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ABSTRACT

Flat minima are widely believed to correlate with improved generalisation in deep
neural networks. However, this connection has proven more nuanced in recent
studies, with both theoretical counterexamples and empirical exceptions emerging
in the literature. In this paper, we revisit the role of sharpness in model performance,
proposing that sharpness is better understood as a function-dependent property
rather than a reliable indicator of poor generalisation. We conduct extensive
empirical studies, from single-objective optimisation to modern image classification
tasks, showing that sharper minima often emerge when models are regularised
(e.g., via SAM, weight decay, or data augmentation), and that these sharp minima
can coincide with better generalisation, calibration, robustness, and functional
consistency. Across a range of models and datasets, we find that baselines without
regularisation tend to converge to flatter minima yet often perform worse across
all safety metrics. Our findings demonstrate that function complexity, rather than
flatness alone, governs the geometry of solutions, and that sharper minima can
reflect more appropriate inductive biases (especially under regularisation), calling
for a function-centric reappraisal of loss landscape geometry.

1 INTRODUCTION

Neural network architectures with different implicit biases are known to exhibit distinct geometric
properties around the loss landscape minima, with flatness often associated with improved generalisa-
tion performance via reduced generalisation gaps (Li et al., 2018). This desirability has been linked to
the idea that flat minima correspond to wide error margins and thus increased robustness – in line with
Occam’s Razor (Hochreiter & Schmidhuber, 1994). Empirical and theoretical studies have sought to
support this perspective (Kaddour et al., 2022; Foret et al., 2021; Petzka et al., 2021), reinforcing the
view that flatter solutions lead to better generalisation. However, the benefits of flat minima have also
been questioned. Dinh et al. (2017) showed that flat minima, under commonly used definitions and
metrics, can be arbitrarily sharpened via reparameterisation, without changing the model’s function or
generalisation properties. This motivated the development of reparameterisation-invariant sharpness
metrics, such as the Fisher-Rao-Norm (Liang et al., 2019) and Relative-Flatness (Petzka et al., 2021)
which reaffirmed the correlation between flatness and generalisation.

Flatness has also been associated with benefits such as improved representation transfer (Liu et al.,
2023) and the effects of architectural choices such as residual connections (Li et al., 2018). Notably,
optimisation methods such as Sharpness Aware Minimization (SAM) (Foret et al., 2021), which
improve generalisation in the vision domain, explicitly aim to bias training toward flatter minima. Yet
generalisation is only one dimension of model quality. Safety-critical properties, such as robustness
to average-case perturbations (Hendrycks & Dietterich, 2019), calibration (Guo et al., 2017) and
functional diversity (Wang et al., 2024), are essential for reliable deployment. However, their
relationship to flatness remains underexplored. In particular, it is unclear whether flatter solutions
consistently support better safety, or whether high-performing models on these dimensions may
instead occupy sharper regions of the loss landscape.

In this paper, we investigate this question through a function-centric lens: we hypothesise that the
geometry of a solution reflects the complexity of the learned function, rather than directly determining
performance. From this perspective, sharper minima may not indicate overfitting, but instead reflect
more expressive or better-regularised solutions, particularly in high-dimensional learning tasks.
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We begin with seven standard single-objective optimisation problems, where global minima are
known and can be geometrically compared. These reveal that optimal solutions can be either sharp or
flat, depending on the intrinsic complexity of the objective: some functions (e.g., Sphere) have flat
global minima, while others (e.g., Rosenbrock) have inherently sharp global mimima. This indicates
that the geometry of the solution space is tied to function complexity, not optimality.

We then scale our analysis to high-dimensional problems, and use the CIFAR (Krizhevsky & Hinton,
2009) and TinyImageNet (Le & Yang, 2015) datasets to train the ResNet (He et al., 2016) VGG (Si-
monyan & Zisserman, 2015), and ViT (Dosovitskiy et al., 2021) architectures. We compare baseline
models to those trained with standard regularisation techniques (SAM, weight decay, and data aug-
mentation), evaluating each using reparameterisation-invariant sharpness metrics, generalisation
performance, and safety-critical evaluations: expected calibration error, average-case perturbation
robustness, and functional agreement.

Our findings provide strong empirical support for a function-centric view of sharpness: models
trained with regularisation typically converge to sharper minima, and often outperform their flatter,
unregularised counterparts across safety and generalisation metrics (Figure 1). This indicates that
regularisation increases the complexity of the learned function, leading to sharper but more effective
solutions. However, it is important to note that distinct trends emerge in each control condition, some
with a preference for flatter solutions and others not suggesting the emergence of the Simpson’s
Paradox (Simpson, 1951), which means that minima geometry requires a nuanced view over a
one-size-fits-all preference for flatness. While SAM and related methods were originally motivated
by the goal of encouraging flatness, we show that their benefits frequently arise despite increasing
sharpness. Together, these results challenge the assumption that flatness is inherently beneficial and
support a reappraisal of sharpness through the lens of function complexity.
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Figure 1: Scatter plots of 240 converged minima for ResNet-18 on CIFAR-10 across batch size
128, 256 and learning rate 10−3, 10−2: (a) Fisher–Rao norm vs. train loss, (b) Relative Flatness vs.
train loss, and (c) generalisation gap vs. train loss (log scale). Full results in Appendix E.2.

Concretely, we make the following contributions:

• We advance a function-centric interpretation of sharpness, where the geometry of minima
reflects the complexity of the learned function rather than serving as a universal proxy for
generalisation.

• We provide empirical evidence from both toy optimisation problems and high-dimensional
deep learning tasks that sharper minima can coincide with better generalisation, calibration,
and robustness, particularly under regularisation.

• We show that widely used regularisation techniques (e.g., SAM, weight decay, augmentation)
often induce sharper minima, contradicting the assumption that regularisation generally
promotes flatter solutions.

• We demonstrate that sharpness cannot be meaningfully compared across architectures or
tasks without accounting for function complexity and implicit bias, cautioning against
overgeneralised geometric claims.

Our findings can be summarised as follows:
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1. Sharpness varies across global minima in single-objective optimisation, reflecting function
complexity rather than solution quality. Regularised models, on high dimesnional problems
typically converge to sharper minima, yet often achieve better generalisation, calibration,
robustness, and functional consistency than flatter unregularised baselines.

2. We reconcile SAM’s local robustness objective with increased global sharpness, aligning
with a function-centric view of geometry.

3. Our results support a function-centric view of sharpness: solution geometry is shaped by
the complexity of the learned function and the model’s inductive biases. Crucially there
exists no clear goldilocks zone for sharpness across architectures and datasets as sharpness
is dependant on function complexity and implicit bias.

2 RELATED WORK

Hochreiter & Schmidhuber (1997) presented seminal empirical evidence that neural networks adhered
to Occam’s Razor. They showed that a flat minimum search algorithm using a second-order hessian
approximation could yield the smallest generalisation gap on two-class classification problems.
Therefore, due to the observed empirical relation of flatness and generalisation it was thought that the
antipodal sharp minima were undesirable. The importance of flatness in more complex learning
tasks was later reaffirmed by Li et al. (2018) who introduced landscape visualisation to study the
geometry of deep networks. They argued that skip connections prevent explosions of non-convexity,
helping to avoid chaotic plateaus often associated with sharp minima. Building on this, Sharpness
Aware Minimisation (Foret et al., 2021) was proposed as an optimisation method (motivated by
Hochreiter & Schmidhuber (1997)) that explicitly aims to reduce sharpness in the loss landscape.
SAM has yielded strong empirical performance gains over traditional optimisation (Foret et al.,
2021). However, some literature has challenged this interpretation, arguing that SAM does not
necessarily find flatter minima (Wen et al., 2023). The necessity of flatness for generalisation has
also been questioned more fundamentally. Notably, Dinh et al. (2017) demonstrate that sharpness can
be arbitrarily increased through reparameterisation without affecting generalisation, casting doubt
on the intrinsic value of flatness. In response, reparameterisation-invariant sharpness metrics were
developed (Petzka et al., 2021) and have since been used to reaffirm the correlation between flatness
and generalisation. Together, these developments highlight a conceptual tension: while sharpness
was shown to be manipulable through reparameterisation and thus not an intrinsic property of the
learned function, flatness is still widely used as a desirable indicator of generalisation.

In this paper, we revisit the role of flatness in deep learning. We argue that the geometry
of a neural network’s minimum should reflect its capacity to match the complexity of the
function represented by the data, rather than conform to a prior preference for flatness. From this
function-centric view, regularisation improves performance not by flattening the loss landscape, but
by enabling the learning of more complex functions – functions that are harder to learn, often require
more intricate decision boundaries, and are frequently associated with sharper minima. Contrary
to the view that sharpness signals poor generalisation, we show that sharper solutions can emerge
precisely when models generalise better. We propose that sharpness reflects task complexity and
inductive bias, challenging its conventional role as a proxy for generalisation.

3 SHARPNESS, GENERALISATION AND SAFETY CRITICAL EVALUATIONS

Sharpness Metrics: We employ three established measures of sharpness from the literature, namely
Fisher-Rao Norm (Liang et al., 2019), Relative Flatness (Petzka et al., 2021), and average-case SAM-
Sharpness (Foret et al., 2021). Formal definitions are provided in Appendix Section B. Hessian-based
metrics, such as the eigenvalue of the Hessian and the trace of the Hessian, were shown not to
be reparameterisation invariant as they can be manipulated via linear reparameterisations. These
reparameterisations do not change the function of the model but can make the minima sharper Dinh
et al. (2017), undermining relationships between generalisation and flat minima. As a result, we focus
on two sharpness metrics in particular, Fisher-Rao Norm (Liang et al., 2019) and Relative Flatness
(Petzka et al., 2021) that are reparametrisation invariant to ensure that our study, and its findings are
robust (to reparametrisations).
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Calibration: Calibration measures how well a model’s predicted confidence aligns with its true
likelihood of correctness. Deep networks, including ResNets, have been shown to be systematically
overconfident (Guo et al., 2017), reducing trust in their predictions. We measure calibration using
Expected Calibration Error (ECE) (Guo et al., 2017), where lower values indicate better calibration
and higher trustworthiness.

Functional Diversity: Functional diversity reflects how similar neural networks are in their rep-
resentation space (Wang et al., 2024; Mason-Williams et al., 2024b; Mason-Williams, 2024). Prior
work has linked diversity in function space to improved ensemble performance (Fort et al., 2020; Lu
et al., 2024), while others argue that representation convergence can also benefit ensembling (Wang
et al., 2024). We quantify functional similarity using prediction disagreement on the test set, which
captures how often models disagree on their outputs. Lower disagreement implies that models tend
to agree more on individual predictions given the same training data, indicating stronger functional
similarity. We interpret this agreement as a desirable property, reflecting stability in the learned
function and robustness to training stochasticity.

Robustness: Robustness assesses how well a model performs under distribution shift or input
perturbations, which is crucial for deployment in safety-critical settings (Hendrycks & Dietterich,
2019). We evaluate robustness on CIFAR10-C and CIFAR100-C (Hendrycks & Dietterich, 2019),
which include common corruptions such as impulse noise, JPEG compression, and contrast
distortions. Performance is quantified via mean corruption accuracy; higher values indicate
greater robustness. The perturbations explored represent average-case perturbation over worst-case
perturbations that are typically explored in adversarial robustness studies(Hendrycks & Dietterich,
2019)

Each of the evaluation axes above extends beyond accuracy and captures different aspects
of model. We argue that these metrics are essential for evaluating models in real-world, safety-critical
contexts. Moreover, they provide a broader view of generalisation that complements geometric
analyses such as sharpness. We formally define and provide additional details on all evaluation
protocols in Appendix C.

4 SINGLE-OBJECTIVE OPTIMISATION
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Figure 2: Himmelblau’s function land-
scape with four global minima in red.

We posit that the sharpness reached by a model depends
on the geometric properties of the function it is trained to
approximate. To illustrate that loss-landscape geometry
is tied to solution complexity, we begin with a toy set-
ting: single-objective optimisation. Toy settings have been
used to study geometric properties of neural networks such
as Huang et al. (2020) which used the Swiss Roll dataset
to explore generalisation and flat minima. Consider Him-
melblau’s function in equation 1 (visualised in Figure 2).
It has four global minima whose local geometry differs
markedly (Table 1), yet each achieves zero loss. Thus,
no minimum is intrinsically preferable from an optimisa-
tion objective standpoint. Under flatness-centric views,
flatter minima would be deemed superior; however, any
network that represents the target function can plausibly
converge to any of these minima. Flatness is therefore not
a necessary criterion for optimality in this setting.

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2 (1)
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Global Minimum Condition Number Hessian Trace Hessian determinant Max Eigenvalue
(3.0, 2.0) 3.200 108.000 2116.000 82.284
(-2.805118, 3.131312) 1.242 145.39 5222.890 80.550
(-3.77931, -3.283186) 1.892 204.500 9460.560 133.786
(3.584428, -1.848126) 3.674 134.110 3024.540 105.419

Table 1: Local geometric properties at the four global minima of Himmelblau’s function.

Moving beyond this example, we examine a set of single-objective problems with a single global
minimum. Figure 3 visualises six such functions (definitions in Appendix A). Each exhibits a distinct
landscape, implying different local curvature at its global minimum. Table 2 reports sharpness
statistics at the global minimum. For instance, the Sphere function is the flattest across metrics,
whereas functions with more intricate landscapes (e.g., Rosenbrock, Beale, Booth) have sharper
optima. Accurately representing these objectives therefore entails reaching minima with geometry
commensurate to the function’s complexity.

Table 2: Sharpness at the global minimum for six single-objective optimisation functions.

Function Condition Number Hessian Trace Hessian determinant Max Eigenvalue
Sphere 1.000 4.000 4.000 2.000
Rosenbrock 2508.010 1002.000 400.000 1001.600
Rastrigin 1.000 793.568 157438.000 396.784
Beale 162.473 49.281 14.766 48.980
Booth 9.000 20.000 36.000 18.000
Three hump camel 2.784 6.000 7.000 4.414
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Figure 3: Landscapes for six single-objective functions.

We next fit an MLP to each objective using the same initialisation and average over ten models.
As shown in Figure 4, the sharpness of local minima encountered during training reflects the
sharpness of the global optimum: with a fixed training budget, model sharpness, training loss, and
generalisation gap are governed by the complexity of the target function (cf. Figure 3). Although
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absolute generalisation gaps differ across objectives, they exhibit similar relative reductions over
training. Appendix A.2 further shows that matching final loss across functions still yields different
sharpness levels, as expected from their intrinsic geometry. Consequently, flatness is desirable only
when demanded by the target function (e.g., Sphere). Seeking flat solutions for intrinsically sharper
objectives (e.g., Rosenbrock) is suboptimal: their complexity is consistent with the need for tighter
decision boundaries and thus sharper minima. It is important to note that this section is purely
illustrative of how neural network minima geometry can relate to function complexity and that this
analysis in the regression case would not hold for sharpness metrics such as Relative Flatness due to
their requirement for locally constant labels Petzka et al. (2021). In the following section, we see
how our findings in this toy setting extend to reparametrisation invariant metrics, Fisher Rao norm,
and Relative Flatness in classification settings where locally constant label conditions hold.
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Figure 4: Training an MLP on single-objective problems over epochs: mean sharpness, training loss,
and absolute generalisation gap (averaged over 10 runs).

Furthermore, in Appendix Section I we show how arbitrarily increasing the complexity of training
data in a classification task results in a model reaching a sharper minima under Fisher Rao norm
and Relative Flatness. The findings from this experiment confirm the insights gained on function
complexity and geometric properties in this toy setting.

5 HIGH-DIMENSIONAL OPTIMISATION PROBLEMS

Building on the view that flatness reflects the complexity of the function being fit, we extend our
analysis to high-dimensional settings and ground it in the vision domain. In practice, deep vision
neural networks are routinely trained with regularisation (Goodfellow et al., 2016; Kukačka et al.,
2017), yet why specific regularisers improve generalisation remains only partially understood despite
extensive prior work (Tian & Zhang, 2022; Moradi et al., 2020; Santos & Papa, 2022) – making vision
an ideal test-bed to study how geometry relates to reliability (calibration, robustness, and prediction
agreement) at scale. Our contribution is to examine these phenomena through the lens of solution
(function-space) complexity, explicitly linking geometry to both generalisation and safety-relevant
measures. This function-centric perspective offers a complementary reading of flat and sharp minima.

Function Complexity: Occam’s Razor, or the Principle of parsimony, formally states that of
two competing hypotheses, H and H′ which both adequately describe an event event, E , and are
composed of assumptions, A, where the number of assumptions is bounded by K and J where
K < J and {A1,A2, ...,AK} ∈ H and {A1,A2, ...,AJ } ∈ H′, there should be a preference
towards the hypothesis which has the fewest assumptions, AK, (Good, 1977). For neural networks,
this has been understood, in relation to the minimum descriptive length (MDL), that neural networks
with flatter minima make fewer assumptions and can be described with less precision as they remain
approximately constant under perturbation and therefore, in line with Occam’s Razor, should be
preferred Hochreiter & Schmidhuber (1994). As a result, it can be understood through an extension
of Occam’s Razor and MDL that minima sharpness represents the quantity of assumptions required,
meaning that sharp minima have a longer MDL, and therefore (for better or worse) represent a more
complex function. Through this lens, we study how sharpness (function complexity) is governed
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by regularisation to better understand generalisation and training dynamics. We further this by
connecting this complexity study to safety-relevant evaluations such as robustness, calibration, and
prediction consistency.

Despite the work of Dinh et al. (2017), flat minima are still considered important for improved
generalisation (Han et al., 2025; Petzka et al., 2021; Lee & Yoon, 2025; Cha et al., 2021; Zhao
et al., 2022). However, the connection of minima geometry to safety metric evaluation and function
complexity remains underexplored. Existing perspectives in the flatness literature suggest that neural
networks with small generalisation gaps - and, by extension, strong safety metric performance -
should be found at flatter minima, however, our single-objective analysis indicates a different picture:
regularisation may be able to yield sharper minima when the learned functions is represented with
more precision. We therefore examine, in a controlled manner, how commonly used regularisers
affect sharpness and the corresponding safety evaluations across matched seeds.

More formally, given a training control (regulariser) c, we examine how it impacts sharpness, and
what are the corresponding safety evaluations. Let the set of controls (training conditions) be
C = {Baseline, Baseline+SAM, Aug, Aug+SAM, WD, WD+SAM}. Let M = {FR,RF,SAM}
denote sharpness metrics (Fisher–Rao, Relative Flatness, SAM sharpness; lower is flatter), and let
R = {Accclean, Acccorr, ECE, Disagree} denote evaluation metrics (test accuracy, corruption-robust
accuracy where available, calibration, prediction disagreement). We run seeds i ∈ {0, . . . , 9} with
identical initialisation and data order across controls.

For each control c ∈ C and seed i, we record S
(c)
i,m (m ∈ M), R

(c)
i,r (r ∈ R). We report per-control,

per-metric summaries as means across seeds:

S̄(c)
m =

1

n

n−1∑
i=0

S
(c)
i,m, R̄(c)

r =
1

n

n−1∑
i=0

R
(c)
i,r ,

and present mean ± SEM Belia et al. (2005) across seeds.

Hypothesis: Regularisation tends to increase sharpness (larger S̄
(c)
m than Baseline), while the

corresponding evaluations often improve (higher accuracy metrics; lower ECE and disagreement).

5.1 EXPERIMENTAL SETUP

We adopt the notation above. We run n = 10 matched seeds; for each seed, all controls share the
same initial weights and data order. This ensures that models trained under different controls start
from the same point in the loss landscape and, in principle, could traverse to (and even reach) the
same minima, enabling controlled geometric comparisons. Each control is applied independently;
all other training details (optimiser, schedule, epochs, etc.) are held fixed across controls. Our
objective is to characterise, under controlled conditions, the geometric and safety effects of reg-
ularisation controls, not to optimise for state-of-the-art performance. We define the controls as follows.

Baseline: Vanilla training without additional regularisation. For each architecture/dataset,
the exact baseline configuration is specified in Appendix D. The baseline serves as the reference for
geometric and safety metrics against which all regularised controls are compared.

Weight Decay, Augmentation and SAM: We consider weight decay (5 × 10−4), data aug-
mentation (random rotation and crop), and SAM, applied individually or in combination as defined
in C. We record their effect on sharpness metrics (M) and safety evaluations (R) under the
matched-seed setup.

6 RESULTS

We present results for ResNet18 trained on CIFAR10, CIFAR100, and TinyImageNet. For each
control in C, we report geometric sharpness metrics (M) and reliability-relevant evaluations (R)
across 10 matched seeds. Appendix D details training and sharpness metric settings per dataset.
Results for VGG and ViT architectures appear in Appendix F and G, confirming the broader trends
observed here. Tables 3, 5, 7 below summarise how each training control affects sharpness and
safety evaluations. Means ± SEM are reported per metric. TinyImageNet results exclude Corruption
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Accuracy and Relative Flatness due to metric inapplicability. Additional results for batch size (256
and 128) and learning rate (1e−3 and 1e−2) sweeps for ResNet and VGG are in Appendix E.2 and F.1,
further confirming the trends observed here. In Appendix Section H we explore how increasing the
radius ρ hyperparameter of SAM can increase a model’s sharpness over the baseline and in turn
improve performance. Finally, in Appendix Section I, we artificially increase the function complexity
of training data and observe how minima become sharper when classes have increasingly disjoint
examples. Here, we see that function complexity and minima geometry are inherently related.

Table 3: Results for ResNet18 trained on CIFAR10. Bolded values indicate the best performance per
metric. For sharpness metrics, lower values correspond to flatter models.

Condition
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 28.050 ±0.175 0.720 ±0.002 0.186 ±0.001 58.614 ±0.201 0.282 ±0.001 0.032 ±0.001 1.366E-05 ±1.206E − 06 34.607 ±0.757
Baseline
+ SAM 20.588 ±0.125 0.794 ±0.001 0.108 ±0.001 66.342 ±0.164 0.168 ±0.000 0.107 ±0.006 5.823E-05 ±9.056E − 06 75.093 ±1.693

Augmentation 10.399 ±0.067 0.886 ±0.001 0.077 ±0.001 68.755 ±0.219 0.121 ±0.001 3.940 ±0.207 1.905E-01 ±2.203E − 02 2903.220 ±89.243
Augmentation

+ SAM 6.864 ±0.038 0.908 ±0.000 0.014 ±0.001 71.419 ±0.283 0.069 ±0.000 5.571 ±0.035 1.303E-01 ±1.547E − 02 4970.972 ±30.139

Weight Decay 27.942 ±0.196 0.721 ±0.002 0.174 ±0.002 58.562 ±0.227 0.281 ±0.001 0.065 ±0.004 3.391E-05 ±4.494E − 06 59.767 ±3.009
Weight Decay

+ SAM 19.788 ±0.149 0.802 ±0.001 0.096 ±0.001 67.079 ±0.117 0.162 ±0.001 0.127 ±0.006 8.733E-05 ±1.430E − 05 88.807 ±2.336
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Table 4: Loss landscape visualisation Li et al. (2018) of ResNet18 landscape on CIFAR10 exploring
the loss in the domain of the perturbations [−1, 1]2 with 51 steps in both directions.

Regularisers Increase Sharpness and Improve Evaluations. Across all CIFAR datasets and
architectures, we observe a recurrent trend: the Baseline condition yields the flattest minima (lowest
values across FR, RF, SAM), yet performs worst on test accuracy and safety-relevant metrics: calibra-
tion (ECE), robustness (Corruption Accuracy), and functional consistency (Prediction Disagreement)
(Tables 3, 5). Conversely, controls with stronger regularisation tend to yield sharper solutions while
also achieving better evaluations. This challenges the conventional view that flatter minima are
inherently preferable, and instead supports the function-centric perspective that sharper minima can
reflect more complex, well-generalising solutions. Crucially, we also find that sharper minima can
empirically yield better safety-relevant performance.

Limitations of Loss Landscape Visualisations. Loss landscape visualisations (Figures 4, 6), pro-
duced using the method of Li et al. (2018), qualitatively illustrate that regularisation – especially SAM
– alters the geometry of the solution. These plots often appear broader in some directions, even when
sharpness metrics increase. This apparent mismatch underscores the limitations of low-dimensional
loss surface plots, which capture only 2D projections of high-dimensional landscapes. In contrast,
sharpness metrics reflect geometric properties beyond local projections. While visualisations can
help convey functional changes, metric-based evaluations provide a more consistent and interpretable
picture of sharpness.
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SAM Does Not Always Flatten: Contrary to prior claims that SAM finds flatter solutions (Foret
et al., 2021; Cha et al., 2021), our results show that SAM often increases sharpness across metrics and
conditions (Tables 3, 5 and 7, as well as Appendix Sections F and G). Notably, Augmentation+SAM
achieves the best performance across evaluations while also being the sharpest model. There
are limited exceptions; for example, SAM Sharpness decreases for Aug+SAM on CIFAR10 and
CIFAR100 (Tables 3, 5), but these are not consistent across metrics. On more complex datasets
(TinyImageNet; Table 7), SAM can sometimes lead to flatter solutions, though this behaviour is
again inconsistent. Overall, these findings show that SAM supports the learning of higher-performing
functions that may reside in sharper regions of the loss landscape. In Appendix Section H, we show
how modifying the ρ radius hyperparameter of SAM can directly modify the sharpness of the minima
found at the end of training. In these results, we reaffirm that the best models navigate to even sharper
minima than the baseline as the perturbation radius grows.

Table 5: Results for ResNet18 trained on CIFAR100.Bolded values indicate the best performance per
metric. For sharpness metrics, lower values correspond to flatter models.

Condition
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 47.010 ±0.166 0.530 ±0.002 0.220 ±0.001 38.760 ±0.085 0.452 ±0.000 0.294 ±0.028 2.607E-04 ±3.147E − 05 32.085 ±0.313
Baseline
+ SAM 44.421 ±0.168 0.556 ±0.002 0.191 ±0.002 41.888 ±0.098 0.410 ±0.000 0.399 ±0.014 4.231E-04 ±4.973E − 05 123.791 ±4.185

Augmentation 29.642 ±0.133 0.697 ±0.002 0.185 ±0.001 44.613 ±0.169 0.288 ±0.001 3.587 ±0.150 1.110E-01 ±9.173E − 03 2766.925 ±178.669
Augmentation

+ SAM 28.999 ±0.092 0.705 ±0.001 0.145 ±0.001 45.428 ±0.217 0.269 ±0.000 4.179 ±0.032 1.081E-01 ±1.636E − 02 4196.832 ±52.606

Weight Decay 47.838 ±0.301 0.521 ±0.003 0.099 ±0.005 37.868 ±0.265 0.474 ±0.001 0.861 ±0.116 5.192E-04 ±8.009E − 05 136.969 ±7.484
Weight Decay

+ SAM 45.644 ±0.117 0.543 ±0.001 0.106 ±0.002 40.604 ±0.222 0.444 ±0.001 1.788 ±0.069 1.528E-03 ±1.427E − 04 360.271 ±16.190
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Table 6: Loss landscape visualisation Li et al. (2018) of ResNet18 landscape on CIFAR100 exploring
the loss in the domain of the perturbations [−1, 1]2 with 51 steps in both directions.

Reconciling SAM’s Objective with Increased Sharpness. While SAM is commonly understood as
a flatness-promoting method (Foret et al., 2021), its objective encourages local robustness rather than
global flatness. Specifically, SAM minimises the loss at the worst-case perturbation within a small
neighbourhood around the current weights, thereby promoting low curvature in that vicinity. However,
this does not guarantee low values across all global or reparameterisation-invariant sharpness metrics.
Our findings – where SAM often increases Fisher–Rao norm, Relative Flatness, and SAM-sharpness
– highlight that sharper solutions can still emerge, especially when the model learns more complex or
expressive functions. This suggests that SAM enables good generalisation and safety not solely by
flattening, but by guiding the model to solutions that are robust in important local directions, even if
globally sharp under broader measures. To our knowledge, this is the first work to systematically
document that SAM can increase multiple sharpness metrics and to interpret this effect through
the lens of local robustness, helping to reconcile SAM’s flatness-based motivation with empirically
sharper solutions.
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Safety Properties Can Exist at Sharper Minima. Across all CIFAR datasets, we consistently
observe that the Baseline control yields the flattest solutions, yet performs worst on safety-relevant
evaluation. In contrast, the controls that achieve the best performance on these metrics are always
sharper than the Baseline. These results suggest that sharper minima can coincide with improved
safety properties, indicating that sharpness may in fact be an important factor in achieving reliable
models. One possible explanation is that sharper minima correspond to tighter decision boundaries,
which may be beneficial in certain tasks (Huang et al., 2020). This interpretation offers a useful lens
through which to interpret our findings: improved safety performance does not require flatness, and
may in some cases arise from sharper solutions.

Table 7: Results for ResNet18 (Pre-Trained) on TinyImageNet. Bolded values indicate the best
performance per metric. For sharpness metrics, lower values correspond to flatter models.

Control
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Baseline 49.643 ±0.103 0.503 ±0.001 0.257 ±0.001 0.385 ±0.000 0.479 ±0.002 3.202E-04 ±9.872E − 06
Baseline
+ SAM 46.255 ±0.128 0.537 ±0.001 0.223 ±0.001 0.344 ±0.000 0.427 ±0.004 3.080E-04 ±8.424E − 06

Augmentation 19.993 ±0.091 0.508 ±0.001 0.102 ±0.001 0.544 ±0.000 25.887 ±0.098 1.680E+00 ±8.776E − 02
Augmentation

+ SAM 16.777 ±0.084 0.520 ±0.001 0.044 ±0.001 0.514 ±0.000 25.193 ±0.034 1.446E+00 ±6.332E − 02

Weight Decay 49.689 ±0.092 0.503 ±0.001 0.202 ±0.001 0.384 ±0.000 0.998 ±0.002 2.297E-04 ±9.718E − 06
Weight Decay+ SAM 46.061 ±0.111 0.539 ±0.001 0.177 ±0.001 0.339 ±0.000 0.736 ±0.004 3.784E-04 ±9.996E − 06

There is No Geometric Goldilocks Zone for Sharpness: Although sharper solutions often perform
better across generalisation and safety metrics on the CIFAR datasets, the sharpest model is not always
the best overall. Still, the top-performing model is typically sharper than the Baseline, suggesting that
a learning task may require a level of sharpness beyond what is induced by the architecture’s implicit
regularisation. This supports the view that neither extreme flatness nor sharpness is universally
optimal. Instead, the “right” level of sharpness appears task- and architecture-dependent. This is also
shown in Appendix Section H where we sweep the radius ρ hyperparameter of SAM and observe that
an increased radius leads to sharper models over the baseline that perform far better. However, in these
experiments the sharpest model, when ρ is 0.50, is not the best performing model. Importantly, this
highlights the risk of misleading conclusions when aggregating sharpness trends across heterogeneous
architectures: we observe that general trends can invert under such aggregation, consistent with
Simpson’s Paradox (Simpson, 1951). Careful control over architecture-specific inductive biases is
therefore essential when studying geometry-function relationships.

7 CONCLUSION

This work revisits the relationship between geometry and generalisation in deep learning, extending
it to include safety-relevant evaluations such as calibration, robustness to corruptions, and functional
consistency. Rather than focusing solely on accuracy, we evaluate how sharpness relates to broader
reliability properties. Across diverse architectures and datasets, we find that standard training controls
such as weight decay, data augmentation, and SAM often lead to sharper solutions that also achieve
stronger performance on safety metrics. These results challenge the conventional assumption that
flatter minima are inherently preferable, and instead support a function-centric view in which sharper
minima can correspond to more complex, well-generalising functions. We further reconcile SAM’s
behaviour by noting it promotes local robustness rather than global flatness, explaining why improved
generalisation can coincide with increased sharpness. Our findings demonstrate that sharpness is
not universally harmful – in fact, it may be beneficial for safety performance in certain settings. We
posit that the geometry of learned solutions is shaped by task-specific demands, such as the need for
tighter decision boundaries. Overall, this work calls for a re-evaluation of geometric intuitions in
deep learning, and underscores the importance of connecting training controls, solution geometry,
and functional reliability.
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Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning: A taxonomy,
2017.

Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibra-
tion. In Advances in Neural Information Processing Systems, volume 32,
2019. URL https://papers.nips.cc/paper_files/paper/2019/hash/
f8c0c968632845cd133308b1a494967f-Abstract.html.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015. URL
https://cs231n.stanford.edu/reports/2015/pdfs/yle_project.pdf.

Hyun Kyu Lee and Sung Whan Yoon. Flat reward in policy parameter space implies robust rein-
forcement learning. In The Thirteenth International Conference on Learning Representations,
2025.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
loss landscape of neural nets. In Advances in Neural Information Processing Systems,
volume 31, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
a41b3bb3e6b050b6c9067c67f663b915-Abstract.html.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geometry,
and complexity of neural networks. In Proceedings of the Twenty-Second International Conference
on Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine Learning Research,
pp. 888–896. PMLR, 2019. URL https://proceedings.mlr.press/v89/liang19a.
html.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better downstream:
Implicit bias matters for language models. In Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 22188–22214.
PMLR, 2023. URL https://proceedings.mlr.press/v202/liu23ao.html.

Haiquan Lu, Xiaotian Liu, Yefan Zhou, Qunli Li, Kurt Keutzer, Michael W. Mahoney, Yujun Yan,
Huanrui Yang, and Yaoqing Yang. Sharpness-diversity tradeoff: improving flat ensembles with
sharpbalance. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=wJaCsnT9UE.

Israel Mason-Williams. Neural network compression: The functional perspective. In 5th Workshop
on practical ML for limited/low resource settings, 2024.

Israel Mason-Williams, Fredrik Ekholm, and Ferenc Huszar. Explicit regularisation, sharpness and
calibration. In NeurIPS 2024 Workshop on Scientific Methods for Understanding Deep Learning,
2024a. URL https://openreview.net/forum?id=ZQTiGcykl6.

Israel Mason-Williams, Gabryel Mason-Williams, and Mark Sandler. Knowledge distillation: The
functional perspective. In NeurIPS 2024 Workshop on Scientific Methods for Understanding Deep
Learning, 2024b. URL https://openreview.net/forum?id=Cgo73ZnAQc.

Reza Moradi, Reza Berangi, and Behrouz Minaei. A survey of regularization strategies for deep
models. Artif. Intell. Rev., 53(6):3947–3986, aug 2020. ISSN 0269-2821. doi: 10.1007/
s10462-019-09784-7. URL https://doi.org/10.1007/s10462-019-09784-7.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

12

https://openreview.net/forum?id=vDeh2yxTvuh
https://openreview.net/forum?id=vDeh2yxTvuh
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
https://papers.nips.cc/paper_files/paper/2019/hash/f8c0c968632845cd133308b1a494967f-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/f8c0c968632845cd133308b1a494967f-Abstract.html
https://cs231n.stanford.edu/reports/2015/pdfs/yle_project.pdf
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.mlr.press/v89/liang19a.html
https://proceedings.mlr.press/v89/liang19a.html
https://proceedings.mlr.press/v202/liu23ao.html
https://openreview.net/forum?id=wJaCsnT9UE
https://openreview.net/forum?id=ZQTiGcykl6
https://openreview.net/forum?id=Cgo73ZnAQc
https://doi.org/10.1007/s10462-019-09784-7


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems, vol-
ume 32, 2019. URL https://papers.nips.cc/paper_files/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley. Relative
flatness and generalization. In Advances in Neural Information Processing Systems, volume 34, pp.
18420–18432, 2021. URL https://openreview.net/forum?id=sygvo7ctb_.
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A SINGLE-OBJECTIVE OPTIMISATION FUNCTIONS

The Sphere, Rosenbrock, Rastrigin, Beale, Booth, Three Hump Camel and the Himmelblaus functions
are defined in equations 2-8 respectively.

f(x, y) = (x2 + y2) (2)

f(x, y) = (a− x)2 + b(y − x2)2, where a = 1 and b = 100 (3)

f(x, y) = 2a+ x2 − a cos(2xπ) + y2 − a cos(2yπ), where a = 10 (4)

f(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2 (5)

f(x, y) = (x+ 2y−7)2 + (2x+ y − 5)2 (6)
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f(x, y) = 2x2 − 1.05x4 +
x6

6
+ xy + y2 (7)

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2 (8)

A.1 TRAINING DETAILS

We trained a 3 layer ReLU multi-layered perceptron with a input width of two, a hidden width of
64 and output width of 1 with the Adam Optimizer with a learning rate of 1e-3. The train and test
dataset consisted of 10,000 input pairs (X,Y ) generated by independently sampling X and Y from a
uniform distribution U(−3.5, 3.5). For each of the seven functions (Sphere, Rosenbrock, Rastrigin,
Beale, Booth, Three Hump Camel and the Himmelblaus), every input pair was evaluated using that
specific function, yielding a target output T for each function such that F (X,Y ) = T . This procedure
resulted in seven distinct datasets with identical input distributions but unique output transformations
determined by their respective functions allowing for a clear assessment and comparison of the
model’s capacity to learn each target function under controlled input conditions.

For Figure 3 the model was trained 10 times with the same initialisation with ten different datasets
for the respective function for 106 epochs, where the mean sam sharpness based on the training data
and train and test loss where recorded for initialisation and epochs 100, 101, 102, 103, 104, 105, 106.

For Figures 5-9, the model was trained 10 times with the same initialisation with ten different datasets
for the respective function until the mode the model reached the specified training target loss of
300, 150, 100, 10, and 1. For the Beale function, the model was unable to achieve a train loss of than
150 and lower within 106 epochs, and for the Rosenbrock function the model was unable to achieve a
train loss of 100 and lower within 106 epochs.

A.2 TRAINING TO EQUIVALENT LOSS

Because the model achieves different final losses after training for [100, 101, 102, 103, 104, 105, 106]
epochs, we control for training duration by fixing a target train loss. We then investigate how reaching
an approximate target train loss influences model sharpness and the generalisation gap.

When comparing the mean sam sharpness a model achieves at a train loss of 300 (Figure 5), we
observe clear patterns. The model trained on the Rosenbrock and Beale tasks has sharpness values
between 20 and 50. In contrast, when trained on Rastrigin, Booth, and Himmelblaus tasks, sharpness
values range between 5 and 10. The Sphere and Three-Hump Camel tasks produce the flattest results.
In Figure 5(centre), the model trained on different tasks shows varied generalisation gaps at this fixed
loss. In Figure 5(right), several tasks (Sphere, Rastrigin, Booth, Three-Hump Camel, Himmelblaus)
yield similar generalisation gaps but differing sharpness values. Interestingly, the Rosenbrock task
produces significantly higher sharpness while overlapping in generalisation gap with the Three-Hump
Camel task. These observations underscore that sharpness reflects the learning task rather than model
generalisation.

Because measuring at a train loss of 300 is arbitrary, we also examine target losses of 150, 100, 10,
and 1 (Figures 6-9). Across these, we find that the model can have similar train losses but different
sharpness depending on the learned function, supporting the initial claim.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

100 150 200 250 300
Train Loss

0

10

20

30

40

50

M
ea

n 
Sa

m
 S

ha
rp

ne
ss

sphere
rosenbrock
rastrigin
beale
booth
three_hump_camel
himmelblaus

100 150 200 250 300
Train Loss

0

50

100

150

200

250

|G
en

er
al

isa
tio

n 
Ga

p|

sphere
rosenbrock
rastrigin
beale
booth
three_hump_camel
himmelblaus

0 50 100 150 200 250
|Generalisation Gap|

0

10

20

30

40

50

M
ea

n 
Sa

m
 S

ha
rp

ne
ss

sphere
rosenbrock
rastrigin
beale
booth
three_hump_camel
himmelblaus

Figure 5: Scatter plots an MLP trained on the sphere, rosenbrock, rastrigin, beale, booth, three-hump
camel, and himmelblaus functions for 10 different datasets till reaching a target train loss of 300:
(left) mean sam sharpness vs. train loss, (centre) | generalisation gap | vs. train loss, and (right)
|generalisation gap| vs. mean sam sharpness.
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Figure 6: Scatter plots an MLP trained on the sphere, rosenbrock, rastrigin, booth, three-hump camel,
and himmelblaus functions for 10 different datasets till reaching a target train loss of 150: (left) mean
sam sharpness vs. train loss, (centre) | generalisation gap | vs. train loss, and (right) |generalisation
gap| vs. mean sam sharpness.

Some functions drop off as we reach particular target losses. This happens because functions with
more complicated landscapes, such as Beale and Rosenbrock, cannot exceed a train loss of 150
MSE. Less complex functions, such as the Sphere, can surpass this threshold. This supports our
understanding that function complexity and solution geometry impact how easily a function can be fit.
Less complex functions are more easily fit and tend to record lower sharpness values than complex
functions, even when they achieve the same relative loss and generalisation gaps. As a result, it may
be necessary to have better inductive biases for such complicated functions that are not captured
under traditional initialisation strategies.
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Figure 7: Scatter plots an MLP trained on the sphere, rastrigin, booth, three-hump camel, and
himmelblaus functions for 10 different datasets till reaching a target train loss of 100: (left) mean
sam sharpness vs. train loss, (centre) | generalisation gap | vs. train loss, and (right) |generalisation
gap| vs. mean sam sharpness.
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Figure 8: Scatter plots an MLP trained on the sphere,, booth, three-hump camel, and himmelblaus
functions for 10 different datasets till reaching a target train loss of 10: (left) mean sam sharpness vs.
train loss, (centre) | generalisation gap | vs. train loss, and (right) |generalisation gap| vs. mean sam
sharpness.
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Figure 9: Scatter plots an MLP trained on the sphere,, booth, three-hump camel, and himmelblaus
functions for 10 different datasets till reaching a target train loss of 1: (left) mean sam sharpness vs.
train loss, (centre) | generalisation gap | vs. train loss, and (right) |generalisation gap| vs. mean sam
sharpness.

B SHARPNESS METRICS

This section describes the sharpness metrics Fisher-Rao norm, SAM-Sharpness and Relative Flatness.
Information Geometric Sharpness (IGS) (Jang et al., 2022) is also a suitable sharpness metric
candidate, however we omitted it from this study as the calculation of this metric exceeds feasible
computation for large-networks and dataset sizes. For implemenations of Fisher-Rao and Relative
Flatness we use the code base provided by Petzka et al. (2021) 1.

Fisher-Rao Fisher-Rao Norm (Liang et al., 2019) uses information Geometry for norm-based
complexity measurement. It provides a reparametrisation invariant measure for loss landscape
sharpness measuring, as verified by Petzka et al. (2021) in line with Petzka et al. (2021) we use
the analytical formula for cross entropy loss from Appendix (Liang et al., 2019) which is presented
in equation 9. To calculate the number of layers we sum the number of Linear, Conv1d, Conv2d,
Conv3d and Embedding layers in a specified neural network for our experiments this means that the
VGG19 has 18 layers, the ResNet18 has 21 and the ViT has 26.

FRnorm =

√√√√(L+ 1)2 · 1

N

N∑
i=1

(
∂ℓi
∂θ

· θ
)

(9)

SAM-Sharpness We define SAM-sharpness as the average difference across 100 different locations
of 0.005ρ away the original model and calculate the SAM sharpness from these models as defined

1Code base for sharpness metrics Fisher Rao Norm and Relative Flatness from Petzka
et al. (2021): https://github.com/kampmichael/RelativeFlatnessAndGeneralization/
blob/main/CorrelationFlatnessGeneralization/measure_comparison.py
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by Mason-Williams et al. (2024a) and Foret et al. (2021).

S(θ) =
1

K

K∑
k=1

∣∣∣∣L(θ +∆θk)− L(θ)

ρ

∣∣∣∣ . (10)

Relative Flatness Petzka et al. (2021) define the sharpness measure Relative Flatness– their results
show that it has the strongest correlational between flatness and a low generalisation gap. Relative
Flatness sharpness is calculated between the feature extraction layer and the classification of the
neural network and represents a highly expensive measure due to its calculation of the trace of the
hessian of these output matrices. The formula for Relative Flatness from Han et al. (2025) can be
found in equation 11.

κϕ
Tr(w) :=

d∑
s,s′=1

⟨ws,ws′⟩ · Tr(Hs,s′(w, ϕ(S))) (11)

where ws denotes the s-th row of w, ⟨·, ·⟩ is the scalar product, and Hs,s′(w, ϕ(S)) is the Hessian of
the empirical loss with respect to ws and ws′ evaluated at ϕ(S) (Han et al., 2025).

C SAFETY CRITICAL METRICS

Expected Calibration Error Calibration is the deviation of predicted confidence of a neural
network and the true probabilities observed in the data, Guo et al. (2017) explored how ResNets are
poorly calibrated and are often over confident. To calculate Expected Calibration Error (ECE) we
use the Lighting AI Pytorch Metrics implementation of Multiclass Calibration Error2 Implemented
from Kumar et al. (2019).

ECE =

N∑
i=1

bi ∥pi − ci∥1 (12)

Where pi represents accuracy in bin i. The average confidence for predictions is ci in the bin with
uniform sampling (Kumar et al., 2019)2.

Functional Diversity To provide an intuitive understanding of functional diversity we are interested
the deviations between models top-1 predictions, the metric we focus on for this is: Prediction
Disagreement which represents the disagreement between the top-1 predictions of two models on the
test dataset as defined in equation 13 by Fort et al. (2020), where each f(x; θ) is the top-1 predicted
class for a given sample x, operated on by parameters, θ. A lower Prediction Disagreement results in
a models that agree more on top-1 predictions.

1

N

N∑
n=1

[
f(xn; θ1) ̸= f(xn; θ2)

]
. (13)

Robustness Evaluations We employ the CIFAR10-C and CIFAR100-C datasets provided
by Hendrycks & Dietterich (2019) to observe how geometric properties interact with the robustness
of a neural network. The corruptions have 5 levels of severity per perturbation.

Corruption Accuracy (cACC) The metric we used for this robustness analysis is Corruption
Accuracy. It represents the average accuracy of a classifier (f) on an average-case perturbed test
dataset (Dcorruption) across permutation strengths 1-5 (Hendrycks & Dietterich, 2019).

Corruption Accuracy =
1

C

C∑
c=1

1

Nc

Nc∑
n=1

1(f(xn; θ) = yn)). (14)

2Calibration Error documentation from Lighting AI:https://lightning.ai/docs/
torchmetrics/stable/classification/calibration_error.html
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Where C is number of corruptions, Nc, is the number of samples in corruption c, f(xn; θ) represents
the top 1 prediction of a class for a given sample x with parameters θ and yn is the label.

D EXPERIMENTAL SETTINGS

All models are trained using NVIDIA A100 GPU’s and each sharpness metric is calculated using the
same GPU setup - as models output layer becomes larger for transitions between CIFAR10, CIFAR100
and TinyImageNet the computational cost of the calculation of sharpness metrics increases (by an
order of magnitude between CIFAR10 and CIFAR100). It should be noted that while Fisher Rao
Norm is computationally inexpensive to calculate, SAM sharpness takes a factor of time longer and
Relative Flatness is the most computationally expensive measure from a time and memory perspective.
All models are trained such that they converge on the training dataset or approximately converge in
the case of augmentation conditions - it is important to note that all models are given 100 epochs to
reduce loss on the training set to make comparisons fair. As a result, the test error is appropriate for
assessing the generalisation gap as a high test accuracy is indicative of a small generalisation gap.

CIFAR10 Training: To train the baseline architectures on the CIFAR10 dataset we use the
following settings: We use SGD with the momentum hyperparameter at 0.9 to minimize cross entropy
loss for 100 epochs, using a batch size of 256 a learning rate of 0.001. For all architectures in
the SAM condition we use the same settings as above but with SAM an extra optimization step
occurs. We use SAM with the hyperparameter ρ at the standard value of 0.05. For the Augmentation
condition we use the Baseline conditions with the augmentations Random Crop with a padding of 4
and a fill of 128 alongside a Random Horizontal Flip with a probability of 0.5. Finally for the Weight
Decay condition we use the same setup as the Baseline condition but with the addition of the weight
decay value set at 5e−4.

CIFAR10 Sharpness: For all sharpness metrics on CIFAR10 we used the entire training dataset
to calculate sharpness across Fisher Rao Norm, SAM Sharpness and Relative Flatness. For the
augmentation condition, the training dataset is the augmentations data used to train the model. We
show in Sections E.1 and F.2 that calculating sharpness on the augmented training dataset for the
models in the augmentation condition is approximately equivalent to calculating with the original
training dataset without augmentation, thus preserving the same trends of increased sharpness for
models trained with augmentation.

CIFAR100 Training: To train the baseline architectures on the CIFAR100 dataset we use the
following settings: We use SGD with the momentum hyperparameter at 0.9 to minimize cross entropy
loss for 100 epochs, using a batch size of 256 a learning rate of 1e−2, we also use a Pytorch’s (Paszke
et al., 2019) Cosine Annealing learning rate scheduler with a Maximum number of iterations of
100. For all architectures in the SAM condition we use the same settings as above but with SAM
as an extra optimization step occurs and for this we use SAM with the hyperparameter ρ at the
standard value of 0.05. For the Augmentation condition we use the Baseline conditions with the
augmentations Random Crop with a padding of 4 and a fill of 128 alongside a Random Horizontal
Flip with a probability of 0.5. Finally for the Weight Decay condition we use the same setup as the
Baseline condition but with the addition of the weight decay value set at 5e−4.

CIFAR100 Sharpness: For both the Fisher Rao Norm and SAM Sharpness metrics on CIFAR100
we used the entire training dataset to calculate sharpness. However, due to the computational burden
of calculating Relative Flatness, we only employ 20% of the training dataset to calculate sharpness for
this metrics. Once again, for the Augmentation condition, the training dataset is the augmentations
data used to train the model.

TinyImageNet Training: On the TinyImagenet dataset we use use pre-trained weights provided
for the ResNet18 3and VGG19BN 4 by Pytorch - we modify these architectures by removing the

3Pytorch ResNet18 ImageNet1K Pretrained Model: https://docs.pytorch.org/vision/main/
models/generated/torchvision.models.resnet18.html

4Pytorch VGG19BN ImageNet1K Pretrained Model: https://docs.pytorch.org/vision/
main/models/generated/torchvision.models.vgg19_bn.html
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existing final layer and replacing it with a final layer with a 200 output classification layer.

To train the baseline condition on these architectures using the following settings: We use
SGD with the momentum hyperparameter at 0.9 to minimize cross entropy loss for 100 epochs, using
a batch size of 256 a learning rate of 0.001. For all architectures in the SAM condition we use the
same settings as above but with SAM as an extra optimization step occurs and for this we use SAM
with the hyperparameter ρ at the standard value of 0.05. For the Augmentation condition we use the
Baseline conditions with the augmentations Random Resized Crop to the size of 64 and a Random
Horizontal Flip with a probability of 0.5. Finally for the Weight Decay condition we use the same
setup as the Baseline condition but with the addition of the weight decay value set at 5e−4.

TinyImageNet Sharpness: For the Fisher Rao Norm sharpness metric on TinyImageNet we used
the entire training dataset to calculate sharpness. However, due to the computational burden of
calculating SAM Sharpness, we only employ 20% of the training dataset to calculate sharpness for
this metrics. Due to memory constraints on the A100 GPU’s we were unable to calculate Relative
Flatness for any size of the training dataset on this architecture. Once again, for the Augmentation
condition, the training dataset is the augmentations data used to train the model.

E RESNET-18 FURTHER RESULTS

E.1 AUGMENTED OR STANDARD TRAINING DATA SHARPNESS CALCULATION

We argue that the standard dataset is a subset of the augmented training dataset. Thus, sharpness
trends are similar for both datasets. Our results show that calculating sharpness with augmented
data is nearly identical to using the standard dataset for Fisher Rao Norm, Sam Sharpness, Relative
Flatness, and loss landscape visualizations.

Sharpness Metrics When calculating the sharpness metrics, it can be seen that the difference
between using augmented training data, in Table 8, or standard training data, in Table 9, for each of
the metrics provides no difference for the trends of results observed.

Table 8: Sharpness Calculation for ResNet18 landscape on CIFAR10 trained with batch size of 256
and learning rate of 0.001 using augmented training data for sharpness calculations.

Control
Condition

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Augmentation 3.940 ±0.207 1.905E-01 ±2.203E − 02 2903.220 ±89.243
Augmentation

+ SAM 5.571 ±0.035 1.303E-01 ±1.547E − 02 4970.972 ±30.139

Table 9: Sharpness Calculation for ResNet18 landscape on CIFAR10 trained with batch size of 256
and learning rate of 0.001 using standard training data for sharpness calculations.

Control
Condition

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Augmentation 3.962 ±0.292 1.591E-02 ±1.609E − 03 2972.554 ±137.079
Augmentation

+ SAM 5.084 ±0.032 2.035E-02 ±1.203E − 03 5105.327 ±43.058

Loss Landscape Visualisations In Table 10, we show that the use of augmented or standard
training data has little impact on the resulting loss landscape visualisation. This reaffirms that it is
valid to calculate sharpness for models using augmented training data. The dataset used does not
significantly impact the sharpness of the landscape or the resulting sharpness values. The standard
dataset is simply a subset of the augmented data. Furthermore, sharpness calculation depends more
on the model weights than on the data, and should be a representative value for any dataset given the
same weight permutations.
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Table 10: Loss landscape visualisation (Li et al., 2018) of ResNet18 landscape on CIFAR10 exploring
the loss in the domain of the perturbations [1, 1]2 with 51 steps in both directions on models trained
with augmentation visualising landscape with standard training data and augmented training data.

E.2 RESNET-18 BATCH SIZE AND LEARNING RATE HYPERPARAMETER SWEEP

Here we observe how two core hyperparameters, batch size and learning rate impact the general
finding that models under the use of training regularisation navigate to sharper points and thus tighter
decision boundaries than base models without their application. In line with the findings in the main
paper we observe that the best performing models in each condition are those that are sharper than
the baseline models for each respective experimental up.

Table 11: Results for ResNet-18 Trained on CIFAR10 with batch size 256 and a learning rate of
1e−3. Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent
flatter models.

Condition
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 28.050 ±0.175 0.720 ±0.002 0.186 ±0.001 58.614 ±0.201 0.282 ±0.001 0.032 ±0.001 1.366E-05 ±1.206E − 06 34.607 ±0.757
Baseline
+ SAM 20.588 ±0.125 0.794 ±0.001 0.108 ±0.001 66.342 ±0.164 0.168 ±0.000 0.107 ±0.006 5.823E-05 ±9.056E − 06 75.093 ±1.693

Augmentation 10.399 ±0.067 0.886 ±0.001 0.077 ±0.001 68.755 ±0.219 0.121 ±0.001 3.940 ±0.207 1.905E-01 ±2.203E − 02 2903.220 ±89.243
Augmentation

+ SAM 6.864 ±0.038 0.908 ±0.000 0.014 ±0.001 71.419 ±0.283 0.069 ±0.000 5.571 ±0.035 1.303E-01 ±1.547E − 02 4970.972 ±30.139

Weight Decay 27.942 ±0.196 0.721 ±0.002 0.174 ±0.002 58.562 ±0.227 0.281 ±0.001 0.065 ±0.004 3.391E-05 ±4.494E − 06 59.767 ±3.009
Weight Decay

+ SAM 19.788 ±0.149 0.802 ±0.001 0.096 ±0.001 67.079 ±0.117 0.162 ±0.001 0.127 ±0.006 8.733E-05 ±1.430E − 05 88.807 ±2.336

Table 12: Results for ResNet-18 Trained on CIFAR10 with batch size 256 and a learning rate of
1e−2. Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent
flatter models.

Control
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 16.203 ±0.266 0.838 ±0.003 0.109 ±0.004 70.814 ±0.390 0.138 ±0.001 0.015 ±0.006 7.648E-06 ±3.794E − 06 16.641 ±5.960
Baseline
+ SAM 14.549 ±0.059 0.855 ±0.001 0.084 ±0.001 72.618 ±0.161 0.110 ±0.000 0.042 ±0.002 2.019E-05 ±2.683E − 06 49.022 ±1.901

Augmentation 7.593 ±0.092 0.921 ±0.001 0.056 ±0.003 72.923 ±0.223 0.078 ±0.001 2.390 ±0.268 1.091E-01 ±1.958E − 02 1604.778 ±103.972
Augmentation

+ SAM 6.920 ±0.056 0.931 ±0.001 0.037 ±0.001 73.483 ±0.212 0.058 ±0.000 1.165 ±0.014 2.267E-02 ±2.070E − 03 1173.090 ±15.607

Weight Decay 16.791 ±0.122 0.832 ±0.001 0.071 ±0.001 68.538 ±0.159 0.157 ±0.000 0.097 ±0.001 3.673E-05 ±4.662E − 06 99.041 ±0.736
Weight Decay+ SAM 14.022 ±0.089 0.860 ±0.001 0.050 ±0.001 73.100 ±0.137 0.116 ±0.000 0.446 ±0.013 3.238E-04 ±6.384E − 05 178.169 ±4.103
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Table 13: Results for ResNet-18 Trained on CIFAR10 with batch size 128 and a learning rate of
1e−3. Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent
flatter models.

Control
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 23.325 ±0.140 0.767 ±0.001 0.154 ±0.001 63.035 ±0.204 0.227 ±0.000 0.013 ±0.000 5.181E-06 ±5.856E − 07 27.916 ±0.340
Baseline
+ SAM 16.714 ±0.125 0.833 ±0.001 0.083 ±0.001 69.769 ±0.108 0.126 ±0.000 0.072 ±0.006 2.640E-05 ±4.345E − 06 139.589 ±2.679

Augmentation 9.110 ±0.079 0.905 ±0.001 0.065 ±0.001 71.516 ±0.308 0.099 ±0.000 2.465 ±0.105 9.266E-02 ±5.276E − 03 3735.018 ±173.247
Augmentation

+ SAM 6.869 ±0.022 0.921 ±0.000 0.013 ±0.000 72.870 ±0.207 0.058 ±0.000 4.070 ±0.027 8.913E-02 ±8.054E − 03 7532.582 ±69.191

Weight Decay 23.504 ±0.136 0.765 ±0.001 0.137 ±0.001 62.879 ±0.214 0.231 ±0.000 0.047 ±0.000 2.241E-05 ±3.426E − 06 80.599 ±0.548
Weight Decay

+ SAM 16.433 ±0.096 0.836 ±0.001 0.072 ±0.001 70.226 ±0.158 0.124 ±0.000 0.110 ±0.004 4.797E-05 ±7.285E − 06 194.034 ±2.840

Table 14: Results for ResNet-18 Trained on CIFAR10 with batch size 128 and a learning rate of
1e−2. Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent
flatter models.

Control
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 15.027 ±0.069 0.850 ±0.001 0.109 ±0.001 71.960 ±0.158 0.125 ±0.000 0.003 ±0.000 1.094E-06 ±9.618E − 08 8.785 ±0.142
Baseline
+ SAM 13.231 ±0.065 0.868 ±0.001 0.081 ±0.001 73.053 ±0.164 0.099 ±0.000 0.024 ±0.001 1.021E-05 ±5.519E − 07 70.694 ±2.273

Augmentation 7.455 ±0.062 0.923 ±0.001 0.057 ±0.001 72.594 ±0.152 0.076 ±0.000 2.086 ±0.140 8.274E-02 ±6.784E − 03 2864.657 ±151.088
Augmentation

+ SAM 6.678 ±0.060 0.933 ±0.001 0.036 ±0.001 73.565 ±0.245 0.056 ±0.000 1.012 ±0.014 2.173E-02 ±2.042E − 03 2354.005 ±38.058

Weight Decay 12.695 ±0.072 0.873 ±0.001 0.057 ±0.001 70.979 ±0.124 0.103 ±0.000 0.159 ±0.003 1.265E-04 ±3.140E − 06 355.345 ±12.866
Weight Decay

+ SAM 12.606 ±0.069 0.874 ±0.001 0.036 ±0.001 72.795 ±0.162 0.107 ±0.000 0.745 ±0.017 5.880E-04 ±6.127E − 05 439.467 ±8.439

F VGG-19

F.1 VGG19 BATCH SIZE AND LEARNING RATE HYPERPARAMETER SWEEP

Here we observe how two core hyperparameters, batch size and learning rate, impact the general
finding that models under the use of training regularisation navigate to sharper points and thus tighter
decision boundaries than base models without regularisation. In line with the findings in the main
paper, we observe that the best-performing models in each condition are those that are sharper than
the baseline models for each respective experimental setup. However, it is important to note that
modifying the learning rate and batch size does influence the sharpness values that we observe in
each condition, with a larger learning rate typically increasing the flatness of the minima considerably
more than using a smaller learning rate. However, within these augmented models still navigate to
sharper landscapes than the baseline and achieve the best performance across generalization and
safety evaluations.
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Figure 10: Plot of 240 minima using reparametrisation invariant sharpness metrics against train
loss and generalisation gap against train loss using log-scale for the VGG19 with different training
hyperparameters (batch size of 256, 128 and learning rate of 0.001 and 1e−2) trained on CIFAR10.

CIFAR10: The Augmentation and SAM condition perform the best for all metrics. It is also
the sharpest model with the highest values for Relative Flatness and the second highest for SAM
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Sharpness and Fisher Rao Norm value. These findings are consistent across the hyper parameter
sweep that we perform across learning rate and batch size.

Table 15: Results for VGG19 Trained on CIFAR10 with batch size 256 and a learning rate of 1e−3.
Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
models.

Control
Condition

Genralisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 21.805 ±0.128 0.782 ±0.001 0.160 ±0.001 64.316 ±0.193 0.204 ±0.000 0.022 ±0.003 7.649E-06 ±2.207E − 06 7.374 ±0.470
Baseline
+ SAM 18.444 ±0.097 0.815 ±0.001 0.108 ±0.001 66.655 ±0.296 0.150 ±0.000 0.938 ±0.036 1.495E-03 ±1.703E − 04 140.164 ±3.149

Augmentation 11.289 ±0.066 0.879 ±0.001 0.084 ±0.001 68.497 ±0.199 0.121 ±0.000 3.505 ±0.155 1.967E-01 ±2.298E − 02 688.897 ±26.348
Augmentation

+ SAM 8.139 ±0.074 0.903 ±0.001 0.019 ±0.001 71.268 ±0.196 0.075 ±0.000 4.278 ±0.027 9.777E-02 ±1.126E − 02 1609.212 ±22.719

Weight Decay 21.801 ±0.121 0.782 ±0.001 0.151 ±0.001 64.405 ±0.217 0.202 ±0.000 0.048 ±0.001 1.315E-05 ±1.143E − 06 16.494 ±0.292
Weight Decay

+ SAM 18.394 ±0.067 0.816 ±0.001 0.104 ±0.001 66.827 ±0.286 0.151 ±0.000 1.121 ±0.080 3.210E-03 ±6.174E − 04 157.592 ±5.360

Table 16: Results for VGG19 Trained on CIFAR10 with batch size 256 and a learning rate of 1e−2.
Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
models.

Control
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 13.507 ±0.063 0.865 ±0.001 0.105 ±0.001 71.476 ±0.125 0.119 ±0.000 0.004 ±0.000 1.604E-06 ±1.637E − 07 0.807 ±0.032
Baseline
+ SAM 13.183 ±0.115 0.868 ±0.001 0.081 ±0.001 71.908 ±0.121 0.103 ±0.000 0.077 ±0.002 4.290E-05 ±5.280E − 06 25.287 ±0.720

Augmentation 8.565 ±0.030 0.910 ±0.000 0.065 ±0.000 71.491 ±0.442 0.092 ±0.000 2.555 ±0.154 1.146E-01 ±9.917E − 03 396.136 ±22.479
Augmentation

+ SAM 7.969 ±0.080 0.920 ±0.001 0.040 ±0.001 73.037 ±0.160 0.071 ±0.000 1.087 ±0.014 3.122E-02 ±3.347E − 03 429.679 ±6.763

Weight Decay 15.241 ±0.124 0.836 ±0.003 0.118 ±0.002 68.294 ±0.390 0.184 ±0.002 5.120 ±0.586 2.302E-02 ±4.987E − 03 237.081 ±22.113
Weight Decay

+ SAM 13.188 ±0.130 0.868 ±0.001 0.063 ±0.001 71.618 ±0.284 0.117 ±0.000 0.742 ±0.022 5.764E-04 ±5.989E − 05 124.537 ±3.152

Table 17: Results for VGG19 Trained on CIFAR10 with batch size 128 and a learning rate of 1e−3.
Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
models.

Control
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 18.026 ±0.066 0.820 ±0.001 0.140 ±0.001 68.325 ±0.110 0.167 ±0.000 0.008 ±0.000 8.460E-07 ±5.355E − 08 5.824 ±0.058
Baseline
+ SAM 15.059 ±0.085 0.849 ±0.001 0.089 ±0.001 69.791 ±0.174 0.115 ±0.000 0.649 ±0.032 5.689E-04 ±1.248E − 04 242.483 ±6.334

Augmentation 9.988 ±0.088 0.895 ±0.001 0.074 ±0.001 70.671 ±0.288 0.107 ±0.000 2.851 ±0.121 1.708E-01 ±1.967E − 02 1158.004 ±40.307
Augmentation

+ SAM 7.594 ±0.050 0.916 ±0.000 0.017 ±0.000 72.194 ±0.175 0.066 ±0.000 3.469 ±0.023 7.664E-02 ±1.149E − 02 2487.050 ±14.772

Weight Decay 17.485 ±0.066 0.825 ±0.001 0.127 ±0.001 68.655 ±0.156 0.158 ±0.000 0.044 ±0.001 4.918E-06 ±6.710E − 07 29.566 ±0.647
Weight Decay

+ SAM 14.803 ±0.082 0.851 ±0.001 0.082 ±0.001 69.699 ±0.181 0.114 ±0.000 0.802 ±0.022 1.089E-03 ±3.140E − 04 298.386 ±7.049

Table 18: Results for VGG19 Trained on CIFAR10 with batch size 128 and a learning rate of 1e−2.
Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
models.

Control
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 12.661 ±0.066 0.873 ±0.001 0.100 ±0.001 71.689 ±0.113 0.111 ±0.000 0.003 ±0.000 3.227E-07 ±3.198E − 08 1.331 ±0.031
Baseline
+ SAM 12.248 ±0.078 0.878 ±0.001 0.077 ±0.001 71.838 ±0.256 0.100 ±0.000 0.054 ±0.003 8.424E-06 ±9.410E − 07 40.853 ±2.177

Augmentation 8.333 ±0.060 0.913 ±0.001 0.063 ±0.001 72.114 ±0.259 0.091 ±0.000 2.510 ±0.122 1.605E-01 ±2.042E − 02 772.205 ±19.954
Augmentation

+ SAM 7.791 ±0.072 0.922 ±0.001 0.038 ±0.001 72.470 ±0.190 0.072 ±0.000 1.076 ±0.019 3.497E-02 ±4.347E − 03 1155.243 ±35.334

Weight Decay 14.589 ±0.143 0.839 ±0.003 0.110 ±0.002 66.692 ±0.603 0.187 ±0.001 6.253 ±0.596 7.018E-03 ±8.372E − 04 608.657 ±44.645
Weight Decay

+ SAM 12.295 ±0.112 0.877 ±0.001 0.052 ±0.001 71.167 ±0.301 0.116 ±0.001 1.193 ±0.043 5.407E-04 ±1.109E − 04 406.163 ±15.541

CIFAR10 Landscape Visualisation: Here we observe that the loss landscapes show that the use
of regularisation does change the function learned by the model and that this can often increase in
complexity. For example, in Table 19 we can see that the use of weight decay, augmentation and SAM
all change the minima that is reached at the end of training, with weight decay and augmentation
showing a big increase in complexity compared to the baseline landscape.
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Table 19: Loss landscape visualisation (Li et al., 2018) of VGG19 landscape on CIFAR10 exploring
the loss in the domain of the perturbations [1, 1]2 with 51 steps in both directions.

F.2 AUGMENTED OR STANDARD TRAINING DATA SHARPNESS CALCULATION

Sharpness Metrics When calculating the sharpness metrics, it can be seen that the difference
between using augmented training data, in Table 20, or standard training data, in Table 21, for each
of the metrics provides no difference for the trends of results observed, training with augmentation
and augmentation + SAM results in a minima that is substantially sharper than a baseline model.

Table 20: Sharpness Calculation for VGG19 on CIFAR10 trained with batch size of 256 and learning
rate of 0.001 using augmented training data for sharpness calculations.

Control
Condition

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Augmentation 3.505 ±0.155 1.967E-01 ±2.298E-02 688.897 ±26.348
Augmentation

+ SAM 4.278 ±0.027 9.777E-02 ±1.126E-02 1609.212 ±22.719

Table 21: Sharpness Calculation for VGG19 on CIFAR10 trained with batch size of 256 and learning
rate of 0.001 using standard training data for sharpness calculations.

Control
Condition

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Augmentation 2.322 ±0.125 9.589E-03 ±1.438E-03 481.312 ±23.358
Augmentation

+ SAM 3.756 ±0.030 1.497E-02 ±7.363E-04 1413.712 ±22.212

Loss Landscape Visualisations In Table 22, we show that the use of augmented or standard
training data has little impact on the resulting loss landscape visualisation. This reaffirms that it is
valid to calculate sharpness for models using augmented training data. The dataset used does not
significantly impact the sharpness of the landscape or the resulting sharpness values. The standard
dataset is simply a subset of the augmented data. Furthermore, sharpness calculation depends more
on the model weights than on the data, and should be a representative value for any dataset given the
same weight permutations.
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Table 22: Loss landscape visualisation (Li et al., 2018) of VGG19 landscape on CIFAR10 exploring
the loss in the domain of the perturbations [1, 1]2 with 51 steps in both directions on models trained
with augmentation visualising landscape with standard training data and augmented training data.

F.3 CIFAR100:

Augmentation and SAM condition performs the best for test accuracy, Corruption Accuracy and
Prediction Disagreement. However, for ECE we see that Weight Decay is the best condition.
Augmentation and SAM is the second sharpest model for Fisher Rao Norm and SAM sharpness and
has the highest value for Relative Flatness. It is important to note that for Weight Decay, with the
lowest ECE, that it has higher sharpness values than the Baseline condition.

Table 23: Results for VGG-19 Trained on CIFAR100, the Mean and ± 1 SEM are recorded over
10 models. Numbers in bold indicate best scores for metrics. For sharpness metrics lower values
represent flatter models.

Control
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 42.454 ±0.092 0.575 ±0.001 0.253 ±0.000 40.749 ±0.124 0.396 ±0.000 0.158 ±0.017 2.123E-04 ±2.649E − 05 8.384 ±0.151
Baseline
+ SAM 43.815 ±0.224 0.561 ±0.002 0.232 ±0.002 39.690 ±0.196 0.399 ±0.001 0.529 ±0.017 7.520E-04 ±5.791E − 05 67.485 ±1.802

Augmentation 32.519 ±0.156 0.646 ±0.002 0.222 ±0.002 40.832 ±0.321 0.358 ±0.001 7.156 ±0.270 2.835E-01 ±1.439E − 02 1430.826 ±53.977
Augmentation

+ SAM 32.008 ±0.099 0.656 ±0.001 0.157 ±0.001 41.276 ±0.089 0.326 ±0.001 5.653 ±0.073 1.971E-01 ±1.170E − 02 2085.080 ±31.648

Weight Decay 41.579 ±0.107 0.584 ±0.001 0.138 ±0.000 41.266 ±0.112 0.384 ±0.000 0.678 ±0.008 3.302E-04 ±3.256E − 05 45.728 ±0.073
Weight Decay

+ SAM 44.631 ±0.228 0.553 ±0.002 0.189 ±0.002 38.961 ±0.191 0.429 ±0.001 2.138 ±0.084 2.630E-03 ±2.111E − 04 153.194 ±6.495

CIFAR100 Landscape Visualisation: Once again, we confirm through the loss landscape visu-
alisation in Table 24, that the application of regularisers does indeed change the properties of the
minima that a network reaches at the end of training. This, corroborates our findings that state
that regularisation can change the function complexity of a network and thus impact the geometric
properties of the minima found at the end of training.
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Table 24: Loss landscape visualisation (Li et al., 2018) VGG19 landscape on CIFAR100 exploring
the loss in the domain of the perturbations [1, 1]2 with 51 steps in both directions.

F.4 TINYIMAGENET:

The Weight Decay and SAM condition performs best for test accuracy and Prediction Disagreement.
For Weight Decay and SAM condition we see no real difference in the sharpness values. For ECE we
see that Augmentation + SAM is the best condition. Augmentation and SAM is the second sharpest
model for Fisher Rao Norm and SAM sharpness.

Table 25: Results for VGG19-BN (Pre-Trained) on TinyImageNet. Numbers in bold indicate best
scores for metrics. For sharpness metrics lower values represent flatter models.

Control
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Baseline 39.588 ±0.063 0.604 ±0.001 0.303 ±0.001 0.238 ±0.000 0.337 ±0.118 2.642E-04 ±1.986E − 05
Baseline
+ SAM 36.131 ±0.048 0.638 ±0.000 0.199 ±0.001 0.186 ±0.000 0.419 ±0.097 3.364E-04 ±2.684E − 05

Augmentation 20.952 ±0.080 0.578 ±0.001 0.119 ±0.001 0.473 ±0.000 20.033 ±0.076 1.893E+00 ±7.702E − 02
Augmentation

+ SAM 17.927 ±0.048 0.594 ±0.000 0.056 ±0.002 0.440 ±0.000 19.230 ±0.035 1.665E+00 ±5.137E − 02

Weight Decay 39.622 ±0.069 0.604 ±0.001 0.265 ±0.000 0.222 ±0.000 0.207 ±0.026 2.679E-04 ±1.084E − 05
Weight Decay+ SAM 35.922 ±0.050 0.641 ±0.001 0.180 ±0.001 0.185 ±0.000 0.342 ±0.015 3.072E-04 ±4.621E − 06

G VISION TRANSFORMER

G.1 CIFAR10

We see Augmentation and the Augmentation + SAM conditions perform best and they have the
highest sharpness values across metrics.

Table 26: Results for ViT Trained on CIFAR10, the Mean and ± 1 SEM are recorded over 10 models.
Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
models.

Control
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 39.040 ±0.177 0.610 ±0.002 0.308 ±0.002 54.805 ±0.147 0.408 ±0.001 0.221 ±0.003 8.769E-05 ±4.974E − 06 347.198 ±6.425
Baseline
+ SAM 39.935 ±0.144 0.600 ±0.001 0.276 ±0.001 54.792 ±0.113 0.421 ±0.001 1.576 ±0.083 1.458E-03 ±8.995E − 05 1459.292 ±82.220

Augmentation 1.305 ±0.076 0.724 ±0.001 0.019 ±0.001 64.092 ±0.152 0.217 ±0.001 22.809 ±0.117 4.741E-01 ±3.822E − 02 38465.647 ±139.905
Augmentation

+ SAM -1.199 ±0.097 0.668 ±0.002 0.030 ±0.001 60.535 ±0.179 0.201 ±0.001 22.372 ±0.042 4.352E-01 ±2.420E − 02 18412.664 ±617.822

Weight Decay 38.746 ±0.196 0.613 ±0.002 0.301 ±0.002 55.077 ±0.159 0.402 ±0.001 0.328 ±0.003 1.359E-04 ±1.030E − 05 422.966 ±6.897
Weight Decay

+ SAM 39.881 ±0.162 0.600 ±0.002 0.268 ±0.001 54.797 ±0.125 0.419 ±0.001 2.250 ±0.099 2.890E-03 ±3.102E − 04 1908.688 ±97.800
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G.2 CIFAR100

We see Augmentation and the Augmentation + SAM conditions perform best and they have the
highest sharpness values across metrics.

Table 27: Results for ViT Trained on CIFAR100, the Mean and ± 1 SEM are recorded over 10 models.
Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
models.

Control
Condition

Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 69.048 ±0.164 0.309 ±0.002 0.402 ±0.002 25.936 ±0.088 0.723 ±0.000 0.646 ±0.061 3.428E-04 ±4.954E − 05 112.185 ±4.246
Baseline
+ SAM 67.376 ±0.126 0.326 ±0.001 0.386 ±0.001 27.628 ±0.097 0.697 ±0.000 0.821 ±0.070 4.539E-04 ±6.066E − 05 124.472 ±30.314

Augmentation 37.472 ±0.249 0.508 ±0.001 0.227 ±0.001 38.680 ±0.091 0.483 ±0.001 17.321 ±0.192 5.995E-01 ±8.815E − 02 17401.462 ±143.009
Augmentation

+ SAM 32.136 ±0.262 0.523 ±0.001 0.146 ±0.002 40.275 ±0.097 0.446 ±0.000 19.664 ±0.127 4.649E-01 ±2.505E − 02 17812.985 ±55.523

Weight Decay 67.524 ±0.148 0.325 ±0.001 0.324 ±0.001 27.364 ±0.103 0.700 ±0.000 1.563 ±0.073 8.440E-04 ±1.251E − 04 251.148 ±15.330
Weight Decay

+ SAM 67.227 ±0.077 0.327 ±0.001 0.284 ±0.001 27.739 ±0.069 0.695 ±0.001 5.181 ±0.260 4.323E-03 ±3.837E − 04 1554.595 ±91.649

H RADIUS (ρ) HYPERPARAMETER SWEEP FOR SAM SHARPNESS

We show that our finding of sharpness increasing under the application of SAM is robust to
perturbations of the ρ hyperparameter. We employ the ρ value across the following values
0.5, 0.25, 0.05, 0.025, 0.005, 0.0025 training the ResNet-18 with a batch size 256 and a learning
rate of 1e−3. As shown in Figure 11, we can see that increasing the value of the ρ hyperparameter
increases the sharpness of the minima found at the end of training, which coincides with a reduced
generalisation gap. Table 28, shows that when using a ρ value of 0.25, we record the best accuracy,
calibration, robustness and functional similarity results - coinciding with this finding, we can observe
that this condition is far sharper than the other the other ρ value below this, showing a relationship
between increased sharpness and describable generalisation properties. Finally, it is important to
note that the sharpest condition, found under a ρ of 0.50, is not the best model. This reaffirms our
understanding that the sharpness required to fit a function is highly dependant on the problem itself
and that there appears to lack of a goldilocks zone of sharpness that is sufficient to fit a problem.
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Figure 11: Scatter plots of 60 converged minima for ResNet-18 on CIFAR-10 varying the SAM (ρ)
hyperparameter (0.5, 0.25, 0.05, 0.025, 0.005, 0.0025) using batch size 256 and learning rate 10−3:
(a) Fisher–Rao norm vs. train loss, (b) Relative Flatness vs. train loss, and (c) generalisation gap vs.
train loss (log scale).
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Table 28: Results for ResNet-18 Trained on CIFAR10 with batch size 256 and a learning rate
of 1e−3 while varying the ρ hyperperameter (0.5,0.25,0.05,0.025,0.005,0.0025). Numbers in bold
indicate best scores for metrics. For sharpness metrics lower values represent flatter models.

ρ Value Generalisation
Gap

Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

0.0000 28.050 (0.175) 0.720 (0.002) 0.186 (0.001) 58.614 (0.201) 0.282 (0.001) 0.032 (0.001) 1.366E-05 (1.206E-06) 34.607 (0.757)
0.5000 1.605 (0.646) 0.629 (0.024) 0.079 (0.007) 52.847 (1.667) 0.221 (0.009) 14.767 (0.375) 6.814E-02 (7.326E-03) 4156.344 (279.557)
0.2500 9.751 (0.640) 0.835 (0.002) 0.026 (0.003) 68.479 (0.302) 0.089 (0.002) 8.712 (0.623) 3.884E-02 (4.981E-03) 4876.348 (314.164)
0.0500 20.588 (0.125) 0.794 (0.001) 0.108 (0.001) 66.342 (0.164) 0.168 (0.000) 0.107 (0.006) 5.823E-05 (9.056E-06) 75.093 (1.693)
0.0250 22.602 (0.109) 0.774 (0.001) 0.124 (0.001) 64.224 (0.154) 0.195 (0.000) 0.065 (0.001) 2.587E-05 (1.987E-06) 70.223 (0.941)
0.0050 25.793 (0.137) 0.742 (0.001) 0.167 (0.001) 60.985 (0.280) 0.250 (0.000) 0.082 (0.009) 4.861E-05 (7.166E-06) 57.886 (5.223)
0.0025 26.654 (0.130) 0.733 (0.001) 0.176 (0.001) 60.107 (0.226) 0.262 (0.001) 0.023 (0.001) 8.624E-06 (7.512E-07) 22.262 (0.969)

I EXPLICITLY INCREASING FUNCTION COMPLEXITY

To demonstrate the relationship between sharp minima and increased function complexity, which is
suggested by the toy setting results in 4, we employ an experiment in the classification setting on
high-dimensional data wherein we artificially increase the complexity of a learning task and record
the sharpness of the minima at the end of training. It is important to note that we calculate the
sharpness of the model at the end of training on the same unaltered training dataset for all
models. To conduct this experiment, we randomise the labels in the training dataset of CIFAR 10 in
20% intervals and show that the resulting model trained to minimise loss on this dataset has a sharper
minima compared to learning on standard training data (0% randomised data). The training set-up
matches that of the baseline models for the ResNet18 with a batch size of 256 and a learning rate of
0.001; however, these results are averaged over 5 seeds (0-4) for each condition.

The increased complexity of the learning task is also reflected in the train loss that is higher for
randomised data, despite all models being provided the same training setup, as seen in Table 29. It is
important to note that all models achieve 100% train accuracy.

Table 29: Results for ResNet-18 Trained on CIFAR10 with increasingly randomised data. For
sharpness metrics lower values represent flatter models.

Percentage of
Random Data

Train
Accuracy

Train
Loss

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

0% (Baseline) 1.000 ± 0.000 9.997E-05 ±1.381E-06 0.031 ±0.001 1.344E-05 ±1.968E-06 33.700 ±0.949
20% 1.000 ±0.000 1.039E-04 ±1.714E-06 107.830 ±0.183 2.594E-01 ±2.349E-03 38.615 ±0.693
40% 1.000 ±0.000 1.071E-04 ±1.759E-06 160.742 ±0.292 4.180E-01 ±2.405E-02 42.111 ±0.613
60% 1.000 ±0.000 1.085E-04 ±2.294E-06 203.816 ±0.212 8.927E-01 ±1.848E-02 44.990 ±0.972
80% 1.000 ±0.000 1.107E-04 ±2.535E-06 242.238 ±0.260 4.984E-01 ±3.913E-02 47.011 ±0.878

100% 1.000 ±0.000 1.094E-04 ±1.490E-06 283.181 ±0.129 3.450E-01 ±3.319E-02 47.095 ±0.543

The results from Table 29 show that as the percentage of examples becomes increasingly disjointed
through increased randomisation, there is a linear increase in the sharpness of the minima (by Fisher
Rao norm and Relative Flatness) found at the end of training. Here, the results simulate a function
becoming more complex as the decision boundaries for a particular class become tighter. While
in practice this learned function may not be useful, it strongly suggests that the more complex the
relationships in the training data, the sharper the minima at the end of training, directly aligning
function complexity and geometric properties of minima.
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