS.

Algorithm A C P S Avg

CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MASF 82.9 80.5 95.0 72.3 82.7
DMG 82.6 78.1 94.5 78.3 83.4
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
MetaReg 87.2 79.2 97.6 70.3 83.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.7
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
I-Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.7
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
Mixstyle 86.8 ± 0.5 79.0 ± 1.4 96.6 ± 0.1 78.5 ± 2.3 85.2
ER 87.5 79.3 98.3 76.3 85.3
pAdaIN 85.8 81.1 97.2 77.4 85.4
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
EISNet 86.6 81.5 97.1 78.1 85.8
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
DSON 87.0 80.6 96.0 82.9 86.6

ERM + FRR-L

Default 83.2 ± 0.3 79.8 ± 0.4 95.9 ± 0.3 83.5 ± 0.4 85.7
RGD-1 (Ours) 88.4 ± 0.3 83.3 ± 0.8 97.5 ± 0.3 81.1 ± 0.5 87.6
RGD-EXP (Ours) 88.7 ± 0.5 83.0 ± 0.5 97.8 ± 0.1 79.4 ± 1.0 87.2

ERM + FRR

Default 86.8 ± 0.3 82.2 ± 0.4 96.4 ± 0.1 84.5 ± 0.2 87.5
RGD-1 (Ours) 88.8 ± 0.3 84.0 ± 0.8 97.7 ± 0.1 82.4 ± 0.6 88.2
RGD-EXP (Ours) 87.7 ± 0.8 84.0 ± 0.6 97.6 ± 0.1 81.2 ± 0.5 87.6
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Table 12: Out-of-domain accuracies (%) on VLCS.

Algorithm C L S V Avg

GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
I-Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
Mixstyle 98.6 ± 0.3 64.5 ± 1.1 72.6 ± 0.5 75.7 ± 1.7 77.9
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.6
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8

ERM + FRR-L

Default 97.1 ± 0.2 63.3 ± 0.3 72.0 ± 0.3 74.3 ± 0.3 76.6
RGD-1 (Ours) 98.9 ± 0 64.9 ± 0.4 73.2 ± 0.4 77.5 ± 0.6 78.6
RGD-EXP (Ours) 98.8 ± 0.1 64.8 ± 0.2 73.9 ± 0.2 77.0 ± 1.1 78.6

ERM + FRR

Default 96.7 ± 0.6 65.2 ± 0.8 73.4 ± 0.1 75.6 ± 0.4 77.6
RGD-1 (Ours) 97.1 ± 0.5 65.4 ± 0.8 74.3 ± 0.1 77.5 ± 0.3 78.6
RGD-EXP (Ours) 98.3 ± 0.1 64.5 ± 0.2 72.3 ± 0.1 77.2 ± 0.3 78.1
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Table 13: Out-of-domain accuracies (%) on OfficeHome.

Algorithm A C P R Avg

Mixstyle 51.1 ± 0.3 53.2 ± 0.4 68.2 ± 0.7 69.2 ± 0.6 60.4
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.7
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.4
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
I-Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7

ERM + FRR-L

Default 64.4 ± 0.1 55.6 ± 0.5 76.5 ± 0.2 77.5 ± 0.2 68.4
RGD-1 (Ours) 64.5 ± 0.3 56.9 ± 0.5 77.8 ± 0.3 80.0 ± 0.4 69.8
RGD-EXP (Ours) 64.2 ± 0.3 55.9 ± 0.5 77.6 ± 0.2 79.9 ± 0.3 69.4

ERM + FRR

Default 64.5 ± 0.2 58.4 ± 0.1 76.6 ± 0.3 78.3 ± 0.1 69.4
RGD-1 (Ours) 65.6 ± 0.5 56.9 ± 0.3 76.9 ± 0.1 79.7 ± 0.3 69.8
RGD-EXP (Ours) 65.6 ± 0.3 57.1 ± 0.3 76.8 ± 0.3 80.2 ± 0.2 69.9
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Table 14: Out-of-domain accuracies (%) on DomainNet.

Algorithm clip info paint quick real sketch Avg

MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
Mixstyle 51.9 ± 0.4 13.3 ± 0.2 37.0 ± 0.5 12.3 ± 0.1 46.1 ± 0.3 43.4 ± 0.4 34.0
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
I-Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MetaReg 59.8 25.6 50.2 11.5 64.6 50.1 43.6
DMG 65.2 22.2 50.0 15.7 59.6 49.0 43.6

ERM + FRR-L

Default 63.6 ± 0.1 20.5 ± 0.0 50.7 ± 0.0 14.6 ± 0.1 63.8 ± 0.1 53.4 ± 0.0 44.2
RGD-1 (Ours) 65.8 ± 0.1 22.1 ± 0.0 52.3 ± 0.1 15.1 ± 0.1 65.7 ± 0.0 54.8 ± 0.1 46.0
RGD-EXP (Ours) 65.7 ± 0.1 21.9 ± 0.0 52.0 ± 0.1 15.1 ± 0.1 65.2 ± 0.1 54.9 ± 0.1 45.8

ERM + FRR

Default 64.3 ± 0.1 21.2 ± 0.3 51.1 ± 0.2 14.9 ± 0.6 64.7 ± 0.1 54.1 ± 0.2 45.1
RGD-1 (Ours) 65.6 ± 0.0 21.5 ± 0.0 52.1 ± 0.0 15.0 ± 0.0 65.7 ± 0.0 55.1 ± 0.0 45.8
RGD-EXP (Ours) 65.6 ± 0.0 21.9 ± 0.0 52.0 ± 0.1 15.0 ± 0.1 65.5 ± 0.0 54.8 ± 0.1 45.8
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