

000 001 002 003 004 005 SUBMODULAR FUNCTION MINIMIZATION 006 WITH DUELING ORACLE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 We consider submodular function minimization using a *dueling oracle*, a noisy
026 pairwise comparison oracle that provides relative feedback on function values
027 between two queried sets. The oracle’s responses are governed by a *transfer*
028 *function*, which characterizes the relationship between differences in function
029 values and the parameters of the response distribution. For a *linear* transfer function,
030 we propose an algorithm that achieves an error rate of $O(n^{\frac{3}{2}}/\sqrt{T})$, where n is the
031 size of the ground set and T denotes the number of oracle calls. We establish a lower
032 bound: Under the constraint that differences between queried sets are bounded
033 by a constant, any algorithm incurs an error of at least $\Omega(n^{\frac{3}{2}}/\sqrt{T})$. Without
034 such a constraint, the lower bound becomes $\Omega(n/\sqrt{T})$. These results show that
035 our algorithm is optimal up to constant factors for constrained algorithms. For a
036 *sigmoid* transfer function, we design an algorithm with an error rate of $O(n^{\frac{7}{5}}/T^{\frac{3}{5}})$,
037 and establish lower bounds analogous to the linear case.
038

1 INTRODUCTION

039 Let f be a set function defined on subsets of a finite set $[n] = \{1, \dots, n\}$. A function f is called
040 *submodular* if it satisfies $f(X) + f(Y) \geq f(X \cup Y) + f(X \cap Y)$ for all $X, Y \subseteq [n]$.
041

042 Submodular functions are closely related to convex functions (Lovász, 1982; Fujishige, 1991; Bach,
043 2011) and play a significant role in numerous problems. Thus, *submodular function minimization*
044 (SFM) arises in a wide range of research fields, including machine learning (Bilmes, 2022), operations
045 research (Hochbaum & Hong, 1995; Queyranne & Schulz, 1995), combinatorial optimization
046 (Lovász, 1982; Edmonds, 2001; Schrijver, 2003), game theory (Shapley, 1971; Topkis, 1998), and
047 economics (Stigler & Samuelson, 1948; Topkis, 1998; Vives, 1999). In machine learning and artificial
048 intelligence, SFM has found use in tasks such as graphical models (Kolmogorov & Zabih, 2002;
049 Krause & Guestrin, 2005), PAC-learning (Narasimhan & Bilmes, 2004), clustering (Narasimhan
050 et al., 2005; Narasimhan & Bilmes, 2007), and image segmentation (Kohli & Torr, 2010; Jegelka &
051 Bilmes, 2011).

052 In optimization problems, many studies assume access to first- or zero-order oracles that provide
053 gradients or exact function values at queried points. However, in real-world scenarios, it is often
054 impractical or unreliable to obtain precise gradients or function values. Instead, feedback based on
055 relative evaluations, which determines which of two options is preferable, tends to be more feasible,
056 efficient, and robust.

057 For example, in machine learning, data collection through relative evaluations not only improves
058 reliability but also facilitates the acquisition of larger datasets. Pairwise comparison queries are
059 widely used in applications such as feedback collection for large language models (LLMs) (Liusie
060 et al., 2023; Wu et al., 2023; Jiang et al., 2023; Liu et al., 2024) and reinforcement learning with
061 human feedback (RLHF) (Sadigh et al., 2017; Pacchiano et al., 2021; Azar et al., 2024; Zhu et al.,
062 2023).

063 Research on optimization problems using a dueling oracle has been limited to multi-armed bandit
064 problems (Yue et al., 2012; Dudík et al., 2015; Sui et al., 2018; Saha et al., 2021b; Saha & Gaillard,
065 2022) and convex optimization (Saha et al., 2021a; 2025; Blum et al., 2024). In the context of
066 Submodular Function Minimization (SFM), the setting in which only a dueling oracle is used without
067 access to a value oracle has not been addressed so far, making this study the first to explore it.

054 Table 1: Upper and lower bound for submodular function minimization with a dueling oracle.
055

Transfer Function	Linear	Sigmoid	General
Upper Bound	$O\left(\frac{n^{\frac{3}{2}}}{\sqrt{T}}\right)$	$O\left(\frac{n^{\frac{7}{5}}}{T^{\frac{2}{5}}}\right)$	$O\left(\frac{n^{\frac{4}{3}}}{T^{\frac{1}{3}}}\right)$
Lower Bound (with Restriction 1)	$\Omega\left(\frac{n^{\frac{3}{2}}}{\sqrt{T}}\right)$	$\Omega\left(\frac{n^{\frac{3}{2}}}{\sqrt{T}}\right)$	$\Omega\left(\frac{n^{\frac{3}{2}}}{\sqrt{T}}\right)$
Lower Bound (without Restriction 1)	$\Omega\left(\frac{n}{\sqrt{T}}\right)$	$\Omega\left(\frac{n}{\sqrt{T}}\right)$	$\Omega\left(\frac{n}{\sqrt{T}}\right)$

064
065 Existing studies on SFM assume access to an oracle that provides the exact or noisy function value
066 for a queried set. The first polynomial-time algorithm for this problem was introduced by Grötschel
067 et al. (1981), employing the ellipsoid method. Combinatorial strongly polynomial algorithms were
068 developed by Iwata et al. (2000) and Schrijver (2003). In parallel, Hazan & Kale (2009) explored
069 online optimization for submodular functions, focusing on iterative decision making and evaluating
070 performance through regret, defined as cumulative error during iterations. In addition, Ito (2019)
071 investigated SFM in the context of noisy function value oracles.

072 In this paper, we consider SFM with a dueling oracle. A dueling oracle, or a noisy pairwise
073 comparison oracle, provides probabilistic binary feedback indicating which of two queried sets has
074 a higher function value, without disclosing the actual function values. The algorithm can query a
075 pair of sets, and the dueling oracle only returns a probabilistic response in $+1$ or -1 , indicating
076 which set has the higher function value. The probability of receiving the correct response increases as
077 the difference in function values grows, while smaller differences result in outcomes that are nearly
078 evenly distributed. This reflects the concept of a *duel*, where larger differences favor the stronger
079 contender, while smaller differences introduce more uncertainty in response. This problem setting is
080 motivated by applications such as recommendation, as illustrated in Examples 2 and 2 in Section 3.
081 The relationship between differences in function values and parameters of the response distribution is
082 characterized by a function $\rho : [-1, 1] \rightarrow [-1, 1]$, called a *transfer function*.

083 Our contribution is twofold. First, we propose efficient algorithms for SFM using a dueling oracle
084 with linear, sigmoid, and general nonlinear transfer functions. The reason for focusing on these two
085 concrete examples is explained in Section 3. Second, we establish lower bounds for each setting. As
086 shown in Table 1, for the case of a linear transfer function, we develop an algorithm that achieves
087 an error bound of $O(n^{\frac{3}{2}}/\sqrt{T})$ for any submodular function. For sigmoid transfer functions, we
088 propose an algorithm with an upper bound of $O(n^{\frac{7}{5}}/T^{\frac{2}{5}})$, and for general nonlinear transfer functions,
089 we provide an algorithm with an upper bound of $O(n^{\frac{4}{3}}/T^{\frac{1}{3}})$. Regarding lower bounds, we show
090 that any algorithm satisfying the constraint that the element-wise difference between the two sets
091 queried by the dueling oracle is of constant order must incur an error of at least $\Omega(n^{\frac{3}{2}}/\sqrt{T})$ in a hard
092 instance. Furthermore, we prove that any algorithm, without restrictions, must suffer an error of at
093 least $\Omega(n/\sqrt{T})$. This result implies that, for the linear transfer function, our proposed algorithm is
094 optimal among those satisfying the given constraint, and even with unrestricted algorithms, the error
095 cannot be improved by more than a factor of $O(1/\sqrt{n})$. We here note that, while the formulas in
096 Table 1 represent the error achievable with a given number of queries T , these can also be interpreted
097 as an evaluation of the number of queries required to achieve an error below a given threshold $\epsilon > 0$.
098 For example, the upper bound of $O(n^{\frac{3}{2}}/\sqrt{T})$ in the table indicates that an error no greater than ϵ can
099 be attained with $T \propto n^3/\epsilon^2$ queries.

100 Our algorithm leverages the Lovász extension (Lovász, 1982), which extends a submodular function
101 to a continuous convex function, and employs the stochastic gradient descent (SGD) method for
102 convex minimization. A key property of the Lovász extension is that the minimum of the original
103 submodular function coincides with the minimum of the extended convex function. Thus, solving the
104 convex minimization problem via SGD yields a solution to SFM. The update direction in SGD is
105 determined by an estimator of a subgradient of the convex function. To minimize the error introduced
106 by SGD, reducing the bias and variance of this estimator is crucial. In particular, an unbiased
107 estimator, whose expectation matches the true subgradient, leads to accurate solutions. The approach
108 using the Lovász extension and SGD has already been explored by Hazan & Kale (2009); Ito (2019;
109 2022). However, unlike these studies, direct access to function values is unavailable in our setting.

108 While these works construct unbiased estimators of subgradients using the responses from a function
 109 value oracle, we estimate subgradients using responses from a dueling oracle.
 110

111 For the linear transfer function, unbiased estimators of subgradients can be constructed by using
 112 responses from a dueling oracle. The general flow of the algorithm is similar to those proposed by
 113 Hazan & Kale (2009); Ito (2019), the difference being in the construction of the unbiased estimator.

114 In contrast, for the sigmoid transfer function, the construction of unbiased subgradient estimators
 115 becomes infeasible, which poses a significant challenge. Using biased estimators in SGD can cause
 116 error accumulation across iterations, resulting in considerable inaccuracies. In related work, Saha
 117 et al. (2025) addressed a similar issue in convex optimization with a dueling oracle. They considered
 118 a gradient descent-based algorithm under similar conditions, where unbiased subgradient estimators
 119 were unavailable. Their approach relies on the assumptions of β -smoothness and α -strong convexity
 120 of the objective function to control errors. Unfortunately, the convex function derived from the
 121 Lovász extension of a general submodular function does not satisfy these properties, making Saha
 122 et al. (2025)'s error control techniques inapplicable.
 123

124 To overcome this difficulty, we incorporate Firth's method (Firth, 1993) to reduce the bias in maximum
 125 likelihood estimators (MLE). Firth's method significantly reduces bias in estimation problems related
 126 to the natural parameters of the exponential family of distributions. In this study, when the transfer
 127 function of the dueling oracle is sigmoid, the resulting model corresponds to a logistic regression,
 128 making it possible to apply Firth's method. By incorporating Firth's method into SGD, we mitigate
 129 the impact of accumulated bias, reducing the total error, and enabling an effective optimization
 130 algorithm. To our knowledge, no existing SFM algorithm based on SGD avoids the use of unbiased
 131 subgradient estimators derived from the Lovász extension. This is the significance of this work.
 132

133 The inability to use an unbiased estimator makes not only the algorithm design but also its analysis
 134 and parameter tuning considerably more challenging. In existing studies (Hazan & Kale, 2009; Ito,
 135 2019), the analysis of the optimization error typically focused on two terms that increase or decrease
 136 with the learning rate η , and choosing η to balance these two terms yields the desired error (or regret)
 137 bound. In contrast, in the present setting, a third term arises from the bias of the gradient estimator,
 138 and an additional parameter, the number of oracle calls k used for gradient estimation, affects these
 139 terms, resulting in a more complex analysis. In this work, we provide a new parameter-setting rule
 140 for η and k that balances all three terms so that the overall error bound is minimized.
 141

142 The proof of the lower bound is based on the techniques of Ito (2019) and Auer et al. (2002). Ito
 143 (2019) establishes lower bounds for SFM, while Auer et al. (2002) addresses a lower bound for a
 144 bandit problem. While the construction of the objective function follows prior work (Ito, 2019), the
 145 lower-bound analysis presents a significant challenge, as the techniques used in previous studies
 146 cannot be directly applied. This difficulty arises because the oracle and feedback structure assumed
 147 in existing models differ substantially from those considered in this work. Intuitively, prior work
 148 allows queries on a single subset, whereas our setting permits queries on *pairs* of subsets. Since the
 149 number of feasible choices for data collection is therefore much larger in our framework, proving
 150 lower bounds becomes considerably more nontrivial. In this paper, we address this challenge by
 151 extending the analysis to incorporate the probability distribution over queried pairs and by analyzing
 152 the distance between the resulting distributions.
 153

154 Leveraging Yao's principle, we bound the error of randomized algorithms by the error of deterministic
 155 algorithms under a carefully chosen distribution. For deterministic algorithms, the KL divergence
 156 of the algorithm's output is bounded by the KL divergence across all input sequences. Using these
 157 results, we demonstrate that for two objective functions, the KL divergence of their respective input
 158 sequences, and consequently, the KL divergence of their output, remains small. Finally, we show that
 159 for two objective functions with different optimal solutions, any algorithm can only exhibit limited
 160 changes in its output and thus incurs a non-negligible error.
 161

1.1 RELATED WORK

158 **Online submodular minimization in the bandit setting**

159 The online submodular minimization introduced by Hazan & Kale (2009) is closely related to
 160 our algorithm. In this setting, an online decision maker iteratively selects a subset $S_t \subseteq [n]$ over
 161 $t = 1, \dots, T$. After each selection, the decision maker incurs a loss of $f_t(S_t)$, where each f_t is

162 a submodular function. The performance of the algorithm is evaluated by the *regret* defined as
 163 $\text{Regret}_T := \sum_{t=1}^T f_t(S_t) - \min_{S \subseteq [n]} \sum_{t=1}^T f_t(S)$.
 164

165 In the bandit setting, only the loss $f_t(S_t)$ for the chosen subset S_t is observed, and no other in-
 166 formation is available. The algorithm proposed by Hazan & Kale (2009) is based on the Online
 167 Gradient Descent algorithm of Zinkevich (2003), using unbiased subgradient estimators derived from
 168 the Lovász extension extension of the submodular functions. The key idea of this algorithm is to
 169 dynamically adjust the probabilities of choosing a subset and use just one sample for both exploration
 170 and exploitation. The regret achieved by this algorithm is $O\left(nT^{\frac{2}{3}}\right)$, which translates to an error of
 171 $O\left(n/T^{\frac{1}{3}}\right)$ when applied directly to SFM.
 172

173 Submodular function minimization with noisy oracles

174 Our work is also influenced by the study of SFM using a noisy zero-order oracle by Ito (2019);
 175 Lattimore (2024). In their work, at each step $t = 1, \dots, T$, a subset S_t is chosen, and a noisy
 176 observation $\hat{f}_t(S_t)$ of the submodular objective function f is obtained, where \hat{f} satisfies $\mathbb{E}[\hat{f}_t(S)] =$
 177 $f(S)$ for all $S \subseteq [n]$ and $t = 1, \dots, T$.
 178

179 The algorithm in their research is also based on SGD, with the final solution obtained as the average
 180 of the iterations over T steps. Their approach achieves an error of $O\left(n^{\frac{3}{2}}/\sqrt{T}\right)$, which improves to
 181 $O\left(n/\sqrt{T}\right)$ under the assumption that each noisy observation \hat{f}_t is also submodular.
 182

183 Furthermore, their approach also influences the proof of the lower bound for SFM in our study. They
 184 constructed a distribution of objective functions that serves as a hard instance, showing that even
 185 when a distribution is perturbed, the observed values change slightly, making it challenging for any
 186 algorithm to distinguish between distributions. This was demonstrated using KL divergences of
 187 distributions.
 188

189 Convex optimization with dueling oracle

190 Convex optimization using dueling oracles has been explored in Saha et al. (2021a) and Saha et al.
 191 (2025), which consider transfer functions ρ with specific properties. In Saha et al. (2021a), ρ is
 192 assumed to be a sign function, while Saha et al. (2025) considers a function that satisfies $\rho'(x) \geq$
 193 $c_\rho p|x|^{p-1}$ for all $x \in (-r, r)$, where $p \geq 1$, $r > 0$, and $c_\rho > 0$. Both studies propose Gradient
 194 Descent-based algorithms; however, unbiased estimators of subgradients cannot be constructed from
 195 the information of dueling oracles.
 196

197 To address this difficulty, Saha et al. (2021a) determined the descent direction using the normalized
 198 subgradient $\nabla f(x)/\|\nabla f(x)\|$, and demonstrates that the algorithm produces an approximate solution.
 199 Meanwhile, Saha et al. (2025) introduces a scaled gradient approach using $\nabla f(x)/\|\nabla f(x)\|^{p-1}$ and
 200 shows that an approximate solution exists within the sequence of points generated by the algorithm.
 201 Both approaches rely on the assumptions of β -smoothness and α -strongly convexity of the objective
 202 function, which enable the analysis of convergence and approximation guarantees.
 203

2 PRELIMINARIES

204 2.1 SUBMODULAR FUNCTIONS

205 Let n be a positive integer and let $[n] = \{1, 2, \dots, n\}$. Denote by $2^{[n]}$ the power set of $[n]$, i.e. the set
 206 of all subsets of $[n]$. We consider a set function $f : 2^{[n]} \rightarrow [0, 1]$ defined in the decision space $2^{[n]}$.
 207

208 A function $f : 2^{[n]} \rightarrow [0, 1]$ is submodular if and only if for all sets $X, Y \in 2^{[n]}$ such that $X \subseteq Y$ and
 209 for all elements $i \in [n] \setminus Y$, we have:
 210

$$f(X \cup \{i\}) - f(X) \geq f(Y \cup \{i\}) - f(Y). \quad (1)$$

213 2.2 LOVÁSZ EXTENSION

214 The Lovász extension is a fundamental technique in designing algorithms for submodular function
 215 minimization. Although a submodular function f is originally defined in the decision space $2^{[n]}$, it

216 can be regarded as the vertices of the hypercube $\mathcal{K} = [0, 1]^n$. The Lovász extension \hat{f} provides a
 217 continuous extension of a submodular function f to the whole interior of \mathcal{K} .
 218

219 The Lovász extension is constructed by dividing the hypercube \mathcal{K} into $n!$ regions and defining \hat{f} as a
 220 piecewise linear function that interpolates between the values of the function at the vertices of \mathcal{K} .
 221

222 **Definition 1.** Given a function $f : 2^{[n]} \rightarrow [0, 1]$, the Lovász extension $\hat{f} : \mathcal{K} \rightarrow [0, 1]$ is defined
 223 as follows; for $w \in \mathcal{K}$, order the components in decreasing order $w_{\pi(1)} \geq \dots \geq w_{\pi(n)}$, where
 224 $\pi : [n] \rightarrow [n]$ is a permutation. Let $w_{\pi(0)} = 1$, $B_i = \{\pi(1), \dots, \pi(i)\}$ for $i \in [n]$ and $B_0 = \emptyset$. The
 225 value of the Lovász extension $\hat{f}(w)$ is defined as:
 226

$$227 \hat{f}(w) = \sum_{i=1}^n w_{\pi(i)} [f(B_i) - f(B_{i-1})] + f(\emptyset) = \sum_{i=0}^{n-1} f(B_i) (w_{\pi(i)} - w_{\pi(i+1)}) + f([n]). \quad (2)$$

228 An alternative equivalent expression for the Lovász extension is also utilized to construct our algo-
 229 rithms.
 230

231 **Proposition 1.** Let \hat{f} be a Lovász extension of a function $f : 2^{[n]} \rightarrow [0, 1]$. For any $w \in \mathcal{K}$, the
 232 following equations hold:
 233

$$234 \hat{f}(w) = \int_0^1 f(\{i \mid w_i \geq z\}) dz = \mathbb{E}_{z \sim \text{Unif}([0, 1])} [f(\{i \mid w_i \geq z\})]. \quad (3)$$

235 The following theorem provides a connection between submodular function minimization and convex
 236 function minimization.
 237

238 **Theorem 1.** (Fujishige (1991)) A function $f : 2^{[n]} \rightarrow [0, 1]$ is submodular if and only if its Lovász
 239 extension $\hat{f} : \mathcal{K} \rightarrow [0, 1]$ is convex. For a submodular function $f : 2^{[n]} \rightarrow [0, 1]$ and its Lovász
 240 extension $\hat{f} : \mathcal{K} \rightarrow [0, 1]$, we have $\min_{X \in 2^{[n]}} f(X) = \min_{w \in \{0, 1\}^n} \hat{f}(w) = \min_{w \in [0, 1]^n} \hat{f}(w)$.
 241

242 When analyzing the minimization of the convex function \hat{f} , it is notable that \hat{f} is piecewise linear.
 243 Therefore, its subgradient is constant within each region of linearity, as formally stated in the
 244 following proposition.
 245

246 **Proposition 2.** Let f be a submodular function. For $w \in \mathcal{K}$, let π be a permutation that orders the
 247 components of w in decreasing order, and let τ be the inverse permutation of π . Then, a subgradient
 248 g of \hat{f} at w is given as follows:
 249

$$g_{\pi(i)} = f(B_i) - f(B_{i-1}) \quad \text{or, equivalently,} \quad g_i = f(B_{\tau(i)}) - f(B_{\tau(i)-1}).$$

251 2.3 STOCHASTIC GRADIENT DESCENT

252 By Theorem 1, submodular minimization can be reformulated as convex minimization. Therefore,
 253 our algorithm is based on the *stochastic gradient descent* (SGD) method for convex minimization.
 254

255 The algorithm initializes $w^{(1)} = \frac{1}{2} \cdot \mathbf{1} \in \mathcal{K}$. For each iteration $t = 1, 2, \dots, T$, the point $w^{(t)}$ is
 256 updated to $w^{(t+1)}$ using information about the objective function \hat{f} obtained through oracle queries.
 257 At each update, an estimator \hat{g}_t of a subgradient of \hat{f} at $w^{(t)}$ is constructed, and the update rule
 258 is given by: $w^{(t+1)} = \Pi_{\mathcal{K}}(w^{(t)} - \eta \hat{g}_t)$, where $\eta > 0$ is a learning rate parameter that can be
 259 arbitrarily chosen. Here, $\Pi_{\mathcal{K}} : \mathbb{R}^n \rightarrow \mathcal{K}$ represents the Euclidean projection onto \mathcal{K} , defined as:
 260 $\Pi_{\mathcal{K}}(w) = \arg \min_{v \in \mathcal{K}} \|v - w\|_2$. Since $\mathcal{K} = [0, 1]^n$, the projection is computationally efficient. For
 261 any $v \in \mathbb{R}^n$, the projection $w = \Pi_{\mathcal{K}}(v)$ can be implemented by clipping each component of v to the
 262 interval $[0, 1]$: $w_i = \min\{1, \max\{0, v_i\}\}$.
 263

264 For the sequence of points $\{w^{(t)}\}_{t=1}^T$ generated by this procedure, the average point $\bar{w} =$
 265 $\frac{1}{T} \sum_{t=1}^T w^{(t)}$ satisfies the following error bound, as stated in Hazan & Kale (2009, Lemma 11).
 266

267 **Theorem 2.** Let $\hat{f} : \mathcal{K} \rightarrow [0, 1]$ be a convex function in the hypercube $\mathcal{K} = [0, 1]^n$. Let
 268 $w^{(1)}, w^{(2)}, \dots, w^{(T)}$ be defined by $w^{(1)} = \frac{1}{2} \cdot \mathbf{1}$ and $w^{(t+1)} = \Pi_{\mathcal{K}}(w^{(t)} - \eta \hat{g}_t)$. When $\hat{g}_1, \hat{g}_2, \dots, \hat{g}_T$
 269 are unbiased estimators of subgradients, i.e., $\mathbb{E}[\hat{g}_t \mid w^{(t)}] = g_t$, where g_t is a subgradient of \hat{f} at
 270 $w^{(t)}$, then $\bar{w} := \frac{1}{T} \sum_{t=1}^T w^{(t)}$ satisfies $\mathbb{E}[\hat{f}(\bar{w})] - \min_{w^* \in \mathcal{K}} \hat{f}(w^*) \leq \frac{1}{T} \left(\frac{n}{8\eta} + \frac{\eta}{2} \sum_{t=1}^T \mathbb{E}[\|\hat{g}_t\|_2^2] \right)$.
 271

270 **3 PROBLEM STATEMENT**
 271

272 We address the problem of minimizing a submodular function $f : 2^{[n]} \rightarrow [0, 1]$. In this setting, the
 273 exact values of f are not directly accessible; instead, we rely on a dueling oracle, in other words,
 274 a noisy comparison oracle of two points. The dueling oracle provides a random binary response
 275 $o \in \{\pm 1\}$ for a pair of subsets $(S, S') \in 2^{[n]} \times 2^{[n]}$. Note that, as in prior works on dueling
 276 bandits and dueling convex optimization (Saha et al., 2021b;a), all outputs from the dueling oracle
 277 are assumed to be independent. Therefore, even if the same pair is queried multiple times, the
 278 outputs are not necessarily identical. The probability of the response is given as: $\Pr(o = +1) =$
 279 $\frac{1}{2} + \frac{1}{2}\rho(f(S) - f(S'))$, $\Pr(o = -1) = \frac{1}{2} - \frac{1}{2}\rho(f(S) - f(S'))$, where $\rho : [-1, 1] \rightarrow [-1, 1]$ is a
 280 fixed *transfer function* that maps the difference in function values to the distribution parameter.

281 Our goal is to design algorithms that minimize additive error $E_T := f(\hat{S}) - \min_{S \in 2^{[n]}} f(S)$, where
 282 \hat{S} is the algorithm output. The algorithm is given the decision set $2^{[n]}$, the number of available oracle
 283 calls T , and the transfer function ρ . At each iteration $t = 1, 2, \dots, T$, the algorithm chooses a pair of
 284 subsets (S_t, S'_t) and observes a response $o_t \in \{\pm 1\}$ from the dueling oracle. After T iterations, the
 285 algorithm outputs a subset $\hat{S} \in 2^{[n]}$.
 286

287 This problem is motivated by the following applications:

288 **Example 1** (recommendation system). Let us consider recommendation systems, in which we want
 289 to find a collection of items $S \subseteq [n]$ that maximizes a user’s satisfaction $f(S)$, based on feedback
 290 obtained after presenting S to various users. In practice, users rarely provide reliable cardinal scores
 291 but can often express pairwise preferences between presented collections; such comparative feedback
 292 is naturally modeled by a dueling oracle. Under certain conditions the resulting optimization can be
 293 cast as submodular minimization. Let $x \in \{0, 1\}^n$ be the indicator of S and suppose user utility $f(S)$
 294 has the quadratic form as $f(S) = \sum_{i=1}^n a_i x_i + \sum_{1 \leq i < j \leq n} b_{ij} x_i x_j$. If $b_{ij} \geq 0$ for all i, j , which
 295 models complementary interactions like camera and lens, then f is supermodular (Nemhauser et al.,
 296 1978; Boros & Hammer, 2002). Hence, maximizing f is equivalent to minimizing $-f$, which is
 297 submodular, and thus the problem is covered by our dueling-oracle SFM framework. Note that the
 298 quadratic form above is only illustrative; our approach applies to general supermodular maximization
 299 problems. More broadly, any selection task defined on a ground set, such as choosing keywords or
 300 response components for a chatbot, can be addressed by the same framework.

301 **Example 2** (multi-product price optimization). Consider price optimization over a set of products
 302 to maximize total revenue. As shown in (Ito & Fujimaki, 2016), the total revenue function can be
 303 formulated as a supermodular function under suitable assumptions, which means that the problem
 304 is an instance of submodular minimization. In this setting, relative evaluations—such as pairwise
 305 comparisons between pricing vectors—are often less sensitive to external factors like weather or
 306 seasonality than absolute measurements, and thus more accurately capture the effect of price changes.
 307

308 Following prior work on dueling convex optimization (Saha et al., 2021a; 2025), we consider a
 309 transfer function ρ that satisfies the following properties:

310 1. Strictly monotonically increasing function: $\rho(x) > \rho(y)$ if $x > y$.
 311 2. Odd function: $\rho(-x) = -\rho(x)$ for all $x \in [-1, 1]$. In particular, $\rho(0) = 0$.

312 In particular, this study focuses on the following two examples of ρ :

313 • **Sigmoid transfer function:** $\rho(x) = \frac{2}{1+e^{-bx}} - 1$, $b > 0$.
 314 • **Linear transfer function:** $\rho(x) = ax$, $0 < a \leq 1$.

315 Our primary motivation for considering the sigmoid transfer function is that it is both natural and
 316 important, particularly due to its connection with the Bradley–Terry model (Bradley & Terry, 1952).
 317 The Bradley–Terry model has long been used as one of the most standard models for pairwise
 318 comparisons, and its ability to fit a wide range of empirical data has been well documented (David,
 319 1988; Cattelan, 2012). Its practical usefulness has been demonstrated across diverse applications,
 320 including ranking systems, search engine click modeling (Joachims, 2002), preference estimation in
 321 recommender and information-retrieval systems (Chen et al., 2013), and preference modeling for
 322 post-training large language models (Stiennon et al., 2020; Rafailov et al., 2023). This models the
 323

probability that item i is preferred over item j as $\Pr(i \succ j) = \frac{\exp(\beta_i)}{\exp(\beta_i) + \exp(\beta_j)}$, where $\beta_i, \beta_j \in \mathbb{R}$ are parameters associated with the items. Now, suppose that for each subset S , the corresponding parameter β_S is proportional to the utility $-f(S)$, i.e., $\beta_S = -bf(S)$ for some $b > 0$. In this case, the output of a dueling oracle based on a sigmoid transfer function is consistent with the Bradley–Terry model as $\Pr(o = +1) = \frac{1}{2} + \frac{1}{2}\rho(f(S') - f(S)) = \frac{1}{1 + \exp(-b(f(S) - f(S')))} = \frac{\exp(\beta_{S'})}{\exp(\beta_{S'}) + \exp(\beta_S)}$. This model has been widely used as a standard tool for modeling preferences based on pairwise comparisons, and appears in various domains such as sports ranking, consumer behavior, and AI-based decision-making. Moreover, the Bradley–Terry model can also be interpreted probabilistically—for example, as the probability that a random variable drawn from an exponential distribution associated with item i exceeds that of item j . This interpretation further supports its relevance as a model for real-world phenomena.

The linear transfer function is important for two main reasons. First, any smooth transfer function can be approximated by a linear function in a small neighborhood around zero. Therefore, even if the true underlying transfer function is nonlinear, the linear case becomes relevant when the exploration is restricted to regions where the difference in values is small. In such settings, approaches developed for the linear case are expected to remain effective. [Numerical results supporting this hypothesis to some extent are provided in Section B.2 of the appendix](#). Second, the linear case is the simplest from the perspective of algorithm design and analysis. It thus serves as a natural starting point for investigating our new problem setting.

4 LINEAR TRANSFER FUNCTION

In this section, we present an algorithm for submodular minimization using a dueling oracle with a linear transfer function. The proposed algorithm is based on the Stochastic Gradient Descent on the Lovász extension \hat{f} of the submodular function f . It achieves an additive error bound of $O(\frac{n^{\frac{3}{2}}}{a\sqrt{T}})$. Furthermore, we prove that, under the condition that the difference between the elements in the two queried sets is bounded by a constant order, any algorithm suffers an error of at least $\Omega(\frac{n^{\frac{3}{2}}}{a\sqrt{T}})$. When there are no restrictions on queries, the lower bound remains $\Omega(\frac{n}{a\sqrt{T}})$.

4.1 ALGORITHM

Our algorithm is based on the SGD method. To construct subgradient estimators in SGD, we use information using a dueling oracle. When the transfer function ρ of the dueling oracle is linear, we can construct unbiased estimators of subgradients by the definition of the dueling oracle. From Proposition 2, querying $(B_{\tau(i)}, B_{\tau(i)-1})$ provides o_t that corresponds to the i -th component of the subgradient g . By the linearity of expectation, we have $\mathbb{E}[\frac{o_t}{a}] = f(B_{\tau(i)}) - f(B_{\tau(i)-1}) = g_i$.

From Proposition 1, the optimal value of the submodular function f over $2^{[n]}$ is equivalent to the optimal value of its Lovász extension \hat{f} over \mathcal{K} . Using this equivalence, the algorithm performs SGD to find a solution $\bar{w} \in \mathcal{K}$ with a small error relative to the optimal solution of \hat{f} . Finally, leveraging the representation of the Lovász extension in equation 3, the algorithm outputs a set \hat{S}_T such that $\mathbb{E}[f(\hat{S}_T)] = \hat{f}(\bar{w})$.

This algorithm is a simple extension of the algorithms proposed by Hazan & Kale (2009) and Ito (2019). In these prior works, the algorithms rely on querying sets to obtain function values, which are then used to construct unbiased estimators of the subgradients. In contrast, this algorithm leverages the properties of the dueling oracle to perform SGD without directly using function values.

4.2 UPPER BOUND

We prove that Algorithm 1 achieves an error bound of $O\left(\frac{n^{\frac{3}{2}}}{a\sqrt{T}}\right)$ for any submodular objective function f . Similar proofs are given in Hazan & Kale (2009) and Ito (2019).

378 **Algorithm 1** Submodular Stochastic Gradient Descent for linear transfer function

379

380 **Input:** The size $n \geq 1$ of the ground set, the number $T \geq 1$ of oracle calls and the coefficient

381 $0 < a \leq 1$ of the transfer function $\rho(x) = ax$.

382 1: Set the initial point $w^{(1)} = \frac{1}{2} \cdot \mathbf{1}$, the learning rate $\eta = \frac{a}{2\sqrt{nT}}$ and the number of steps $T' = \frac{T}{n}$.

383 2: **for** $t = 1, 2, \dots, T'$ **do**

384 3: Find a permutation π corresponding to $w^{(t)}$, i.e., $w_{\pi(1)}^{(t)} \geq \dots \geq w_{\pi(n)}^{(t)}$, and its

385 inverse permutation τ .

386 4: Define $B_i = \{\pi(1), \dots, \pi(i)\}$ for $i \in [n]$ and $B_0 = \emptyset$.

387 5: **for** $i = 1, 2, \dots, n$ **do**

388 6: Query the dueling oracle with $(B_{\tau(i)}, B_{\tau(i)-1})$ and receive the feedback o_{ti} .

389 7: Compute an unbiased estimator $\hat{g}_{ti} = \frac{o_{ti}}{a}$.

390 8: **end for**

391 9: Update $w^{(t+1)} = \Pi_{\mathcal{K}}(w^{(t)} - \eta \hat{g}_t)$.

392 10: **end for**

393 11: Set $\bar{w} = \frac{1}{T'} \sum_{t=1}^{T'} w^{(t)}$ and choose a threshold $z \in [0, 1]$ uniformly at random.

394 12: **return** $\hat{S}_T = \{i \mid \bar{w}_i \geq z\}$.

395

396 **Theorem 3.** Let f be a submodular function. Let n, T and a be the input of Algorithm 1. Then,

397 Algorithm 1 with parameter $\eta = \frac{a}{2\sqrt{nT}}$ achieves the following error bound: $\mathbb{E}[E_T] = O\left(\frac{n^{\frac{3}{2}}}{a\sqrt{T}}\right)$.

398 The expectation is taken with regard to the randomness of the oracle responses o_t , and the internal

399 randomness of the algorithm.

400

401

402

5 SIGMOID TRANSFER FUNCTION

403

404

405 In this section, we present an algorithm for submodular minimization using a dueling oracle when

406 the transfer function is sigmoidal. This algorithm is similar to Algorithm 1 and performs SGD on the

407 Lovász extension.

408

409

410 However, when the transfer function is nonlinear, it is not possible to construct an unbiased estimator

411 of the subgradient of the Lovász extension from responses of the dueling oracle. To reduce the error

412 introduced by SGD, it is necessary to design an estimator with small bias for the subgradient. We

413 employ Firth's method to construct a small-bias estimator when the transfer function is sigmoidal,

414 thereby mitigating the estimation error.

415

416

417 Firth (1993) has shown that in regular parametric problems, the first-order term of the asymptotic bias

418 of the maximum likelihood estimates can be eliminated by penalizing the log likelihood. In particular,

419 if θ is the canonical parameter of an exponential family model, the penalized log likelihood becomes

420 $\frac{\partial}{\partial \theta} \log L(\theta) + \frac{1}{2} \frac{\partial}{\partial \theta} \log |I(\theta)|$, where $I(\theta)$ denotes the Fisher information evaluated at θ .

421

422 **Proposition 3.** Consider a logistic regression model:

423

424

$$\Pr(X_i = +1 \mid \theta) = \frac{1}{1 + e^{-b\theta}}, \quad \Pr(X_i = -1) = 1 - \Pr(X_i = +1 \mid \theta) = \frac{e^{-b\theta}}{1 + e^{-b\theta}}$$

425

426

427 with $i = 1, \dots, k$, $X_i \in \{\pm 1\}$ denoting the binary outcome variable and b being a positive constant.

428

429

430 The penalized maximum likelihood estimator $\hat{\theta}^*$ for the regression parameter $\theta \in [-1, 1]$ can be

431 written as: $\hat{\theta}^* = \frac{1}{k} \log\left(\frac{k_+ + \frac{1}{2}}{k_- + \frac{1}{2}}\right)$, where $k_+ = |\{i \mid X_i = +1\}|$ and $k_- = |\{i \mid X_i = -1\}|$.

432

433

434 Then, the bias of $\hat{\theta}^*$ satisfies: $|\mathbb{E}[\hat{\theta}^*] - \theta| \leq \left| \frac{2\psi - 1}{24b\psi^2(1-\psi)^2} \right| \frac{1}{k^2} + O\left(\frac{1}{k^3}\right)$. Here, ψ is a constant and

435 $\psi = \frac{1}{1+e^{-b}}$. We denote the coefficient of $\frac{1}{k^2}$ by $C(b) = \left| \frac{2\psi - 1}{24b\psi^2(1-\psi)^2} \right|$.

436

437

5.1 ALGORITHM

438

439

440 When the transfer function ρ is sigmoidal, querying $(B_{\tau(i)}, B_{\tau(i)-1})$ produces a dueling oracle

441 response following a logistic regression model with a parameter g_i . From Proposition 3, estimating

432 **Algorithm 2** Submodular Stochastic Gradient Descent for sigmoid transfer function

433

434 **Input:** The size $n \geq 1$ of the ground set, the number $T \geq 1$ of oracle calls and the constant $0 < b$ of
435 the transfer function $\rho(x) = 2/(1 + e^{-bx}) - 1$.

436 1: Set the initial point $w^{(1)} = 1/2 \cdot \mathbf{1}$,
437 the constant $\psi = 1/(1 + e^{-b})$ and $C(b) = |(2\psi - 1)/(24b\psi^2(1 - \psi)^2)|$,
438 the learning rate $\eta = b^{\frac{6}{5}}C(b)^{\frac{1}{5}}n^{\frac{2}{5}}/T^{\frac{2}{5}}$,
439 the number of steps $T' = T^{\frac{4}{5}}/n^{\frac{4}{5}}b^{\frac{2}{5}}C(b)^{\frac{2}{5}}$,
440 and the number of query repetitions $k = b^{\frac{2}{5}}C(b)^{\frac{2}{5}}T^{\frac{1}{5}}/n^{\frac{1}{5}}$.

441 2: **for** $t = 1, 2, \dots, T'$ **do**

442 3: Find a permutation π corresponding to $w^{(t)}$, i.e., $w_{\pi(1)}^{(t)} \geq \dots \geq w_{\pi(n)}^{(t)}$, and its
443 inverse permutation τ .

444 4: Define $B_i = \{\pi(1), \dots, \pi(i)\}$ for $i \in [n]$ and $B_0 = \emptyset$.

445 5: **for** $i = 1, 2, \dots, n$ **do**

446 6: Repeatedly query the dueling oracle with $(B_{\tau(i)}, B_{\tau(i)-1})$ for k times and receive feed-
447 back.

448 7: Let k_+ and k_- be the number of times $+1$ and -1 are returned.

449 8: Compute an estimator of the subgradient $\hat{g}_{ti} = \frac{1}{b} \log \left(\frac{k_+ + \frac{1}{2}}{k_- + \frac{1}{2}} \right)$.

450 9: **end for**

451 10: Update $w^{(t+1)} = \Pi_{\mathcal{K}}(w^{(t)} - \eta \hat{g}_t)$.

452 11: **end for**

453 12: Set $\bar{w} = \frac{1}{T'} \sum_{t=1}^{T'} w^{(t)}$ and choose a threshold $z \in [0, 1]$ uniformly at random.

454 13: **return** $\hat{S}_T = \{i \mid \bar{w}_i \geq z\}$.

455

456

457 with Firth’s method enables us to obtain low-bias estimators of subgradients. This algorithm can
458 efficiently perform SGD even if unbiased estimators of subgradients cannot be constructed.

459

460 5.2 UPPER BOUND

461

462 In this subsection, we prove that Algorithm 2 achieves an error bound $E_T = O \left(\frac{C(b)^{\frac{1}{5}}}{b^{\frac{4}{5}}} \cdot \frac{n^{\frac{7}{5}}}{T^{\frac{2}{5}}} \right)$ for
463 any submodular objective function f . The proof structure closely follows that of Theorem 3, with
464 necessary adjustments to account for the sigmoid transfer function.

465

466 **Theorem 4.** *Let f be a submodular function. Let n, T and b be the input of Algorithm 2. Then,
467 Algorithm 2 achieves the following error bound: $\mathbb{E}[E_T] = O \left(\frac{C(b)^{\frac{1}{5}}}{b^{\frac{4}{5}}} \cdot \frac{n^{\frac{7}{5}}}{T^{\frac{2}{5}}} \right)$. The expectation is
468 taken with regard to the randomness of the oracle responses o_t , and the internal randomness of the
469 algorithm.*

470

471 The factor $\frac{C(b)^{\frac{1}{5}}}{b^{\frac{4}{5}}}$ diverges to $+\infty$, as $b \rightarrow +0$ or $b \rightarrow +\infty$. Therefore, this algorithm cannot limit
472 the error when b takes extreme values.

473

474 6 LOWER BOUND

475

476 This section establishes lower bounds for the submodular minimization problem using a dueling
477 oracle with linear or sigmoid transfer functions. Specifically, we analyze the following two scenarios.

478

479 1. A lower bound for algorithms that satisfy the following Restriction 1.

480 2. A general lower bound for any algorithm.

481

482 **Restriction 1.** *The symmetric difference between the two sets in each query remains constant order.
483 Specifically, for any query (S_t, S'_t) , the condition $|S_t \Delta S'_t| := |(S_t \setminus S'_t) \cup (S'_t \setminus S_t)| = O(1)$ holds.*

484

486 Algorithms 1 and 2 satisfy this restriction. In fact, the pairs queried in the algorithms are restricted to
 487 those of the form $(B_{\tau(i)}, B_{\tau(i)-1})$, and by the definition of B_i and τ , we have $|B_{\tau(i)} \Delta B_{\tau(i)-1}| =$
 488 $|\{i\}| = 1$.

489 We prove that for algorithms that satisfy Restriction 1, there exists an instance of the problem where
 490 the error is at least $\Omega\left(\frac{n^{\frac{3}{2}}}{\sqrt{T}}\right)$. Additionally, for algorithms without any restrictions, we construct
 491 an instance where the error lower bound is $\Omega\left(\frac{n}{\sqrt{T}}\right)$. Since Algorithm 1 satisfies Restriction 1, it is
 492 optimal up to a constant factor among algorithms restricted by this condition.

493 **Theorem 5.** *In SFM using a dueling oracle with linear or sigmoid transfer functions, there exists*
 494 *an instance for which algorithms that satisfy Restriction 1 suffers an error of: $\mathbb{E}[E_T] = \Omega\left(\frac{n^{\frac{3}{2}}}{\sqrt{T}}\right)$.*

495 *In addition, there is an instance for which algorithms without any restrictions suffer an error of:*
 496 *$\mathbb{E}[E_T] = \Omega\left(\frac{n}{\sqrt{T}}\right)$. The expectation is taken with regard to the randomness of the instance f and*
 497 *oracles o_t , and the internal randomness of the algorithm.*

502 7 CONCLUSION AND OPEN QUESTIONS

503 We have presented algorithms with upper bounds and lower bounds for submodular function mini-
 504 mization using dueling oracles with linear or sigmoid transfer functions. In the case of linear transfer
 505 functions, the upper and lower bounds coincide in their dependence on T , establishing algorithmic
 506 optimality. By contrast, for nonlinear transfer functions, there remains a gap between the upper and
 507 lower bounds in terms of T -dependence, leaving room for improvement; we conjecture that the upper
 508 bound can be tightened to $O(\frac{1}{\sqrt{T}})$, which we leave as future work. Furthermore, we believe that a
 509 more detailed investigation into the dependence on n in the linear case is also an important direction
 510 for future research. Relaxing the assumption that the transfer function is known is also an important
 511 direction for future work, and techniques in dueling convex optimization (Saha et al., 2025) and
 512 derivative-free optimization (Jamieson et al., 2012) might provide an effective approach to this issue.
 513 Furthermore, while the algorithm in this paper is designed via an extension to a continuous space, it
 514 is possible that a combinatorial approach, i.e., one that does not rely on continuous relaxations such
 515 as FTPL-based algorithms by Hazan & Kale (2009), may lead to a more efficient method. Exploring
 516 such alternative approaches constitutes another interesting direction for future research.

517 **Reproducibility statement** The code necessary to reproduce the numerical experiments reported in
 518 Appendix B is included in the supplementary material. For the theoretical results, all claims without
 519 external references are accompanied by complete proofs provided either in the main text or in the
 520 appendix. These materials, together with the descriptions of assumptions and algorithmic details in
 521 the paper, are intended to ensure the reproducibility of our results.

524 REFERENCES

525 Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
 526 bandit problem. *SIAM J. Comput.*, 32:48–77, 2002.

527 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
 528 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
 529 human preferences. In *International Conference on Artificial Intelligence and Statistics*, pp.
 530 4447–4455. PMLR, 2024.

531 Francis R. Bach. Learning with submodular functions: A convex optimization perspective. *Found.
 532 Trends Mach. Learn.*, 6:145–373, 2011.

533 Jeff A. Bilmes. Submodularity in machine learning and artificial intelligence. *ArXiv*, abs/2202.00132,
 534 2022.

535 Avrim Blum, Meghal Gupta, Gene Li, Naren Sarayu Manoj, Aadirupa Saha, and Yuanyuan Yang.
 536 Dueling optimization with a monotone adversary. In *International Conference on Algorithmic
 537 Learning Theory*, pp. 221–243. PMLR, 2024.

540 Endre Boros and Peter L Hammer. Pseudo-boolean optimization. *Discrete applied mathematics*, 123
 541 (1-3):155–225, 2002.

542

543 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
 544 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

545

546 Manuela Cattelan. Models for paired comparison data: A review with emphasis on dependent data.
 547 *Statistical science*, 27(3):412–433, 2012.

548

549 Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pairwise ranking aggregation
 550 in a crowdsourced setting. In *Proceedings of the sixth ACM international conference on Web
 search and data mining*, pp. 193–202, 2013.

551

552 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. 2005.

553

554 D.R. Cox and E.J. Snell. *Analysis of Binary Data, Second Edition*. Chapman and Hall/CRC Mono-
 555 graphs on Statistics and Applied Probability. Taylor and Francis, 1989. ISBN 9780412306204.

556

557 Herbert A. David. *The Method of Paired Comparisons*, volume 41 of *Griffin’s Statistical Monographs
 558 & Courses*. C. Griffin, London, 2nd edition, 1988.

559

560 Miroslav Dudík, Katja Hofmann, Robert E Schapire, Aleksandrs Slivkins, and Masrour Zoghi.
 561 Contextual dueling bandits. In *Conference on Learning Theory*, pp. 563–587. PMLR, 2015.

562

563 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In *Combinatorial Optimiza-
 564 tion*, 2001.

565

566 David Firth. Bias reduction of maximum likelihood estimates. *Biometrika*, 80:27–38, 1993.

567

568 Satoru Fujishige. *Submodular functions and optimization*. 1991.

569

570 Martin Grötschel, László Miklós Lovász, and Alexander Schrijver. The ellipsoid method and its
 571 consequences in combinatorial optimization. *Combinatorica*, 1:169–197, 1981.

572

573 Elad Hazan and Satyen Kale. Online submodular minimization. *J. Mach. Learn. Res.*, 13:2903–2922,
 574 2009.

575

576 Dorit S. Hochbaum and Sung-Pil Hong. About strongly polynomial time algorithms for quadratic
 577 optimization over submodular constraints. *Mathematical Programming*, 69:269–309, 1995.

578

579 Shinji Ito. Submodular function minimization with noisy evaluation oracle. In *Neural Information
 580 Processing Systems*, 2019.

581

582 Shinji Ito. Revisiting online submodular minimization: Gap-dependent regret bounds, best of
 583 both worlds and adversarial robustness. In *International Conference on Machine Learning*, pp.
 584 9678–9694. PMLR, 2022.

585

586 Shinji Ito and Ryohei Fujimaki. Large-scale price optimization via network flow. In *Neural
 587 Information Processing Systems*, 2016.

588

589 Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial, strongly polynomial-time
 590 algorithm for minimizing submodular functions. In *Symposium on the Theory of Computing*, 2000.

591

592 Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of derivative-free optimization.
 593 *Advances in Neural Information Processing Systems*, 25, 2012.

594

595 Stefanie Jegelka and Jeff A. Bilmes. Submodularity beyond submodular energies: Coupling edges in
 596 graph cuts. *CVPR 2011*, pp. 1897–1904, 2011.

597

598 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models with
 599 pairwise ranking and generative fusion. In *Annual Meeting of the Association for Computational
 600 Linguistics*, 2023.

601

602 Thorsten Joachims. Optimizing search engines using clickthrough data. In *Proceedings of the eighth
 603 ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 133–142,
 604 2002.

594 Pushmeet Kohli and Philip H. S. Torr. Dynamic graph cuts and their applications in computer vision.
 595 In *Computer Vision: Detection, Recognition and Reconstruction*, 2010.
 596

597 Vladimir Kolmogorov and Ramin Zabih. What energy functions can be minimized via graph cuts?
 598 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26:147–159, 2002.

599 Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in graphical
 600 models. In *Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence*,
 601 pp. 324–331, 2005.

602 Tor Lattimore. Bandit convex optimisation. *arXiv preprint arXiv:2402.06535*, 2024.

603 Yinhong Liu, Han Zhou, Zhijiang Guo, Ehsan Shareghi, Ivan Vulic, Anna Korhonen, and Nigel
 604 Collier. Aligning with human judgement: The role of pairwise preference in large language model
 605 evaluators. In *First Conference on Language Modeling*, 2024.

606 Adian Liusie, Potsawee Manakul, and Mark John Francis Gales. Llm comparative assessment: Zero-
 607 shot nlg evaluation through pairwise comparisons using large language models. In *Conference of
 608 the European Chapter of the Association for Computational Linguistics*, 2023.

609 László Miklós Lovász. Submodular functions and convexity. In *International Symposium on
 610 Mathematical Programming*, 1982.

611 Mukund Narasimhan and Jeff A. Bilmes. Pac-learning bounded tree-width graphical models. In
 612 *Conference on Uncertainty in Artificial Intelligence*, 2004.

613 Mukund Narasimhan and Jeff A. Bilmes. Local search for balanced submodular clusterings. In
 614 *International Joint Conference on Artificial Intelligence*, 2007.

615 Mukund Narasimhan, Nebojsa Jojic, and Jeff A. Bilmes. Q-clustering. In *Neural Information
 616 Processing Systems*, 2005.

617 George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
 618 maximizing submodular set functions—i. *Mathematical programming*, 14(1):265–294, 1978.

619 Aldo Pacchiano, Aadirupa Saha, and Jonathan Lee. Dueling rl: Reinforcement learning with trajectory
 620 preferences. In *International Conference on Artificial Intelligence and Statistics*, 2021.

621 Maurice Queyranne and Andreas S. Schulz. Scheduling unit jobs with compatible release dates
 622 on parallel machines with nonstationary speeds. In *Conference on Integer Programming and
 623 Combinatorial Optimization*, 1995.

624 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 625 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 626 in neural information processing systems*, 36:53728–53741, 2023.

627 Dorsa Sadigh, Anca D. Dragan, S. Shankar Sastry, and Sanjit A. Seshia. Active preference-based
 628 learning of reward functions. In *Robotics: Science and Systems*, 2017.

629 Aadirupa Saha and Pierre Gaillard. Versatile dueling bandits: Best-of-both world analyses for learning
 630 from relative preferences. In *International Conference on Machine Learning*, pp. 19011–19026.
 631 PMLR, 2022.

632 Aadirupa Saha, Tomer Koren, and Y. Mansour. Dueling convex optimization. In *International
 633 Conference on Machine Learning*, 2021a.

634 Aadirupa Saha, Tomer Koren, and Yishay Mansour. Adversarial dueling bandits. In *International
 635 Conference on Machine Learning*, pp. 9235–9244. PMLR, 2021b.

636 Aadirupa Saha, Tomer Koren, and Yishay Mansour. Dueling convex optimization with general
 637 preferences. In *Forty-second International Conference on Machine Learning*, 2025.

638 Alexander Schrijver. *Combinatorial optimization. Polyhedra and efficiency*. 2003.

639 Lloyd S. Shapley. Cores of convex games. *International Journal of Game Theory*, 1:11–26, 1971.

648 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
649 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances in*
650 *neural information processing systems*, 33:3008–3021, 2020.

651

652 George Joseph Stigler and Paul A. Samuelson. Foundations of economic analysis. *Journal of the*
653 *American Statistical Association*, 43:497, 1948.

654

655 Yanan Sui, Masrour Zoghi, Katja Hofmann, and Yisong Yue. Advancements in dueling bandits. In
656 *IJCAI*, pp. 5502–5510, 2018.

657

658 Donald M. Topkis. *Supermodularity and Complementarity*. 1998.

659

660 Xavier Vives. *Oligopoly Pricing: Old Ideas and New Tools*. 1999.

661

662 Tianhao Wu, Banghua Zhu, Ruoyu Zhang, Zhaojin Wen, Kannan Ramchandran, and Jiantao Jiao.
Pairwise proximal policy optimization: Harnessing relative feedback for ILM alignment. *ArXiv*,
abs/2310.00212, 2023.

663

664 Yisong Yue, Josef Broder, Robert D. Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
665 problem. *J. Comput. Syst. Sci.*, 78:1538–1556, 2012.

666

667 Banghua Zhu, Jiantao Jiao, and Michael I. Jordan. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. *ArXiv*, abs/2301.11270, 2023.

668

669 Martin A. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
670 *International Conference on Machine Learning*, 2003.

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A OMITTED PROOFS

Proposition 1. Let \hat{f} be a Lovász extension of a function $f : 2^{[n]} \rightarrow [0, 1]$. For any $w \in \mathcal{K}$, the following equations hold:

$$\begin{aligned}\hat{f}(w) &= \int_0^1 f(\{i \mid w_i \geq z\}) dz \\ &= \mathbb{E}_{z \sim \text{Unif}([0,1])}[f(\{i \mid w_i \geq z\})].\end{aligned}$$

Proof. Since the permutation π is defined so that $(1 \geq)w_{\pi(1)} \geq \dots \geq w_{\pi(n)}(\geq 0)$, the following equations follows:

$$\begin{aligned}\int_0^1 f(\{w \geq z\}) dz &= \int_0^{w_{\pi(n)}} f(\{w \geq z\}) dz + \dots + \int_{w_{\pi(i+1)}}^{w_{\pi(i)}} f(\{w \geq z\}) dz + \dots + \int_{w_{\pi(1)}}^1 f(\{w \geq z\}) dz \\ &= f([n])(w_{\pi(n)} - 0) + \dots + f(\{\pi(1), \dots, \pi(i)\})(w_{\pi(i)} - w_{\pi(i+1)}) + \dots + f(\emptyset)(1 - w_{\pi(1)}) \\ &= \sum_{i=1}^{n-1} f(\{\pi(1), \dots, \pi(i)\})(w_{\pi(i)} - w_{\pi(i+1)}) + f([n])w_{\pi(n)} + f(\emptyset)(1 - w_{\pi(1)}) \\ &= \hat{f}(w).\end{aligned}$$

If z is chosen uniformly at random from $[0, 1]$, the probability density function of a random variable z is 1. Then, we have:

$$\begin{aligned}\mathbb{E}_{z \sim \text{Unif}([0,1])}[f(\{w \geq z\})] &= \int_0^1 f(\{w \geq z\}) 1 dz \\ &= \hat{f}(w).\end{aligned}$$

□

Theorem 1. (Fujishige (1991)) A function $f : 2^{[n]} \rightarrow [0, 1]$ is submodular if and only if its Lovász extension $\hat{f} : \mathcal{K} \rightarrow [0, 1]$ is convex. For a submodular function $f : 2^{[n]} \rightarrow [0, 1]$ and its Lovász extension $\hat{f} : \mathcal{K} \rightarrow [0, 1]$, we have:

$$\min_{X \in 2^{[n]}} f(X) = \min_{w \in \{0,1\}^n} \hat{f}(w) = \min_{w \in [0,1]^n} \hat{f}(w).$$

To begin with, we prove the first part of Theorem 1, which states that a function f is submodular if and only if its Lovász extension is convex. To prove this, we first define the submodular polyhedron in \mathbb{R}^n . We then consider a linear programming problem (LP) over the submodular polyhedron and apply the *strong duality* theorem to this LP. For $\chi_X \in \mathbb{R}^n$, we use the notation $(\chi_X)_i = \mathbb{1}\{i \in X\}$.

Definition 2. Let f be a submodular function. The submodular polyhedron $P(f)$ is defined as:

$$P(f) = \{s \in \mathbb{R}^n \mid \forall X \in 2^{[n]}, s^\top \chi_X \leq f(X)\}.$$

Theorem 6 (Strong Duality Theorem). Let $x, c \in \mathbb{R}^n$, $y, b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$. Consider the following primal problem and its corresponding dual problem in linear programming:

- **Primal Problem:**

$$\begin{aligned}&\text{maximize} && b^\top y \\ &\text{subject to} && A^\top y \leq c\end{aligned}$$

756 • **Dual Problem:**

$$\begin{aligned} 758 \quad & \text{minimize} \quad c^\top x \\ 759 \quad & \text{subject to} \quad Ax = b \\ 760 \quad & \quad x \geq 0 \\ 761 \end{aligned}$$

762 For these problems, if either the primal or dual problem has an optimal solution, then the optimal
 763 values of both problems are equal. That is,
 764

$$765 \quad \max\{b^\top y \mid A^\top y \geq c\} = \min\{c^\top x \mid Ax = b, x \geq 0\}. \\ 766$$

767 The following proposition, given in Bach (2011, Proposition 3.2), serves as a key building block for
 768 proof of the first part of Theorem 1:

769 **Proposition 4.** Let f be a submodular function. Let $w \in \mathcal{K}$, $\pi : [n] \rightarrow [n]$ be a permutation
 770 that orders the components of w in decreasing order, and define $s_{\pi(i)} = f(\{\pi(1), \dots, \pi(i)\}) -$
 771 $f(\{\pi(1), \dots, \pi(i-1)\})$ for $i \in 2, \dots, n$ and $s_{\pi(1)} = f(\{\pi(1)\}) - f(\emptyset)$. Then $s \in P(f)$ and,
 772

$$\begin{aligned} 773 \quad & s = \arg \max_{s \in P(f)} w^\top s, \\ 774 \\ 775 \quad & \hat{f}(w) - f(\emptyset) = \max_{s \in P(f)} w^\top s. \\ 776 \\ 777 \end{aligned}$$

778 *Proof.* We consider the LP:

$$779 \quad \max_{s \in P(f)} w^\top s. \\ 780$$

782 By the definition of $P(f)$, the primal problem can be explicitly written as:
 783

$$\begin{aligned} 784 \quad & \text{maximize} \quad w^\top s \\ 785 \quad & \text{subject to} \quad \chi_X^\top s \leq f(X) \quad \text{for all } X \in 2^{[n]} \\ 786 \\ 787 \end{aligned}$$

788 Let λ_X be a real number for all $X \in 2^{[n]}$. The dual problem corresponding to this primal problem
 789 can be written as:
 790

$$\begin{aligned} 791 \quad & \text{minimize} \quad \sum_{X \in 2^{[n]}} \lambda_X f(X) \\ 792 \\ 793 \quad & \text{subject to} \quad \sum_{X \in 2^{[n]}} \lambda_X \chi_X = w \\ 794 \\ 795 \quad & \lambda_X \geq 0 \quad \text{for all } X \in 2^{[n]} \\ 796 \\ 797 \end{aligned}$$

798 A constant vector, where each component is $\min_{X \in 2^{[n]}, X \neq \emptyset} \frac{f(X)}{|X|}$, belongs to $P(f)$, ensuring that
 799 $P(f)$ is non-empty and the primal problem has an optimal solution. Therefore, by the strong convex
 800 duality (Theorem 6), the optimal values of both problems are equal.
 801

802 We define as:
 803

$$\begin{aligned} 804 \quad & s_{\pi(i)} = \begin{cases} f(\{\pi(1)\}) - f(\emptyset) & (\text{if } i = 1), \\ f(\{\pi(1), \dots, \pi(i)\}) - f(\{\pi(1), \dots, \pi(i-1)\}) & (\text{if } i \in \{2, \dots, n\}), \end{cases} \\ 805 \\ 806 \\ 807 \quad & \lambda_X = \begin{cases} w_{\pi(i)} - w_{\pi(i+1)} & (\text{if } X = \{\pi(1), \dots, \pi(i)\} \text{ for } i \in \{1, \dots, n-1\}), \\ w_{[n]} & (\text{if } X = [n]), \\ 0 & (\text{otherwise}), \end{cases} \\ 808 \\ 809 \end{aligned}$$

and show that they are feasible solutions of primal and dual problems. Then, we show that they achieve the same objective value and are optimal solutions. Without loss of generality, we assume that $\pi(k) = k$ for all $k \in [n]$. For any set X , we have:

$$\begin{aligned}
 s^\top \chi_X &= \sum_{k=1}^n (\chi_X)_k s_k \\
 &= \sum_{k=1}^n (\chi_X)_k [f(\{1, \dots, k\}) - f(\{1, \dots, k-1\})] \\
 &\leq \sum_{k=1}^n (\chi_X)_k [f(X \cap \{1, \dots, k\}) - f(X \cap \{1, \dots, k-1\})] \quad \text{by the submodularity of } f, \\
 &= \sum_{k=1}^n [f(X \cap \{1, \dots, k\}) - f(X \cap \{1, \dots, k-1\})] \\
 &= f(X) \quad .
 \end{aligned}$$

Thus, $s \in P(f)$, i.e., s is a feasible solution of the primal problem. λ_X are all non-negative according to the definition of π , and satisfy the constraint $\sum_{X \in 2^{[n]}} \lambda_X \chi_X = w$. Therefore, λ_X are feasible solutions of the dual problem. Since

$$\begin{aligned}
 w^\top s &= \sum_{i=1}^n w_{\pi(i)} s_{\pi(i)} \\
 &= \sum_{i=2}^n w_{\pi(i)} [f(\{\pi(1), \dots, \pi(i)\}) - f(\{\pi(1), \dots, \pi(i-1)\})] \\
 &\quad + w_{\pi(1)} [f(\{\pi(1)\}) - f(\emptyset)] \\
 &= \hat{f}(w) - f(\emptyset), \\
 \sum_{X \in 2^{[n]}} \lambda_X f(X) &= \sum_{i=1}^{n-1} f(\{\pi(1), \dots, \pi(i)\})(w_{\pi(i)} - w_{\pi(i+1)}) \\
 &\quad + f([n])w_{\pi(n)} - f(\emptyset)w_{\pi(1)} \\
 &= \hat{f}(w) - f(\emptyset),
 \end{aligned}$$

both the primal and dual problems achieve the value $\hat{f}(w) - f(\emptyset)$. Thus, by strong duality, this is the optimal solution of both problems and s, λ_X are the optimal solutions for the primal and dual problems, respectively. \square

Then, we prove the first part of Theorem 1 using this proposition.

Proof. If f is a submodular function, from Proposition 4, for all $w \in \mathcal{K}$, $\hat{f}(w) - f(\emptyset)$ is a maximum of linear functions, and hence $\hat{f}(w) - f(\emptyset)$ is a convex function, i.e., $\hat{f}(w)$ is a convex function. Conversely, suppose that the Lovász extension \hat{f} of f is a convex function. By definition, \hat{f} is a positively homogeneous function, i.e., $\hat{f}(\lambda w) = \lambda \hat{f}(w)$ for any $\lambda \in (0, 1]$. For any $X, Y \in 2^{[n]}$,

$$\begin{aligned}
 \hat{f}\left(\frac{1}{2}\chi_X + \frac{1}{2}\chi_Y\right) &= \hat{f}\left(\frac{1}{2}\chi_{X \cup Y} + \frac{1}{2}\chi_{X \cap Y}\right) \\
 &= \hat{f}\left(\frac{1}{2}\chi_{X \cup Y}\right) + \hat{f}\left(\frac{1}{2}\chi_{X \cap Y}\right) \\
 &= \frac{1}{2}\hat{f}(\chi_{X \cup Y}) + \frac{1}{2}\hat{f}(\chi_{X \cap Y}) \\
 &= \frac{1}{2}f(X \cup Y) + \frac{1}{2}f(X \cap Y).
 \end{aligned}$$

864 The second equation holds because the components of each vector $\frac{1}{2}\chi_{X \cup Y} + \frac{1}{2}\chi_{X \cap Y}, \frac{1}{2}\chi_{X \cap Y}$ and
 865 $\chi_{X \cup Y}$ can be ordered in the same sequence and can share the same permutation π . Furthermore,
 866 since f is a convex function, we also have:

$$\begin{aligned} 868 \quad \hat{f}\left(\frac{1}{2}\chi_X + \frac{1}{2}\chi_Y\right) &\leq \frac{1}{2}\hat{f}(\chi_X) + \frac{1}{2}\hat{f}(\chi_Y) \\ 869 \\ 870 &= \frac{1}{2}f(X) + \frac{1}{2}f(Y). \\ 871 \end{aligned}$$

872 Therefore, f is a submodular function. \square

874 Next, we establish the second part of Theorem 1, which states that the minimum value of a submodular
 875 function is equal to the minimum value of its Lovász extension.

877 *Proof.* Since \hat{f} is an extension from $\{0, 1\}^n$ to $[0, 1]^n$ and satisfies $f(X) = \hat{f}(\chi_X)$ for all $X \in 2^{[n]}$, it
 878 follows that $\min_{X \in 2^{[n]}} f(X) = \min_{w \in \{0, 1\}^n} \hat{f}(w) \geq \min_{w \in [0, 1]^n} \hat{f}(w)$. Next, we prove the reverse
 879 inequality. From equation 2, the following holds for any $w \in [0, 1]^n$:

$$\begin{aligned} 881 \quad \hat{f}(w) &= \sum_{i=1}^{n-1} f(\{\pi(1), \dots, \pi(i)\})(w_{\pi(i)} - w_{\pi(i+1)}) + f([n])w_{\pi(n)} + f(\emptyset)(1 - w_{\pi(1)}) \\ 882 \\ 883 &\geq \sum_{i=1}^{n-1} \min_{X \in 2^{[n]}} f(X)(w_{\pi(i)} - w_{\pi(i+1)}) + \min_{X \in 2^{[n]}} f(X)w_{\pi(n)} + \min_{X \in 2^{[n]}} f(X)(1 - w_{\pi(1)}) \\ 884 \\ 885 &= \min_{X \in 2^{[n]}} f(X) \\ 886 \\ 887 \end{aligned}$$

\square

890 **Proposition 2.** Let f be a submodular function. For $w \in \mathcal{K}$, let π be a permutation that orders the
 891 components of w in decreasing order, and let τ be the inverse permutation of π . Then, a subgradient
 892 g of \hat{f} at w is given as follows:

$$\begin{aligned} 894 \quad g_{\pi(i)} &= f(B_i) - f(B_{i-1}) \\ 895 \quad g_i &= f(B_{\tau(i)}) - f(B_{\tau(i)-1}) \\ 896 \end{aligned}$$

897 *Proof.* From equation 2, the expression for a subgradient is immediately obtained. \square

899 **Theorem 2.** Let $\hat{f} : \mathcal{K} \rightarrow [0, 1]$ be a convex function in the hypercube $\mathcal{K} = [0, 1]^n$. Let
 900 $w^{(1)}, w^{(2)}, \dots, w^{(T)}$ be defined by $w^{(1)} = \frac{1}{2} \cdot \mathbf{1}$ and $w^{(t+1)} = \Pi_{\mathcal{K}}(w^{(t)} - \eta \hat{g}_t)$. When $\hat{g}_1, \hat{g}_2, \dots, \hat{g}_T$
 901 are unbiased estimators of subgradients such that $\mathbb{E}[\hat{g}_t | w^{(t)}] = g_t$, where g_t is a subgradient of \hat{f} at
 902 $w^{(t)}$, the average point $\bar{w} = \frac{1}{T} \sum_{t=1}^T w^{(t)}$ satisfies:

$$904 \quad \mathbb{E}[\hat{f}(\bar{w})] - \min_{w^* \in \mathcal{K}} \hat{f}(w^*) \leq \frac{1}{T} \left(\frac{n}{8\eta} + \frac{\eta}{2} \sum_{t=1}^T \mathbb{E}[\|\hat{g}_t\|_2^2] \right).$$

907 *Proof.* Let $v^{(t+1)} = w^{(t)} - \eta \hat{g}_t$, so that $w^{(t+1)} = \Pi_{\mathcal{K}}(v^{(t+1)})$. By expanding the squared norm, we
 908 have:

$$910 \quad \|v^{(t+1)} - w^*\|_2^2 = \|w^{(t)} - w^*\|_2^2 - 2\eta \hat{g}_t^\top (w^{(t)} - w^*) + \eta^2 \|\hat{g}_t\|_2^2.$$

912 Rearranging terms, we obtain:

$$913 \quad \hat{g}_t^\top (w^{(t)} - w^*) = \frac{1}{2\eta} [\|w^{(t)} - w^*\|_2^2 - \|v^{(t+1)} - w^*\|_2^2] + \frac{\eta}{2} \|\hat{g}_t\|_2^2.$$

915 Using the non-expansiveness property of Euclidean projections onto convex sets,

$$917 \quad \|w^{(t+1)} - w^*\|_2^2 \leq \|v^{(t+1)} - w^*\|_2^2,$$

918 we further obtain:

$$919 \hat{g}_t^\top (w^{(t)} - w^*) \leq \frac{1}{2\eta} [\|w^{(t)} - w^*\|_2^2 - \|w^{(t+1)} - w^*\|_2^2] + \frac{\eta}{2} \|\hat{g}_t\|_2^2,$$

920 Summing this inequality over $t = 1, \dots, T$, we have:

$$921 \sum_{t=1}^T \hat{g}_t^\top (w^{(t)} - w^*) \leq \sum_{t=1}^T \frac{\|w^{(t)} - w^*\|_2^2 - \|w^{(t+1)} - w^*\|_2^2}{2\eta} + \frac{\eta}{2} \|\hat{g}_t\|_2^2 \\ 922 \leq \frac{n}{8\eta} + \frac{\eta}{2} \sum_{t=1}^T \|\hat{g}_t\|_2^2, \quad (4)$$

923 since $\|w^{(1)} - w^*\|_2^2 \leq \frac{n}{4}$ ($|w_i^{(1)} - w_i^*| \leq \frac{1}{2}$ for all $i \in [n]$ since $w^{(1)} = \frac{1}{2} \cdot \mathbf{1}$ and $w^* \in [0, 1]^n$). Next, 924 since $\mathbb{E}[\hat{g}_t | w^{(t)}] = g_t$, a subgradient of \hat{f} at $w^{(t)}$, we have:

$$925 \mathbb{E}[\hat{g}_t^\top (w^{(t)} - w^*) | w^{(t)}] = g_t^\top (w^{(t)} - w^*) \geq \hat{f}(w^{(t)}) - \hat{f}(w^*),$$

926 where the inequality follows from the convexity of \hat{f} . Taking the expectation over the choice of $w^{(t)}$, 927 we have:

$$928 \mathbb{E}[\hat{g}_t^\top (w^{(t)} - w^*)] \geq \mathbb{E}[\hat{f}(w^{(t)})] - \hat{f}(w^*).$$

929 Summing over $t = 1, \dots, T$, we have:

$$930 \sum_{t=1}^T \mathbb{E}[\hat{f}(w^{(t)})] - \sum_{t=1}^T \hat{f}(w^*) \leq \mathbb{E}[\sum_{t=1}^T \hat{g}_t^\top (w^{(t)} - w^*)] \\ 931 \leq \frac{n}{8\eta} + \frac{\eta}{2} \sum_{t=1}^T \mathbb{E}[\|\hat{g}_t\|_2^2].$$

932 Finally, since \hat{f} is convex, we can apply Jensen's inequality to obtain the expected error bound as 933 follows:

$$934 \mathbb{E}[\hat{f}(\bar{w})] - \hat{f}(w^*) = \mathbb{E}[\hat{f}\left(\frac{1}{T} \sum_{t=1}^T x^{(t)}\right)] - \hat{f}(w^*) \\ 935 \leq \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\hat{f}(w^{(t)})] - \hat{f}(w^*) \quad (\text{By Jensen's inequality}) \\ 936 = \frac{1}{T} \left(\sum_{t=1}^T \mathbb{E}[\hat{f}(w^{(t)})] - \sum_{t=1}^T \hat{f}(w^*) \right) \\ 937 \leq \frac{1}{T} \left(\frac{n}{8\eta} + \frac{\eta}{2} \sum_{t=1}^T \mathbb{E}[\|\hat{g}_t\|_2^2] \right).$$

938 \square

939 **Theorem 3.** Let f be a submodular function. Let n, T and a be the input of Algorithm 1. Then, 940 Algorithm 1 with parameter $\eta = \frac{a}{2\sqrt{nT}}$ achieves the following error bound:

$$941 \mathbb{E}[E_T] = O\left(\frac{n^{\frac{3}{2}}}{a\sqrt{T}}\right).$$

942 The expectation is taken with regard to the randomness of the oracle responses o_t , and the internal 943 randomness of the algorithm.

944 *Proof.* Since \hat{g}_t in Algorithm 1 is an unbiased estimator of the subgradient g_t , by Theorem 2, the 945 following inequality holds:

$$946 \mathbb{E}[\hat{f}(\bar{w})] - \min_{w^* \in \mathcal{K}} \hat{f}(w^*) \leq \frac{1}{T} \left(\frac{n}{8\eta} + \frac{\eta}{2} \sum_{t=1}^T \mathbb{E}[\|\hat{g}_t\|_2^2] \right).$$

972 Moreover, since $\hat{g}_t = \frac{n}{a} o_t \cdot e_i$ and $\|\hat{g}_t\|_2^2 = \frac{n^2}{a^2}$, we have:
 973

$$974 \quad 975 \quad 976 \quad \sum_{t=1}^T \mathbb{E}[\|\hat{g}_t\|_2^2] = \frac{n^2 T}{a^2}.$$

977 Then, we obtain:

$$978 \quad 979 \quad 980 \quad \mathbb{E}[\hat{f}(\bar{w})] - \min_{w^* \in \mathcal{K}} \hat{f}(w^*) \leq \frac{1}{T} \left(\frac{n}{8\eta} + \frac{\eta}{2} \sum_{t=1}^T \mathbb{E}[\|\hat{g}_t\|_2^2] \right) \\ 981 \quad 982 \quad 983 \quad = \frac{n}{8\eta T} + \frac{\eta n^2}{2a^2} \\ 984 \quad 985 \quad = \frac{n^{\frac{3}{2}}}{4a\sqrt{T}},$$

986 where the last equality follows by setting $\eta = \frac{a}{2\sqrt{nT}}$. Finally, from equation 3 and Theorem 1, we
 987 have the error bound:

$$988 \quad 989 \quad 990 \quad \mathbb{E}[E_T] = \mathbb{E}[f(\hat{S}_T)] - \min_{S \in 2^{[n]}} f(S) \\ 991 \quad 992 \quad 993 \quad = \mathbb{E}[\hat{f}(\bar{w})] - \min_{w^* \in \mathcal{K}} \hat{f}(w^*) \\ 994 \quad 995 \quad \leq \frac{n^{\frac{3}{2}}}{4a\sqrt{T}}.$$

□

996 **Proposition 3.** Consider a logistic regression model:

$$997 \quad 998 \quad 999 \quad \Pr(X_i = +1 \mid \theta) = \frac{1}{1 + e^{-b\theta}}, \quad \Pr(X_i = -1) = 1 - \Pr(X_i = +1 \mid \theta) = \frac{e^{-b\theta}}{1 + e^{-b\theta}}$$

1000 with $i = 1, \dots, k$, $X_i \in \{\pm 1\}$ denoting the binary outcome variable and b being a positive constant.
 1001 The penalized maximum likelihood estimator $\hat{\theta}^*$ for the regression parameter $\theta \in [-1, 1]$ can be
 1002 written as:

$$1003 \quad 1004 \quad 1005 \quad \hat{\theta}^* = \frac{1}{b} \log \left(\frac{k_+ + \frac{1}{2}}{k_- + \frac{1}{2}} \right),$$

1006 where $k_+ = |\{i \mid X_i = +1\}|$ and $k_- = |\{i \mid X_i = -1\}|$. Then, the bias of $\hat{\theta}^*$ satisfies:

$$1007 \quad 1008 \quad 1009 \quad |\mathbb{E}[\hat{\theta}^*] - \theta| \leq \left| \frac{2\psi - 1}{24b\psi^2(1-\psi)^2} \right| \frac{1}{k^2} + O\left(\frac{1}{k^3}\right).$$

1010 Here, ψ is a constant and $\psi = \frac{1}{1+e^{-b}}$. We denote the coefficient of $\frac{1}{k^2}$ by $C(b) = \left| \frac{2\psi - 1}{24b\psi^2(1-\psi)^2} \right|$.
 1011

1012 First, we derive the form of the penalized maximum likelihood estimator, which constitutes the first
 1013 part of this proposition.

1014
 1015 *Proof.* The log likelihood function and its partial derivative with respect to θ are

$$1016 \quad 1017 \quad 1018 \quad \log L(\theta) = \sum_{i=1}^k \log \left(\frac{1}{1 + e^{-X_i b\theta}} \right) \\ 1019 \quad 1020 \quad 1021 \quad = k_+ \log \left(\frac{1}{1 + e^{-b\theta}} \right) + k_- \log \left(\frac{1}{1 + e^{b\theta}} \right),$$

$$1022 \quad 1023 \quad 1024 \quad \frac{\partial}{\partial \theta} \log L(\theta) = k_+ (1 + e^{-b\theta}) \frac{be^{-b\theta}}{(1 + e^{-b\theta})^2} + k_- (1 + e^{b\theta}) \frac{-be^{b\theta}}{(1 + e^{b\theta})^2} \\ 1025 \quad = k_+ b \frac{1}{1 + e^{b\theta}} - k_- b \frac{1}{1 + e^{-b\theta}}.$$

1026 The Fisher information is
 1027

$$\begin{aligned}
 1028 \quad I(\theta) &= \mathbb{E}\left[-\frac{\partial^2}{\partial\theta^2} \log L(\theta) \mid \theta\right] \\
 1029 \quad &= \mathbb{E}\left[k_+ b^2 \frac{e^{b\theta}}{(1+e^{b\theta})^2} + k_- b^2 \frac{e^{-b\theta}}{(1+e^{-b\theta})^2} \mid \theta\right] \\
 1030 \quad &= kb^2 \frac{e^{-b\theta}}{(1+e^{-b\theta})^2},
 \end{aligned}$$

1036 since $\mathbb{E}[k_+ \mid \theta] = \frac{k}{1+e^{-b\theta}}$ and $\mathbb{E}[k_- \mid \theta] = \frac{k}{1+e^{b\theta}}$. Therefore, the modified score function is
 1037

$$\begin{aligned}
 1038 \quad U^*(\theta) &= \frac{\partial}{\partial\theta} \log L(\theta) + \frac{1}{2} \frac{\partial}{\partial\theta} \log |I(\theta)| \\
 1039 \quad &= k_+ b \frac{1}{1+e^{b\theta}} - k_- b \frac{1}{1+e^{-b\theta}} - \frac{b}{2} + \frac{be^{-b\theta}}{1+e^{-b\theta}} \\
 1040 \quad &= \frac{b}{1+e^{-b\theta}} \left((k_+ + \frac{1}{2})e^{-b\theta} - (k_- + \frac{1}{2}) \right).
 \end{aligned}$$

1041 Finally, we obtain the solution $\hat{\theta}^*$:
 1042

$$\begin{aligned}
 1043 \quad e^{-b\hat{\theta}^*} &= \frac{k_- + \frac{1}{2}}{k_+ + \frac{1}{2}} \\
 1044 \quad -b\hat{\theta}^* &= \log\left(\frac{k_- + \frac{1}{2}}{k_+ + \frac{1}{2}}\right) \\
 1045 \quad \hat{\theta}^* &= \frac{1}{b} \log\left(\frac{k_+ + \frac{1}{2}}{k_- + \frac{1}{2}}\right).
 \end{aligned}$$

1046 \square
 1047

1048 Next, we establish the second part of Proposition 3, which demonstrates the bias of $\hat{\theta}^*$. Our proof is
 1049 based on the method outlined in Cox & Snell (1989, §2.1.6). Although their work showed that the
 1050 leading bias term, proportional to $\frac{1}{k}$, can be eliminated, we extend this approach to derive terms up to
 1051 $\frac{1}{k^2}$.
 1052

1053 *Proof.* Let $\phi = \frac{1}{1+e^{-b\theta}}$, be the probability of $X_i = +1$. The parameter θ can be expressed as
 1054 $\frac{1}{b} \log \frac{\phi}{1-\phi}$. Define a function $h : [0, 1] \rightarrow \mathbb{R}$ as $h(x) = \frac{1}{b} \log \frac{x+\frac{1}{2k}}{1-x+\frac{1}{2k}}$. Then, $\hat{\theta}^* = h(\frac{k_+}{k})$.
 1055 Considering the Taylor expansion of $h(\frac{k_+}{k})$ with respect to ϕ , we have:
 1056

$$\begin{aligned}
 1057 \quad \hat{\theta}^* &= h\left(\frac{k_+}{k}\right) = h(\phi) + h'(\phi)\left(\frac{k_+}{k} - \phi\right) + \frac{1}{2}h''(\phi)\left(\frac{k_+}{k} - \phi\right)^2 \\
 1058 \quad &+ \frac{1}{6}h'''(\phi)\left(\frac{k_+}{k} - \phi\right)^3 + \frac{1}{24}h''''(\phi)\left(\frac{k_+}{k} - \phi\right)^4 + \dots
 \end{aligned} \tag{5}$$

1080 By the definition of k_+ , $\mathbb{E}[\frac{k_+}{k}] = \phi$. Therefore, $\mathbb{E}[(\frac{k_+}{k} - \phi)^r]$ is the r -th central moment of a binomial
 1081 distribution. Taking expectation of equation 5, we obtain:

$$\begin{aligned}
 1083 \quad b\mathbb{E}[\hat{\theta}^*] &= b\left\{h(\phi) + h'(\phi)\mathbb{E}[\frac{k_+}{k} - \phi] + \frac{1}{2}h''(\phi)\mathbb{E}[(\frac{k_+}{k} - \phi)^2] + \frac{1}{6}h'''(\phi)\mathbb{E}[(\frac{k_+}{k} - \phi)^3]\right. \\
 1084 \quad &\quad \left. + \frac{1}{24}h''''(\phi)\mathbb{E}[(\frac{k_+}{k} - \phi)^4] + \dots\right\} \\
 1085 \quad &= \log \frac{\phi + \frac{1}{2k}}{1 - \phi + \frac{1}{2k}} + \frac{1}{2} \left\{ -\left(\phi + \frac{1}{2k}\right)^{-2} + \left(1 - \phi + \frac{1}{2k}\right)^{-2} \right\} \frac{\phi(1 - \phi)}{k} \\
 1086 \quad &\quad + \frac{1}{6} \left\{ 2\left(\phi + \frac{1}{2k}\right)^{-3} + 2\left(1 - \phi + \frac{1}{2k}\right)^{-3} \right\} \frac{\phi(1 - \phi)(1 - 2\phi)}{k^2} \\
 1087 \quad &\quad + \frac{1}{24} \left\{ -6\left(\phi + \frac{1}{2k}\right)^{-4} + 6\left(1 - \phi + \frac{1}{2k}\right)^{-4} \right\} \left\{ \frac{3\phi^2(1 - \phi)^2}{k^2} \right. \\
 1088 \quad &\quad \left. + \frac{\phi(1 - \phi)(1 - 6\phi(1 - \phi))}{k^3} \right\} + \dots \\
 1089 \quad &= \log \frac{\phi}{1 - \phi} + \frac{1}{2\phi k} - \frac{1}{8\phi^2 k^2} - \frac{1}{2(1 - \phi)k} + \frac{1}{8(1 - \phi)^2 k^2} \\
 1090 \quad &\quad + \frac{1}{2} \left\{ -\frac{1}{\phi^2} \left(1 - \frac{1}{\phi k}\right) + \frac{1}{(1 - \phi)^2} \left(1 - \frac{1}{(1 - \phi)k}\right) \right\} \phi(1 - \phi) \frac{1}{k} \\
 1091 \quad &\quad + \frac{1}{3} \left\{ \frac{1}{\phi^3} + \frac{1}{(1 - \phi)^3} \right\} \phi(1 - \phi)(1 - 2\phi) \frac{1}{k^2} \\
 1092 \quad &\quad + \frac{3}{4} \left\{ -\frac{1}{\phi^4} + \frac{1}{(1 - \phi)^4} \right\} \phi^2(1 - \phi)^2 \frac{1}{k^2} + O\left(\frac{1}{k^3}\right) \\
 1093 \quad &= b\theta + \left\{ \frac{1}{2\phi} - \frac{1}{2(1 - \phi)} - \frac{1 - \phi}{2\phi} + \frac{\phi}{2(1 - \phi)} \right\} \frac{1}{k} + \left\{ -\frac{1}{8\phi^2} + \frac{1}{8(1 - \phi)^2} + \frac{1 - \phi}{2\phi^2} \right. \\
 1094 \quad &\quad \left. - \frac{\phi}{2(1 - \phi)^2} + \frac{(1 - \phi)(1 - 2\phi)}{3\phi^2} + \frac{\phi(1 - 2\phi)}{3(1 - \phi)^2} - \frac{3(1 - \phi)^2}{4\phi^2} + \frac{3\phi^2}{4(1 - \phi)^2} \right\} + O\left(\frac{1}{k^3}\right) \\
 1095 \quad &\quad \text{(By the Taylor expansion of } \log(1 + x) \text{ and } (1 + x)^{-r} \text{)} \\
 1096 \quad &= b\theta + \frac{2\phi - 1}{24\phi^2(1 - \phi)^2} \cdot \frac{1}{k^2} + O\left(\frac{1}{k^3}\right).
 \end{aligned}$$

1117 Thus, the bias of $\hat{\theta}^*$ can be written as:

$$1119 \quad |\mathbb{E}[\hat{\theta}^*] - \theta| = \left| \frac{2\phi - 1}{24b\phi^2(1 - \phi)^2} \right| \frac{1}{k^2} + O\left(\frac{1}{k^3}\right).$$

1121 Considering ϕ as a function of θ and b as a function of $\phi(\theta)$ and θ , the relationship between ϕ and
 1122 θ , and the relationship between the coefficient of the term $\frac{1}{k^2}$ and ϕ are illustrated in Figure 1 and
 1123 Figure 2. For all $b > 0$, the coefficient reaches its maximum with $\theta = 1$ (or $\theta = -1$). Therefore, the
 1124 coefficient can be bounded using $\psi = \frac{1}{1 + e^{-b}}$:

$$1125 \quad \left| \frac{2\phi - 1}{24b\phi^2(1 - \phi)^2} \right| \leq \left| \frac{2\psi - 1}{24b\psi^2(1 - \psi)^2} \right| = C(b).$$

□

1129 **Theorem 4.** Let f be a submodular function. Let n, T and b be the input of Algorithm 2. Then,
 1130 Algorithm 2 achieves the following error bound:

$$1132 \quad \mathbb{E}[E_T] = O\left(\frac{C(b)^{\frac{1}{5}}}{b^{\frac{4}{5}}} \cdot \frac{n^{\frac{7}{5}}}{T^{\frac{2}{5}}}\right).$$

Figure 1: Relationship between ϕ and θ .Figure 2: Relationship between $|(2\phi - 1)/(24b\phi^2(1 - \phi)^2)|$ and ϕ .

The expectation is taken with regard to the randomness of the oracle responses o_t , and the internal randomness of the algorithm.

Proof. Let w^* be a minimizer of \hat{f} in \mathcal{K} .

$$\begin{aligned}
 \sum_{t=1}^{T'} (\hat{f}(w^{(t)}) - \hat{f}(w^*)) &\leq \sum_{t=1}^{T'} (g_t^\top (w^{(t)} - w^*)) \\
 &= \sum_{t=1}^{T'} (\hat{g}_t^\top (w^{(t)} - w^*) + (g_t^\top - \hat{g}_t^\top)(w^{(t)} - w^*)) \\
 &\leq \frac{n}{8\eta} + \frac{\eta}{2} \sum_{t=1}^{T'} \|\hat{g}_t\|_2^2 + \sum_{t=1}^{T'} (g_t^\top - \hat{g}_t^\top)(w^{(t)} - w^*) \quad (\text{By equation 4}) \\
 &\leq \frac{n}{8\eta} + \frac{\eta}{2} \sum_{t=1}^{T'} \|\hat{g}_t\|_2^2 + \sum_{t=1}^{T'} \|g_t^\top - \hat{g}_t^\top\|_1 \|w^{(t)} - w^*\|_\infty \\
 &\quad (\text{By Hölder's inequality}) \\
 &\leq \frac{n}{8\eta} + \frac{\eta}{2} \sum_{t=1}^{T'} \|\hat{g}_t\|_2^2 + \sum_{t=1}^{T'} \|g_t^\top - \hat{g}_t^\top\|_1.
 \end{aligned}$$

The last inequality holds since $w^{(t)}, w^* \in \mathcal{K}$. By the definition of \hat{g}_t , we have:

$$\|\hat{g}_t\|_2^2 \leq \frac{n}{b^2} \{\log(2k+1)\}^2, \quad \|\hat{g}_t - g_t\|_1 = nC(b)O\left(\frac{1}{k^2}\right).$$

Then, the following inequality follows by taking expectations and using Jensen's inequality:

$$\begin{aligned}
 \mathbb{E}[\hat{f}(\bar{w})] - \min_{w^* \in \mathcal{K}} \hat{f}(w^*) &\leq \frac{1}{T'} \left(\frac{n}{8\eta} + \frac{\eta}{2} \sum_{t=1}^{T'} \|\hat{g}_t\|_2^2 + \sum_{t=1}^{T'} \|g_t^\top - \hat{g}_t^\top\|_1 \right) \\
 &\leq \frac{n}{8T'\eta} + \frac{n\eta}{2b^2} \{\log(2k+1)\}^2 + nC(b)O\left(\frac{1}{k^2}\right) \\
 &= \frac{n^2 k}{8T\eta} + \frac{n\eta}{2b^2} \{\log(2k+1)\}^2 + nC(b)O\left(\frac{1}{k^2}\right).
 \end{aligned}$$

Setting $\eta = b^{\frac{6}{5}} C(b)^{\frac{1}{5}} \frac{n^{\frac{2}{5}}}{T^{\frac{2}{5}}}$ and $k = b^{\frac{2}{5}} C(b)^{\frac{2}{5}} \frac{T^{\frac{1}{5}}}{n^{\frac{1}{5}}}$, we have:

$$\mathbb{E}[\hat{f}(\bar{w})] - \min_{w^* \in \mathcal{K}} \hat{f}(w^*) = O\left(\frac{C(b)^{\frac{1}{5}}}{b^{\frac{4}{5}}} \cdot \frac{n^{\frac{7}{5}}}{T^{\frac{2}{5}}}\right).$$

Finally, from equation 3 and Theorem 1, we have the error bound:

$$\begin{aligned}\mathbb{E}[E_T] &= \mathbb{E}[f(\hat{S}_T)] - \min_{S \in 2^{[n]}} f(S) \\ &= \mathbb{E}[\hat{f}(\bar{w})] - \min_{w^* \in \mathcal{K}} \hat{f}(w^*) \\ &= O\left(\frac{C(b)^{\frac{1}{5}}}{b^{\frac{4}{5}}} \cdot \frac{n^{\frac{7}{5}}}{T^{\frac{2}{5}}}\right).\end{aligned}$$

□

Theorem 5. *In SFM using a dueling oracle with linear or sigmoid transfer functions, there exists an instance for which algorithms that satisfy Restriction 1 suffers an error of:*

$$\mathbb{E}[E_T] = \mathbb{E}[f(\hat{S}_T) - \min_{S \in 2^{[n]}} f(S)] = \Omega\left(\frac{n^{\frac{3}{2}}}{\sqrt{T}}\right).$$

In addition, there is an instance for which algorithms without any restrictions suffer an error of:

$$\mathbb{E}[E_T] = \mathbb{E}[f(\hat{S}_T) - \min_{S \in 2^{[n]}} f(S)] = \Omega\left(\frac{n}{\sqrt{T}}\right).$$

The expectation is taken with regard to the randomness of the instance f and oracles o_t , and the internal randomness of the algorithm.

Before presenting the proof of the lower bound, we introduce Yao’s principle, a powerful tool for analyzing lower bounds of randomized algorithms. This principle allows us to derive lower bounds by analyzing the expected performance of deterministic algorithms over a chosen distribution of problem instances.

To begin with, we prove the lower bound for the linear transfer function.

Proposition 4 (Yao’s principle). *The worst-case error of any randomized algorithm is at least the error of the best deterministic algorithm under a specific distribution \mathcal{D} . That is, let the error E_T be expressed as a function $E_T(A, x)$, where A is an algorithm (deterministic or randomized) and x represents the input (including the objective function f , oracle response o_t). Define \mathcal{A} as the set of all deterministic algorithms, \mathcal{R} as the set of all randomized algorithms, \mathcal{X} as the set of all possible inputs, and \mathcal{D} as a specific input distribution. Then, the following inequality holds:*

$$\min_{A \in \mathcal{A}} \mathbb{E}_{x \sim \mathcal{D}}[E_T(A, x)] \leq \max_{x \in \mathcal{X}} \mathbb{E}[E_T(R, x)].$$

Proof. For simplicity, this proof considers the objective function to be a submodular function $f : 2^{[n]} \rightarrow [-1, 1]$. Since submodular functions remain submodular under scaling by a constant or adding/subtracting a constant, this proof is applicable to the problem setting as well.

First, we consider the case where the algorithm satisfies Restriction 1. By Proposition 4, to establish a lower bound, we construct a objective function in which any deterministic algorithm (satisfies Restriction 1) incurs an error of $\Omega\left(\frac{n^{\frac{3}{2}}}{a\sqrt{T}}\right)$.

Fix a subset $S^* \in 2^{[n]}$ and a positive real value $\epsilon \in [0, 1]$. Define a submodular function $f : 2^{[n]} \rightarrow [-1, 1]$ as $f(X) = \frac{\epsilon}{2n}(|X \setminus S^*| - |X \cap S^*|)$. When a new element i is added to a subset, the increment in the function value only depends on whether i is included in S^* . Hence, as equation 1 holds, f defined as above is a submodular function. It is obvious that f achieves its minimum value of $-\frac{\epsilon}{2n}|S^*|$ at S^* . Thus, the error of the output \hat{S}_T is given by the following expression:

$$\begin{aligned}f(\hat{S}_T) - f(S^*) &= \frac{\epsilon}{2n}(|\hat{S}_T \setminus S^*| - |\hat{S}_T \cap S^*|) - \left(-\frac{\epsilon}{2n}|S^*|\right) \\ &= \frac{\epsilon}{2n}|\hat{S}_T \Delta S^*|.\end{aligned}$$

According to the restriction, the query at iteration t is given by $(S_t + i, S_t)$ ($i \notin S_t$). Based on the definition of f , the result o_t of the dueling oracle follows the probability distribution:

$$o_t \sim \begin{cases} \text{Ber}^\pm(-a \frac{\epsilon}{2n}) & \text{if } i \in S^* \\ \text{Ber}^\pm(a \frac{\epsilon}{2n}) & \text{if } i \notin S^*. \end{cases}$$

Since the output o_t does not depend on S_t but only depends on i_t , let i_t represents the query in iteration t .

Since we consider deterministic algorithms, the query in iteration t is determined by $(i_s, o_s)_{s=1}^{t-1}$, and the output \hat{S}_T is determined by $(i_t, o_t)_{t=1}^T$. Therefore, if S^* is fixed, the output \hat{S}_T can be considered as being sampled from a probability distribution that depends on S^* .

To simplify the proof, we define $\hat{x} = \chi_{\hat{S}_T}$ and $x^* = \chi_{S^*}$. Then, the error can be expressed using \hat{x} and x^* as $\frac{\epsilon}{2n} |\hat{S}_T \Delta S^*| = \frac{\epsilon}{2n} \sum_{i=1}^n |\hat{x}_i - x_i^*|$. Given that \hat{x} follows a probability distribution D_{x^*} determined by x^* , we consider the error as a function of x^* . Specifically, we define:

$$E_T(x^*) = \mathbb{E}_{\hat{x} \sim D_{x^*}} \left[\frac{\epsilon}{2n} \sum_{i=1}^n |\hat{x}_i - x_i^*| \right].$$

First, we bound the KL divergence between the probability distributions followed by \hat{S}_T when S^* and $S^* \Delta \{i\}$ are respectively given. By the definition of \hat{x} and x^* , we consider the KL divergence between the distribution D_{x^*} , which \hat{x} follows when x^* is given, and the distribution $D_{x^* \Delta \{i\}}$, which \hat{x} follows when $x^* \Delta \{i\}$ is given. By the *chain rule* for KL divergence [Cover & Thomas (2005, Theorem 2.5.3)], we have:

$$\begin{aligned} D_{\text{KL}}(D_{x^*} \| D_{x^* \Delta \{i\}}) &= D_{\text{KL}}(\hat{x}|_{x^*} \| \hat{x}|_{x^* \Delta \{i\}}) \\ &\leq D_{\text{KL}}((i_t, o_t)_{t=1}^T |_{x^*} \| (i_t, o_t)_{t=1}^T |_{x^* \Delta \{i\}}) \\ &= D_{\text{KL}}((i_t, o_t)_{t=1}^{T-1} |_{x^*} \| (i_t, o_t)_{t=1}^{T-1} |_{x^* \Delta \{i\}}) \\ &\quad + \mathbb{E}_{(i_t, o_t)_{t=1}^{T-1} |_{x^*}} [D_{\text{KL}}((i_T, o_T) |_{x^*} \| (i_T, o_T) |_{x^* \Delta \{i\}})] \quad (\text{By the chain rule}) \\ &= D_{\text{KL}}((i_t, o_t)_{t=1}^{T-1} |_{x^*} \| (i_t, o_t)_{t=1}^{T-1} |_{x^* \Delta \{i\}}) \\ &\quad + \mathbb{E}_{(i_t, o_t)_{t=1}^{T-1} |_{x^*}} [\mathbb{1}\{i_T = i\} D_{\text{KL}}(\text{Ber}^\pm(a \frac{\epsilon}{2n}) \| \text{Ber}^\pm(-a \frac{\epsilon}{2n}))] \\ &= D_{\text{KL}}((i_t, o_t)_{t=1}^{T-1} |_{x^*} \| (i_t, o_t)_{t=1}^{T-1} |_{x^* \Delta \{i\}}) \\ &\quad + \Pr_{x^*}(i_T = i) (a \frac{\epsilon}{2n} \log(\frac{1 + a \frac{\epsilon}{2n}}{1 - a \frac{\epsilon}{2n}})) \quad (\text{By the definition of KL divergence}) \\ &\leq \sum_{t=1}^T \Pr_{x^*}(i_t = i) (a \frac{\epsilon}{2n} \log(\frac{1 + a \frac{\epsilon}{2n}}{1 - a \frac{\epsilon}{2n}})). \end{aligned}$$

The last inequality holds by applying the chain rule repeatedly. Since $\sum_{i=1}^n \sum_{t=1}^T \Pr_{x^*}(i_t = i) = T$, we have the following inequality:

$$\begin{aligned} \sum_{i=1}^n D_{\text{KL}}(D_{x^*} \| D_{x^* \Delta \{i\}}) &\leq T a \frac{\epsilon}{2n} \log(\frac{1 + a \frac{\epsilon}{2n}}{1 - a \frac{\epsilon}{2n}}) \\ &\leq \frac{\log 3}{2} \cdot \frac{a^2 T}{n^2} \epsilon^2. \end{aligned} \tag{6}$$

The last inequality holds, since $\frac{x}{2} \log(\frac{1 + \frac{x}{2}}{1 - \frac{x}{2}}) \leq \frac{\log 3}{2} x^2$ for $0 < x \leq 1$, and $0 < a \frac{\epsilon}{n} \leq 1$.

1296 Next, we define $y_i(x^*) = \mathbb{E}_{\hat{x} \sim D_{x^*}} [\hat{x}_i]$ and $e_i(x^*) = |y_i(x^*) - x_i^*|$. since x_i^* only takes values in
 1297 $\{0, 1\}$, the error $E_T(x^*)$ can be expressed as:
 1298

1299

$$\begin{aligned}
 1300 \quad E_T(x^*) &= \frac{\epsilon}{2n} \sum_{i=1}^n \mathbb{E}_{\hat{x} \sim D_{x^*}} |\hat{x}_i - x_i^*| \\
 1301 &= \frac{\epsilon}{2n} \sum_{i=1}^n |\mathbb{E}_{\hat{x} \sim D_{x^*}} [\hat{x}_i] - x_i^*| \\
 1302 &= \frac{\epsilon}{2n} \sum_{i=1}^n |y_i(x^*) - x_i^*| \\
 1303 &= \frac{\epsilon}{2n} \sum_{i=1}^n e_i(x^*). \\
 1304 \\
 1305 \\
 1306 \\
 1307 \\
 1308 \\
 1309 \\
 1310
 \end{aligned}$$

1311

1312 By Pinsker's inequality, the following inequality holds:
 1313

1314

$$1315 \quad \|y(x^*) - y(x^* \triangle \{i\})\|_\infty \leq \sqrt{\frac{1}{2} D_{\text{KL}}(D_{x^*} \| D_{x^* \triangle \{i\}})}. \\
 1316$$

1317

1318

1319

1320

Then, we have:

1321

$$\begin{aligned}
 1322 \quad \sum_{i=1}^n \|y(x^*) - y(x^* \triangle \{i\})\|_\infty &\leq \sum_{i=1}^n \sqrt{\frac{1}{2} D_{\text{KL}}(D_{x^*} \| D_{x^* \triangle \{i\}})} \\
 1323 &\leq \sqrt{n \sum_{i=1}^n \frac{1}{2} D_{\text{KL}}(D_{x^*} \| D_{x^* \triangle \{i\}})} \\
 1324 &\leq \sqrt{\frac{\log 3}{4} \cdot \frac{a^2 T}{n} \epsilon^2}. \\
 1325 \\
 1326 \\
 1327 \\
 1328 \\
 1329 \\
 1330
 \end{aligned} \tag{7}$$

1331

1332

Therefore,

1333

$$\begin{aligned}
 1334 \quad e_i(x^*) + e_i(x^* \triangle \{i\}) &= |y_i(x^*) - x_i^*| + |y_i(x^* \triangle \{i\}) - (1 - x_i^*)| \\
 1335 &\geq |y_i(x^*) - x_i^* - y_i(x^* \triangle \{i\}) + (1 - x_i^*)| \\
 1336 &\geq |1 - 2x_i^*| - |y_i(x^*) - y_i(x^* \triangle \{i\})| \\
 1337 &= 1 - |y_i(x^*) - y_i(x^* \triangle \{i\})|. \\
 1338 \\
 1339
 \end{aligned}$$

1340

1341

Then, we obtain the following inequality by setting $\epsilon = \frac{1}{\sqrt{\log 3}} \cdot \frac{n^{\frac{3}{2}}}{a\sqrt{T}}$:

1342

1343

$$\begin{aligned}
 1344 \quad \sum_{i=1}^n (e_i(x^*) + e_i(x^* \triangle \{i\})) &\geq \sum_{i=1}^n (1 - |y_i(x^*) - y_i(x^* \triangle \{i\})|) \\
 1345 &\geq n - \sqrt{\frac{\log 3}{4} \cdot \frac{a^2 T}{n} \epsilon^2} \quad (\text{By equation 7}) \\
 1346 &= \frac{n}{2}. \\
 1347 \\
 1348 \\
 1349
 \end{aligned} \tag{8}$$

Finally, if S^* is chosen uniformly at random from $2^{[n]}$, x^* also follows a uniform distribution (we denote $x^* \sim \text{Unif}$). Then, we obtain the lower bound in Theorem 5:

$$\begin{aligned}
 \mathbb{E}[E_T] &= \mathbb{E}_{x^* \sim \text{Unif}}[E_T(x^*)] \\
 &= \frac{\epsilon}{2n} \mathbb{E}_{x^* \sim \text{Unif}}\left[\sum_{i=1}^n e_i(x^*)\right] \\
 &= \frac{\epsilon}{4n} \mathbb{E}_{x^* \sim \text{Unif}}\left[\sum_{i=1}^n (e_i(x^*) + e_i(x^* \Delta \{i\}))\right] \\
 &\geq \frac{\epsilon}{4n} \mathbb{E}_{x^* \sim \text{Unif}}\left[\frac{n}{2}\right] \quad (\text{By equation 8}) \\
 &= \frac{1}{8\sqrt{\log 3}} \frac{n^{\frac{3}{2}}}{a\sqrt{T}}.
 \end{aligned}$$

The second equality follows from the fact that if x^* follows the uniform distribution, then $x^* \Delta \{i\}$ also follows the uniform distribution for any $i \in [n]$.

For algorithms without any restrictions, the following inequality holds instead of equation 6:

$$\sum_{i=1}^n D_{\text{KL}}(D_{x^*} \| D_{x^* \Delta \{i\}}) \leq \frac{\log 3}{2} \cdot \frac{a^2 T}{n} \epsilon^2.$$

Then, by setting $\epsilon = \frac{1}{\sqrt{\log 3}} \cdot \frac{n}{a\sqrt{T}}$, we have the same inequality as equation 8. Finally, we obtain the lower bound:

$$\mathbb{E}[E_T] \geq \frac{1}{8\sqrt{\log 3}} \frac{n}{a\sqrt{T}}.$$

□

Next, we establish the lower bound for the sigmoid transfer function. The overall proof follows the same structure as in the linear case, with the differences stated as the following lemma.

Lemma 1. *Let $\rho(x) = \frac{2}{1+e^{-bx}} - 1$, and let the other definitions follow those used in the proof of Theorem 5. For any algorithm that satisfies Restriction 1, the KL divergence between two distributions D_{x^*} and $D_{x^* \Delta \{i\}}$ satisfies the following inequality:*

$$D_{\text{KL}}(D_{x^*} \| D_{x^* \Delta \{i\}}) \leq \frac{b^2 T}{4n^2} \epsilon^2.$$

For any algorithm without any restrictions, the following inequality holds:

$$D_{\text{KL}}(D_{x^*} \| D_{x^* \Delta \{i\}}) \leq \frac{b^2 T}{4n} \epsilon^2.$$

Proof. By the chain rule for KL divergence, we have:

$$\begin{aligned}
 D_{\text{KL}}(D_{x^*} \| D_{x^* \Delta \{i\}}) &\leq D_{\text{KL}}((i_t, o_t)_{t=1}^{T-1} |_{x^*} \| (i_t, o_t)_{t=1}^{T-1} |_{x^* \Delta \{i\}}) \\
 &\quad + \mathbb{E}_{(i_t, o_t)_{t=1}^{T-1} |_{x^*}} [\mathbb{1}\{i_T = i\} D_{\text{KL}}(\text{Ber}^\pm(\rho(\frac{\epsilon}{2n})) \| \text{Ber}^\pm(\rho(-\frac{\epsilon}{2n})))] \\
 &= D_{\text{KL}}((i_t, o_t)_{t=1}^{T-1} |_{x^*} \| (i_t, o_t)_{t=1}^{T-1} |_{x^* \Delta \{i\}}) + \Pr_{x^*}(i_T = i) \left(\frac{b\epsilon}{2n} \rho(\frac{\epsilon}{2n}) \right) \\
 &\quad (\text{By the definition of KL divergence and } \rho(x)) \\
 &\leq \sum_{t=1}^T \Pr_{x^*}(i_t = i) \left(\frac{b\epsilon}{2n} \rho(\frac{\epsilon}{2n}) \right).
 \end{aligned}$$

When the algorithm satisfies Restriction 1, it holds $\sum_{i=1}^n \sum_{t=1}^T \Pr_{x^*}(i_t = i) = T$. Therefore, we have the following inequality:

$$\begin{aligned}
 \sum_{i=1}^n D_{\text{KL}}(D_{x^*} \| D_{x^* \Delta \{i\}}) &\leq T \frac{b\epsilon}{2n} \rho(\frac{\epsilon}{2n}) \\
 &\leq \frac{b^2 T}{4n^2} \epsilon^2 \quad (\because \rho(x) \leq bx \text{ for all } x > 0).
 \end{aligned}$$

1404 Moreover, for algorithms without any restrictions, it follows $\sum_{i=1}^n \sum_{t=1}^T \Pr_{x^*}(i_t = i) = nT$.
 1405 Therefore, we obtain:

1406

$$1407 D_{\text{KL}}(D_{x^*} \| D_{x^* \Delta \{i\}}) \leq \frac{b^2 T}{4n} \epsilon^2.$$

1408

□

1409

1410

B NUMERICAL EXPERIMENT

1411

1412

1413

1414

B.1 DEPENDENCE OF THE OPTIMIZATION ERROR ON THE PROBLEM PARAMETERS

1415

1416 In this section, we investigate, through numerical experiments, how the error achieved by the
 1417 algorithm varies with the problem parameters (T and n), and we verify that the empirical behavior
 1418 is consistent with the theoretical analysis. We implemented the algorithm with linear and sigmoid
 1419 transfer functions and investigated the dependence of the error on the number of oracle calls T and
 1420 the dependence of the error on the size of the ground set n . Fig.3, 4, 5, 6 display the empirical results
 1421 together with the upper and lower bounds derived in this paper. As objective functions, we used
 1422 nontrivial submodular functions derived from cut functions, so that neither the empty set nor the full
 1423 set is necessarily a minimizer.

1424 The experimental settings are as follows. The linear transfer parameter a and the sigmoid transfer
 1425 parameter b were both set to 1. Algorithmic parameters are as specified in 1 and 2. For the experiments
 1426 on the dependence of the error on the number of oracle calls T , we fixed the size of the ground set
 1427 at $n = 5$ and ran the algorithms with $T \in \{500, 1000, 1500, 2000, 2500\}$. For the experiments on
 1428 the dependence of the error on the size of the ground set n , we fixed the number of oracle calls at
 1429 $T = 2000$ and varied $n \in \{4, 6, 8, 10, 12, 14\}$.

1430 The experimental settings are as follows. The linear transfer parameter a and the sigmoid transfer
 1431 parameter b were both set to 1. Algorithmic parameters are as specified in 1 and 2. For the experiments
 1432 on the dependence of the error on the number of oracle calls T , we fixed the size of the ground set
 1433 at $n = 5$ and ran the algorithms with $T \in \{500, 1000, 1500, 2000, 2500\}$. For the experiments on
 1434 the dependence of the error on the size of the ground set n , we fixed the number of oracle calls at
 1435 $T = 2000$ and varied $n \in \{4, 6, 8, 10, 12, 14\}$.

1436 For each objective function, we ran the algorithm 100 times and recorded the average error between
 1437 the algorithm's output and the optimal solution. This procedure was repeated for 100 randomly
 1438 generated objective functions; the plots report the mean error across these functions together with the
 1439 corresponding standard deviations.

1457 Figure 3: Dependence of the error on the number of oracle calls T under the linear transfer function.

Figure 6: Dependence of the error on the size of the ground set n under the sigmoid transfer function.

B.2 EXPERIMENTS UNDER MISSPECIFIED TRANSFER FUNCTIONS

In this section, we evaluate the performance of the proposed algorithm through numerical experiments in a misspecified transfer-function setting, i.e., when the transfer function assumed in the algorithm design does not match the actual transfer function that governs the behavior of the dueling oracle. Such misspecification commonly arises in practical applications, where there often exists a gap between the real-world problem and the mathematical model used for algorithm design; therefore, robustness to this type of misspecification is practically important. We also note that Section B.1 focused on the correctly specified setting, where the dueling oracle indeed follows the assumed linear or sigmoid transfer function.

In the experiments, we used the following two transfer functions: the clipped linear function ρ_{clip} and the cubic function ρ_{cubic} defined as

$$\begin{aligned}\rho_{\text{clip}}(x) &= \min\{0.1, \max\{-0.1, x\}\}, \\ \rho_{\text{cubic}}(x) &= 2x - x^3.\end{aligned}$$

Using the dueling oracle induced by each transfer function, we evaluate whether the algorithm designed for the linear transfer function (Algorithm 1) still achieves vanishing error. We set $n = 5$ and plot in Figure 7 how the error behaves as T increases over $\{100, 200, 400, 800, 1600, 3200\}$. All other experimental settings are identical to those in Section B.1.

From Figure 7 we observe that the error approaches zero as T increases for both transfer functions. Moreover, the convergence rate appears comparable to that in Section B.1, where the correct transfer function was used. This suggests that the proposed algorithm is reasonably robust to misspecification of the transfer function. In other words, the algorithm is expected to perform well even in more realistic scenarios where the comparison outcomes do not strictly satisfy the assumed model.

Although we are currently unable to provide a mathematically rigorous explanation for why the algorithm continues to perform well under such misspecified settings, the phenomenon can be intuitively

Figure 7: Performance of Algorithm 1 under misspecified transfer functions.

1582 understood through the interpretation discussed in the last paragraph of Section 3. Specifically, the
 1583 transfer functions used in this section are not strictly linear, but they can be well approximated by a
 1584 linear function in a neighborhood around zero. Therefore, when the difference in the function values
 1585 used by the dueling oracle is sufficiently small (e.g., in regions close to the optimal solution), the
 1586 behavior of the oracle becomes nearly indistinguishable from that of a linear transfer function. This
 1587 explains why Algorithm 1, which assumes a linear transfer function, still performs reasonably well.
 1588 Developing a theoretical framework to analyze and characterize this phenomenon is an interesting
 1589 direction for future work.

1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619