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ABSTRACT

We consider submodular function minimization using a dueling oracle, a noisy
pairwise comparison oracle that provides relative feedback on function values
between two queried sets. The oracle’s responses are governed by a transfer
function, which characterizes the relationship between differences in function
values and the parameters of the response distribution. For a linear transfer function,
we propose an algorithm that achieves an error rate of O(n

3
2 /

√
T ), where n is the

size of the ground set and T denotes the number of oracle calls. We establish a lower
bound: Under the constraint that differences between queried sets are bounded
by a constant, any algorithm incurs an error of at least Ω(n

3
2 /

√
T ). Without

such a constraint, the lower bound becomes Ω(n/
√
T ). These results show that

our algorithm is optimal up to constant factors for constrained algorithms. For a
sigmoid transfer function, we design an algorithm with an error rate of O(n

7
5 /T

2
5 ),

and establish lower bounds analogous to the linear case.

1 INTRODUCTION

Let f be a set function defined on subsets of a finite set [n] = {1, · · · , n}. A function f is called
submodular if it satisfies f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) for all X,Y ⊆ [n].

Submodular functions are closely related to convex functions (Lovász, 1982; Fujishige, 1991; Bach,
2011) and play a significant role in numerous problems. Thus, submodular function minimization
(SFM) arises in a wide range of research fields, including machine learning (Bilmes, 2022), opera-
tions research (Hochbaum & Hong, 1995; Queyranne & Schulz, 1995), combinatorial optimization
(Lovász, 1982; Edmonds, 2001; Schrijver, 2003), game theory (Shapley, 1971; Topkis, 1998), and
economics (Stigler & Samuelson, 1948; Topkis, 1998; Vives, 1999). In machine learning and artificial
intelligence, SFM has found use in tasks such as graphical models (Kolmogorov & Zabih, 2002;
Krause & Guestrin, 2005), PAC-learning (Narasimhan & Bilmes, 2004), clustering (Narasimhan
et al., 2005; Narasimhan & Bilmes, 2007), and image segmentation (Kohli & Torr, 2010; Jegelka &
Bilmes, 2011).

In optimization problems, many studies assume access to first- or zero-order oracles that provide
gradients or exact function values at queried points. However, in real-world scenarios, it is often
impractical or unreliable to obtain precise gradients or function values. Instead, feedback based on
relative evaluations, which determines which of two options is preferable, tends to be more feasible,
efficient, and robust.

For example, in machine learning, data collection through relative evaluations not only improves
reliability but also facilitates the acquisition of larger datasets. Pairwise comparison queries are
widely used in applications such as feedback collection for large language models (LLMs) (Liusie
et al., 2023; Wu et al., 2023; Jiang et al., 2023; Liu et al., 2024) and reinforcement learning with
human feedback (RLHF) (Sadigh et al., 2017; Pacchiano et al., 2021; Azar et al., 2024; Zhu et al.,
2023).

Research on optimization problems using a dueling oracle has been limited to multi-armed bandit
problems (Yue et al., 2012; Dudík et al., 2015; Sui et al., 2018; Saha et al., 2021b; Saha & Gaillard,
2022) and convex optimization (Saha et al., 2021a; 2025; Blum et al., 2024). In the context of
Submodular Function Minimization (SFM), the setting in which only a dueling oracle is used without
access to a value oracle has not been addressed so far, making this study the first to explore it.
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Table 1: Upper and lower bound for submodular function minimization with a dueling oracle.

Transfer Function Linear Sigmoid General

Upper Bound O

(
n

3
2√
T

)
O

(
n

7
5

T
2
5

)
O

(
n

4
3

T
1
3

)
Lower Bound

(with Restriction 1) Ω

(
n

3
2√
T

)
Ω

(
n

3
2√
T

)
Ω

(
n

3
2√
T

)
Lower Bound

(without Restriction 1) Ω
(

n√
T

)
Ω
(

n√
T

)
Ω
(

n√
T

)

Existing studies on SFM assume access to an oracle that provides the exact or noisy function value
for a queried set. The first polynomial-time algorithm for this problem was introduced by Grötschel
et al. (1981), employing the ellipsoid method. Combinatorial strongly polynomial algorithms were
developed by Iwata et al. (2000) and Schrijver (2003). In parallel, Hazan & Kale (2009) explored
online optimization for submodular functions, focusing on iterative decision making and evaluating
performance through regret, defined as cumulative error during iterations. In addition, Ito (2019)
investigated SFM in the context of noisy function value oracles.

In this paper, we consider SFM with a dueling oracle. A dueling oracle, or a noisy pairwise
comparison oracle, provides probabilistic binary feedback indicating which of two queried sets has
a higher function value, without disclosing the actual function values. The algorithm can query a
pair of sets, and the dueling oracle only returns a probabilistic response in +1 or −1, indicating
which set has the higher function value. The probability of receiving the correct response increases as
the difference in function values grows, while smaller differences result in outcomes that are nearly
evenly distributed. This reflects the concept of a duel, where larger differences favor the stronger
contender, while smaller differences introduce more uncertainty in response. This problem setting is
motivated by applications such as recommendation, as illustrated in Examples 2 and 2 in Section 3.
The relationship between differences in function values and parameters of the response distribution is
characterized by a function ρ : [−1, 1] → [−1, 1], called a transfer function.

Our contribution is twofold. First, we propose efficient algorithms for SFM using a dueling oracle
with linear, sigmoid, and general nonlinear transfer functions. The reason for focusing on these two
concrete examples is explained in Section 3. Second, we establish lower bounds for each setting. As
shown in Table 1, for the case of a linear transfer function, we develop an algorithm that achieves
an error bound of O(n

3
2 /

√
T ) for any submodular function. For sigmoid transfer functions, we

propose an algorithm with an upper bound ofO(n
7
5 /T

2
5 ), and for general nonlinear transfer functions,

we provide an algorithm with an upper bound of O(n
4
3 /T

1
3 ). Regarding lower bounds, we show

that any algorithm satisfying the constraint that the element-wise difference between the two sets
queried by the dueling oracle is of constant order must incur an error of at least Ω(n

3
2 /

√
T ) in a hard

instance. Furthermore, we prove that any algorithm, without restrictions, must suffer an error of at
least Ω(n/

√
T ). This result implies that, for the linear transfer function, our proposed algorithm is

optimal among those satisfying the given constraint, and even with unrestricted algorithms, the error
cannot be improved by more than a factor of O(1/

√
n). We here note that, while the formulas in

Table 1 represent the error achievable with a given number of queries T , these can also be interpreted
as an evaluation of the number of queries required to achieve an error below a given threshold ϵ > 0.
For example, the upper bound of O(n

3
2 /

√
T ) in the table indicates that an error no greater than ϵ can

be attained with T ∝ n3/ϵ2 queries.

Our algorithm leverages the Lovász extension (Lovász, 1982), which extends a submodular function
to a continuous convex function, and employs the stochastic gradient descent (SGD) method for
convex minimization. A key property of the Lovász extension is that the minimum of the original
submodular function coincides with the minimum of the extended convex function. Thus, solving the
convex minimization problem via SGD yields a solution to SFM. The update direction in SGD is
determined by an estimator of a subgradient of the convex function. To minimize the error introduced
by SGD, reducing the bias and variance of this estimator is crucial. In particular, an unbiased
estimator, whose expectation matches the true subgradient, leads to accurate solutions. The approach
using the Lovász extension and SGD has already been explored by Hazan & Kale (2009); Ito (2019;
2022). However, unlike these studies, direct access to function values is unavailable in our setting.
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While these works construct unbiased estimators of subgradients using the responses from a function
value oracle, we estimate subgradients using responses from a dueling oracle.

For the linear transfer function, unbiased estimators of subgradients can be constructed by using
responses from a dueling oracle. The general flow of the algorithm is similar to those proposed by
Hazan & Kale (2009); Ito (2019), the difference being in the construction of the unbiased estimator.

In contrast, for the sigmoid transfer function, the construction of unbiased subgradient estimators
becomes infeasible, which poses a significant challenge. Using biased estimators in SGD can cause
error accumulation across iterations, resulting in considerable inaccuracies. In related work, Saha
et al. (2025) addressed a similar issue in convex optimization with a dueling oracle. They considered
a gradient descent-based algorithm under similar conditions, where unbiased subgradient estimators
were unavailable. Their approach relies on the assumptions of β-smoothness and α-strong convexity
of the objective function to control errors. Unfortunately, the convex function derived from the
Lovász extension of a general submodular function does not satisfy these properties, making Saha
et al. (2025)’s error control techniques inapplicable.

To overcome this difficulty, we incorporate Firth’s method (Firth, 1993) to reduce the bias in maximum
likelihood estimators (MLE). Firth’s method significantly reduces bias in estimation problems related
to the natural parameters of the exponential family of distributions. In this study, when the transfer
function of the dueling oracle is sigmoid, the resulting model corresponds to a logistic regression,
making it possible to apply Firth’s method. By incorporating Firth’s method into SGD, we mitigate
the impact of accumulated bias, reducing the total error, and enabling an effective optimization
algorithm. To our knowledge, no existing SFM algorithm based on SGD avoids the use of unbiased
subgradient estimators derived from the Lovász extension. This is the significance of this work.

The inability to use an unbiased estimator makes not only the algorithm design but also its analysis
and parameter tuning considerably more challenging. In exsiting studies (Hazan & Kale, 2009; Ito,
2019), the analysis of the optimization error typically focused on two terms that increase or decrease
with the learning rate η, and choosing η to balance these two terms yields the desired error (or regret)
bound. In contrast, in the present setting, a third term arises from the bias of the gradient estimator,
and an additional parameter, the number of oracle calls k used for gradient estimation, affects these
terms, resulting in a more complex analysis. In this work, we provide a new parameter-setting rule
for η and k that balances all three terms so that the overall error bound is minimized.

The proof of the lower bound is based on the techniques of Ito (2019) and Auer et al. (2002). Ito
(2019) establishes lower bounds for SFM, while Auer et al. (2002) addresses a lower bound for a
bandit problem. While the construction of the objective function follows prior work (Ito, 2019), the
lower-bound analysis presents a significant challenge, as the techniques used in previous studies
cannot be directly applied. This difficulty arises because the oracle and feedback structure assumed
in existing models differ substantially from those considered in this work. Intuitively, prior work
allows queries on a single subset, whereas our setting permits queries on pairs of subsets. Since the
number of feasible choices for data collection is therefore much larger in our framework, proving
lower bounds becomes considerably more nontrivial. In this paper, we address this challenge by
extending the analysis to incorporate the probability distribution over queried pairs and by analyzing
the distance between the resulting distributions.

Leveraging Yao’s principle, we bound the error of randomized algorithms by the error of deterministic
algorithms under a carefully chosen distribution. For deterministic algorithms, the KL divergence
of the algorithm’s output is bounded by the KL divergence across all input sequences. Using these
results, we demonstrate that for two objective functions, the KL divergence of their respective input
sequences, and consequently, the KL divergence of their output, remains small. Finally, we show that
for two objective functions with different optimal solutions, any algorithm can only exhibit limited
changes in its output and thus incurs a non-negligible error.

1.1 RELATED WORK

Online submodular minimization in the bandit setting

The online submodular minimization introduced by Hazan & Kale (2009) is closely related to
our algorithm. In this setting, an online decision maker iteratively selects a subset St ⊆ [n] over
t = 1, · · · , T . After each selection, the decision maker incurs a loss of ft(St), where each ft is
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a submodular function. The performance of the algorithm is evaluated by the regret defined as
RegretT :=

∑T
t=1 ft(St)−minS⊆[n]

∑T
t=1 ft(S).

In the bandit setting, only the loss ft(St) for the chosen subset St is observed, and no other in-
formation is available. The algorithm proposed by Hazan & Kale (2009) is based on the Online
Gradient Descent algorithm of Zinkevich (2003), using unbiased subgradient estimators derived from
the Lovász extension extension of the submodular functions. The key idea of this algorithm is to
dynamically adjust the probabilities of choosing a subset and use just one sample for both exploration
and exploitation. The regret achieved by this algorithm is O

(
nT

2
3

)
, which translates to an error of

O
(
n/T

1
3

)
when applied directly to SFM.

Submodular function minimization with noisy oracles

Our work is also influenced by the study of SFM using a noisy zero-order oracle by Ito (2019);
Lattimore (2024). In their work, at each step t = 1, · · · , T , a subset St is chosen, and a noisy
observation f̂t(St) of the submodular objective function f is obtained, where f̂ satisfies E[f̂t(S)] =
f(S) for all S ⊆ [n] and t = 1, · · · , T .

The algorithm in their research is also based on SGD, with the final solution obtained as the average
of the iterations over T steps. Their approach achieves an error of O

(
n

3
2 /

√
T
)

, which improves to

O
(
n/

√
T
)

under the assumption that each noisy observation f̂t is also submodular.

Furthermore, their approach also influences the proof of the lower bound for SFM in our study. They
constructed a distribution of objective functions that serves as a hard instance, showing that even
when a distribution is perturbed, the observed values change slightly, making it challenging for any
algorithm to distinguish between distributions. This was demonstrated using KL divergences of
distributions.

Convex optimization with dueling oracle

Convex optimization using dueling oracles has been explored in Saha et al. (2021a) and Saha et al.
(2025), which consider transfer functions ρ with specific properties. In Saha et al. (2021a), ρ is
assumed to be a sign function, while Saha et al. (2025) considers a function that satisfies ρ′(x) ≥
cρp|x|p−1 for all x ∈ (−r, r), where p ≥ 1, r > 0, and cρ > 0. Both studies propose Gradient
Descent-based algorithms; however, unbiased estimators of subgradients cannot be constructed from
the information of dueling oracles.

To address this difficulty, Saha et al. (2021a) determined the descent direction using the normalized
subgradient ∇f(x)/∥∇f(x)∥, and demonstrates that the algorithm produces an approximate solution.
Meanwhile, Saha et al. (2025) introduces a scaled gradient approach using ∇f(x)∥∇f(x)∥p−1 and
shows that an approximate solution exists within the sequence of points generated by the algorithm.
Both approaches rely on the assumptions of β-smoothness and α-strongly convexity of the objective
function, which enable the analysis of convergence and approximation guarantees.

2 PRELIMINARIES

2.1 SUBMODULAR FUNCTIONS

Let n be a positive integer and let [n] = {1, 2, . . . , n}. Denote by 2[n] the power set of [n], i.e. the set
of all subsets of [n]. We consider a set function f : 2[n] → [0, 1] defined in the decision space 2[n].

A function f : 2[n] → [0, 1] is submodular if and only if for all sets X,Y ∈ 2[n] such that X ⊆ Y and
for all elements i ∈ [n] \ Y , we have:

f(X ∪ {i})− f(X) ≥ f(Y ∪ {i})− f(Y ). (1)

2.2 LOVÁSZ EXTENSION

The Lovász extension is a fundamental technique in designing algorithms for submodular function
minimization. Although a submodular function f is originally defined in the decision space 2[n], it
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can be regarded as the vertices of the hypercube K = [0, 1]n. The Lovász extension f̂ provides a
continuous extension of a submodular function f to the whole interior of K.

The Lovász extension is constructed by dividing the hypercube K into n! regions and defining f̂ as a
piecewise linear function that interpolates between the values of the function at the vertices of K.

Definition 1. Given a function f : 2[n] → [0, 1], the Lovász extension f̂ : K → [0, 1] is defined
as follows; for w ∈ K, order the components in decreasing order wπ(1) ≥ · · · ≥ wπ(n), where
π : [n] → [n] is a permutation. Let wπ(0) = 1, Bi = {π(1), . . . , π(i)} for i ∈ [n] and B0 = ∅. The
value of the Lovász extension f̂(w) is defined as:

f̂(w) =

n∑
i=1

wπ(i)[f(Bi)− f(Bi−1)] + f(∅) =

n−1∑
i=0

f(Bi)(wπ(i) − wπ(i+1)) + f([n]). (2)

An alternative equivalent expression for the Lovász extension is also utilized to construct our algo-
rithms.
Proposition 1. Let f̂ be a Lovász extension of a function f : 2[n] → [0, 1]. For any w ∈ K, the
following equations hold:

f̂(w) =

∫ 1

0

f({i | wi ≥ z})dz = Ez∼Unif([0,1])[f({i | wi ≥ z})]. (3)

The following theorem provides a connection between submodular function minimization and convex
function minimization.
Theorem 1. (Fujishige (1991)) A function f : 2[n] → [0, 1] is submodular if and only if its Lovász
extension f̂ : K → [0, 1] is convex. For a submodular function f : 2[n] → [0, 1] and its Lovász
extension f̂ : K → [0, 1], we have minX∈2[n] f(X) = minw∈{0,1}n f̂(w) = minw∈[0,1]n f̂(w).

When analyzing the minimization of the convex function f̂ , it is notable that f̂ is piecewise linear.
Therefore, its subgradient is constant within each region of linearity, as formally stated in the
following proposition.
Proposition 2. Let f be a submodular function. For w ∈ K, let π be a permutation that orders the
components of w in decreasing order, and let τ be the inverse permutation of π. Then, a subgradient
g of f̂ at w is given as follows:

gπ(i) = f(Bi)− f(Bi−1) or, equivalently, gi = f(Bτ(i))− f(Bτ(i)−1).

2.3 STOCHASTIC GRADIENT DESCENT

By Theorem 1, submodular minimization can be reformulated as convex minimization. Therefore,
our algorithm is based on the stochastic gradient descent (SGD) method for convex minimization.

The algorithm initializes w(1) = 1
2 · 1 ∈ K. For each iteration t = 1, 2, . . . , T , the point w(t) is

updated to w(t+1) using information about the objective function f̂ obtained through oracle queries.
At each update, an estimator ĝt of a subgradient of f̂ at w(t) is constructed, and the update rule
is given by: w(t+1) = ΠK(w

(t) − ηĝt), where η > 0 is a learning rate parameter that can be
arbitrarily chosen. Here, ΠK : Rn → K represents the Euclidean projection onto K, defined as:
ΠK(w) = argminv∈K ∥v − w∥2. Since K = [0, 1]n, the projection is computationally efficient. For
any v ∈ Rn, the projection w = ΠK(v) can be implemented by clipping each component of v to the
interval [0, 1]: wi = min{1,max{0, vi}}.

For the sequence of points {w(t)}Tt=1 generated by this procedure, the average point w̄ =
1
T

∑T
t=1 w

(t) satisfies the following error bound, as stated in Hazan & Kale (2009, Lemma 11).

Theorem 2. Let f̂ : K → [0, 1] be a convex function in the hypercube K = [0, 1]n. Let
w(1), w(2), . . . , w(T ) be defined by w(1) = 1

2 ·1 and w(t+1) = ΠK(w
(t)−ηĝt). When ĝ1, ĝ2, . . . , ĝT

are unbiased estimators of subgradients, i.e., E[ĝt | w(t)] = gt, where gt is a subgradient of f̂ at

w(t), then w̄ := 1
T

∑T
t=1 w

(t) satisfies E[f̂(w̄)]−minw∗∈K f̂(w
∗) ≤ 1

T

(
n
8η + η

2

∑T
t=1 E[∥ĝt∥22]

)
.
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3 PROBLEM STATEMENT

We address the problem of minimizing a submodular function f : 2[n] → [0, 1]. In this setting, the
exact values of f are not directly accessible; instead, we rely on a dueling oracle, in other words,
a noisy comparison oracle of two points. The dueling oracle provides a random binary response
o ∈ {±1} for a pair of subsets (S, S′) ∈ 2[n] × 2[n]. Note that, as in prior works on dueling
bandits and dueling convex optimization (Saha et al., 2021b;a), all outputs from the dueling oracle
are assumed to be independent. Therefore, even if the same pair is queried multiple times, the
outputs are not necessarily identical. The probability of the response is given as: Pr(o = +1) =
1
2 + 1

2ρ(f(S) − f(S′)), Pr(o = −1) = 1
2 − 1

2ρ(f(S) − f(S′)), where ρ : [−1, 1] → [−1, 1] is a
fixed transfer function that maps the difference in function values to the distribution parameter.

Our goal is to design algorithms that minimize additive error ET := f(Ŝ)−minS∈2[n] f(S), where
Ŝ is the algorithm output. The algorithm is given the decision set 2[n], the number of available oracle
calls T , and the transfer function ρ. At each iteration t = 1, 2, . . . , T , the algorithm chooses a pair of
subsets (St, S′

t) and observes a response ot ∈ {±1} from the dueling oracle. After T iterations, the
algorithm outputs a subset Ŝ ∈ 2[n].

This problem is motivated by the following applications:
Example 1 (recommendation system). Let us consider recommendation systems, in which we want
to find a collection of items S ⊆ [n] that maximizes a user’s satisfaction f(S), based on feedback
obtained after presenting S to various users. In practice, users rarely provide reliable cardinal scores
but can often express pairwise preferences between presented collections; such comparative feedback
is naturally modeled by a dueling oracle. Under certain conditions the resulting optimization can be
cast as submodular minimization. Let x ∈ {0, 1}n be the indicator of S and suppose user utility f(S)
has the quadratic form as f(S) =

∑n
i=1 aixi +

∑
1≤i≤j≤n bijxixj . If bij ≥ 0 for all i, j, which

models complementary interactions like camera and lens, then f is supermodular (Nemhauser et al.,
1978; Boros & Hammer, 2002). Hence, maximizing f is equivalent to minimizing −f , which is
submodular, and thus the problem is covered by our dueling-oracle SFM framework. Note that the
quadratic form above is only illustrative; our approach applies to general supermodular maximization
problems. More broadly, any selection task defined on a ground set, such as choosing keywords or
response components for a chatbot, can be addressed by the same framework.
Example 2 (multi-product price optimization). Consider price optimization over a set of products
to maximize total revenue. As shown in (Ito & Fujimaki, 2016), the total revenue function can be
formulated as a supermodular function under suitable assumptions, which means that the problem
is an instance of submodular minimization. In this setting, relative evaluations—such as pairwise
comparisons between pricing vectors—are often less sensitive to external factors like weather or
seasonality than absolute measurements, and thus more accurately capture the effect of price changes.

Following prior work on dueling convex optimization (Saha et al., 2021a; 2025), we consider a
transfer function ρ that satisfies the following properties:

1. Strictly monotonically increasing function: ρ(x) > ρ(y) if x > y.

2. Odd function: ρ(−x) = −ρ(x) for all x ∈ [−1, 1]. In particular, ρ(0) = 0.

In particular, this study focuses on the following two examples of ρ:

• Sigmoid transfer function: ρ(x) = 2
1+e−bx − 1, b > 0.

• Linear transfer function: ρ(x) = ax, 0 < a ≤ 1.

Our primary motivation for considering the sigmoid transfer function is that it is both natural and
important, particularly due to its connection with the Bradley–Terry model (Bradley & Terry, 1952).
The Bradley–Terry model has long been used as one of the most standard models for pairwise
comparisons, and its ability to fit a wide range of empirical data has been well documented (David,
1988; Cattelan, 2012). Its practical usefulness has been demonstrated across diverse applications,
including ranking systems, search engine click modeling (Joachims, 2002), preference estimation in
recommender and information-retrieval systems (Chen et al., 2013), and preference modeling for
post-training large language models (Stiennon et al., 2020; Rafailov et al., 2023). This models the
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probability that item i is preferred over item j as Pr(i ≻ j) = exp(βi)
exp(βi)+exp(βj)

, where βi, βj ∈ R
are parameters associated with the items. Now, suppose that for each subset S, the corresponding
parameter βS is proportional to the utility −f(S), i.e., βS = −bf(S) for some b > 0. In this case, the
output of a dueling oracle based on a sigmoid transfer function is consistent with the Bradley–Terry
model as Pr(o = +1) = 1

2 + 1
2ρ(f(S

′) − f(S)) = 1
1+exp(−b(f(S)−f(S′))) = exp(βS′ )

exp(βS′ )+exp(βS) .
This model has been widely used as a standard tool for modeling preferences based on pairwise
comparisons, and appears in various domains such as sports ranking, consumer behavior, and AI-based
decision-making. Moreover, the Bradley–Terry model can also be interpreted probabilistically—for
example, as the probability that a random variable drawn from an exponential distribution associated
with item i exceeds that of item j. This interpretation further supports its relevance as a model for
real-world phenomena.

The linear transfer function is important for two main reasons. First, any smooth transfer function
can be approximated by a linear function in a small neighborhood around zero. Therefore, even if the
true underlying transfer function is nonlinear, the linear case becomes relevant when the exploration
is restricted to regions where the difference in values is small. In such settings, approaches developed
for the linear case are expected to remain effective. Numerical results supporting this hypothesis to
some extent are provided in Section B.2 of the appendix. Second, the linear case is the simplest
from the perspective of algorithm design and analysis. It thus serves as a natural starting point for
investigating our new problem setting.

4 LINEAR TRANSFER FUNCTION

In this section, we present an algorithm for submodular minimization using a dueling oracle with a
linear transfer function. The proposed algorithm is based on the Stochastic Gradient Descent on the

Lovász extension f̂ of the submodular function f . It achieves an additive error bound of O( n
3
2

a
√
T
).

Furthermore, we prove that, under the condition that the difference between the elements in the two

queried sets is bounded by a constant order, any algorithm suffers an error of at least Ω( n
3
2

a
√
T
). When

there are no restrictions on queries, the lower bound remains Ω( n
a
√
T
).

4.1 ALGORITHM

Our algorithm is based on the SGD method. To construct subgradient estimators in SGD, we use
information using a dueling oracle. When the transfer function ρ of the dueling oracle is linear,
we can construct unbiased estimators of subgradients by the definition of the dueling oracle. From
Proposition 2, querying (Bτ(i), Bτ(i)−1) provides ot that corresponds to the i-th component of the
subgradient g. By the linearity of expectation, we have E[ ota ] = f(Bτ(i))− f(Bτ(i)−1) = gi.

From Proposition 1, the optimal value of the submodular function f over 2[n] is equivalent to the
optimal value of its Lovász extension f̂ over K. Using this equivalence, the algorithm performs SGD
to find a solution w̄ ∈ K with a small error relative to the optimal solution of f̂ . Finally, leveraging
the representation of the Lovász extension in equation 3, the algorithm outputs a set ŜT such that
E[f(ŜT )] = f̂(w̄).

This algorithm is a simple extension of the algorithms proposed by Hazan & Kale (2009) and Ito
(2019). In these prior works, the algorithms rely on querying sets to obtain function values, which are
then used to construct unbiased estimators of the subgradients. In contrast, this algorithm leverages
the properties of the dueling oracle to perform SGD without directly using function values.

4.2 UPPER BOUND

We prove that Algorithm 1 achieves an error bound of O
(

n
3
2

a
√
T

)
for any submodular objective

function f . Similar proofs are given in Hazan & Kale (2009) and Ito (2019).
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Algorithm 1 Submodular Stochastic Gradient Descent for linear transfer function

Input: The size n ≥ 1 of the ground set, the number T ≥ 1 of oracle calls and the coefficient
0 < a ≤ 1 of the transfer function ρ(x) = ax.

1: Set the initial point w(1) = 1
2 · 1, the learning rate η = a

2
√
nT

and the number of steps T ′ = T
n .

2: for t = 1, 2, . . . , T ′ do
3: Find a permutation π corresponding to w(t), i.e., w(t)

π(1) ≥ · · · ≥ w
(t)
π(n), and its

inverse permutation τ .
4: Define Bi = {π(1), . . . , π(i)} for i ∈ [n] and B0 = ∅.
5: for i = 1, 2, · · · , n do
6: Query the dueling oracle with (Bτ(i), Bτ(i)−1) and receive the feedback oti.
7: Compute an unbiased estimator ĝti = oti

a .
8: end for
9: Update w(t+1) = ΠK(w

(t) − ηĝt).
10: end for
11: Set w̄ = 1

T ′

∑T ′

t=1 w
(t) and choose a threshold z ∈ [0, 1] uniformly at random.

12: return ŜT = {i | w̄i ≥ z} .

Theorem 3. Let f be a submodular function. Let n, T and a be the input of Algorithm 1. Then,

Algorithm 1 with parameter η = a
2
√
nT

achieves the following error bound: E[ET ] = O

(
n

3
2

a
√
T

)
.

The expectation is taken with regard to the randomness of the oracle responses ot, and the internal
randomness of the algorithm.

5 SIGMOID TRANSFER FUNCTION

In this section, we present an algorithm for submodular minimization using a dueling oracle when
the transfer function is sigmoidal. This algorithm is similar to Algorithm 1 and performs SGD on the
Lovász extension.

However, when the transfer function is nonlinear, it is not possible to construct an unbiased estimator
of the subgradient of the Lovász extension from responses of the dueling oracle. To reduce the error
introduced by SGD, it is necessary to design an estimator with small bias for the subgradient. We
employ Firth’s method to construct a small-bias estimator when the transfer function is sigmoidal,
thereby mitigating the estimation error.

Firth (1993) has shown that in regular parametric problems, the first-order term of the asymptotic bias
of the maximum likelihood estimates can be eliminated by penalizing the log likelihood. In particular,
if θ is the canonical parameter of an exponential family model, the penalized log likelihood becomes
∂
∂θ logL(θ) +

1
2
∂
∂θ log |I(θ)|, where I(θ) denotes the Fisher information evaluated at θ.

Proposition 3. Consider a logistic regression model:

Pr(Xi = +1 | θ) = 1

1 + e−bθ
, Pr(Xi = −1) = 1− Pr(Xi = +1 | θ) = e−bθ

1 + e−bθ

with i = 1, · · · , k, Xi ∈ {±1} denoting the binary outcome variable and b being a positive constant.
The penalized maximum likelihood estimator θ̂∗ for the regression parameter θ ∈ [−1, 1] can be

written as: θ̂∗ = 1
b log

(
k++ 1

2

k−+ 1
2

)
, where k+ = |{i | Xi = +1}| and k− = |{i | Xi = −1}|.

Then, the bias of θ̂∗ satisfies: |E[θ̂∗]− θ| ≤
∣∣∣ 2ψ−1
24bψ2(1−ψ)2

∣∣∣ 1
k2 +O

(
1
k3

)
. Here, ψ is a constant and

ψ = 1
1+e−b . We denote the coefficient of 1

k2 by C(b) =
∣∣∣ 2ψ−1
24bψ2(1−ψ)2

∣∣∣.
5.1 ALGORITHM

When the transfer function ρ is sigmoidal, querying (Bτ(i), Bτ(i)−1) produces a dueling oracle
response following a logistic regression model with a parameter gi. From Proposition 3, estimating

8
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Algorithm 2 Submodular Stochastic Gradient Descent for sigmoid transfer function

Input: The size n ≥ 1 of the ground set, the number T ≥ 1 of oracle calls and the constant 0 < b of
the transfer function ρ(x) = 2/(1 + e−bx)− 1.

1: Set the initial point w(1) = 1/2 · 1,
the constant ψ = 1/(1 + e−b) and C(b) = |(2ψ − 1)/(24bψ2(1− ψ)2)|,
the learning rate η = b

6
5C(b)

1
5n

2
5 /T

2
5 ,

the number of steps T ′ = T
4
5 /n

4
5 b

2
5C(b)

2
5 ,

and the number of query repetitions k = b
2
5C(b)

2
5T

1
5 /n

1
5 .

2: for t = 1, 2, . . . , T ′ do
3: Find a permutation π corresponding to w(t), i.e., w(t)

π(1) ≥ · · · ≥ w
(t)
π(n), and its

inverse permutation τ .
4: Define Bi = {π(1), . . . , π(i)} for i ∈ [n] and B0 = ∅.
5: for i = 1, 2, · · · , n do
6: Repeatedly query the dueling oracle with (Bτ(i), Bτ(i)−1) for k times and receive feed-

back.
7: Let k+ and k− be the number of times +1 and −1 are returned.
8: Compute an estimator of the subgradient ĝti = 1

b log
(
k++ 1

2

k−+ 1
2

)
.

9: end for
10: Update w(t+1) = ΠK(w

(t) − ηĝt).
11: end for
12: Set w̄ = 1

T ′

∑T ′

t=1 w
(t) and choose a threshold z ∈ [0, 1] uniformly at random.

13: return ŜT = {i | w̄i ≥ z} .

with Firth’s method enables us to obtain low-bias estimators of subgradients. This algorithm can
efficiently perform SGD even if unbiased estimators of subgradients cannot be constructed.

5.2 UPPER BOUND

In this subsection, we prove that Algorithm 2 achieves an error bound ET = O

(
C(b)

1
5

b
4
5

· n
7
5

T
2
5

)
for

any submodular objective function f . The proof structure closely follows that of Theorem 3, with
necessary adjustments to account for the sigmoid transfer function.

Theorem 4. Let f be a submodular function. Let n, T and b be the input of Algorithm 2. Then,

Algorithm 2 achieves the following error bound: E[ET ] = O

(
C(b)

1
5

b
4
5

· n
7
5

T
2
5

)
. The expectation is

taken with regard to the randomness of the oracle responses ot, and the internal randomness of the
algorithm.

The factor C(b)
1
5

b
4
5

diverges to +∞, as b → +0 or b → +∞. Therefore, this algorithm cannot limit
the error when b takes extreme values.

6 LOWER BOUND

This section establishes lower bounds for the submodular minimization problem using a dueling
oracle with linear or sigmoid transfer functions. Specifically, we analyze the following two scenarios.

1. A lower bound for algorithms that satisfy the following Restriction 1.

2. A general lower bound for any algorithm.

Restriction 1. The symmetric difference between the two sets in each query remains constant order.
Specifically, for any query (St, S

′
t), the condition |St△S′

t| := |(St\S′
t) ∪ (S′

t\St)| = O(1) holds.

9
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Algorithms 1 and 2 satisfy this restriction. In fact, the pairs queried in the algorithms are restricted to
those of the form (Bτ(i), Bτ(i)−1), and by the definition of Bi and τ , we have |Bτ(i)△Bτ(i)−1| =
|{i}| = 1.

We prove that for algorithms that satisfy Restriction 1, there exists an instance of the problem where

the error is at least Ω
(
n

3
2√
T

)
. Additionally, for algorithms without any restrictions, we construct

an instance where the error lower bound is Ω
(

n√
T

)
. Since Algorithm 1 satisfies Restriction 1, it is

optimal up to a constant factor among algorithms restricted by this condition.
Theorem 5. In SFM using a dueling oracle with linear or sigmoid transfer functions, there exists

an instance for which algorithms that satisfy Restriction 1 suffers an error of: E[ET ] = Ω

(
n

3
2√
T

)
.

In addition, there is an instance for which algorithms without any restrictions suffer an error of:
E[ET ] = Ω

(
n√
T

)
. The expectation is taken with regard to the randomness of the instance f and

oracles ot, and the internal randomness of the algorithm.

7 CONCLUSION AND OPEN QUESTIONS

We have presented algorithms with upper bounds and lower bounds for submodular function mini-
mization using dueling oracles with linear or sigmoid transfer functions. In the case of linear transfer
functions, the upper and lower bounds coincide in their dependence on T , establishing algorithmic
optimality. By contrast, for nonlinear transfer functions, there remains a gap between the upper and
lower bounds in terms of T -dependence, leaving room for improvement; we conjecture that the upper
bound can be tightened to O( 1√

T
), which we leave as future work. Furthermore, we believe that a

more detailed investigation into the dependence on n in the linear case is also an important direction
for future research. Relaxing the assumption that the transfer function is known is also an important
direction for future work, and techniques in dueling convex optimization (Saha et al., 2025) and
derivative-free optimization (Jamieson et al., 2012) might provide an effective approach to this issue.
Furthermore, while the algorithm in this paper is designed via an extension to a continuous space, it
is possible that a combinatorial approach, i.e., one that does not rely on continuous relaxations such
as FTPL-based algorithms by Hazan & Kale (2009), may lead to a more efficient method. Exploring
such alternative approaches constitutes another interesting direction for future research.

Reproducibility statement The code necessary to reproduce the numerical experiments reported in
Appendix B is included in the supplementary material. For the theoretical results, all claims without
external references are accompanied by complete proofs provided either in the main text or in the
appendix. These materials, together with the descriptions of assumptions and algorithmic details in
the paper, are intended to ensure the reproducibility of our results.
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APPENDIX

A OMITTED PROOFS

Proposition 1. Let f̂ be a Lovász extension of a function f : 2[n] → [0, 1]. For any w ∈ K, the
following equations hold:

f̂(w) =

∫ 1

0

f({i | wi ≥ z})dz

= Ez∼Unif([0,1])[f({i | wi ≥ z})].

Proof. Since the permutation π is defined so that (1 ≥)wπ(1) ≥ · · · ≥ wπ(n)(≥ 0), the following
equations follows:∫ 1

0

f({w ≥ z})dz

=

∫ wπ(n)

0

f({w ≥ z})dz + · · ·+
∫ wπ(i)

wπ(i+1)

f({w ≥ z})dz + · · ·+
∫ 1

wπ(1)

f({w ≥ z})dz

= f([n])(wπ(n) − 0) + · · ·+ f({π(1), . . . , π(i)})(wπ(i) − wπ(i+1)) + · · ·+ f(∅)(1− wπ(1))

=

n−1∑
i=1

f({π(1), . . . , π(i)})(wπ(i) − wπ(i+1)) + f([n])wπ(n) + f(∅)(1− wπ(1))

= f̂(w).

If z is chosen uniformly at random from [0, 1], the probability density function of a random variable
z is 1. Then, we have:

Ez∼Unif([0,1])[f({w ≥ z})] =
∫ 1

0

f({w ≥ z})1dz

= f̂(w).

Theorem 1. (Fujishige (1991)) A function f : 2[n] → [0, 1] is submodular if and only if its Lovász
extension f̂ : K → [0, 1] is convex. For a submodular function f : 2[n] → [0, 1] and its Lovász
extension f̂ : K → [0, 1], we have:

min
X∈2[n]

f(X) = min
w∈{0,1}n

f̂(w) = min
w∈[0,1]n

f̂(w).

To begin with, we prove the first part of Theorem 1, which states that a function f is submodular if
and only if its Lovász extension is convex. To prove this, we first define the submodular polyhedron
in Rn. We then consider a linear programming problem (LP) over the submodular polyhedron and
apply the strong duality theorem to this LP. For χX ∈ Rn, we use the notation (χX)i = 1{i ∈ X}.
Definition 2. Let f be a submodular function. The submodular polyhedron P (f) is defined as:

P (f) = {s ∈ Rn | ∀X ∈ 2[n], s⊤χX ≤ f(X)}.

Theorem 6 (Strong Duality Theorem). Let x, c ∈ Rn, y, b ∈ Rm, A ∈ Rm×n. Consider the
following primal problem and its corresponding dual problem in linear programming:

• Primal Problem:

maximize b⊤y

subject to A⊤y ≤ c

14
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• Dual Problem:

minimize c⊤x

subject to Ax = b

x ≥ 0

For these problems, if either the primal or dual problem has an optimal solution, then the optimal
values of both problems are equal. That is,

max{b⊤y | A⊤y ≥ c} = min{c⊤x | Ax = b, x ≥ 0}.

The following proposition, given in Bach (2011, Proposition 3.2), serves as a key building block for
proof of the first part of Theorem 1:

Proposition 4. Let f be a submodular function. Let w ∈ K, π : [n] → [n] be a permutation
that orders the components of w in decreasing order, and define sπ(i) = f({π(1), . . . , π(i)}) −
f({π(1), . . . , π(i− 1)}) for i ∈ 2, · · · , n and sπ(1) = f({π(1)})− f(∅). Then s ∈ P (f) and,

s = argmax
s∈P (f)

w⊤s,

f̂(w)− f(∅) = max
s∈P (f)

w⊤s.

Proof. We consider the LP:

max
s∈P (f)

w⊤s.

By the definition of P (f), the primal problem can be explicitly written as:

maximize w⊤s

subject to χ⊤
Xs ≤ f(X) for all X ∈ 2[n]

Let λX be a real number for all X ∈ 2[n]. The dual problem corresponding to this primal problem
can be written as:

minimize
∑
X∈2[n]

λXf(X)

subject to
∑
X∈2[n]

λXχX = w

λX ≥ 0 for all X ∈ 2[n]

A constant vector, where each component is minX∈2[n],X ̸=∅
f(X)
|X| , belongs to P (f), ensuring that

P (f) is non-empty and the primal problem has an optimal solution. Therefore, by the strong convex
duality (Theorem 6), the optimal values of both problems are equal.

We define as:

sπ(i) =

{
f({π(1)})− f(∅) (if i = 1),

f({π(1), . . . , π(i)})− f({π(1), . . . , π(i− 1)}) (if i ∈ {2, · · · , n}),

λX =


wπ(i) − wπ(i+1) (if X = {π(1), · · · , π(i)} for i ∈ {1, · · · , n− 1}),
w[n] (ifX = [n]),

0 (other wise),

15
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and show that they are feasible solutions of primal and dual problems. Then, we show that they
achieve the same objective value and are optimal solutions. Without loss of generality, we assume
that π(k) = k for all k ∈ [n]. For any set X , we have:

s⊤χX =

n∑
k=1

(χX)ksk

=

n∑
k=1

(χX)k[f({1, . . . , k})− f({1, . . . , k − 1})]

≤
n∑
k=1

(χX)k[f(X ∩ {1, . . . , k})− f(X ∩ {1, . . . , k − 1})] by the submodularity of f,

=

n∑
k=1

[f(X ∩ {1, . . . , k})− f(X ∩ {1, . . . , k − 1})]

= f(X) .

Thus, s ∈ P (f), i.e., s is a feasible solution of the primal problem. λX are all non-negative according
to the definition of π, and satisfy the constraint

∑
X∈2[n] λXχX = w. Therefore, λX are feasible

solutions of the dual problem. Since

w⊤s =

n∑
i=1

wπ(i)sπ(i)

=

n∑
i=2

wπ(i)[f({π(1), · · · , π(i)})− f({π(1), · · · , π(i− 1)})]

+ wπ(1)[f({π(1)})− f(∅)]

= f̂(w)− f(∅),

∑
X∈2[n]

λXf(X) =

n−1∑
i=1

f({π(1), . . . , π(i)})(wπ(i) − wπ(i+1))

+ f([n])wπ(n) − f(∅)wπ(1)

= f̂(w)− f(∅),

both the primal and dual problems achieve the value f̂(w)− f(∅). Thus, by strong duality, this is
the optimal solution of both problems and s, λX are the optimal solutions for the primal and dual
problems, respectively.

Then, we prove the first part of Theorem 1 using this proposition.

Proof. If f is a submodular function, from Proposition 4, for all w ∈ K, f̂(w)− f(∅) is a maximum
of linear functions, and hence f̂(w) − f(∅) is a convex function, i.e., f̂(w) is a convex function.
Conversely, suppose that the Lovász extension f̂ of f is a convex function. By definition, f̂ is a
positively homogeneous function, i.e., f̂(λw) = λf̂(w) for any λ ∈ (0, 1]. For any X,Y ∈ 2[n],

f̂(
1

2
χX +

1

2
χY ) = f̂(

1

2
χX∪Y +

1

2
χX∩Y )

= f̂(
1

2
χX∪Y ) + f̂(

1

2
χX∩Y )

=
1

2
f̂(χX∪Y ) +

1

2
f̂(χX∩Y )

=
1

2
f(X ∪ Y ) +

1

2
f(X ∩ Y ).
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The second equation holds because the components of each vector 1
2χX∪Y + 1

2χX∩Y ,
1
2χX∩Y and

χX∪Y can be ordered in the same sequence and can share the same permutation π. Furthermore,
since f is a convex function, we also have:

f̂(
1

2
χX +

1

2
χY ) ≤

1

2
f̂(χX) +

1

2
f̂(χY )

=
1

2
f(X) +

1

2
f(Y ).

Therefore, f is a submodular function.

Next, we establish the second part of Theorem 1, which states that the minimum value of a submodular
function is equal to the minimum value of its Lovász extension.

Proof. Since f̂ is an extension from {0, 1}n to [0, 1]n and satisfies f(X) = f̂(χX) for allX ∈ 2[n], it
follows that minX∈2[n] f(X) = minw∈{0,1}n f̂(w) ≥ minw∈[0,1]n f̂(w). Next, we prove the reverse
inequality. From equation 2, the following holds for any w ∈ [0, 1]n:

f̂(w) =

n−1∑
i=1

f({π(1), . . . , π(i)})(wπ(i) − wπ(i+1)) + f([n])wπ(n) + f(∅)(1− wπ(1))

≥
n−1∑
i=1

min
X∈2[n]

f(X)(wπ(i) − wπ(i+1)) + min
X∈2[n]

f(X)wπ(n) + min
X∈2[n]

f(X)(1− wπ(1))

= min
X∈2[n]

f(X)

Proposition 2. Let f be a submodular function. For w ∈ K, let π be a permutation that orders the
components of w in decreasing order, and let τ be the inverse permutation of π. Then, a subgradient
g of f̂ at w is given as follows:

gπ(i) = f(Bi)− f(Bi−1)

gi = f(Bτ(i))− f(Bτ(i)−1)

Proof. From equation 2, the expression for a subgradient is immediately obtained.

Theorem 2. Let f̂ : K → [0, 1] be a convex function in the hypercube K = [0, 1]n. Let
w(1), w(2), . . . , w(T ) be defined by w(1) = 1

2 ·1 and w(t+1) = ΠK(w
(t)−ηĝt). When ĝ1, ĝ2, . . . , ĝT

are unbiased estimators of subgradients such that E[ĝt | w(t)] = gt, where gt is a subgradient of f̂ at
w(t), the average point w̄ = 1

T

∑T
t=1 w

(t) satisfies:

E[f̂(w̄)]− min
w∗∈K

f̂(w∗) ≤ 1

T

( n
8η

+
η

2

T∑
t=1

E[∥ĝt∥22]
)
.

Proof. Let v(t+1) = w(t) − ηĝt, so that w(t+1) = ΠK(v
(t+1)). By expanding the squared norm, we

have:

∥v(t+1) − w∗∥22 = ∥w(t) − w∗∥22 − 2ηĝ⊤t (w
(t) − w∗) + η2∥ĝt∥22.

Rearranging terms, we obtain:

ĝ⊤t (w
(t) − w∗) =

1

2η
[∥w(t) − w∗∥22 − ∥v(t+1) − w∗∥22] +

η

2
∥ĝt∥22.

Using the non-expansiveness property of Euclidean projections onto convex sets,

∥w(t+1) − w∗∥22 ≤ ∥v(t+1) − w∗∥22,
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we further obtain:

ĝ⊤t (w
(t) − w∗) ≤ 1

2η
[∥w(t) − w∗∥22 − ∥w(t+1) − w∗∥22] +

η

2
∥ĝt∥22,

Summing this inequality over t = 1, . . . , T , we have:
T∑
t=1

ĝ⊤t (w
(t) − w∗) ≤

T∑
t=1

∥w(t) − w∗∥22 − ∥w(t+1) − w∗∥22
2η

+
η

2
∥ĝt∥22

≤ n

8η
+
η

2

T∑
t=1

∥ĝt∥22, (4)

since ∥w(1)−w∗∥22 ≤ n
4 (|w(1)

i −w∗
i | ≤ 1

2 for all i ∈ [n] since w(1) = 1
2 ·1 and w∗ ∈ [0, 1]n). Next,

since E[ĝt | w(t)] = gt, a subgradient of f̂ at w(t), we have:

E[ĝ⊤t (w(t) − w∗) | w(t)] = g⊤t (w
(t) − w∗) ≥ f̂(w(t))− f̂(w∗),

where the inequality follows from the convexity of f̂ . Taking the expectation over the choice of w(t),
we have:

E[ĝ⊤t (w(t) − w∗)] ≥ E[f̂(w(t))]− f̂(w∗).

Summing over t = 1, . . . , T , we have:
T∑
t=1

E[f̂(w(t))]−
T∑
t=1

f̂(w∗) ≤ E[
T∑
t=1

ĝ⊤t (w
(t) − w∗)]

≤ n

8η
+
η

2

T∑
t=1

E[∥ĝt∥22].

Finally, since f̂ is convex, we can apply Jensen’s inequality to obtain the expected error bound as
follows:

E[f̂(w̄)]− f̂(w∗) = E[f̂(
1

T

T∑
t=1

x(t))]− f̂(w∗)

≤ 1

T

T∑
t=1

E[f̂(w(t))]− f̂(w∗) (By Jensen’s inequality)

=
1

T

( T∑
t=1

E[f̂(w(t))]−
T∑
t=1

f̂(w∗)
)

≤ 1

T

( n
8η

+
η

2

T∑
t=1

E[∥ĝt∥22]
)
.

Theorem 3. Let f be a submodular function. Let n, T and a be the input of Algorithm 1. Then,
Algorithm 1 with parameter η = a

2
√
nT

achieves the following error bound:

E[ET ] = O

(
n

3
2

a
√
T

)
.

The expectation is taken with regard to the randomness of the oracle responses ot, and the internal
randomness of the algorithm.

Proof. Since ĝt in Algorithm 1 is an unbiased estimator of the subgradient gt, by Theorem 2, the
following inequality holds:

E[f̂(w̄)]− min
w∗∈K

f̂(w∗) ≤ 1

T

( n
8η

+
η

2

T∑
t=1

E[∥ĝt∥22]
)
.
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Moreover, since ĝt = n
a ot · ei and ∥ĝt∥22 = n2

a2 , we have:

T∑
t=1

E[∥ĝt∥22] =
n2T

a2
.

Then, we obtain:

E[f̂(w̄)]− min
w∗∈K

f̂(w∗) ≤ 1

T

( n
8η

+
η

2

T∑
t=1

E[∥ĝt∥22]
)

=
n

8ηT
+
ηn2

2a2

=
n

3
2

4a
√
T
,

where the last equality follows by setting η = a
2
√
nT

. Finally, from equation 3 and Theorem 1, we
have the error bound:

E[ET ] = E[f(ŜT )]− min
S∈2[n]

f(S)

= E[f̂(w̄)]− min
w∗∈K

f̂(w∗)

≤ n
3
2

4a
√
T
.

Proposition 3. Consider a logistic regression model:

Pr(Xi = +1 | θ) = 1

1 + e−bθ
, Pr(Xi = −1) = 1− Pr(Xi = +1 | θ) = e−bθ

1 + e−bθ

with i = 1, · · · , k, Xi ∈ {±1} denoting the binary outcome variable and b being a positive constant.
The penalized maximum likelihood estimator θ̂∗ for the regression parameter θ ∈ [−1, 1] can be
written as:

θ̂∗ =
1

b
log
(k+ + 1

2

k− + 1
2

)
,

where k+ = |{i | Xi = +1}| and k− = |{i | Xi = −1}|. Then, the bias of θ̂∗ satisfies:

|E[θ̂∗]− θ| ≤
∣∣∣∣ 2ψ − 1

24bψ2(1− ψ)2

∣∣∣∣ 1

k2
+O

(
1

k3

)
.

Here, ψ is a constant and ψ = 1
1+e−b . We denote the coefficient of 1

k2 by C(b) =
∣∣∣ 2ψ−1
24bψ2(1−ψ)2

∣∣∣.
First, we derive the form of the penalized maximum likelihood estimator, which constitutes the first
part of this proposition.

Proof. The log likelihood function and its partial derivative with respect to θ are

logL(θ) =

k∑
i=1

log
( 1

1 + e−Xibθ

)
= k+1 log

( 1

1 + e−bθ

)
+ k−1 log

( 1

1 + ebθ

)
,

∂

∂θ
logL(θ) = k+1(1 + e−bθ)

be−bθ

(1 + e−bθ)2
+ k−1(1 + ebθ)

−bebθ

(1 + ebθ)2

= k+1b
1

1 + ebθ
− k−1b

1

1 + e−bθ
.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The Fisher information is

I(θ) = E[− ∂2

∂θ2
logL(θ) | θ]

= E[k+b2
ebθ

(1 + ebθ)2
+ k−b

2 e−bθ

(1 + e−bθ)2
| θ]

= kb2
e−bθ

(1 + e−bθ)2
,

since E[k+ | θ] = k
1+e−bθ and E[k− | θ] = k

1+ebθ
. Therefore, the modified score function is

U∗(θ) =
∂

∂θ
logL(θ) +

1

2

∂

∂θ
log |I(θ)|

= k+b
1

1 + ebθ
− k−b

1

1 + e−bθ
− b

2
+

be−bθ

1 + e−bθ

=
b

1 + e−bθ

(
(k+ +

1

2
)e−bθ − (k− +

1

2
)
)
.

Finally, we obtain the solution θ̂∗:

e−bθ̂
∗
=
k− + 1

2

k+ + 1
2

−bθ̂∗ = log
(k− + 1

2

k+ + 1
2

)
θ̂∗ =

1

b
log
(k+ + 1

2

k− + 1
2

)
.

Next, we establish the second part of Proposition 3, which demonstrates the bias of θ̂∗. Our proof is
based on the method outlined in Cox & Snell (1989, §2.1.6). Although their work showed that the
leading bias term, proportional to 1

k , can be eliminated, we extend this approach to derive terms up to
1
k2 .

Proof. Let ϕ = 1
1+e−bθ , be the probability of Xi = +1. The parameter θ can be expressed as

1
b log

ϕ
1−ϕ . Define a function h : [0, 1] → R as h(x) = 1

b log
x+ 1

2k

1−x+ 1
2k

. Then, θ̂∗ = h(k+k ).

Considering the Taylor expansion of h(k+k ) with respect to ϕ, we have:

θ̂∗ = h(
k+
k
) = h(ϕ) + h′(ϕ)(

k+
k

− ϕ) +
1

2
h′′(ϕ)(

k+
k

− ϕ)2

+
1

6
h′′′(ϕ)(

k+
k

− ϕ)3 +
1

24
h′′′′(ϕ)(

k+
k

− ϕ)4 + · · · . (5)
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By the definition of k+, E[k+k ] = ϕ. Therefore, E[(k+k −ϕ)r] is the r-th central moment of a binomial
distribution. Taking expectation of equation 5, we obtain:

bE[θ̂∗] = b
{
h(ϕ) + h′(ϕ)E[

k+
k

− ϕ] +
1

2
h′′(ϕ)E[(

k+
k

− ϕ)2] +
1

6
h′′′(ϕ)E[(

k+
k

− ϕ)3]

+
1

24
h′′′′(ϕ)E[(

k+
k

− ϕ)4] + · · ·
}

= log
ϕ+ 1

2k

1− ϕ+ 1
2k

+
1

2

{
−
(
ϕ+

1

2k

)−2

+

(
1− ϕ+

1

2k

)−2
}
ϕ(1− ϕ)

k

+
1

6

{
2

(
ϕ+

1

2k

)−3

+ 2

(
1− ϕ+

1

2k

)−3
}
ϕ(1− ϕ)(1− 2ϕ)

k2

+
1

24

{
−6

(
ϕ+

1

2k

)−4

+ 6

(
1− ϕ+

1

2k

)−4
}{

3ϕ2(1− ϕ)2

k2

+
ϕ(1− ϕ)(1− 6ϕ(1− ϕ))

k3

}
+ · · ·

= log
ϕ

1− ϕ
+

1

2ϕk
− 1

8ϕ2k2
− 1

2(1− ϕ)k
+

1

8(1− ϕ)2k2

+
1

2

{
− 1

ϕ2

(
1− 1

ϕk

)
+

1

(1− ϕ)2

(
1− 1

(1− ϕ)k

)}
ϕ(1− ϕ)

1

k

+
1

3

{
1

ϕ3
+

1

(1− ϕ)3

}
ϕ(1− ϕ)(1− 2ϕ)

1

k2

+
3

4

{
− 1

ϕ4
+

1

(1− ϕ)4

}
ϕ2(1− ϕ)2

1

k2
+O

(
1

k3

)

= bθ +
{ 1

2ϕ
− 1

2(1− ϕ)
− 1− ϕ

2ϕ
+

ϕ

2(1− ϕ)

}1
k
+
{
− 1

8ϕ2
+

1

8(1− ϕ)2
+

1− ϕ

2ϕ2

− ϕ

2(1− ϕ)2
+

(1− ϕ)(1− 2ϕ)

3ϕ2
+
ϕ(1− 2ϕ)

3(1− ϕ)2
− 3(1− ϕ)2

4ϕ2
+

3ϕ2

4(1− ϕ)2

}
+O

(
1

k3

)
(By the Taylor expansion of log(1 + x) and (1 + x)−r)

= bθ +
2ϕ− 1

24ϕ2(1− ϕ)2
· 1

k2
+O

(
1

k3

)
.

Thus, the bias of θ̂∗ can be written as:

|E[θ̂∗]− θ| =
∣∣∣∣ 2ϕ− 1

24bϕ2(1− ϕ)2

∣∣∣∣ 1

k2
+O

(
1

k3

)
.

Considering ϕ as a function of θ and b as a function of ϕ(θ) and θ, the relationship between ϕ and
θ, and the relationship between the coefficient of the term 1

k2 and ϕ are illustrated in Figure 1 and
Figure 2. For all b > 0, the coefficient reaches its maximum with θ = 1 (or θ = −1). Therefore, the
coefficient can be bounded using ψ = 1

1+e−b :∣∣∣∣ 2ϕ− 1

24bϕ2(1− ϕ)2

∣∣∣∣ ≤ ∣∣∣∣ 2ψ − 1

24bψ2(1− ψ)2

∣∣∣∣ = C(b).

Theorem 4. Let f be a submodular function. Let n, T and b be the input of Algorithm 2. Then,
Algorithm 2 achieves the following error bound:

E[ET ] = O

(
C(b)

1
5

b
4
5

· n
7
5

T
2
5

)
.
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Figure 1: Relationship between ϕ and θ. Figure 2: Relationship between |(2ϕ −
1)/(24bϕ2(1− ϕ)2)| and ϕ.

The expectation is taken with regard to the randomness of the oracle responses ot, and the internal
randomness of the algorithm.

Proof. Let w∗ be a minimizer of f̂ in K.

T ′∑
t=1

(
f̂(w(t))− f̂(w∗)

)
≤

T ′∑
t=1

(
g⊤t (w

(t) − w∗)
)

=

T ′∑
t=1

(
ĝ⊤t (w

(t) − w∗) + (g⊤t − ĝ⊤t )(w
(t) − w∗)

)

≤ n

8η
+
η

2

T ′∑
t=1

∥ĝt∥22 +
T ′∑
t=1

(g⊤t − ĝ⊤t )(w
(t) − w∗) (By equation 4)

≤ n

8η
+
η

2

T ′∑
t=1

∥ĝt∥22 +
T ′∑
t=1

∥g⊤t − ĝ⊤t ∥1∥w(t) − w∗∥∞

(By Hölder’s inequality)

≤ n

8η
+
η

2

T ′∑
t=1

∥ĝt∥22 +
T ′∑
t=1

∥g⊤t − ĝ⊤t ∥1.

The last inequality holds since w(t), w∗ ∈ K. By the definition of ĝt, we have:

∥ĝt∥22 ≤ n

b2
{log(2k + 1)}2, ∥ĝt − gt∥1 = nC(b)O

(
1

k2

)
.

Then, the following inequality follows by taking expectations and using Jensen’s inequality:

E[f̂(w̄)]− min
w∗∈K

f̂(w∗) ≤ 1

T ′

( n
8η

+
η

2

T ′∑
t=1

∥ĝt∥22 +
T ′∑
t=1

∥g⊤t − ĝ⊤t ∥1
)

≤ n

8T ′η
+
nη

2b2
{log(2k + 1)}2 + nC(b)O

(
1

k2

)
=
n2k

8Tη
+
nη

2b2
{log(2k + 1)}2 + nC(b)O

(
1

k2

)
.

Setting η = b
6
5C(b)

1
5
n

2
5

T
2
5

and k = b
2
5C(b)

2
5
T

1
5

n
1
5

, we have:

E[f̂(w̄)]− min
w∗∈K

f̂(w∗) = O

(
C(b)

1
5

b
4
5

· n
7
5

T
2
5

)
.
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Finally, from equation 3 and Theorem 1, we have the error bound:

E[ET ] = E[f(ŜT )]− min
S∈2[n]

f(S)

= E[f̂(w̄)]− min
w∗∈K

f̂(w∗)

= O

(
C(b)

1
5

b
4
5

· n
7
5

T
2
5

)
.

Theorem 5. In SFM using a dueling oracle with linear or sigmoid transfer functions, there exists an
instance for which algorithms that satisfy Restriction 1 suffers an error of:

E[ET ] = E[f(ŜT )− min
S∈2[n]

f(S)] = Ω

(
n

3
2

√
T

)
.

In addition, there is an instance for which algorithms without any restrictions suffer an error of:

E[ET ] = E[f(ŜT )− min
S∈2[n]

f(S)] = Ω

(
n√
T

)
.

The expectation is taken with regard to the randomness of the instance f and oracles ot, and the
internal randomness of the algorithm.

Before presenting the proof of the lower bound, we introduce Yao’s principle, a powerful tool for
analyzing lower bounds of randomized algorithms. This principle allows us to derive lower bounds
by analyzing the expected performance of deterministic algorithms over a chosen distribution of
problem instances.

To begin with, we prove the lower bound for the linear transfer function.

Proposition 4 (Yao’s principle). The worst-case error of any randomized algorithm is at least the
error of the best deterministic algorithm under a specific distribution D. That is, let the error ET
be expressed as a function ET (A, x), where A is an algorithm (deterministic or randomized) and x
represents the input (including the objective function f , oracle response ot). Define A as the set of
all deterministic algorithms, R as the set of all randomized algorithms, X as the set of all possible
inputs, and D as a specific input distribution. Then, the following inequality holds:

min
A∈A

Ex∼D[ET (A, x)] ≤ max
x∈X

E[ET (R, x)].

Proof. For simplicity, this proof considers the objective function to be a submodular function
f : 2[n] → [−1, 1]. Since submodular functions remain submodular under scaling by a constant or
adding/subtracting a constant, this proof is applicable to the problem setting as well.

First, we consider the case where the algorithm satisfies Restriction 1. By Proposition 4, to establish
a lower bound, we construct a objective function in which any deterministic algorithm (satisfies

Restriction 1) incurs an error of Ω
(

n
3
2

a
√
T

)
.

Fix a subset S∗ ∈ 2[n] and a positive real value ϵ ∈ [0, 1]. Define a submodular function f : 2[n] →
[−1, 1] as f(X) = ϵ

2n (|X\S∗|−|X∩S∗|). When a new element i is added to a subset, the increment
in the function value only depends on whether i is included in S∗. Hence, as equation 1 holds, f
defined as above is a submodular function. It is obvious that f achieves its minimum value of
− ϵ

2n |S
∗| at S∗. Thus, the error of the output ŜT is given by the following expression:

f(ŜT )− f(S∗) =
ϵ

2n
(|ŜT \S∗| − |ŜT ∩ S∗|)− (− ϵ

2n
|S∗|)

=
ϵ

2n
|ŜT△S∗|.
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According to the restriction, the query at iteration t is given by (St + i, St) (i /∈ St). Based on the
definition of f , the result ot of the dueling oracle follows the probability distribution:

ot ∼
{

Ber±(−a ϵ
2n ) if i ∈ S∗

Ber±(a ϵ
2n ) if i /∈ S∗.

Since the output ot does not depend on St but only depends on it, let it represents the query in
iteration t.

Since we consider deterministic algorithms, the query in iteration t is determined by (is, os)
t−1
s=1, and

the output ŜT is determined by (it, ot)
T
t=1. Therefore, if S∗ is fixed, the output ŜT can be considered

as being sampled from a probability distribution that depends on S∗.

To simplify the proof, we define x̂ = χŜT
and x∗ = χS∗ . Then, the error can be expressed using

x̂ and x∗ as ϵ
2n |ŜT△S

∗| = ϵ
2n

∑n
i=1 |x̂i − x∗i |. Given that x̂ follows a probability distribution Dx∗

determined by x∗, we consider the error as a function of x∗. Specifically, we define:

ET (x
∗) = Ex̂∼Dx∗ [

ϵ

2n

n∑
i=1

|x̂i − x∗i |].

First, we bound the KL divergence between the probability distributions followed by ŜT when S∗

and S∗△{i} are respectively given. By the definition of x̂ and x∗, we consider the KL divergence
between the distribution Dx∗ , which x̂ follows when x∗ is given, and the distribution Dx∗△{i}, which
x̂ follows when x∗△{i} is given. By the chain rule for KL divergence [Cover & Thomas (2005,
Theorem 2.5.3)], we have:

DKL(Dx∗∥Dx∗△{i}) = DKL(x̂|x∗∥x̂x∗△{i})

≤ DKL((it, ot)
T
t=1|x∗∥(it, ot)Tt=1|x∗△{i})

= DKL((it, ot)
T−1
t=1 |x∗∥(it, ot)T−1

t=1 |x∗△{i})

+ E(it,ot)
T−1
t=1 |x∗ [DKL((iT , oT )|x∗∥(iT , oT )|x∗△{i})]

(By the chain rule)

= DKL((it, ot)
T−1
t=1 |x∗∥(it, ot)T−1

t=1 |x∗△{i})

+ E(it,ot)
T−1
t=1 |x∗ [1{iT = i}DKL(Ber

±(a
ϵ

2n
)∥Ber±(−a

ϵ

2n
))]

= DKL((it, ot)
T−1
t=1 |x∗∥(it, ot)T−1

t=1 |x∗△{i})

+ Prx∗(iT = i)(a
ϵ

2n
log(

1 + a ϵ
2n

1− a ϵ
2n

))

(By the definition of KL divergence)

≤
T∑
t=1

Prx∗(it = i)(a
ϵ

2n
log(

1 + a ϵ
2n

1− a ϵ
2n

)).

The last inequality holds by applying the chain rule repeatedly. Since
∑n
i=1

∑T
t=1 Prx∗(it = i) = T ,

we have the following inequality:

n∑
i=1

DKL(Dx∗∥Dx∗△{i}) ≤ Ta
ϵ

2n
log(

1 + a ϵ
2n

1− a ϵ
2n

)

≤ log 3

2
· a

2T

n2
ϵ2. (6)

The last inequality holds, since x
2 log(

1+ x
2

1− x
2
) ≤ log 3

2 x2 for 0 < x ≤ 1, and 0 < a ϵn ≤ 1.
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Next, we define yi(x∗) = Ex̂∼Dx∗ [x̂i] and ei(x∗) = |yi(x∗) − x∗i |. since x∗i only takes values in
{0, 1}, the error ET (x∗) can be expressed as:

ET (x
∗) =

ϵ

2n

n∑
i=1

Ex̂∼Dx∗ |x̂i − x∗i |

=
ϵ

2n

n∑
i=1

|Ex̂∼Dx∗ [x̂i]− x∗i |

=
ϵ

2n

n∑
i=1

|yi(x∗)− x∗i |

=
ϵ

2n

n∑
i=1

ei(x
∗).

By Pinsker’s inequality, the following inequality holds:

∥y(x∗)− y(x∗△{i})∥∞ ≤
√

1

2
DKL(Dx∗∥Dx∗△{i}).

Then, we have:

n∑
i=1

∥y(x∗)− y(x∗△{i})∥∞ ≤
n∑
i=1

√
1

2
DKL(Dx∗∥Dx∗△{i})

≤

√√√√n

n∑
i=1

1

2
DKL(Dx∗∥Dx∗△{i})

≤
√

log 3

4
· a

2T

n
ϵ2. (7)

Therefore,

ei(x
∗) + ei(x

∗△{i}) = |yi(x∗)− x∗i |+ |yi(x∗△{i})− (1− x∗i )|
≥ |yi(x∗)− x∗i − yi(x

∗△{i}) + (1− x∗i )|
≥ |1− 2x∗i | − |yi(x∗)− yi(x

∗△{i})|
= 1− |yi(x∗)− yi(x

∗△{i})|.

Then, we obtain the following inequality by setting ϵ = 1√
log 3

· n
3
2

a
√
T

:

n∑
i=1

(
ei(x

∗) + ei(x
∗△{i})

)
≥

n∑
i=1

(
1− |yi(x∗)− yi(x

∗△{i})|
)

≥ n−
√

log 3

4
· a

2T

n
ϵ2 (By equation 7)

=
n

2
. (8)
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Finally, if S∗ is chosen uniformly at random from 2[n], x∗ also follows a uniform distribution (we
denote x∗ ∼ Unif). Then, we obtain the lower bound in Theorem 5:

E[ET ] = Ex∗∼Unif[ET (x
∗)]

=
ϵ

2n
Ex∗∼Unif[

n∑
i=1

ei(x
∗)]

=
ϵ

4n
Ex∗∼Unif[

n∑
i=1

(
ei(x

∗) + ei(x
∗△{i})

)
]

≥ ϵ

4n
Ex∗∼Unif[

n

2
] (By equation 8)

=
1

8
√
log 3

n
3
2

a
√
T
.

The second equality follows from the fact that if x∗ follows the uniform distribution, then x∗△{i}
also follows the uniform distribution for any i ∈ [n].

For algorithms without any restrictions, the following inequality holds instead of equation 6:
n∑
i=1

DKL(Dx∗∥Dx∗△{i}) ≤
log 3

2
· a

2T

n
ϵ2.

Then, by setting ϵ = 1√
log 3

· n
a
√
T

, we have the same inequality as equation 8. Finally, we obtain the
lower bound:

E[ET ] ≥
1

8
√
log 3

n

a
√
T
.

Next, we establish the lower bound for the sigmoid transfer function. The overall proof follows the
same structure as in the linear case, with the differences stated as the following lemma.
Lemma 1. Let ρ(x) = 2

1+e−bx − 1, and let the other definitions follow those used in the proof of
Theorem 5. For any algorithm that satisfies Restriction 1, the KL divergence between two distributions
Dx∗ and Dx∗△{i} satisfies the following inequality:

DKL(Dx∗∥Dx∗△{i}) ≤
b2T

4n2
ϵ2.

For any algorithm without any restrictions, the following inequality holds:

DKL(Dx∗∥Dx∗△{i}) ≤
b2T

4n
ϵ2.

Proof. By the chain rule for KL divergence, we have:
DKL(Dx∗∥Dx∗△{i}) ≤ DKL((it, ot)

T−1
t=1 |x∗∥(it, ot)T−1

t=1 |x∗△{i})

+ E(it,ot)
T−1
t=1 |x∗ [1{iT = i}DKL(Ber

±(ρ(
ϵ

2n
))∥Ber±(ρ(− ϵ

2n
)))]

= DKL((it, ot)
T−1
t=1 |x∗∥(it, ot)T−1

t=1 |x∗△{i}) + Prx∗(iT = i)(
bϵ

2n
ρ(

ϵ

2n
))

(By the definition of KL divergence and ρ(x))

≤
T∑
t=1

Prx∗(it = i)(
bϵ

2n
ρ(

ϵ

2n
)).

When the algorithm satisfies Restriction 1, it holds
∑n
i=1

∑T
t=1 Prx∗(it = i) = T . Therefore, we

have the following inequality:
n∑
i=1

DKL(Dx∗∥Dx∗△{i}) ≤ T
bϵ

2n
ρ(

ϵ

2n
)

≤ b2T

4n2
ϵ2 (∵ ρ(x) ≤ bx for all x > 0).
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Moreover, for algorithms without any restrictions, it follows
∑n
i=1

∑T
t=1 Prx∗(it = i) = nT .

Therefore, we obtain:

DKL(Dx∗∥Dx∗△{i}) ≤
b2T

4n
ϵ2.

B NUMERICAL EXPERIMENT

B.1 DEPENDENCE OF THE OPTIMIZATION ERROR ON THE PROBLEM PARAMETERS

In this section, we investigate, through numerical experiments, how the error achieved by the
algorithm varies with the problem parameters (T and n), and we verify that the empirical behavior
is consistent with the theoretical analysis. We implemented the algorithm with linear and sigmoid
transfer functions and investigated the dependence of the error on the number of oracle calls T and
the dependence of the error on the size of the ground set n. Fig.3, 4, 5, 6 display the empirical results
together with the upper and lower bounds derived in this paper. As objective functions, we used
nontrivial submodular functions derived from cut functions, so that neither the empty set nor the full
set is necessarily a minimizer.

The experimental settings are as follows. The linear transfer parameter a and the sigmoid transfer
parameter bwere both set to 1. Algorithmic parameters are as specified in 1 and 2. For the experiments
on the dependence of the error on the number of oracle calls T , we fixed the size of the ground set
at n = 5 and ran the algorithms with T ∈ {500, 1000, 1500, 2000, 2500}. For the experiments on
the dependence of the error on the size of the ground set n, we fixed the number of oracle calls at
T = 2000 and varied n ∈ {4, 6, 8, 10, 12, 14}.

For each objective function, we ran the algorithm 100 times and recorded the average error between
the algorithm’s output and the optimal solution. This procedure was repeated for 100 randomly
generated objective functions; the plots report the mean error across these functions together with the
corresponding standard deviations.

Figure 3: Dependence of the error on the number of oracle calls T under the linear transfer function.
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Figure 4: Dependence of the error on the size of the ground set n under the linear transfer function.

Figure 5: Dependence of the error on the number of oracle calls T under the sigmoid transfer function.
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Figure 6: Dependence of the error on the size of the ground set n under the sigmoid transfer function.

B.2 EXPERIMENTS UNDER MISSPECIFIED TRANSFER FUNCTIONS

In this section, we evaluate the performance of the proposed algorithm through numerical experiments
in a misspecified transfer-function setting, i.e., when the transfer function assumed in the algorithm
design does not match the actual transfer function that governs the behavior of the dueling oracle.
Such misspecification commonly arises in practical applications, where there often exists a gap
between the real-world problem and the mathematical model used for algorithm design; therefore,
robustness to this type of misspecification is practically important. We also note that Section B.1
focused on the correctly specified setting, where the dueling oracle indeed follows the assumed linear
or sigmoid transfer function.

In the experiments, we used the following two transfer functions: the clipped linear function ρclip and
the cubic function ρcubic defined as

ρclip(x) = min{0.1,max{−0.1, x}},
ρcubic(x) = 2x− x3.

Using the dueling oracle induced by each transfer function, we evaluate whether the algorithm
designed for the linear transfer function (Algorithm 1) still achieves vanishing error. We set n = 5
and plot in Figure 7 how the error behaves as T increases over {100, 200, 400, 800, 1600, 3200}. All
other experimental settings are identical to those in Section B.1.

From Figure 7 we observe that the error approaches zero as T increases for both transfer functions.
Moreover, the convergence rate appears comparable to that in Section B.1, where the correct transfer
function was used. This suggests that the proposed algorithm is reasonably robust to misspecification
of the transfer function. In other words, the algorithm is expected to perform well even in more
realistic scenarios where the comparison outcomes do not strictly satisfy the assumed model.

Although we are currently unable to provide a mathematically rigorous explanation for why the algo-
rithm continues to perform well under such misspecified settings, the phenomenon can be intuitively
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Figure 7: Performance of Algorithm 1 under misspecified transfer functions.

understood through the interpretation discussed in the last paragraph of Section 3. Specifically, the
transfer functions used in this section are not strictly linear, but they can be well approximated by a
linear function in a neighborhood around zero. Therefore, when the difference in the function values
used by the dueling oracle is sufficiently small (e.g., in regions close to the optimal solution), the
behavior of the oracle becomes nearly indistinguishable from that of a linear transfer function. This
explains why Algorithm 1, which assumes a linear transfer function, still performs reasonably well.
Developing a theoretical framework to analyze and characterize this phenomenon is an interesting
direction for future work.

30


	Introduction
	Related work

	Preliminaries
	Submodular functions
	Lovász extension
	Stochastic gradient descent

	Problem statement
	Linear transfer function
	Algorithm
	Upper bound

	Sigmoid transfer function
	Algorithm
	Upper bound

	Lower bound
	Conclusion and open questions
	Omitted proofs
	Numerical experiment
	Dependence of the optimization error on the problem parameters
	Experiments under misspecified transfer functions


