

000 001 002 003 004 005 006 007 008 009 010 A FUNCTION CENTRIC PERSPECTIVE ON FLAT AND SHARP MINIMA

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
Anonymous authors
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Flat minima are widely believed to correlate with improved generalisation in deep neural networks. However, this connection has proven more nuanced in recent studies, with both theoretical counterexamples and empirical exceptions emerging in the literature. In this paper, we revisit the role of sharpness in model performance, proposing that sharpness is better understood as a function-dependent property rather than a reliable indicator of poor generalisation. We conduct extensive empirical studies, from single-objective optimisation to modern image classification tasks, showing that sharper minima often emerge when models are regularised (e.g., via SAM, weight decay, or data augmentation), and that these sharp minima can coincide with better generalisation, calibration, robustness, and functional consistency. Across a range of models and datasets, we find that baselines without regularisation tend to converge to flatter minima yet often perform worse across all safety metrics. Our findings demonstrate that function complexity, rather than flatness alone, governs the geometry of solutions, and that sharper minima can reflect more appropriate inductive biases (especially under regularisation), calling for a function-centric reappraisal of loss landscape geometry.

1 INTRODUCTION

Neural network architectures with different implicit biases are known to exhibit distinct geometric properties around the loss landscape minima, with flatness often associated with improved generalisation performance via reduced generalisation gaps (Li et al., 2018). This desirability has been linked to the idea that flat minima correspond to wide error margins and thus increased robustness – in line with Occam’s Razor (Hochreiter & Schmidhuber, 1994). Empirical and theoretical studies have sought to support this perspective (Kaddour et al., 2022; Foret et al., 2021; Petzka et al., 2021), reinforcing the view that flatter solutions lead to better generalisation. However, the benefits of flat minima have also been questioned. Dinh et al. (2017) showed that flat minima, under commonly used definitions and metrics, can be arbitrarily sharpened via reparameterisation, without changing the model’s function or generalisation properties. This motivated the development of reparameterisation-invariant sharpness metrics, such as the Fisher-Rao-Norm (Liang et al., 2019) and Relative-Flatness (Petzka et al., 2021) which reaffirmed the correlation between flatness and generalisation.

Flatness has also been associated with benefits such as improved representation transfer (Liu et al., 2023) and the effects of architectural choices such as residual connections (Li et al., 2018). Notably, optimisation methods such as Sharpness Aware Minimization (SAM) (Foret et al., 2021), which improve generalisation in the vision domain, explicitly aim to bias training toward flatter minima. Yet generalisation is only one dimension of model quality. Safety-critical properties, such as robustness to average-case perturbations (Hendrycks & Dietterich, 2019), calibration (Guo et al., 2017) and functional diversity (Wang et al., 2024), are essential for reliable deployment. However, their relationship to flatness remains underexplored. In particular, it is unclear whether flatter solutions consistently support better safety, or whether high-performing models on these dimensions may instead occupy sharper regions of the loss landscape.

In this paper, we investigate this question through a function-centric lens: we hypothesise that the geometry of a solution reflects the complexity of the learned function, rather than directly determining performance. From this perspective, sharper minima may not indicate overfitting, but instead reflect more expressive or better-regularised solutions, particularly in high-dimensional learning tasks.

We begin with seven standard single-objective optimisation problems, where global minima are known and can be geometrically compared. These reveal that optimal solutions can be either sharp or flat, depending on the intrinsic complexity of the objective: some functions (e.g., Sphere) have flat global minima, while others (e.g., Rosenbrock) have inherently sharp global minima. This indicates that the geometry of the solution space is tied to function complexity, not optimality.

We then scale our analysis to high-dimensional problems, and use the CIFAR (Krizhevsky & Hinton, 2009) and TinyImageNet (Le & Yang, 2015) datasets to train the ResNet (He et al., 2016) VGG (Simonyan & Zisserman, 2015), and ViT (Dosovitskiy et al., 2021) architectures. We compare baseline models to those trained with standard regularisation techniques (SAM, weight decay, and data augmentation), evaluating each using reparameterisation-invariant sharpness metrics, generalisation performance, and safety-critical evaluations: expected calibration error, [average-case perturbation robustness](#), and functional agreement.

Our findings provide strong empirical support for a function-centric view of sharpness: models trained with regularisation typically converge to sharper minima, and often outperform their flatter, unregularised counterparts across safety and generalisation metrics (Figure 1). This indicates that regularisation increases the complexity of the learned function, leading to sharper but more effective solutions. [However, it is important to note that distinct trends emerge in each control condition, some with a preference for flatter solutions and others not suggesting the emergence of the Simpson’s Paradox](#) (Simpson, 1951), which means that minima geometry requires a nuanced view over a one-size-fits-all preference for flatness. While SAM and related methods were originally motivated by the goal of encouraging flatness, we show that their benefits frequently arise despite increasing sharpness. Together, these results challenge the assumption that flatness is inherently beneficial and support a reappraisal of sharpness through the lens of function complexity.

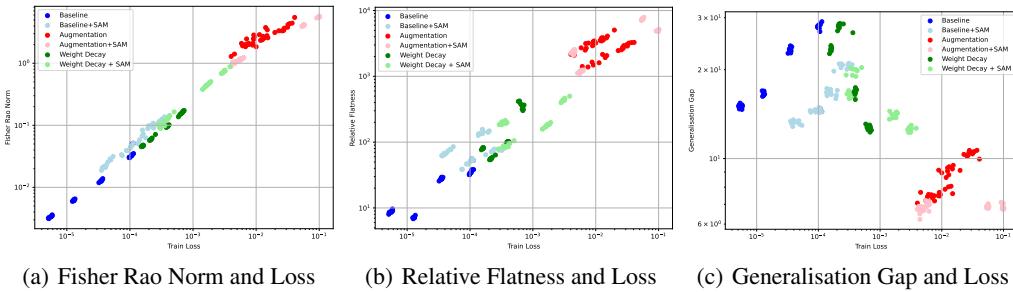


Figure 1: Scatter plots of 240 converged minima for ResNet-18 on CIFAR-10 across batch size 128, 256 and learning rate $10^{-3}, 10^{-2}$: (a) Fisher–Rao norm vs. train loss, (b) Relative Flatness vs. train loss, and (c) generalisation gap vs. train loss (log scale). Full results in Appendix E.2.

Concretely, we make the following contributions:

- We advance a function-centric interpretation of sharpness, where the geometry of minima reflects the complexity of the learned function rather than serving as a universal proxy for generalisation.
- We provide empirical evidence from both toy optimisation problems and high-dimensional deep learning tasks that sharper minima can coincide with better generalisation, calibration, and robustness, particularly under regularisation.
- We show that widely used regularisation techniques (e.g., SAM, weight decay, augmentation) often induce sharper minima, contradicting the assumption that regularisation generally promotes flatter solutions.
- We demonstrate that sharpness cannot be meaningfully compared across architectures or tasks without accounting for function complexity and implicit bias, cautioning against overgeneralised geometric claims.

Our findings can be summarised as follows:

108 1. Sharpness varies across global minima in single-objective optimisation, reflecting function
 109 complexity rather than solution quality. **Regularised models, on high dimesnional problems**
 110 **typically converge to sharper minima, yet often achieve better generalisation, calibration,**
 111 **robustness, and functional consistency than flatter unregularised baselines.**
 112 2. We reconcile SAM’s local robustness objective with increased global sharpness, aligning
 113 with a function-centric view of geometry.
 114 3. Our results support a function-centric view of sharpness: solution geometry is shaped by
 115 the complexity of the learned function and the model’s inductive biases. Crucially there
 116 exists no clear goldilocks zone for sharpness across architectures and datasets as sharpness
 117 is dependant on function complexity and implicit bias.

118
 119 **2 RELATED WORK**
 120

121 Hochreiter & Schmidhuber (1997) presented seminal empirical evidence that neural networks adhered
 122 to Occam’s Razor. They showed that a flat minimum search algorithm using a second-order hessian
 123 approximation could yield the smallest generalisation gap on two-class classification problems.
 124 Therefore, due to the observed empirical relation of flatness and generalisation it was thought that the
 125 antipodal sharp minima were undesirable. The importance of flatness in more complex learning
 126 tasks was later reaffirmed by Li et al. (2018) who introduced landscape visualisation to study the
 127 geometry of deep networks. They argued that skip connections prevent explosions of non-convexity,
 128 helping to avoid chaotic plateaus often associated with sharp minima. Building on this, Sharpness
 129 Aware Minimisation (Foret et al., 2021) was proposed as an optimisation method (motivated by
 130 Hochreiter & Schmidhuber (1997)) that explicitly aims to reduce sharpness in the loss landscape.
 131 SAM has yielded strong empirical performance gains over traditional optimisation (Foret et al.,
 132 2021). However, some literature has challenged this interpretation, arguing that SAM does not
 133 necessarily find flatter minima (Wen et al., 2023). The necessity of flatness for generalisation has
 134 also been questioned more fundamentally. Notably, Dinh et al. (2017) demonstrate that sharpness can
 135 be arbitrarily increased through reparameterisation without affecting generalisation, casting doubt
 136 on the intrinsic value of flatness. In response, reparameterisation-invariant sharpness metrics were
 137 developed (Petzka et al., 2021) and have since been used to reaffirm the correlation between flatness
 138 and generalisation. Together, these developments highlight a conceptual tension: while sharpness
 139 was shown to be manipulable through reparameterisation and thus not an intrinsic property of the
 140 learned function, flatness is still widely used as a desirable indicator of generalisation.

141 In this paper, we revisit the role of flatness in deep learning. We argue that the geometry
 142 of a neural network’s minimum should reflect its capacity to match the complexity of the
 143 function represented by the data, rather than conform to a prior preference for flatness. From this
 144 function-centric view, regularisation improves performance not by flattening the loss landscape, but
 145 by enabling the learning of more complex functions – functions that are harder to learn, often require
 146 more intricate decision boundaries, and are frequently associated with sharper minima. Contrary
 147 to the view that sharpness signals poor generalisation, we show that sharper solutions can emerge
 148 precisely when models generalise better. We propose that sharpness reflects task complexity and
 149 inductive bias, challenging its conventional role as a proxy for generalisation.

150
 151 **3 SHARPNESS, GENERALISATION AND SAFETY CRITICAL EVALUATIONS**
 152

153 **Sharpness Metrics:** We employ three established measures of sharpness from the literature, namely
 154 Fisher-Rao Norm (Liang et al., 2019), Relative Flatness (Petzka et al., 2021), and average-case SAM-
 155 Sharpness (Foret et al., 2021). Formal definitions are provided in Appendix Section B. **Hessian-based**
 156 **metrics, such as the eigenvalue of the Hessian and the trace of the Hessian, were shown not to**
 157 **be reparameterisation invariant as they can be manipulated via linear reparameterisations.** These
 158 reparameterisations do not change the function of the model but can make the minima sharper Dinh
 159 et al. (2017), undermining relationships between generalisation and flat minima. As a result, we focus
 160 on two sharpness metrics in particular, Fisher-Rao Norm (Liang et al., 2019) and Relative Flatness
 161 (Petzka et al., 2021) that are reparametrisation invariant to ensure that our study, and its findings are
 robust (to reparametrisations).

162 **Calibration:** Calibration measures how well a model’s predicted confidence aligns with its true
 163 likelihood of correctness. Deep networks, including ResNets, have been shown to be systematically
 164 overconfident (Guo et al., 2017), reducing trust in their predictions. We measure calibration using
 165 Expected Calibration Error (ECE) (Guo et al., 2017), where lower values indicate better calibration
 166 and higher trustworthiness.
 167

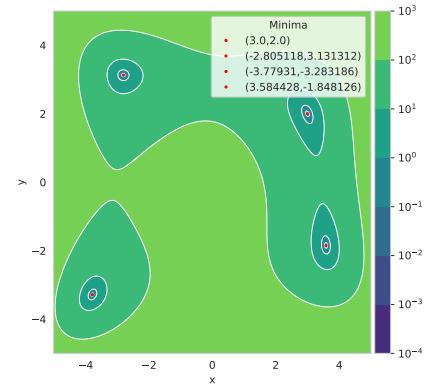
168
 169 **Functional Diversity:** Functional diversity reflects how similar neural networks are in their rep-
 170 resentation space (Wang et al., 2024; Mason-Williams et al., 2024b; Mason-Williams, 2024). Prior
 171 work has linked diversity in function space to improved ensemble performance (Fort et al., 2020; Lu
 172 et al., 2024), while others argue that representation convergence can also benefit ensembling (Wang
 173 et al., 2024). We quantify functional similarity using prediction disagreement on the test set, which
 174 captures how often models disagree on their outputs. Lower disagreement implies that models tend
 175 to agree more on individual predictions given the same training data, indicating stronger functional
 176 similarity. We interpret this agreement as a desirable property, reflecting stability in the learned
 177 function and robustness to training stochasticity.
 178

179
 180 **Robustness:** Robustness assesses how well a model performs under distribution shift or input
 181 perturbations, which is crucial for deployment in safety-critical settings (Hendrycks & Dietterich,
 182 2019). We evaluate robustness on CIFAR10-C and CIFAR100-C (Hendrycks & Dietterich, 2019),
 183 which include common corruptions such as impulse noise, JPEG compression, and contrast
 184 distortions. Performance is quantified via mean corruption accuracy; higher values indicate
 185 greater robustness. **The perturbations explored represent average-case perturbation over worst-case**
 186 **perturbations that are typically explored in adversarial robustness studies(Hendrycks & Dietterich,**
 187 **2019)**

188 Each of the evaluation axes above extends beyond accuracy and captures different aspects
 189 of model. We argue that these metrics are essential for evaluating models in real-world, safety-critical
 190 contexts. Moreover, they provide a broader view of generalisation that complements geometric
 191 analyses such as sharpness. We formally define and provide additional details on all evaluation
 192 protocols in Appendix C.
 193

194 4 SINGLE-OBJECTIVE OPTIMISATION

195
 196 We posit that the sharpness reached by a model depends
 197 on the geometric properties of the function it is trained to
 198 approximate. To illustrate that loss-landscape geometry
 199 is tied to solution complexity, we begin with a toy set-
 200 ting: single-objective optimisation. **Toy settings have been**
 201 **used to study geometric properties of neural networks such**
 202 **as Huang et al. (2020) which used the Swiss Roll dataset**
 203 **to explore generalisation and flat minima.** Consider Himmelblau’s function in equation 1 (visualised in Figure 2).
 204 It has four global minima whose local geometry differs
 205 markedly (Table 1), yet each achieves zero loss. Thus,
 206 no minimum is intrinsically preferable from an optimisa-
 207 tion objective standpoint. Under flatness-centric views,
 208 flatter minima would be deemed superior; however, any
 209 network that represents the target function can plausibly
 210 converge to any of these minima. Flatness is therefore not
 211 a necessary criterion for optimality in this setting.
 212



213
 214 Figure 2: Himmelblau’s function land-
 215 scape with four global minima in red.
 216

$$217 f(\mathbf{x}, \mathbf{y}) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2 \quad (1)$$

Global Minimum	Condition Number	Hessian Trace	Hessian determinant	Max Eigenvalue
(3.0, 2.0)	3.200	108.000	2116.000	82.284
(-2.805118, 3.131312)	1.242	145.39	5222.890	80.550
(-3.77931, -3.283186)	1.892	204.500	9460.560	133.786
(3.584428, -1.848126)	3.674	134.110	3024.540	105.419

Table 1: Local geometric properties at the four global minima of Himmelblau’s function.

Moving beyond this example, we examine a set of single-objective problems with a single global minimum. Figure 3 visualises six such functions (definitions in Appendix A). Each exhibits a distinct landscape, implying different local curvature at its global minimum. Table 2 reports sharpness statistics at the global minimum. For instance, the Sphere function is the flattest across metrics, whereas functions with more intricate landscapes (e.g., Rosenbrock, Beale, Booth) have sharper optima. Accurately representing these objectives therefore entails reaching minima with geometry commensurate to the function’s complexity.

Table 2: Sharpness at the global minimum for six single-objective optimisation functions.

Function	Condition Number	Hessian Trace	Hessian determinant	Max Eigenvalue
Sphere	1.000	4.000	4.000	2.000
Rosenbrock	2508.010	1002.000	400.000	1001.600
Rastrigin	1.000	793.568	157438.000	396.784
Beale	162.473	49.281	14.766	48.980
Booth	9.000	20.000	36.000	18.000
Three hump camel	2.784	6.000	7.000	4.414

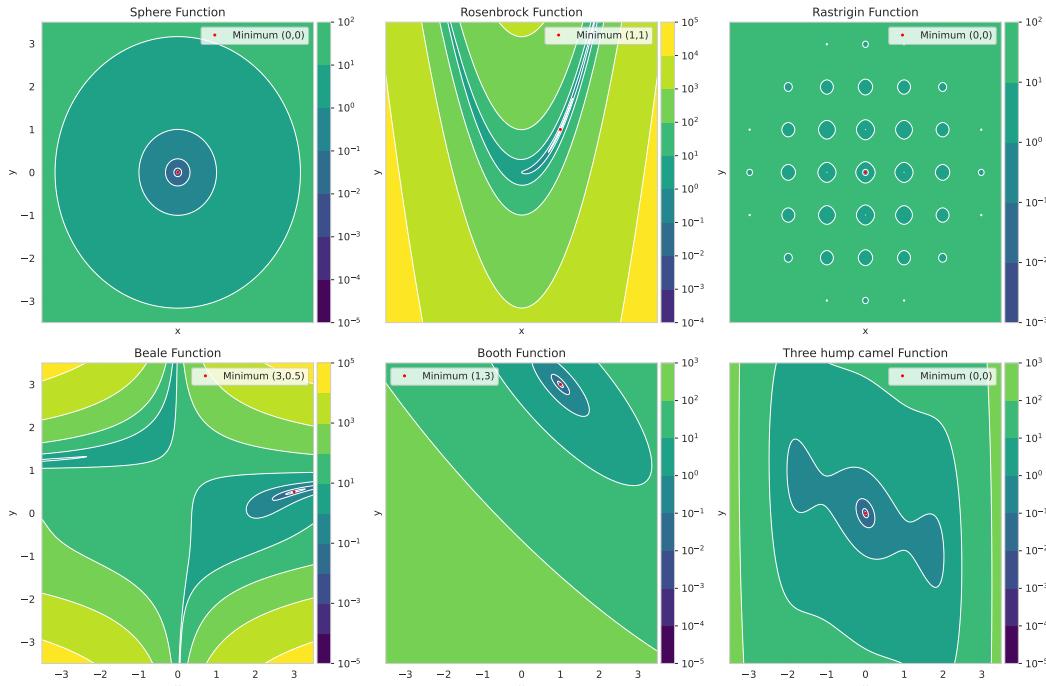


Figure 3: Landscapes for six single-objective functions.

We next fit an MLP to each objective using the same initialisation and average over ten models. As shown in Figure 4, the sharpness of local minima encountered during training reflects the sharpness of the global optimum: with a fixed training budget, model sharpness, training loss, and generalisation gap are governed by the complexity of the target function (cf. Figure 3). Although

absolute generalisation gaps differ across objectives, they exhibit similar relative reductions over training. Appendix A.2 further shows that matching final loss across functions still yields different sharpness levels, as expected from their intrinsic geometry. Consequently, flatness is desirable only when demanded by the target function (e.g., Sphere). Seeking flat solutions for intrinsically sharper objectives (e.g., Rosenbrock) is suboptimal: their complexity is consistent with the need for tighter decision boundaries and thus sharper minima. It is important to note that this section is purely illustrative of how neural network minima geometry can relate to function complexity and that this analysis in the regression case would not hold for sharpness metrics such as Relative Flatness due to their requirement for locally constant labels Petzka et al. (2021). In the following section, we see how our findings in this toy setting extend to reparametrisation invariant metrics, Fisher Rao norm, and Relative Flatness in classification settings where locally constant label conditions hold.

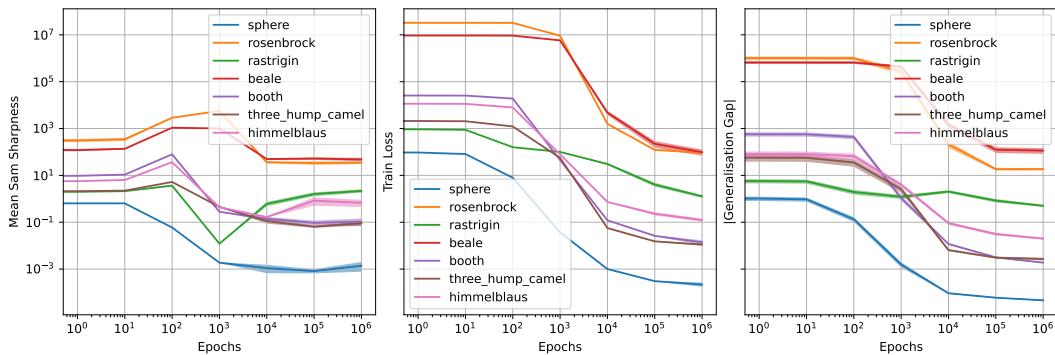


Figure 4: Training an MLP on single-objective problems over epochs: mean sharpness, training loss, and absolute generalisation gap (averaged over 10 runs).

Furthermore, in Appendix Section I we show how arbitrarily increasing the complexity of training data in a classification task results in a model reaching a sharper minima under Fisher Rao norm and Relative Flatness. The findings from this experiment confirm the insights gained on function complexity and geometric properties in this toy setting.

5 HIGH-DIMENSIONAL OPTIMISATION PROBLEMS

Building on the view that flatness reflects the complexity of the function being fit, we extend our analysis to high-dimensional settings and ground it in the vision domain. In practice, deep vision neural networks are routinely trained with regularisation (Goodfellow et al., 2016; Kukáčka et al., 2017), yet why specific regularisers improve generalisation remains only partially understood despite extensive prior work (Tian & Zhang, 2022; Moradi et al., 2020; Santos & Papa, 2022) – making vision an ideal test-bed to study how geometry relates to reliability (calibration, robustness, and prediction agreement) at scale. Our contribution is to examine these phenomena through the lens of solution (function-space) complexity, explicitly linking geometry to both generalisation and safety-relevant measures. This function-centric perspective offers a complementary reading of flat and sharp minima.

Function Complexity: Occam’s Razor, or the Principle of parsimony, formally states that of two competing hypotheses, \mathcal{H} and \mathcal{H}' which both adequately describe an event event, \mathcal{E} , and are composed of assumptions, \mathcal{A} , where the number of assumptions is bounded by \mathcal{K} and \mathcal{J} where $\mathcal{K} < \mathcal{J}$ and $\{\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_{\mathcal{K}}\} \in \mathcal{H}$ and $\{\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_{\mathcal{J}}\} \in \mathcal{H}'$, there should be a preference towards the hypothesis which has the fewest assumptions, $\mathcal{A}_{\mathcal{K}}$, (Good, 1977). For neural networks, this has been understood, in relation to the minimum descriptive length (MDL), that neural networks with flatter minima make fewer assumptions and can be described with less precision as they remain approximately constant under perturbation and therefore, in line with Occam’s Razor, should be preferred Hochreiter & Schmidhuber (1994). As a result, it can be understood through an extension of Occam’s Razor and MDL that minima sharpness represents the quantity of assumptions required, meaning that sharp minima have a longer MDL, and therefore (for better or worse) represent a more complex function. Through this lens, we study how sharpness (function complexity) is governed

324 by regularisation to better understand generalisation and training dynamics. We further this by
 325 connecting this complexity study to safety-relevant evaluations such as robustness, calibration, and
 326 prediction consistency.

327 Despite the work of Dinh et al. (2017), flat minima are still considered important for improved
 328 generalisation (Han et al., 2025; Petzka et al., 2021; Lee & Yoon, 2025; Cha et al., 2021; Zhao
 329 et al., 2022). However, the connection of minima geometry to safety metric evaluation and function
 330 complexity remains underexplored. Existing perspectives in the flatness literature suggest that neural
 331 networks with small generalisation gaps - and, by extension, strong safety metric performance -
 332 should be found at flatter minima, however, our single-objective analysis indicates a different picture:
 333 regularisation may be able to yield sharper minima when the learned functions is represented with
 334 more precision. We therefore examine, in a controlled manner, how **commonly used** regularisers
 335 affect sharpness and the corresponding safety evaluations across matched seeds.

336 More formally, given a training control (regulariser) c , we examine how it impacts sharpness, and
 337 what are the corresponding safety evaluations. Let the set of controls (training conditions) be
 338 $\mathcal{C} = \{\text{Baseline, Baseline+SAM, Aug, Aug+SAM, WD, WD+SAM}\}$. Let $\mathcal{M} = \{\text{FR, RF, SAM}\}$
 339 denote sharpness metrics (Fisher–Rao, Relative Flatness, SAM sharpness; lower is flatter), and let
 340 $\mathcal{R} = \{\text{Acc}_{\text{clean}}, \text{Acc}_{\text{corr}}, \text{ECE}, \text{Disagree}\}$ denote evaluation metrics (test accuracy, corruption-robust
 341 accuracy where available, calibration, prediction disagreement). We run seeds $i \in \{0, \dots, 9\}$ with
 342 identical initialisation and data order across controls.

343 For each control $c \in \mathcal{C}$ and seed i , we record $S_{i,m}^{(c)}$ ($m \in \mathcal{M}$), $R_{i,r}^{(c)}$ ($r \in \mathcal{R}$). We report per-control,
 344 per-metric summaries as means across seeds:

$$\bar{S}_m^{(c)} = \frac{1}{n} \sum_{i=0}^{n-1} S_{i,m}^{(c)}, \quad \bar{R}_r^{(c)} = \frac{1}{n} \sum_{i=0}^{n-1} R_{i,r}^{(c)},$$

345 and present mean \pm SEM Belia et al. (2005) across seeds.

346 **Hypothesis:** Regularisation tends to increase sharpness (larger $\bar{S}_m^{(c)}$ than Baseline), while the
 347 corresponding evaluations often improve (higher accuracy metrics; lower ECE and disagreement).

348 5.1 EXPERIMENTAL SETUP

349 We adopt the notation above. We run $n = 10$ matched seeds; for each seed, all controls share the
 350 same initial weights and data order. This ensures that models trained under different controls start
 351 from the same point in the loss landscape and, in principle, could traverse to (and even reach) the
 352 same minima, enabling controlled geometric comparisons. Each control is applied independently;
 353 all other training details (optimiser, schedule, epochs, etc.) are held fixed across controls. Our
 354 objective is to characterise, under controlled conditions, the geometric and safety effects of reg-
 355 ularisation controls, not to optimise for state-of-the-art performance. We define the controls as follows.

356 **Baseline:** Vanilla training without additional regularisation. For each architecture/dataset,
 357 the exact baseline configuration is specified in Appendix D. The baseline serves as the reference for
 358 geometric and safety metrics against which all regularised controls are compared.

359 **Weight Decay, Augmentation and SAM:** We consider weight decay (5×10^{-4}), data aug-
 360 mentation (random rotation and crop), and SAM, applied individually or in combination as defined
 361 in \mathcal{C} . We record their effect on sharpness metrics (\mathcal{M}) and safety evaluations (\mathcal{R}) under the
 362 matched-seed setup.

363 6 RESULTS

364 We present results for ResNet18 trained on CIFAR10, CIFAR100, and TinyImageNet. For each
 365 control in \mathcal{C} , we report geometric sharpness metrics (\mathcal{M}) and reliability-relevant evaluations (\mathcal{R})
 366 across 10 matched seeds. Appendix D details training and sharpness metric settings per dataset.
 367 Results for VGG and ViT architectures appear in Appendix F and G, confirming the broader trends
 368 observed here. Tables 3, 5, 7 below summarise how each training control affects sharpness and
 369 safety evaluations. Means \pm SEM are reported per metric. TinyImageNet results exclude Corruption

Accuracy and Relative Flatness due to metric inapplicability. Additional results for batch size (256 and 128) and learning rate ($1e^{-3}$ and $1e^{-2}$) sweeps for ResNet and VGG are in Appendix E.2 and F.1, further confirming the trends observed here. In Appendix Section H we explore how increasing the radius ρ hyperparameter of SAM can increase a model’s sharpness over the baseline and in turn improve performance. Finally, in Appendix Section I, we artificially increase the function complexity of training data and observe how minima become sharper when classes have increasingly disjoint examples. Here, we see that function complexity and minima geometry are inherently related.

Table 3: Results for ResNet18 trained on CIFAR10. Bolded values indicate the best performance per metric. For sharpness metrics, lower values correspond to flatter models.

Condition Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	28.050 ± 0.175	0.720 ± 0.002	0.186 ± 0.001	58.614 ± 0.201	0.282 ± 0.001	0.032 ± 0.001	$1.366E-05 \pm 1.206E-06$	34.607 ± 0.757
Baseline + SAM	20.588 ± 0.125	0.794 ± 0.001	0.108 ± 0.001	66.342 ± 0.164	0.168 ± 0.000	0.107 ± 0.006	$5.823E-05 \pm 9.056E-06$	75.093 ± 1.693
Augmentation	10.399 ± 0.067	0.886 ± 0.001	0.077 ± 0.001	68.755 ± 0.219	0.121 ± 0.001	3.940 ± 0.207	$1.905E-01 \pm 2.203E-02$	2903.220 ± 89.243
Augmentation + SAM	6.864 ± 0.038	0.908 ± 0.000	0.014 ± 0.001	71.419 ± 0.283	0.069 ± 0.000	5.571 ± 0.035	$1.303E-01 \pm 1.547E-02$	4970.972 ± 30.139
Weight Decay	27.942 ± 0.196	0.721 ± 0.002	0.174 ± 0.002	58.562 ± 0.227	0.281 ± 0.001	0.065 ± 0.004	$3.391E-05 \pm 4.494E-06$	59.767 ± 3.009
Weight Decay + SAM	19.788 ± 0.149	0.802 ± 0.001	0.096 ± 0.001	67.079 ± 0.117	0.162 ± 0.001	0.127 ± 0.006	$8.733E-05 \pm 1.430E-05$	88.807 ± 2.336

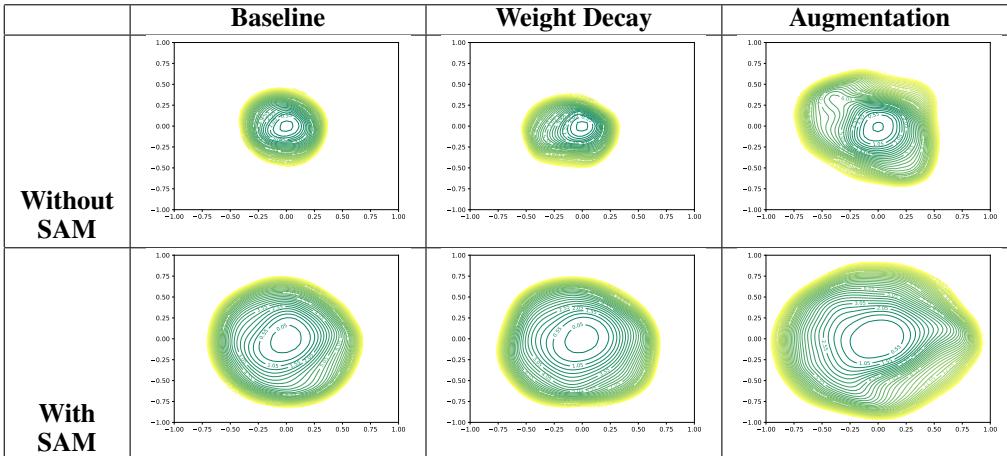


Table 4: Loss landscape visualisation Li et al. (2018) of ResNet18 landscape on CIFAR10 exploring the loss in the domain of the perturbations $[-1, 1]^2$ with 51 steps in both directions.

Regularisers Increase Sharpness and Improve Evaluations. Across all CIFAR datasets and architectures, we observe a recurrent trend: the Baseline condition yields the flattest minima (lowest values across FR, RF, SAM), yet performs worst on test accuracy and safety-relevant metrics: calibration (ECE), robustness (Corruption Accuracy), and functional consistency (Prediction Disagreement) (Tables 3, 5). Conversely, controls with stronger regularisation tend to yield sharper solutions while also achieving better evaluations. This challenges the conventional view that flatter minima are inherently preferable, and instead supports the function-centric perspective that sharper minima can reflect more complex, well-generalising solutions. Crucially, we also find that sharper minima can empirically yield better safety-relevant performance.

Limitations of Loss Landscape Visualisations. Loss landscape visualisations (Figures 4, 6), produced using the method of Li et al. (2018), qualitatively illustrate that regularisation – especially SAM – alters the geometry of the solution. These plots often appear broader in some directions, even when sharpness metrics increase. This apparent mismatch underscores the limitations of low-dimensional loss surface plots, which capture only 2D projections of high-dimensional landscapes. In contrast, sharpness metrics reflect geometric properties beyond local projections. While visualisations can help convey functional changes, metric-based evaluations provide a more consistent and interpretable picture of sharpness.

SAM Does Not Always Flatten: Contrary to prior claims that SAM finds flatter solutions (Foret et al., 2021; Cha et al., 2021), our results show that SAM often increases sharpness across metrics and conditions (Tables 3, 5 and 7, as well as Appendix Sections F and G). Notably, Augmentation+SAM achieves the best performance across evaluations while also being the sharpest model. There are limited exceptions; for example, SAM Sharpness decreases for Aug+SAM on CIFAR10 and CIFAR100 (Tables 3, 5), but these are not consistent across metrics. On more complex datasets (TinyImageNet; Table 7), SAM can sometimes lead to flatter solutions, though this behaviour is again inconsistent. Overall, these findings show that SAM supports the learning of higher-performing functions that may reside in sharper regions of the loss landscape. In Appendix Section H, we show how modifying the ρ radius hyperparameter of SAM can directly modify the sharpness of the minima found at the end of training. In these results, we reaffirm that the best models navigate to even sharper minima than the baseline as the perturbation radius grows.

Table 5: Results for ResNet18 trained on CIFAR100. Bolded values indicate the best performance per metric. For sharpness metrics, lower values correspond to flatter models.

Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	47.010 ± 0.166	0.530 ± 0.002	0.220 ± 0.001	38.760 ± 0.085	0.452 ± 0.000	0.294 ± 0.028	$2.607E-04 \pm 3.147E-05$	32.085 ± 0.313
Baseline + SAM	44.421 ± 0.168	0.556 ± 0.002	0.191 ± 0.002	41.888 ± 0.098	0.410 ± 0.000	0.399 ± 0.014	$4.231E-04 \pm 4.973E-05$	123.791 ± 4.185
Augmentation	29.642 ± 0.133	0.697 ± 0.002	0.185 ± 0.001	44.613 ± 0.169	0.288 ± 0.001	3.587 ± 0.150	$1.110E-01 \pm 9.173E-03$	2766.925 ± 178.669
Augmentation + SAM	28.999 ± 0.092	0.705 ± 0.001	0.145 ± 0.001	45.428 ± 0.217	0.269 ± 0.000	4.179 ± 0.032	$1.081E-01 \pm 1.636E-02$	4196.832 ± 52.606
Weight Decay	47.838 ± 0.301	0.521 ± 0.003	0.099 ± 0.005	37.868 ± 0.265	0.474 ± 0.001	0.861 ± 0.116	$5.192E-04 \pm 8.009E-05$	136.969 ± 7.484
Weight Decay + SAM	45.644 ± 0.117	0.543 ± 0.001	0.106 ± 0.002	40.604 ± 0.222	0.444 ± 0.001	1.788 ± 0.069	$1.528E-03 \pm 1.427E-04$	360.271 ± 16.190

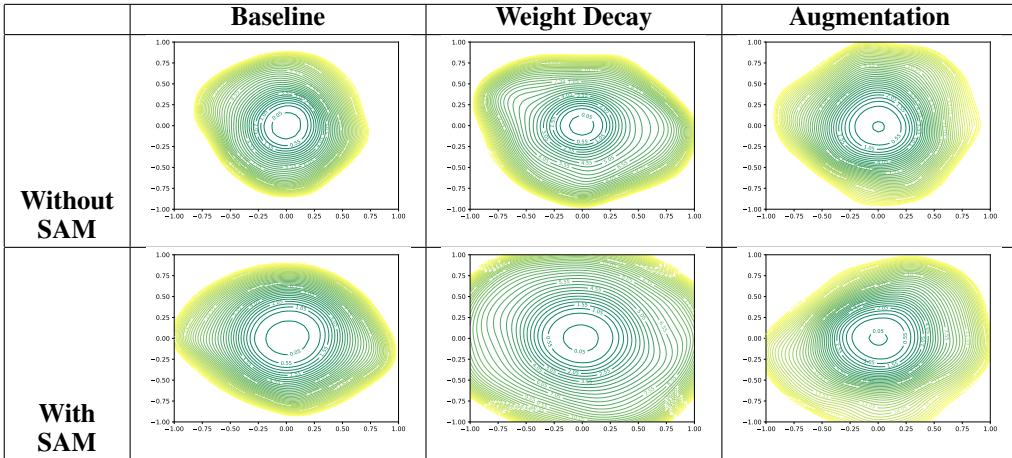


Table 6: Loss landscape visualisation Li et al. (2018) of ResNet18 landscape on CIFAR100 exploring the loss in the domain of the perturbations $[-1, 1]^2$ with 51 steps in both directions.

Reconciling SAM’s Objective with Increased Sharpness. While SAM is commonly understood as a flatness-promoting method (Foret et al., 2021), its objective encourages local robustness rather than global flatness. Specifically, SAM minimises the loss at the worst-case perturbation within a small neighbourhood around the current weights, thereby promoting low curvature in that vicinity. However, this does not guarantee low values across all global or reparameterisation-invariant sharpness metrics. Our findings – where SAM often increases Fisher–Rao norm, Relative Flatness, and SAM-sharpness – highlight that sharper solutions can still emerge, especially when the model learns more complex or expressive functions. This suggests that SAM enables good generalisation and safety not solely by flattening, but by guiding the model to solutions that are robust in important local directions, even if globally sharp under broader measures. To our knowledge, this is the first work to systematically document that SAM can increase multiple sharpness metrics and to interpret this effect through the lens of local robustness, helping to reconcile SAM’s flatness-based motivation with empirically sharper solutions.

486 **Safety Properties Can Exist at Sharper Minima.** Across all CIFAR datasets, we consistently
 487 observe that the Baseline control yields the flattest solutions, yet performs worst on safety-relevant
 488 evaluation. In contrast, the controls that achieve the best performance on these metrics are always
 489 sharper than the Baseline. These results suggest that sharper minima can coincide with improved
 490 safety properties, indicating that sharpness may in fact be an important factor in achieving reliable
 491 models. One possible explanation is that sharper minima correspond to tighter decision boundaries,
 492 which may be beneficial in certain tasks (Huang et al., 2020). This interpretation offers a useful lens
 493 through which to interpret our findings: improved safety performance does not require flatness, and
 494 may in some cases arise from sharper solutions.

495 Table 7: Results for ResNet18 (Pre-Trained) on TinyImageNet. Bolded values indicate the best
 496 performance per metric. For sharpness metrics, lower values correspond to flatter models.
 497

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness
Baseline	49.643 ± 0.103	0.503 ± 0.001	0.257 ± 0.001	0.385 ± 0.000	0.479 ± 0.002	$3.202E-04 \pm 9.872E - 06$
Baseline + SAM	46.255 ± 0.128	0.537 ± 0.001	0.223 ± 0.001	0.344 ± 0.000	0.427 ± 0.004	$3.080E-04 \pm 8.424E - 06$
Augmentation	19.993 ± 0.091	0.508 ± 0.001	0.102 ± 0.001	0.544 ± 0.000	25.887 ± 0.098	$1.680E+00 \pm 8.776E - 02$
Augmentation + SAM	16.777 ± 0.084	0.520 ± 0.001	0.044 ± 0.001	0.514 ± 0.000	25.193 ± 0.034	$1.446E+00 \pm 6.332E - 02$
Weight Decay	49.689 ± 0.092	0.503 ± 0.001	0.202 ± 0.001	0.384 ± 0.000	0.998 ± 0.002	$2.297E-04 \pm 9.718E - 06$
Weight Decay+ SAM	46.061 ± 0.111	0.539 ± 0.001	0.177 ± 0.001	0.339 ± 0.000	0.736 ± 0.004	$3.784E-04 \pm 9.996E - 06$

504
 505 **There is No Geometric Goldilocks Zone for Sharpness:** Although sharper solutions often perform
 506 better across generalisation and safety metrics on the CIFAR datasets, the sharpest model is not always
 507 the best overall. Still, the top-performing model is typically sharper than the Baseline, suggesting that
 508 a learning task may require a level of sharpness beyond what is induced by the architecture’s implicit
 509 regularisation. This supports the view that neither extreme flatness nor sharpness is universally
 510 optimal. Instead, the “right” level of sharpness appears task- and architecture-dependent. **This is also**
 511 **shown in Appendix Section H where we sweep the radius ρ hyperparameter of SAM and observe that**
 512 **an increased radius leads to sharper models over the baseline that perform far better. However, in these**
 513 **experiments the sharpest model, when ρ is 0.50, is not the best performing model.** Importantly, this
 514 highlights the risk of misleading conclusions when aggregating sharpness trends across heterogeneous
 515 architectures: we observe that general trends can invert under such aggregation, consistent with
 516 Simpson’s Paradox (Simpson, 1951). Careful control over architecture-specific inductive biases is
 517 therefore essential when studying geometry-function relationships.

518 7 CONCLUSION

519 This work revisits the relationship between geometry and generalisation in deep learning, extending
 520 it to include safety-relevant evaluations such as calibration, robustness to corruptions, and functional
 521 consistency. Rather than focusing solely on accuracy, we evaluate how sharpness relates to broader
 522 reliability properties. Across diverse architectures and datasets, we find that standard training controls
 523 such as weight decay, data augmentation, and SAM often lead to sharper solutions that also achieve
 524 stronger performance on safety metrics. These results challenge the conventional assumption that
 525 flatter minima are inherently preferable, and instead support a function-centric view in which sharper
 526 minima can correspond to more complex, well-generalising functions. We further reconcile SAM’s
 527 behaviour by noting it promotes local robustness rather than global flatness, explaining why improved
 528 generalisation can coincide with increased sharpness. Our findings demonstrate that sharpness is
 529 not universally harmful – in fact, it may be beneficial for safety performance in certain settings. We
 530 posit that the geometry of learned solutions is shaped by task-specific demands, such as the need for
 531 tighter decision boundaries. Overall, this work calls for a re-evaluation of geometric intuitions in
 532 deep learning, and underscores the importance of connecting training controls, solution geometry,
 533 and functional reliability.

535 536 REFERENCES

538 Sarah Belia, Fiona Fidler, Jennifer Williams, and Geoff Cumming. Researchers misunderstand
 539 confidence intervals and standard error bars. *Psychological methods*, 10(4):389, 2005. URL
<https://psycnet.apa.org/buy/2005-16136-002>.

540 Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
 541 and Sungrae Park. Swad: Domain generalization by seeking flat minima. *Advances in Neural*
 542 *Information Processing Systems*, 34:22405–22418, 2021.

543 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
 544 deep nets. In *Proceedings of the 34th International Conference on Machine Learning*, volume 70
 545 of *Proceedings of Machine Learning Research*, pp. 1019–1028. PMLR, 2017. URL <https://proceedings.mlr.press/v70/dinh17b.html>.

546 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 547 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 548 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 549 In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

550 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 551 for efficiently improving generalization. In *International Conference on Learning Representations*,
 552 2021. URL <https://openreview.net/forum?id=6Tm1mposlrM>.

553 Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape perspec-
 554 tive, 2020. URL <https://arxiv.org/abs/1912.02757>.

555 IJ Good. Explicativity: a mathematical theory of explanation with statistical applications. *Proceedings*
 556 *of the Royal Society of London. A. Mathematical and Physical Sciences*, 354(1678):303–330, 1977.

557 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. <http://www.deeplearningbook.org>.

558 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
 559 networks. In *Proceedings of the 34th International Conference on Machine Learning*, volume 70
 560 of *Proceedings of Machine Learning Research*, pp. 1321–1330. PMLR, 2017. URL <https://proceedings.mlr.press/v70/guo17a.html>.

561 Ting Han, Linara Adilova, Henning Petzka, Jens Kleesiek, and Michael Kamp. Flatness is necessary,
 562 neural collapse is not: Rethinking generalization via grokking. *arXiv preprint arXiv:2509.17738*,
 563 2025.

564 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 565 tion. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
 566 June 2016. URL https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.

567 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
 568 corruptions and perturbations. In *International Conference on Learning Representations*, 2019.
 569 URL <https://openreview.net/forum?id=HJz6tiCqYm>.

570 Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering
 571 flat minima. In *Advances in Neural Information Processing Systems*, volume 7,
 572 1994. URL <https://proceedings.neurips.cc/paper/1994/hash/01882513d5fa7c329e940dda99b12147-Abstract.html>.

573 Sepp Hochreiter and Jurgen Schmidhuber. Flat minima. *Neural computation*, 9(1):1–42,
 574 1997. URL <https://direct.mit.edu/neco/article-abstract/9/1/1/6027/Flat-Minima?redirectedFrom=fulltext>.

575 W Ronny Huang, Zeyad Ali Sami Emam, Micah Goldblum, Liam H Fowl, Justin K Terry, Furong
 576 Huang, and Tom Goldstein. Understanding generalization through visualizations. In *"I Can't
 577 Believe It's Not Better!" NeurIPS 2020 workshop*, 2020. URL https://openreview.net/forum?id=pxqYT_7gToV.

578 Cheongjae Jang, Sungyoon Lee, Frank C. Park, and Yung-Kyun Noh. A reparametrization-invariant
 579 sharpness measure based on information geometry. In *Advances in Neural Information Processing
 580 Systems*, 2022. URL <https://openreview.net/forum?id=AVh-HTC76u>.

594 Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt Kusner. When do flat minima optimizers work?
 595 In *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=vDeh2yxTvu>.
 596
 597

598 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.
 599 URL <http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf>.
 600

601 Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning: A taxonomy,
 602 2017.
 603

604 Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibra-
 605 tion. In *Advances in Neural Information Processing Systems*, volume 32,
 606 2019. URL <https://papers.nips.cc/paper/2019/hash/f8c0c968632845cd133308bla494967f-Abstract.html>.
 607

608 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015. URL
 609 https://cs231n.stanford.edu/reports/2015/pdfs/yle_project.pdf.
 610

611 Hyun Kyu Lee and Sung Whan Yoon. Flat reward in policy parameter space implies robust rein-
 612 forcement learning. In *The Thirteenth International Conference on Learning Representations*,
 613 2025.

614 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
 615 loss landscape of neural nets. In *Advances in Neural Information Processing Systems*,
 616 volume 31, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html>.
 617

618 Tengyuan Liang, Tomaso Poggio, Alexander Raklin, and James Stokes. Fisher-rao metric, geometry,
 619 and complexity of neural networks. In *Proceedings of the Twenty-Second International Conference
 620 on Artificial Intelligence and Statistics*, volume 89 of *Proceedings of Machine Learning Research*,
 621 pp. 888–896. PMLR, 2019. URL <https://proceedings.mlr.press/v89/liang19a.html>.
 622

623 Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better downstream:
 624 Implicit bias matters for language models. In *Proceedings of the 40th International Conference on
 625 Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 22188–22214.
 626 PMLR, 2023. URL <https://proceedings.mlr.press/v202/liu23ao.html>.
 627

628 Haiquan Lu, Xiaotian Liu, Yefan Zhou, Qunli Li, Kurt Keutzer, Michael W. Mahoney, Yujun Yan,
 629 Huanrui Yang, and Yaoqing Yang. Sharpness-diversity tradeoff: improving flat ensembles with
 630 sharpbalance. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 631 2024. URL <https://openreview.net/forum?id=wJaCsnT9UE>.
 632

633 Israel Mason-Williams. Neural network compression: The functional perspective. In *5th Workshop
 634 on practical ML for limited/low resource settings*, 2024.

635 Israel Mason-Williams, Fredrik Ekholm, and Ferenc Huszar. Explicit regularisation, sharpness and
 636 calibration. In *NeurIPS 2024 Workshop on Scientific Methods for Understanding Deep Learning*,
 637 2024a. URL <https://openreview.net/forum?id=ZQTiGcyk16>.
 638

639 Israel Mason-Williams, Gabryel Mason-Williams, and Mark Sandler. Knowledge distillation: The
 640 functional perspective. In *NeurIPS 2024 Workshop on Scientific Methods for Understanding Deep
 641 Learning*, 2024b. URL <https://openreview.net/forum?id=Cgo73ZnAQc>.
 642

643 Reza Moradi, Reza Berangi, and Behrouz Minaei. A survey of regularization strategies for deep
 644 models. *Artif. Intell. Rev.*, 53(6):3947–3986, aug 2020. ISSN 0269-2821. doi: 10.1007/
 645 s10462-019-09784-7. URL <https://doi.org/10.1007/s10462-019-09784-7>.
 646

647 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
 Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

648 Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
 649 performance deep learning library. In *Advances in Neural Information Processing Systems*, vol-
 650 ume 32, 2019. URL https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.
 651

652 Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley. Relative
 653 flatness and generalization. In *Advances in Neural Information Processing Systems*, volume 34, pp.
 654 18420–18432, 2021. URL https://openreview.net/forum?id=sygv07ctb_.
 655

656 Claudio Filipi Gonçalves Dos Santos and João Paulo Papa. Avoiding overfitting: A survey on
 657 regularization methods for convolutional neural networks. *ACM Comput. Surv.*, 54(10s), sep 2022.
 658 ISSN 0360-0300. doi: 10.1145/3510413. URL <https://doi.org/10.1145/3510413>.
 659

660 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 661 recognition, 2015. URL <https://arxiv.org/abs/1409.1556>.
 662

663 Edward H Simpson. The interpretation of interaction in contingency tables. *Journal of the Royal
 664 Statistical Society: Series B (Methodological)*, 13(2):238–241, 1951. URL <https://www.jstor.org/stable/2984065?seq=1>.
 665

666 Yingjie Tian and Yuqi Zhang. A comprehensive survey on regularization strategies in machine
 667 learning. *Information Fusion*, 80:146–166, 2022. ISSN 1566-2535. doi: <https://doi.org/10.1016/j.inffus.2021.11.005>. URL <https://www.sciencedirect.com/science/article/pii/S156625352100230X>.
 668

669 Yipei Wang, Jeffrey Mark Siskind, and Xiaoqian Wang. Great minds think
 670 alike: The universal convergence trend of input salience. In *Advances in Neu-
 671 ral Information Processing Systems*, volume 37, pp. 71672–71704, 2024. URL
 672 https://proceedings.neurips.cc/paper_files/paper/2024/hash/83e77607638c4fb17fba4a9b7844800c-Abstract-Conference.html.
 673

674 Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do
 675 not only minimize sharpness to achieve better generalization. In *Advances in Neu-
 676 ral Information Processing Systems*, volume 36, pp. 1024–1035, 2023. URL
 677 https://proceedings.neurips.cc/paper_files/paper/2023/hash/0354767c6386386be17cabe4fc59711b-Abstract-Conference.html.
 678

679 Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving
 680 generalization in deep learning. In *International conference on machine learning*, pp. 26982–
 681 26992. PMLR, 2022.
 682

683

A SINGLE-OBJECTIVE OPTIMISATION FUNCTIONS

684
 685 The Sphere, Rosenbrock, Rastrigin, Beale, Booth, Three Hump Camel and the Himmelblaus functions
 686 are defined in equations 2-8 respectively.
 687

$$f(\mathbf{x}, \mathbf{y}) = (x^2 + y^2) \quad (2)$$

$$f(\mathbf{x}, \mathbf{y}) = (a - x)^2 + b(y - x^2)^2, \text{ where } a = 1 \text{ and } b = 100 \quad (3)$$

$$f(\mathbf{x}, \mathbf{y}) = 2a + x^2 - a \cos(2x\pi) + y^2 - a \cos(2y\pi), \text{ where } a = 10 \quad (4)$$

$$f(\mathbf{x}, \mathbf{y}) = (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2 \quad (5)$$

$$f(\mathbf{x}, \mathbf{y}) = (x + 2y - 7)^2 + (2x + y - 5)^2 \quad (6)$$

702
703
704
705
706
707
708
709
710
711
712

$$f(\mathbf{x}, \mathbf{y}) = 2x^2 - 1.05x^4 + \frac{x^6}{6} + xy + y^2 \quad (7)$$

713
714
715
716

$$f(\mathbf{x}, \mathbf{y}) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2 \quad (8)$$

A.1 TRAINING DETAILS

719
720
721
722
723
724
725
726
727

We trained a 3 layer ReLU multi-layered perceptron with a input width of two, a hidden width of 64 and output width of 1 with the Adam Optimizer with a learning rate of 1e-3. The train and test dataset consisted of 10,000 input pairs (X, Y) generated by independently sampling X and Y from a uniform distribution $\mathcal{U}(-3.5, 3.5)$. For each of the seven functions (Sphere, Rosenbrock, Rastrigin, Beale, Booth, Three Hump Camel and the Himmelblaus), every input pair was evaluated using that specific function, yielding a target output T for each function such that $F(X, Y) = T$. This procedure resulted in seven distinct datasets with identical input distributions but unique output transformations determined by their respective functions allowing for a clear assessment and comparison of the model's capacity to learn each target function under controlled input conditions.

728
729
730

For Figure 3 the model was trained 10 times with the same initialisation with ten different datasets for the respective function for 10^6 epochs, where the mean sam sharpness based on the training data and train and test loss where recorded for initialisation and epochs $10^0, 10^1, 10^2, 10^3, 10^4, 10^5, 10^6$.

731
732
733
734
735

For Figures 5-9, the model was trained 10 times with the same initialisation with ten different datasets for the respective function until the mode the model reached the specified training target loss of 300, 150, 100, 10, and 1. For the Beale function, the model was unable to achieve a train loss of than 150 and lower within 10^6 epochs, and for the Rosenbrock function the model was unable to achieve a train loss of 100 and lower within 10^6 epochs.

736
737

A.2 TRAINING TO EQUIVALENT LOSS

738
739
740

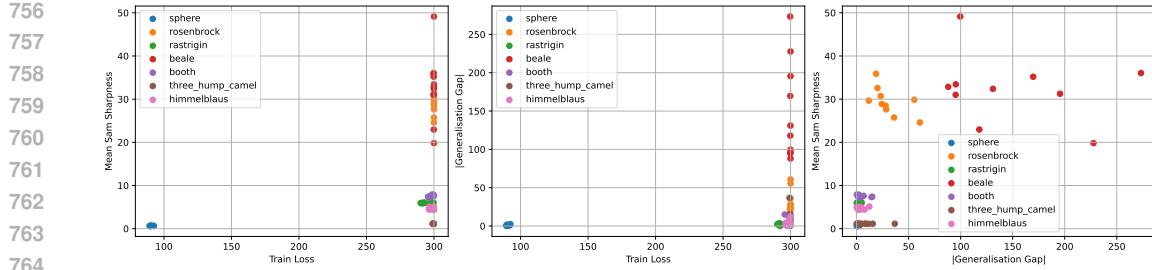
Because the model achieves different final losses after training for $[10^0, 10^1, 10^2, 10^3, 10^4, 10^5, 10^6]$ epochs, we control for training duration by fixing a target train loss. We then investigate how reaching an approximate target train loss influences model sharpness and the generalisation gap.

744
745
746
747
748
749
750
751
752
753

When comparing the mean sam sharpness a model achieves at a train loss of 300 (Figure 5), we observe clear patterns. The model trained on the Rosenbrock and Beale tasks has sharpness values between 20 and 50. In contrast, when trained on Rastrigin, Booth, and Himmelblaus tasks, sharpness values range between 5 and 10. The Sphere and Three-Hump Camel tasks produce the flattest results. In Figure 5(centre), the model trained on different tasks shows varied generalisation gaps at this fixed loss. In Figure 5(right), several tasks (Sphere, Rastrigin, Booth, Three-Hump Camel, Himmelblaus) yield similar generalisation gaps but differing sharpness values. Interestingly, the Rosenbrock task produces significantly higher sharpness while overlapping in generalisation gap with the Three-Hump Camel task. These observations underscore that sharpness reflects the learning task rather than model generalisation.

754
755

Because measuring at a train loss of 300 is arbitrary, we also examine target losses of 150, 100, 10, and 1 (Figures 6-9). Across these, we find that the model can have similar train losses but different sharpness depending on the learned function, supporting the initial claim.



765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

Figure 5: Scatter plots an MLP trained on the sphere, rosenbrock, rastrigin, beale, booth, three-hump camel, and himmelblaus functions for 10 different datasets till reaching a target train loss of 300: (left) mean sam sharpness vs. train loss, (centre) $|$ generalisation gap $|$ vs. train loss, and (right) $|$ generalisation gap $|$ vs. mean sam sharpness.

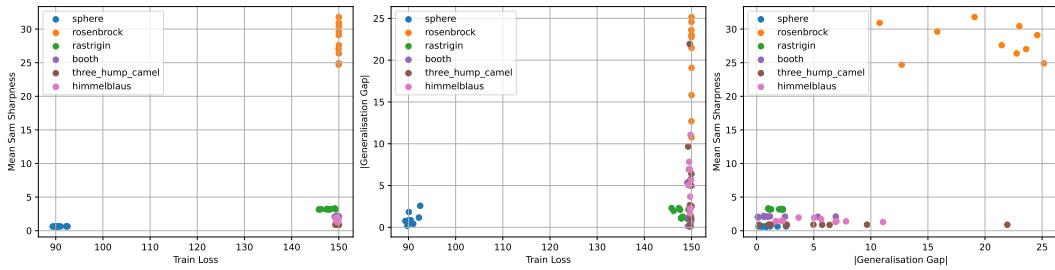


Figure 6: Scatter plots an MLP trained on the sphere, rosenbrock, rastrigin, booth, three-hump camel, and himmelblaus functions for 10 different datasets till reaching a target train loss of 150: (left) mean sam sharpness vs. train loss, (centre) $|$ generalisation gap $|$ vs. train loss, and (right) $|$ generalisation gap $|$ vs. mean sam sharpness.

Some functions drop off as we reach particular target losses. This happens because functions with more complicated landscapes, such as Beale and Rosenbrock, cannot exceed a train loss of 150 MSE. Less complex functions, such as the Sphere, can surpass this threshold. This supports our understanding that function complexity and solution geometry impact how easily a function can be fit. Less complex functions are more easily fit and tend to record lower sharpness values than complex functions, even when they achieve the same relative loss and generalisation gaps. As a result, it may be necessary to have better inductive biases for such complicated functions that are not captured under traditional initialisation strategies.

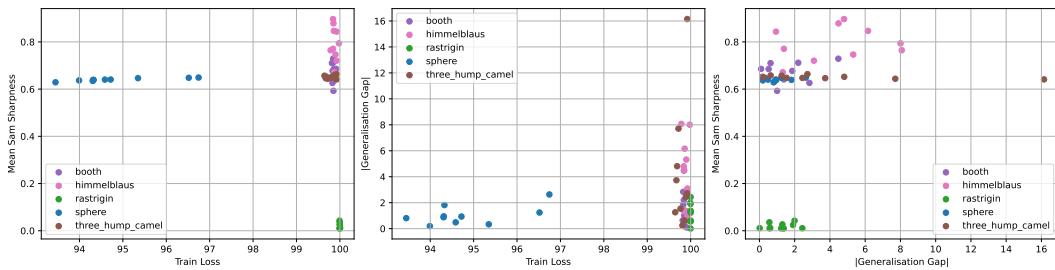


Figure 7: Scatter plots an MLP trained on the sphere, rastrigin, booth, three-hump camel, and himmelblaus functions for 10 different datasets till reaching a target train loss of 100: (left) mean sam sharpness vs. train loss, (centre) $|$ generalisation gap $|$ vs. train loss, and (right) $|$ generalisation gap $|$ vs. mean sam sharpness.



Figure 8: Scatter plots an MLP trained on the sphere,, booth, three-hump camel, and himmelblaus functions for 10 different datasets till reaching a target train loss of 10: (left) mean sam sharpness vs. train loss, (centre) $|\text{generalisation gap}|$ vs. train loss, and (right) $|\text{generalisation gap}|$ vs. mean sam sharpness.

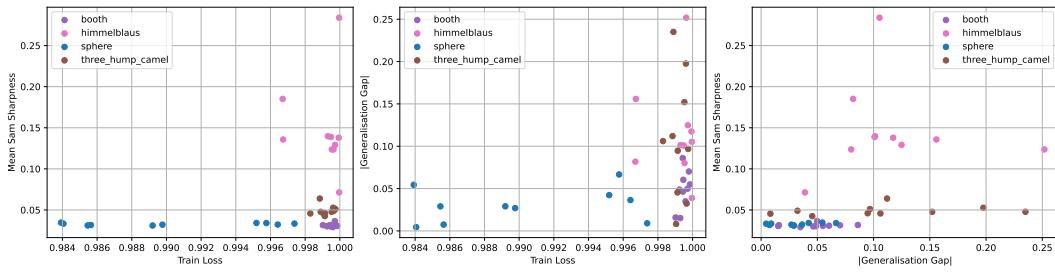


Figure 9: Scatter plots an MLP trained on the sphere,, booth, three-hump camel, and himmelblaus functions for 10 different datasets till reaching a target train loss of 1: (left) mean sam sharpness vs. train loss, (centre) $|\text{generalisation gap}|$ vs. train loss, and (right) $|\text{generalisation gap}|$ vs. mean sam sharpness.

B SHARPNESS METRICS

This section describes the sharpness metrics Fisher-Rao norm, SAM-Sharpness and Relative Flatness. Information Geometric Sharpness (IGS) (Jang et al., 2022) is also a suitable sharpness metric candidate, however we omitted it from this study as the calculation of this metric exceeds feasible computation for large-networks and dataset sizes. For implementations of Fisher-Rao and Relative Flatness we use the code base provided by Petzka et al. (2021)¹.

Fisher-Rao Fisher-Rao Norm (Liang et al., 2019) uses information Geometry for norm-based complexity measurement. It provides a reparametrisation invariant measure for loss landscape sharpness measuring, as verified by Petzka et al. (2021) in line with Petzka et al. (2021) we use the analytical formula for cross entropy loss from Appendix (Liang et al., 2019) which is presented in equation 9. To calculate the number of layers we sum the number of Linear, Conv1d, Conv2d, Conv3d and Embedding layers in a specified neural network for our experiments this means that the VGG19 has 18 layers, the ResNet18 has 21 and the ViT has 26.

$$\text{FR}_{\text{norm}} = \sqrt{(L+1)^2 \cdot \frac{1}{N} \sum_{i=1}^N \left(\frac{\partial \ell_i}{\partial \theta} \cdot \theta \right)^2} \quad (9)$$

SAM-Sharpness We define SAM-sharpness as the average difference across 100 different locations of 0.005ρ away the original model and calculate the SAM sharpness from these models as defined

¹Code base for sharpness metrics Fisher Rao Norm and Relative Flatness from Petzka et al. (2021): https://github.com/kampmichael/RelativeFlatnessAndGeneralization/blob/main/CorrelationFlatnessGeneralization/measure_comparison.py

864 by Mason-Williams et al. (2024a) and Foret et al. (2021).
 865

866

$$867 S(\theta) = \frac{1}{K} \sum_{k=1}^K \left| \frac{L(\theta + \Delta\theta_k) - L(\theta)}{\rho} \right|. \quad (10)$$

868

869

870 **Relative Flatness** Petzka et al. (2021) define the sharpness measure Relative Flatness— their results
 871 show that it has the strongest correlational between flatness and a low generalisation gap. Relative
 872 Flatness sharpness is calculated between the feature extraction layer and the classification of the
 873 neural network and represents a highly expensive measure due to its calculation of the trace of the
 874 hessian of these output matrices. The formula for Relative Flatness from Han et al. (2025) can be
 875 found in equation 11.

876

877

$$878 \kappa_{\text{Tr}}^{\phi}(\mathbf{w}) := \sum_{s,s'=1}^d \langle \mathbf{w}_s, \mathbf{w}_{s'} \rangle \cdot \text{Tr}(H_{s,s'}(\mathbf{w}, \phi(S))) \quad (11)$$

879

880 where w_s denotes the s-th row of w , $\langle \cdot, \cdot \rangle$ is the scalar product, and $H_{s,s'}(\mathbf{w}, \phi(S))$ is the Hessian of
 881 the empirical loss with respect to w_s and $w_{s'}$ evaluated at $\phi(S)$ (Han et al., 2025).

882

883 C SAFETY CRITICAL METRICS

884

885 **Expected Calibration Error** Calibration is the deviation of predicted confidence of a neural
 886 network and the true probabilities observed in the data, Guo et al. (2017) explored how ResNets are
 887 poorly calibrated and are often over confident. To calculate Expected Calibration Error (ECE) we
 888 use the Lighting AI Pytorch Metrics implementation of Multiclass Calibration Error² Implemented
 889 from Kumar et al. (2019).

890

891

$$892 \text{ECE} = \sum_{i=1}^N b_i \|p_i - c_i\|_1 \quad (12)$$

893

894 Where p_i represents accuracy in bin i . The average confidence for predictions is c_i in the bin with
 895 uniform sampling (Kumar et al., 2019)².

896

897 **Functional Diversity** To provide an intuitive understanding of functional diversity we are interested
 898 the deviations between models top-1 predictions, the metric we focus on for this is: **Prediction**
 899 **Disagreement** which represents the disagreement between the top-1 predictions of two models on the
 900 test dataset as defined in equation 13 by Fort et al. (2020), where each $f(x; \theta)$ is the top-1 predicted
 901 class for a given sample x , operated on by parameters, θ . A lower Prediction Disagreement results in
 902 a models that agree more on top-1 predictions.

903

$$904 \frac{1}{N} \sum_{n=1}^N [f(x_n; \theta_1) \neq f(x_n; \theta_2)]. \quad (13)$$

905

906 **Robustness Evaluations** We employ the CIFAR10-C and CIFAR100-C datasets provided
 907 by Hendrycks & Dietterich (2019) to observe how geometric properties interact with the robustness
 908 of a neural network. The corruptions have 5 levels of severity per perturbation.

909

910 **Corruption Accuracy (cACC)** The metric we used for this robustness analysis is Corruption
 911 Accuracy. It represents the average accuracy of a classifier (f) on an **average-case** perturbed test
 912 dataset ($\mathcal{D}_{corruption}$) across permutation strengths 1-5 (Hendrycks & Dietterich, 2019).

913

$$914 \text{Corruption Accuracy} = \frac{1}{C} \sum_{c=1}^C \frac{1}{N_c} \sum_{n=1}^{N_c} 1(f(x_n; \theta) = y_n). \quad (14)$$

915

916

917 ²Calibration Error documentation from Lighting AI: https://lightning.ai/docs/torchmetrics/stable/classification/calibration_error.html

918 Where C is number of corruptions, N_c , is the number of samples in corruption c , $f(x_n; \theta)$ represents
 919 the top 1 prediction of a class for a given sample x with parameters θ and y_n is the label.
 920

921 D EXPERIMENTAL SETTINGS

922 All models are trained using NVIDIA A100 GPU’s and each sharpness metric is calculated using the
 923 same GPU setup - as models output layer becomes larger for transitions between CIFAR10, CIFAR100
 924 and TinyImageNet the computational cost of the calculation of sharpness metrics increases (by an
 925 order of magnitude between CIFAR10 and CIFAR100). It should be noted that while Fisher Rao
 926 Norm is computationally inexpensive to calculate, SAM sharpness takes a factor of time longer and
 927 Relative Flatness is the most computationally expensive measure from a time and memory perspective.
 928 All models are trained such that they converge on the training dataset or approximately converge in
 929 the case of augmentation conditions - it is important to note that all models are given **100 epochs to**
 930 **reduce loss on the training** set to make comparisons fair. As a result, the test error is appropriate for
 931 assessing the generalisation gap as a high test accuracy is indicative of a small generalisation gap.
 932

933 **CIFAR10 Training:** To train the **baseline** architectures on the CIFAR10 dataset we use the
 934 following settings: We use SGD with the momentum hyperparameter at 0.9 to minimize cross entropy
 935 loss for 100 epochs, using a batch size of 256 a learning rate of 0.001. For all architectures in
 936 the **SAM condition** we use the same settings as above but with SAM an extra optimization step
 937 occurs. We use SAM with the hyperparameter ρ at the standard value of 0.05. For the **Augmentation**
 938 **condition** we use the Baseline conditions with the augmentations Random Crop with a padding of 4
 939 and a fill of 128 alongside a Random Horizontal Flip with a probability of 0.5. Finally for the **Weight**
 940 **Decay condition** we use the same setup as the Baseline condition but with the addition of the weight
 941 decay value set at $5e^{-4}$.
 942

943 **CIFAR10 Sharpness:** For all sharpness metrics on CIFAR10 we used the entire training dataset
 944 to calculate sharpness across Fisher Rao Norm, SAM Sharpness and Relative Flatness. For the
 945 augmentation condition, the training dataset is the augmentations data used to train the model. We
 946 show in Sections E.1 and F.2 that calculating sharpness on the augmented training dataset for the
 947 models in the augmentation condition is approximately equivalent to calculating with the original
 948 training dataset without augmentation, thus preserving the same trends of increased sharpness for
 949 models trained with augmentation.
 950

951 **CIFAR100 Training:** To train the **baseline** architectures on the CIFAR100 dataset we use the
 952 following settings: We use SGD with the momentum hyperparameter at 0.9 to minimize cross entropy
 953 loss for 100 epochs, using a batch size of 256 a learning rate of $1e^{-2}$, we also use a Pytorch’s (Paszke
 954 et al., 2019) Cosine Annealing learning rate scheduler with a Maximum number of iterations of
 955 100. For all architectures in the **SAM condition** we use the same settings as above but with SAM
 956 as an extra optimization step occurs and for this we use SAM with the hyperparameter ρ at the
 957 standard value of 0.05. For the **Augmentation condition** we use the Baseline conditions with the
 958 augmentations Random Crop with a padding of 4 and a fill of 128 alongside a Random Horizontal
 959 Flip with a probability of 0.5. Finally for the **Weight Decay condition** we use the same setup as the
 960 Baseline condition but with the addition of the weight decay value set at $5e^{-4}$.
 961

962 **CIFAR100 Sharpness:** For both the Fisher Rao Norm and SAM Sharpness metrics on CIFAR100
 963 we used the entire training dataset to calculate sharpness. However, due to the computational burden
 964 of calculating Relative Flatness, we only employ 20% of the training dataset to calculate sharpness for
 965 this metrics. Once again, for the Augmentation condition, the training dataset is the augmentations
 966 data used to train the model.
 967

968 **TinyImageNet Training:** On the TinyImagenet dataset we use use pre-trained weights provided
 969 for the ResNet18³ and VGG19BN⁴ by Pytorch - we modify these architectures by removing the
 970

971 ³Pytorch ResNet18 ImageNet1K Pretrained Model: <https://docs.pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html>

⁴Pytorch VGG19BN ImageNet1K Pretrained Model: https://docs.pytorch.org/vision/main/models/generated/torchvision.models.vgg19_bn.html

972 existing final layer and replacing it with a final layer with a 200 output classification layer.
 973

974 To train the **baseline** condition on these architectures using the following settings: We use
 975 SGD with the momentum hyperparameter at 0.9 to minimize cross entropy loss for 100 epochs, using
 976 a batch size of 256 a learning rate of 0.001. For all architectures in the **SAM condition** we use the
 977 same settings as above but with SAM as an extra optimization step occurs and for this we use SAM
 978 with the hyperparameter ρ at the standard value of 0.05. For the **Augmentation condition** we use the
 979 Baseline conditions with the augmentations Random Resized Crop to the size of 64 and a Random
 980 Horizontal Flip with a probability of 0.5. Finally for the **Weight Decay condition** we use the same
 981 setup as the Baseline condition but with the addition of the weight decay value set at $5e^{-4}$.
 982

983 **TinyImageNet Sharpness:** For the Fisher Rao Norm sharpness metric on TinyImageNet we used
 984 the entire training dataset to calculate sharpness. However, due to the computational burden of
 985 calculating SAM Sharpness, we only employ 20% of the training dataset to calculate sharpness for
 986 this metrics. Due to memory constraints on the A100 GPU’s we were unable to calculate Relative
 987 Flatness for any size of the training dataset on this architecture. Once again, for the Augmentation
 988 condition, the training dataset is the augmentations data used to train the model.
 989

990 E RESNET-18 FURTHER RESULTS

991 E.1 AUGMENTED OR STANDARD TRAINING DATA SHARPNESS CALCULATION

992 We argue that the standard dataset is a subset of the augmented training dataset. Thus, sharpness
 993 trends are similar for both datasets. Our results show that calculating sharpness with augmented
 994 data is nearly identical to using the standard dataset for Fisher Rao Norm, Sam Sharpness, Relative
 995 Flatness, and loss landscape visualizations.
 996

997 **Sharpness Metrics** When calculating the sharpness metrics, it can be seen that the difference
 998 between using augmented training data, in Table 8, or standard training data, in Table 9, for each of
 999 the metrics provides no difference for the trends of results observed.
 1000

1001 Table 8: Sharpness Calculation for ResNet18 landscape on CIFAR10 trained with batch size of 256
 1002 and learning rate of 0.001 using augmented training data for sharpness calculations.
 1003

1004 Control 1005 Condition	1006 Fisher Rao 1007 Norm	1008 SAM 1009 Sharpness	1010 Relative 1011 Flatness
1004 Augmentation	1005 3.940 ± 0.207	1006 $1.905E-01 \pm 2.203E - 02$	1007 2903.220 ± 89.243
1004 Augmentation 1005 + SAM	1005 5.571 ± 0.035	1006 $1.303E-01 \pm 1.547E - 02$	1007 4970.972 ± 30.139

1012 Table 9: Sharpness Calculation for ResNet18 landscape on CIFAR10 trained with batch size of 256
 1013 and learning rate of 0.001 using standard training data for sharpness calculations.
 1014

1014 Control 1015 Condition	1016 Fisher Rao 1017 Norm	1018 SAM 1019 Sharpness	1020 Relative 1021 Flatness
1014 Augmentation	1015 3.962 ± 0.292	1016 $1.591E-02 \pm 1.609E - 03$	1017 2972.554 ± 137.079
1014 Augmentation 1015 + SAM	1015 5.084 ± 0.032	1016 $2.035E-02 \pm 1.203E - 03$	1017 5105.327 ± 43.058

1022 **Loss Landscape Visualisations** In Table 10, we show that the use of augmented or standard
 1023 training data has little impact on the resulting loss landscape visualisation. This reaffirms that it is
 1024 valid to calculate sharpness for models using augmented training data. The dataset used does not
 1025 significantly impact the sharpness of the landscape or the resulting sharpness values. The standard
 1026 dataset is simply a subset of the augmented data. Furthermore, sharpness calculation depends more
 1027 on the model weights than on the data, and should be a representative value for any dataset given the
 1028 same weight permutations.
 1029

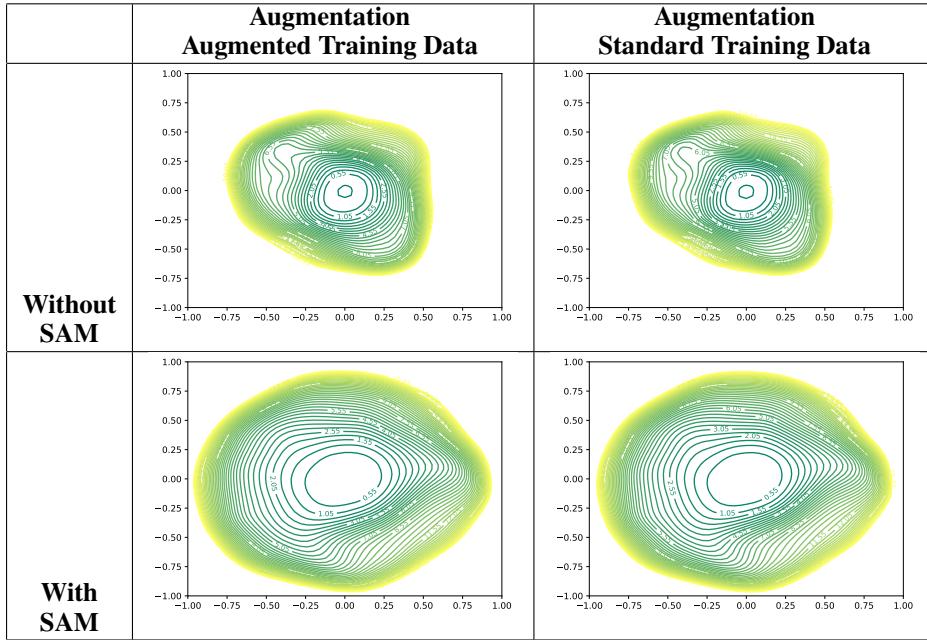


Table 10: Loss landscape visualisation (Li et al., 2018) of ResNet18 landscape on CIFAR10 exploring the loss in the domain of the perturbations $[1, 1]^2$ with 51 steps in both directions on models trained with augmentation visualising landscape with standard training data and augmented training data.

E.2 RESNET-18 BATCH SIZE AND LEARNING RATE HYPERPARAMETER SWEEP

Here we observe how two core hyperparameters, batch size and learning rate impact the general finding that models under the use of training regularisation navigate to sharper points and thus tighter **decision boundaries than base models** without their application. In line with the findings in the main paper we observe that the best performing models in each condition are those that are sharper than the baseline models for each respective experimental up.

Table 11: Results for ResNet-18 Trained on CIFAR10 with **batch size 256 and a learning rate of $1e^{-3}$** . Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter models.

Condition Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	28.050 ± 0.175	0.720 ± 0.002	0.186 ± 0.001	58.614 ± 0.201	0.282 ± 0.001	0.032 ± 0.001	$1.366E-05 \pm 1.206E - 06$	34.607 ± 0.757
Baseline + SAM	20.588 ± 0.125	0.794 ± 0.001	0.108 ± 0.001	66.342 ± 0.164	0.168 ± 0.000	0.107 ± 0.006	$5.823E-05 \pm 0.056E - 06$	75.093 ± 1.693
Augmentation	10.399 ± 0.067	0.886 ± 0.001	0.077 ± 0.001	68.755 ± 0.219	0.121 ± 0.001	3.940 ± 0.207	$1.905E-01 \pm 2.203E - 02$	2903.220 ± 89.243
Augmentation + SAM	6.864 ± 0.038	0.908 ± 0.000	0.014 ± 0.001	71.419 ± 0.283	0.069 ± 0.000	5.571 ± 0.035	$1.303E-01 \pm 1.547E - 02$	4970.972 ± 30.139
Weight Decay	27.942 ± 0.196	0.721 ± 0.002	0.174 ± 0.002	58.562 ± 0.227	0.281 ± 0.001	0.065 ± 0.004	$3.391E-05 \pm 4.494E - 06$	59.767 ± 3.009
Weight Decay + SAM	19.788 ± 0.149	0.802 ± 0.001	0.096 ± 0.001	67.079 ± 0.117	0.162 ± 0.001	0.127 ± 0.006	$8.733E-05 \pm 1.430E - 05$	88.807 ± 2.336

Table 12: Results for ResNet-18 Trained on CIFAR10 with **batch size 256 and a learning rate of $1e^{-2}$** . Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter models.

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	16.203 ± 0.266	0.838 ± 0.003	0.109 ± 0.004	70.814 ± 0.390	0.138 ± 0.001	0.015 ± 0.006	$7.648E-06 \pm 3.794E - 06$	16.641 ± 5.960
Baseline + SAM	14.549 ± 0.059	0.855 ± 0.001	0.084 ± 0.001	72.618 ± 0.161	0.110 ± 0.000	0.042 ± 0.002	$2.019E-05 \pm 2.683E - 06$	49.022 ± 1.901
Augmentation	7.593 ± 0.092	0.921 ± 0.001	0.056 ± 0.003	72.923 ± 0.223	0.078 ± 0.001	2.390 ± 0.268	$1.091E-01 \pm 1.958E - 02$	1604.778 ± 103.972
Augmentation + SAM	6.920 ± 0.056	0.931 ± 0.001	0.037 ± 0.001	73.483 ± 0.212	0.058 ± 0.000	1.165 ± 0.014	$2.267E-02 \pm 2.070E - 03$	1173.090 ± 15.607
Weight Decay	16.791 ± 0.122	0.832 ± 0.001	0.071 ± 0.001	68.538 ± 0.159	0.157 ± 0.000	0.097 ± 0.001	$3.673E-05 \pm 4.662E - 06$	99.041 ± 0.736
Weight Decay + SAM	14.022 ± 0.089	0.860 ± 0.001	0.050 ± 0.001	73.100 ± 0.137	0.116 ± 0.000	0.446 ± 0.013	$3.238E-04 \pm 6.384E - 05$	178.169 ± 4.103

1080 Table 13: Results for ResNet-18 Trained on CIFAR10 with **batch size 128 and a learning rate of**
 1081 **$1e^{-3}$** . Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent
 1082 flatter models.

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	23.325 \pm 0.140	0.767 \pm 0.001	0.154 \pm 0.001	63.035 \pm 0.204	0.227 \pm 0.000	0.013 \pm 0.000	5.181E-06 \pm 5.856E-07	27.916 \pm 0.340
Baseline + SAM	16.714 \pm 0.125	0.833 \pm 0.001	0.083 \pm 0.001	69.769 \pm 0.108	0.126 \pm 0.000	0.072 \pm 0.006	2.640E-05 \pm 4.345E-06	139.589 \pm 2.679
Augmentation	9.110 \pm 0.079	0.905 \pm 0.001	0.065 \pm 0.001	71.516 \pm 0.308	0.099 \pm 0.000	2.465 \pm 0.105	9.266E-02 \pm 5.276E-03	3735.018 \pm 173.247
Augmentation + SAM	6.869 \pm 0.022	0.921 \pm 0.000	0.013 \pm 0.000	72.870 \pm 0.207	0.058 \pm 0.000	4.070 \pm 0.027	8.913E-02 \pm 8.054E-03	7532.582 \pm 69.191
Weight Decay	23.504 \pm 0.136	0.765 \pm 0.001	0.137 \pm 0.001	62.879 \pm 0.214	0.231 \pm 0.000	0.047 \pm 0.000	2.241E-05 \pm 3.426E-06	80.599 \pm 0.548
Weight Decay + SAM	16.433 \pm 0.096	0.836 \pm 0.001	0.072 \pm 0.001	70.226 \pm 0.158	0.124 \pm 0.000	0.110 \pm 0.004	4.797E-05 \pm 7.285E-06	194.034 \pm 2.840

1090

1091

1092 Table 14: Results for ResNet-18 Trained on CIFAR10 with **batch size 128 and a learning rate of**
 1093 **$1e^{-2}$** . Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent
 1094 flatter models.

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	15.027 \pm 0.069	0.850 \pm 0.001	0.109 \pm 0.001	71.960 \pm 0.158	0.125 \pm 0.000	0.003 \pm 0.000	1.094E-06 \pm 9.618E-08	8.785 \pm 0.142
Baseline + SAM	13.231 \pm 0.065	0.868 \pm 0.001	0.081 \pm 0.001	73.053 \pm 0.164	0.099 \pm 0.000	0.024 \pm 0.001	1.021E-05 \pm 5.519E-07	70.694 \pm 2.273
Augmentation	7.455 \pm 0.062	0.923 \pm 0.001	0.057 \pm 0.001	72.594 \pm 0.152	0.076 \pm 0.000	2.086 \pm 0.140	8.274E-02 \pm 6.784E-03	2864.657 \pm 151.088
Augmentation + SAM	6.678 \pm 0.060	0.933 \pm 0.001	0.036 \pm 0.001	73.565 \pm 0.245	0.056 \pm 0.000	1.012 \pm 0.014	2.173E-02 \pm 2.042E-03	2354.005 \pm 38.058
Weight Decay	12.695 \pm 0.072	0.873 \pm 0.001	0.057 \pm 0.001	70.979 \pm 0.124	0.103 \pm 0.000	0.159 \pm 0.003	1.265E-04 \pm 3.140E-06	355.345 \pm 12.866
Weight Decay + SAM	12.606 \pm 0.069	0.874 \pm 0.001	0.036 \pm 0.001	72.795 \pm 0.162	0.107 \pm 0.000	0.745 \pm 0.017	5.880E-04 \pm 6.127E-05	439.467 \pm 8.439

1102

1103

F VGG-19

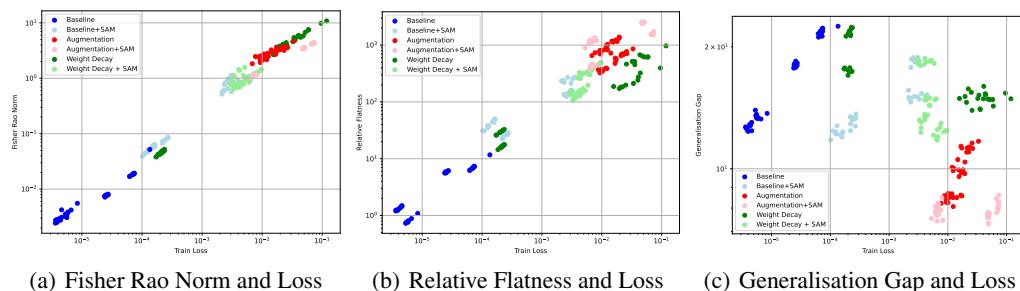
1104

F.1 VGG19 BATCH SIZE AND LEARNING RATE HYPERPARAMETER SWEEP

1105

1106

1107 Here we observe how two core hyperparameters, batch size and learning rate, impact the general
 1108 finding that models under the use of training regularisation navigate to sharper points and thus tighter
 1109 **decision boundaries than base models** without regularisation. In line with the findings in the main
 1110 paper, we observe that the best-performing models in each condition are those that are sharper than
 1111 the baseline models for each respective experimental setup. However, it is important to note that
 1112 modifying the learning rate and batch size does influence the sharpness values that we observe in
 1113 each condition, with a larger learning rate typically increasing the flatness of the minima considerably
 1114 more than using a smaller learning rate. However, within these augmented models still navigate to
 1115 sharper landscapes than the baseline and achieve the best performance across generalization and
 1116 safety evaluations.



1126

1127

1128 Figure 10: Plot of 240 minima using reparametrisation invariant sharpness metrics against train
 1129 loss and generalisation gap against train loss using log-scale for the VGG19 with different training
 1130 hyperparameters (batch size of 256, 128 and learning rate of 0.001 and $1e^{-2}$) trained on CIFAR10.

1131

1132

1133

CIFAR10: The Augmentation and SAM condition perform the best for all metrics. It is also
 the sharpest model with the highest values for Relative Flatness and the second highest for SAM

1134 Sharpness and Fisher Rao Norm value. These findings are consistent across the hyper parameter
 1135 sweep that we perform across learning rate and batch size.

1137 Table 15: Results for VGG19 Trained on CIFAR10 with **batch size 256 and a learning rate of $1e^{-3}$** .
 1138 Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
 1139 models.

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	21.805 ± 0.128	0.782 ± 0.001	0.160 ± 0.001	64.316 ± 0.193	0.204 ± 0.000	0.022 ± 0.003	7.649E-06 $\pm 2.207E - 06$	7.374 ± 0.470
Baseline + SAM	18.444 ± 0.097	0.815 ± 0.001	0.108 ± 0.001	66.655 ± 0.296	0.150 ± 0.000	0.938 ± 0.036	1.495E-03 $\pm 1.703E - 04$	140.164 ± 3.149
Augmentation	11.289 ± 0.066	0.879 ± 0.001	0.084 ± 0.001	68.497 ± 0.199	0.121 ± 0.000	3.505 ± 0.155	1.967E-01 $\pm 2.298E - 02$	688.897 ± 26.348
Augmentation + SAM	8.139 ± 0.074	0.903 ± 0.001	0.019 ± 0.001	71.268 ± 0.196	0.075 ± 0.000	4.278 ± 0.027	9.777E-02 $\pm 1.126E - 02$	1609.212 ± 22.719
Weight Decay	21.801 ± 0.121	0.782 ± 0.001	0.151 ± 0.001	64.405 ± 0.217	0.202 ± 0.000	0.048 ± 0.001	1.315E-05 $\pm 1.143E - 06$	16.494 ± 0.292
Weight Decay + SAM	18.394 ± 0.067	0.816 ± 0.001	0.104 ± 0.001	66.827 ± 0.286	0.151 ± 0.000	1.121 ± 0.080	3.210E-03 $\pm 6.174E - 04$	157.592 ± 5.360

1147
 1148 Table 16: Results for VGG19 Trained on CIFAR10 with **batch size 256 and a learning rate of $1e^{-2}$** .
 1149 Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
 1150 models.

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	13.507 ± 0.063	0.865 ± 0.001	0.105 ± 0.001	71.476 ± 0.125	0.119 ± 0.000	0.004 ± 0.000	1.604E-06 $\pm 1.637E - 07$	0.807 ± 0.032
Baseline + SAM	13.183 ± 0.115	0.868 ± 0.001	0.081 ± 0.001	71.908 ± 0.121	0.103 ± 0.000	0.077 ± 0.002	4.290E-05 $\pm 5.280E - 06$	25.287 ± 0.720
Augmentation	8.565 ± 0.030	0.910 ± 0.000	0.065 ± 0.000	71.491 ± 0.442	0.092 ± 0.000	2.555 ± 0.154	1.146E-01 $\pm 9.917E - 03$	396.136 ± 22.479
Augmentation + SAM	7.969 ± 0.080	0.920 ± 0.001	0.040 ± 0.001	73.037 ± 0.160	0.071 ± 0.000	1.087 ± 0.014	3.122E-02 $\pm 3.347E - 03$	429.679 ± 6.763
Weight Decay	15.241 ± 0.124	0.836 ± 0.003	0.118 ± 0.002	68.294 ± 0.390	0.184 ± 0.002	5.120 ± 0.586	2.302E-02 $\pm 4.987E - 03$	237.081 ± 22.113
Weight Decay + SAM	13.188 ± 0.130	0.868 ± 0.001	0.063 ± 0.001	71.618 ± 0.284	0.117 ± 0.000	0.742 ± 0.022	5.764E-04 $\pm 5.989E - 05$	124.537 ± 3.152

1159
 1160 Table 17: Results for VGG19 Trained on CIFAR10 with **batch size 128 and a learning rate of $1e^{-3}$** .
 1161 Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
 1162 models.

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	18.026 ± 0.066	0.820 ± 0.001	0.140 ± 0.001	68.325 ± 0.110	0.167 ± 0.000	0.008 ± 0.000	8.460E-07 $\pm 5.355E - 08$	5.824 ± 0.058
Baseline + SAM	15.059 ± 0.085	0.849 ± 0.001	0.089 ± 0.001	69.791 ± 0.174	0.115 ± 0.000	0.649 ± 0.032	5.689E-04 $\pm 1.248E - 04$	242.483 ± 6.334
Augmentation	9.988 ± 0.088	0.895 ± 0.001	0.074 ± 0.001	70.671 ± 0.288	0.107 ± 0.000	2.851 ± 0.121	1.708E-01 $\pm 1.967E - 02$	1158.004 ± 40.307
Augmentation + SAM	7.594 ± 0.050	0.916 ± 0.000	0.017 ± 0.000	72.194 ± 0.175	0.066 ± 0.000	3.469 ± 0.023	7.664E-02 $\pm 1.149E - 02$	2487.050 ± 14.772
Weight Decay	17.485 ± 0.066	0.825 ± 0.001	0.127 ± 0.001	68.655 ± 0.156	0.158 ± 0.000	0.044 ± 0.001	4.918E-02 $\pm 6.710E - 07$	29.566 ± 0.647
Weight Decay + SAM	14.803 ± 0.082	0.851 ± 0.001	0.082 ± 0.001	69.699 ± 0.181	0.114 ± 0.000	0.802 ± 0.022	1.089E-03 $\pm 3.140E - 04$	298.386 ± 7.049

1171
 1172 Table 18: Results for VGG19 Trained on CIFAR10 with **batch size 128 and a learning rate of $1e^{-2}$** .
 1173 Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
 1174 models.

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	12.661 ± 0.066	0.873 ± 0.001	0.100 ± 0.001	71.689 ± 0.113	0.111 ± 0.000	0.003 ± 0.000	3.227E-07 $\pm 3.198E - 08$	1.331 ± 0.031
Baseline + SAM	12.248 ± 0.078	0.878 ± 0.001	0.077 ± 0.001	71.838 ± 0.256	0.100 ± 0.000	0.054 ± 0.003	8.424E-06 $\pm 9.410E - 07$	40.853 ± 2.177
Augmentation	8.333 ± 0.060	0.913 ± 0.001	0.063 ± 0.001	72.114 ± 0.259	0.091 ± 0.000	2.510 ± 0.122	1.605E-01 $\pm 2.042E - 02$	772.205 ± 19.954
Augmentation + SAM	7.791 ± 0.072	0.922 ± 0.001	0.038 ± 0.001	72.470 ± 0.190	0.072 ± 0.000	1.076 ± 0.019	3.497E-02 $\pm 4.347E - 03$	1155.243 ± 35.334
Weight Decay	14.589 ± 0.143	0.839 ± 0.003	0.110 ± 0.002	66.692 ± 0.603	0.187 ± 0.001	6.253 ± 0.596	7.018E-03 $\pm 8.372E - 04$	608.657 ± 44.645
Weight Decay + SAM	12.295 ± 0.112	0.877 ± 0.001	0.052 ± 0.001	71.167 ± 0.301	0.116 ± 0.001	1.193 ± 0.043	5.407E-04 $\pm 1.109E - 04$	406.163 ± 15.541

1184 **CIFAR10 Landscape Visualisation:** Here we observe that the loss landscapes show that the use
 1185 of regularisation does change the function learned by the model and that this can often increase in
 1186 complexity. For example, in Table 19 we can see that the use of weight decay, augmentation and SAM
 1187 all change the minima that is reached at the end of training, with weight decay and augmentation
 showing a big increase in complexity compared to the baseline landscape.

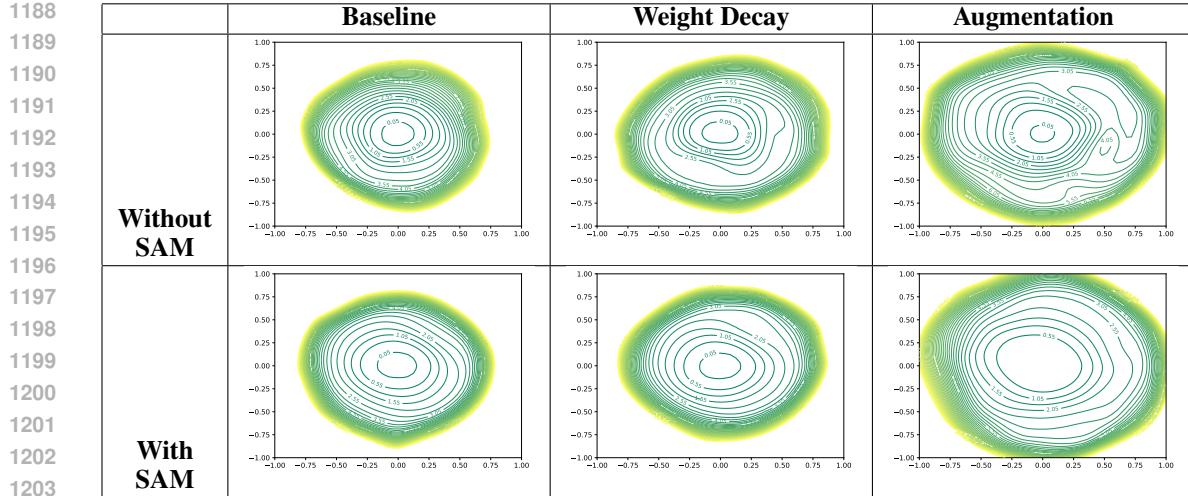


Table 19: Loss landscape visualisation (Li et al., 2018) of VGG19 landscape on CIFAR10 exploring the loss in the domain of the perturbations $[1, 1]^2$ with 51 steps in both directions.

F.2 AUGMENTED OR STANDARD TRAINING DATA SHARPNESS CALCULATION

Sharpness Metrics When calculating the sharpness metrics, it can be seen that the difference between using augmented training data, in Table 20, or standard training data, in Table 21, for each of the metrics provides no difference for the trends of results observed, training with augmentation and augmentation + SAM results in a minima that is substantially sharper than a baseline model.

Table 20: Sharpness Calculation for VGG19 on CIFAR10 trained with batch size of 256 and learning rate of 0.001 using augmented training data for sharpness calculations.

Control Condition	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Augmentation	3.505 ± 0.155	$1.967E-01 \pm 2.298E-02$	688.897 ± 26.348
Augmentation + SAM	4.278 ± 0.027	$9.777E-02 \pm 1.126E-02$	1609.212 ± 22.719

Table 21: Sharpness Calculation for VGG19 on CIFAR10 trained with batch size of 256 and learning rate of 0.001 using standard training data for sharpness calculations.

Control Condition	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Augmentation	2.322 ± 0.125	$9.589E-03 \pm 1.438E-03$	481.312 ± 23.358
Augmentation + SAM	3.756 ± 0.030	$1.497E-02 \pm 7.363E-04$	1413.712 ± 22.212

Loss Landscape Visualisations In Table 22, we show that the use of augmented or standard training data has little impact on the resulting loss landscape visualisation. This reaffirms that it is valid to calculate sharpness for models using augmented training data. The dataset used does not significantly impact the sharpness of the landscape or the resulting sharpness values. The standard dataset is simply a subset of the augmented data. Furthermore, sharpness calculation depends more on the model weights than on the data, and should be a representative value for any dataset given the same weight permutations.

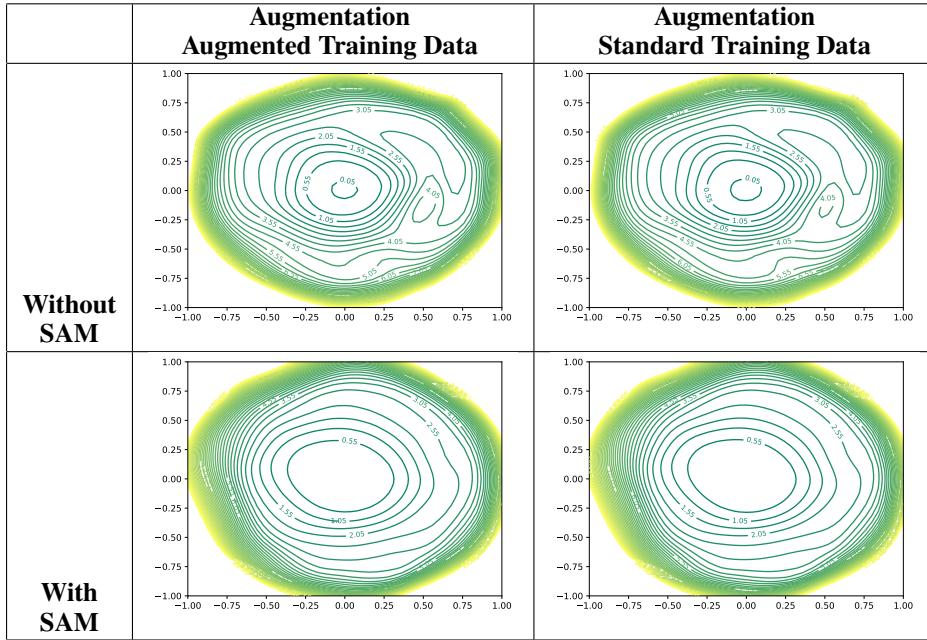


Table 22: Loss landscape visualisation (Li et al., 2018) of VGG19 landscape on CIFAR10 exploring the loss in the domain of the perturbations $[1, 1]^2$ with 51 steps in both directions on models trained with augmentation visualising landscape with standard training data and augmented training data.

F.3 CIFAR100:

Augmentation and SAM condition performs the best for test accuracy, Corruption Accuracy and Prediction Disagreement. However, for ECE we see that Weight Decay is the best condition. Augmentation and SAM is the second sharpest model for Fisher Rao Norm and SAM sharpness and has the highest value for Relative Flatness. It is important to note that for Weight Decay, with the lowest ECE, that it has higher sharpness values than the Baseline condition.

Table 23: Results for VGG-19 Trained on CIFAR100, the Mean and ± 1 SEM are recorded over 10 models. Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter models.

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	42.454 ± 0.092	0.575 ± 0.001	0.253 ± 0.000	40.749 ± 0.124	0.396 ± 0.000	0.158 ± 0.017	$2.123E-04 \pm 2.649E - 05$	8.384 ± 0.151
Baseline + SAM	43.815 ± 0.224	0.561 ± 0.002	0.232 ± 0.002	39.690 ± 0.196	0.399 ± 0.001	0.529 ± 0.017	$7.520E-04 \pm 5.791E - 05$	67.485 ± 1.802
Augmentation	32.519 ± 0.156	0.646 ± 0.002	0.222 ± 0.002	40.832 ± 0.321	0.358 ± 0.001	7.156 ± 0.270	$2.835E-01 \pm 1.439E - 02$	1430.826 ± 53.977
Augmentation + SAM	32.008 ± 0.099	0.656 ± 0.001	0.157 ± 0.001	41.276 ± 0.089	0.326 ± 0.001	5.653 ± 0.073	$1.971E-01 \pm 1.170E - 02$	2085.080 ± 31.648
Weight Decay	41.579 ± 0.107	0.584 ± 0.001	0.138 ± 0.000	41.266 ± 0.112	0.384 ± 0.000	0.678 ± 0.008	$3.302E-04 \pm 3.256E - 05$	45.728 ± 0.073
Weight Decay + SAM	44.631 ± 0.228	0.553 ± 0.002	0.189 ± 0.002	38.961 ± 0.191	0.429 ± 0.001	2.138 ± 0.084	$2.630E-03 \pm 2.111E - 04$	153.194 ± 6.495

CIFAR100 Landscape Visualisation: Once again, we confirm through the loss landscape visualisation in Table 24, that the application of regularisers does indeed change the properties of the minima that a network reaches at the end of training. This, corroborates our findings that state that regularisation can change the function complexity of a network and thus impact the geometric properties of the minima found at the end of training.

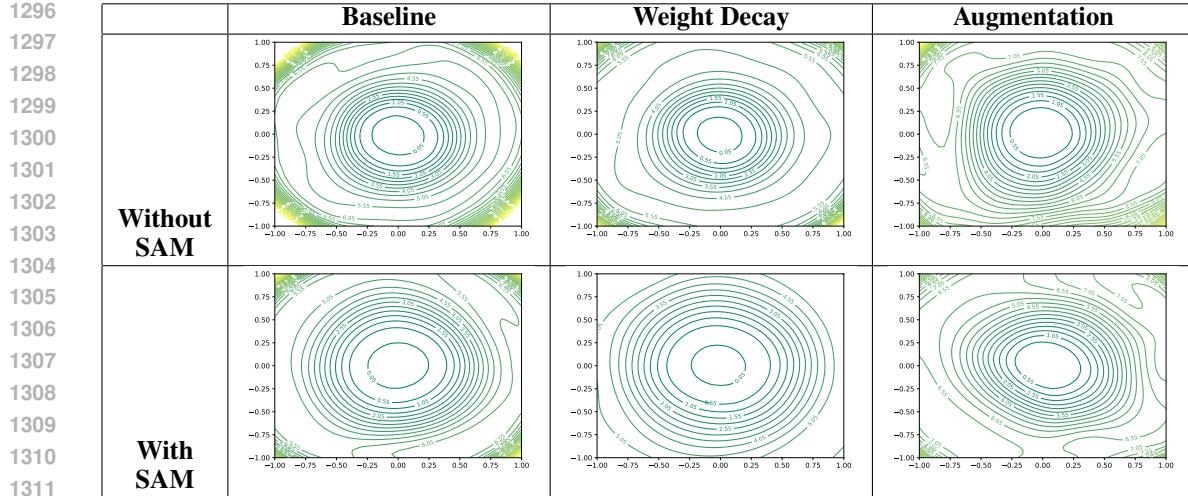


Table 24: Loss landscape visualisation (Li et al., 2018) VGG19 landscape on CIFAR100 exploring the loss in the domain of the perturbations $[1, 1]^2$ with 51 steps in both directions.

F.4 TINYIMAGENET:

The Weight Decay and SAM condition performs best for test accuracy and Prediction Disagreement. For Weight Decay and SAM condition we see no real difference in the sharpness values. For ECE we see that Augmentation + SAM is the best condition. Augmentation and SAM is the second sharpest model for Fisher Rao Norm and SAM sharpness.

Table 25: Results for VGG19-BN (Pre-Trained) on TinyImageNet. Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter models.

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness
Baseline	39.588 ± 0.063	0.604 ± 0.001	0.303 ± 0.001	0.238 ± 0.000	0.337 ± 0.118	$2.642E-04 \pm 1.986E-05$
Baseline + SAM	36.131 ± 0.048	0.638 ± 0.000	0.199 ± 0.001	0.186 ± 0.000	0.419 ± 0.097	$3.364E-04 \pm 2.684E-05$
Augmentation	20.952 ± 0.080	0.578 ± 0.001	0.119 ± 0.001	0.473 ± 0.000	20.033 ± 0.076	$1.893E+00 \pm 7.702E-02$
Augmentation + SAM	17.927 ± 0.048	0.594 ± 0.000	0.056 ± 0.002	0.440 ± 0.000	19.230 ± 0.035	$1.665E+00 \pm 5.137E-02$
Weight Decay	39.622 ± 0.069	0.604 ± 0.001	0.265 ± 0.000	0.222 ± 0.000	0.207 ± 0.026	$2.679E-04 \pm 1.084E-05$
Weight Decay+ SAM	35.922 ± 0.050	0.641 ± 0.001	0.180 ± 0.001	0.185 ± 0.000	0.342 ± 0.015	$3.072E-04 \pm 4.621E-06$

G VISION TRANSFORMER

G.1 CIFAR10

We see Augmentation and the Augmentation + SAM conditions perform best and they have the highest sharpness values across metrics.

Table 26: Results for ViT Trained on CIFAR10, the Mean and ± 1 SEM are recorded over 10 models. Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter models.

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	39.040 ± 0.177	0.610 ± 0.002	0.308 ± 0.002	54.805 ± 0.147	0.408 ± 0.001	0.221 ± 0.003	$8.769E-05 \pm 4.974E-06$	347.198 ± 6.425
Baseline + SAM	39.935 ± 0.144	0.600 ± 0.001	0.276 ± 0.001	54.792 ± 0.113	0.421 ± 0.001	1.576 ± 0.083	$1.458E-03 \pm 8.995E-05$	1459.292 ± 82.220
Augmentation	1.305 ± 0.076	0.724 ± 0.001	0.019 ± 0.001	64.092 ± 0.152	0.217 ± 0.001	22.809 ± 0.117	$4.741E-01 \pm 3.822E-02$	38465.647 ± 139.905
Augmentation + SAM	-1.199 ± 0.097	0.668 ± 0.002	0.030 ± 0.001	60.535 ± 0.179	0.201 ± 0.001	22.372 ± 0.042	$4.352E-01 \pm 2.420E-02$	18412.664 ± 617.822
Weight Decay	38.746 ± 0.196	0.613 ± 0.002	0.301 ± 0.002	55.077 ± 0.159	0.402 ± 0.001	0.328 ± 0.003	$1.359E-04 \pm 1.030E-05$	422.966 ± 6.897
Weight Decay + SAM	39.881 ± 0.162	0.600 ± 0.002	0.268 ± 0.001	54.797 ± 0.125	0.419 ± 0.001	2.250 ± 0.099	$2.890E-03 \pm 3.102E-04$	1908.688 ± 97.800

1350

G.2 CIFAR100

1351

1352

1353 We see Augmentation and the Augmentation + SAM conditions perform best and they have the
1354 highest sharpness values across metrics.

1355

1356

1357

1358 Table 27: Results for ViT Trained on CIFAR100, the Mean and ± 1 SEM are recorded over 10 models.
1359 Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
1360 models.

1361

Control Condition	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
Baseline	69.048 \pm 0.164	0.309 \pm 0.002	0.402 \pm 0.002	25.936 \pm 0.088	0.723 \pm 0.000	0.646 \pm 0.061	3.428E-04 \pm 4.954E-05	112.185 \pm 4.246
Baseline + SAM	67.376 \pm 0.126	0.326 \pm 0.001	0.386 \pm 0.001	27.628 \pm 0.097	0.697 \pm 0.000	0.821 \pm 0.070	4.539E-04 \pm 6.066E-05	124.472 \pm 30.314
Augmentation	37.472 \pm 0.249	0.508 \pm 0.001	0.227 \pm 0.001	38.680 \pm 0.091	0.483 \pm 0.001	17.321 \pm 0.192	5.995E-01 \pm 8.815E-02	17401.462 \pm 143.009
Augmentation + SAM	32.136 \pm 0.262	0.523 \pm 0.001	0.146 \pm 0.002	40.275 \pm 0.097	0.446 \pm 0.000	19.664 \pm 0.127	4.649E-01 \pm 2.505E-02	17812.985 \pm 55.523
Weight Decay	67.524 \pm 0.148	0.325 \pm 0.001	0.324 \pm 0.001	27.364 \pm 0.103	0.700 \pm 0.000	1.563 \pm 0.073	8.440E-04 \pm 1.251E-04	251.148 \pm 15.330
Weight Decay + SAM	67.227 \pm 0.077	0.327 \pm 0.001	0.284 \pm 0.001	27.739 \pm 0.069	0.695 \pm 0.001	5.181 \pm 0.260	4.323E-03 \pm 3.837E-04	1554.595 \pm 91.649

1368

1369

1370

1371

H RADIUS (ρ) HYPERPARAMETER SWEEP FOR SAM SHARPNESS

1373

1374

1375

We show that our finding of sharpness increasing under the application of SAM is robust to perturbations of the ρ hyperparameter. We employ the ρ value across the following values 0.5, 0.25, 0.05, 0.025, 0.005, 0.0025 training the ResNet-18 with a **batch size 256** and a **learning rate of $1e^{-3}$** . As shown in Figure 11, we can see that increasing the value of the ρ hyperparameter increases the sharpness of the minima found at the end of training, which coincides with a reduced generalisation gap. Table 28, shows that when using a ρ value of 0.25, we record the best accuracy, calibration, robustness and functional similarity results - coinciding with this finding, we can observe that this condition is far sharper than the other the other ρ value below this, showing a relationship between increased sharpness and describable generalisation properties. Finally, it is important to note that the sharpest condition, found under a ρ of 0.50, is not the best model. This reaffirms our understanding that the sharpness required to fit a function is highly dependant on the problem itself and that there appears to lack of a goldilocks zone of sharpness that is sufficient to fit a problem.

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

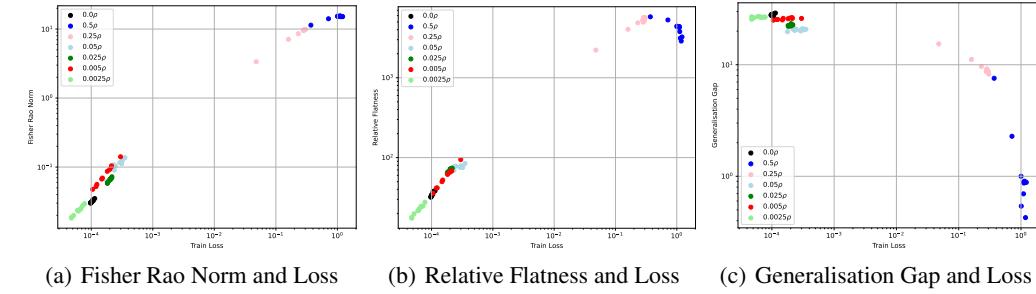


Figure 11: Scatter plots of 60 converged minima for ResNet-18 on CIFAR-10 varying the SAM (ρ) hyperparameter (0.5, 0.25, 0.05, 0.025, 0.005, 0.0025) using batch size 256 and learning rate 10^{-3} : (a) Fisher-Rao norm vs. train loss, (b) Relative Flatness vs. train loss, and (c) generalisation gap vs. train loss (log scale).

1404
 1405
 1406
 1407
 1408 Table 28: Results for ResNet-18 Trained on CIFAR10 with **batch size 256 and a learning rate**
 1409 **of 10^{-3}** while varying the ρ hyperparameter (0.5,0.25,0.05,0.025,0.005,0.0025). Numbers in bold
 1410 indicate best scores for metrics. For sharpness metrics lower values represent flatter models.
 1411
 1412
 1413

ρ Value	Generalisation Gap	Test Accuracy	Test ECE	Corruption Accuracy	Prediction Disagreement	Fisher Rao Norm	SAM Sharpness	Relative Flatness
0.0000	28.050 (0.175)	0.720 (0.002)	0.186 (0.001)	58.614 (0.201)	0.282 (0.001)	0.032 (0.001)	1.366E-05 (1.206E-06)	34.607 (0.757)
0.5000	1.605 (0.646)	0.629 (0.024)	0.079 (0.007)	52.847 (1.667)	0.221 (0.009)	14.767 (0.375)	6.814E-02 (7.326E-03)	4156.344 (279.557)
0.2500	9.751 (0.640)	0.835 (0.002)	0.026 (0.003)	68.479 (0.302)	0.089 (0.002)	8.712 (0.623)	3.884E-02 (4.981E-03)	4876.348 (314.164)
0.0500	20.588 (0.125)	0.794 (0.001)	0.108 (0.001)	66.342 (0.164)	0.168 (0.000)	0.107 (0.006)	5.823E-05 (9.056E-06)	75.093 (1.693)
0.0250	22.602 (0.109)	0.774 (0.001)	0.124 (0.001)	64.224 (0.154)	0.195 (0.000)	0.065 (0.001)	2.587E-05 (1.987E-06)	70.223 (0.941)
0.0050	25.793 (0.137)	0.742 (0.001)	0.167 (0.001)	60.985 (0.280)	0.250 (0.000)	0.082 (0.009)	4.861E-05 (7.166E-06)	57.886 (5.223)
0.0025	26.654 (0.130)	0.733 (0.001)	0.176 (0.001)	60.107 (0.226)	0.262 (0.001)	0.023 (0.001)	8.624E-06 (7.512E-07)	22.262 (0.969)

I EXPLICITLY INCREASING FUNCTION COMPLEXITY

1417 To demonstrate the relationship between sharp minima and increased function complexity, which is
 1418 suggested by the toy setting results in 4, we employ an experiment in the classification setting on
 1419 high-dimensional data wherein we artificially increase the complexity of a learning task and record
 1420 the sharpness of the minima at the end of training. **It is important to note that we calculate the**
 1421 **sharpness of the model at the end of training on the same unaltered training dataset for all**
 1422 **models.** To conduct this experiment, we randomise the labels in the training dataset of CIFAR 10 in
 1423 20% intervals and show that the resulting model trained to minimise loss on this dataset has a sharper
 1424 minima compared to learning on standard training data (0% randomised data). The training set-up
 1425 matches that of the baseline models for the ResNet18 with a batch size of 256 and a learning rate of
 1426 0.001; however, these results are averaged over 5 seeds (0-4) for each condition.

1427 The increased complexity of the learning task is also reflected in the train loss that is higher for
 1428 randomised data, despite all models being provided the same training setup, as seen in Table 29. It is
 1429 important to note that all models achieve 100% train accuracy.

1430 Table 29: Results for ResNet-18 Trained on CIFAR10 with **increasingly randomised data**. For
 1431 sharpness metrics lower values represent flatter models.

Percentage of Random Data	Train Accuracy	Train Loss	Fisher Rao Norm	SAM Sharpness	Relative Flatness
0% (Baseline)	1.000 ± 0.000	$9.997E-05 \pm 1.381E-06$	0.031 ± 0.001	$1.344E-05 \pm 1.968E-06$	33.700 ± 0.949
20%	1.000 ± 0.000	$1.039E-04 \pm 1.714E-06$	107.830 ± 0.183	$2.594E-01 \pm 2.349E-03$	38.615 ± 0.693
40%	1.000 ± 0.000	$1.071E-04 \pm 1.759E-06$	160.742 ± 0.292	$4.180E-01 \pm 2.405E-02$	42.111 ± 0.613
60%	1.000 ± 0.000	$1.085E-04 \pm 2.294E-06$	203.816 ± 0.212	$8.927E-01 \pm 1.848E-02$	44.990 ± 0.972
80%	1.000 ± 0.000	$1.107E-04 \pm 2.535E-06$	242.238 ± 0.260	$4.984E-01 \pm 3.913E-02$	47.011 ± 0.878
100%	1.000 ± 0.000	$1.094E-04 \pm 1.490E-06$	283.181 ± 0.129	$3.450E-01 \pm 3.319E-02$	47.095 ± 0.543

1440 The results from Table 29 show that as the percentage of examples becomes increasingly disjointed
 1441 through increased randomisation, there is a linear increase in the sharpness of the minima (by Fisher
 1442 Rao norm and Relative Flatness) found at the end of training. Here, the results simulate a function
 1443 becoming more complex as the decision boundaries for a particular class become tighter. While
 1444 in practice this learned function may not be useful, it strongly suggests that the more complex the
 1445 relationships in the training data, the sharper the minima at the end of training, directly aligning
 1446 function complexity and geometric properties of minima.