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ABSTRACT

We consider submodular function minimization using a dueling oracle, a noisy
pairwise comparison oracle that provides relative feedback on function values
between two queried sets. The oracle’s responses are governed by a transfer
function, which characterizes the relationship between differences in function
values and the parameters of the response distribution. For a linear transfer function,
we propose an algorithm that achieves an error rate of O(n% / \/T), where n is the
size of the ground set and 71" denotes the number of oracle calls. We establish a lower
bound: Under the constraint that differences between queried sets are bounded
by a constant, any algorithm incurs an error of at least Q(n3 /NVT). Without
such a constraint, the lower bound becomes Q(n,/v/T). These results show that
our algorithm is optimal up to constant factors for constrained algorithms. For a
. . . . 7 2
sigmoid transfer function, we design an algorithm with an error rate of O(ns /T'5),
and establish lower bounds analogous to the linear case.

1 INTRODUCTION

Let f be a set function defined on subsets of a finite set [n] = {1,--- ,n}. A function f is called
submodular if it satisfies f(X) + f(V) > f(XUY) + f(X NY) forall X, Y C [n].

Submodular functions are closely related to convex functions (Lovasz, |1982; [Fujishige, |1991; Bach,
2011) and play a significant role in numerous problems. Thus, submodular function minimization
(SFM) arises in a wide range of research fields, including machine learning (Bilmes| 2022), opera-
tions research (Hochbaum & Hongl (1995} |Queyranne & Schulz, [1995)), combinatorial optimization
(Lovasz, |1982} [Edmonds|, 2001} |Schrijver, [2003), game theory (Shapleyl, 1971} |Topkis| [1998)), and
economics (Stigler & Samuelson, 1948} Topkais, {1998 |Vives,|1999). In machine learning and artificial
intelligence, SFM has found use in tasks such as graphical models (Kolmogorov & Zabih, 2002}
Krause & Guestrin, [2005), PAC-learning (Narasimhan & Bilmes|, |2004), clustering (Narasimhan
et al.,[2005} Narasimhan & Bilmes) 2007), and image segmentation (Kohli & Torr, [2010; Jegelka &
Bilmes, 2011)).

In optimization problems, many studies assume access to first- or zero-order oracles that provide
gradients or exact function values at queried points. However, in real-world scenarios, it is often
impractical or unreliable to obtain precise gradients or function values. Instead, feedback based on
relative evaluations, which determines which of two options is preferable, tends to be more feasible,
efficient, and robust.

For example, in machine learning, data collection through relative evaluations not only improves
reliability but also facilitates the acquisition of larger datasets. Pairwise comparison queries are
widely used in applications such as feedback collection for large language models (LLMs) (Liusie
et al., 2023; [Wu et al.l 2023} [Jiang et al.| [2023} [Liu et al., 2024) and reinforcement learning with
human feedback (RLHF) (Sadigh et al., 2017} |Pacchiano et al., 2021} |Azar et al., [2024; Zhu et al.,
2023)).

Research on optimization problems using a dueling oracle has been limited to multi-armed bandit
problems (Yue et al., [2012; |Dudik et al., 20155 Sui et al., 2018; Saha et al.,[2021b; |Saha & Gaillard,
2022) and convex optimization (Saha et al., 2021a; 2025; Blum et al., [2024). In the context of
Submodular Function Minimization (SFM), the setting in which only a dueling oracle is used without
access to a value oracle has not been addressed so far, making this study the first to explore it.
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Table 1: Upper and lower bound for submodular function minimization with a dueling oracle.

Transfer Function || Linear | Sigmoid | General
Upper Bound 0] (\/T) O (Tg) 0] (T%)
Lower Bound Q<n§> Q(ng) Q(ng)

(with Restrlctlon VT VT VT

' Lower BO_‘mfi 0 (L) 0 (L) 0 (L>

(without Restriction VT VT VT

Existing studies on SFM assume access to an oracle that provides the exact or noisy function value
for a queried set. The first polynomial-time algorithm for this problem was introduced by Grotschel
et al.|(1981)), employing the ellipsoid method. Combinatorial strongly polynomial algorithms were
developed by [Iwata et al.| (2000) and |Schrijver| (2003)). In parallel,|Hazan & Kale|(2009) explored
online optimization for submodular functions, focusing on iterative decision making and evaluating
performance through regret, defined as cumulative error during iterations. In addition, Ito| (2019)
investigated SFM in the context of noisy function value oracles.

In this paper, we consider SFM with a dueling oracle. A dueling oracle, or a noisy pairwise
comparison oracle, provides probabilistic binary feedback indicating which of two queried sets has
a higher function value, without disclosing the actual function values. The algorithm can query a
pair of sets, and the dueling oracle only returns a probabilistic response in +1 or —1, indicating
which set has the higher function value. The probability of receiving the correct response increases as
the difference in function values grows, while smaller differences result in outcomes that are nearly
evenly distributed. This reflects the concept of a duel, where larger differences favor the stronger
contender, while smaller differences introduce more uncertainty in response. This problem setting is
motivated by applications such as recommendation, as illustrated in Examples [2]and 2]in Section 3]
The relationship between differences in function values and parameters of the response distribution is
characterized by a function p : [—1,1] — [—1, 1], called a transfer function.

Our contribution is twofold. First, we propose efficient algorithms for SFM using a dueling oracle
with linear, sigmoid, and general nonlinear transfer functions. The reason for focusing on these two
concrete examples is explained in Section[3] Second, we establish lower bounds for each setting. As
shown in Table[T] for the case of a linear transfer function, we develop an algorithm that achieves
an error bound of O(n? /+/T) for any submodular function. For sigmoid transfer functions, we
. . 7 2 . .
propose an algorithm with an upper bound of O(ns /T'5 ), and for general nonlinear transfer functions,

we provide an algorithm with an upper bound of O(n% / T3 ). Regarding lower bounds, we show
that any algorithm satisfying the constraint that the element-wise difference between the two sets
queried by the dueling oracle is of constant order must incur an error of at least Q(n% / V/T) in a hard
instance. Furthermore, we prove that any algorithm, without restrictions, must suffer an error of at
least 2(n/+/T). This result implies that, for the linear transfer function, our proposed algorithm is
optimal among those satisfying the given constraint, and even with unrestricted algorithms, the error
cannot be improved by more than a factor of O(1/+/n). We here note that, while the formulas in
Table [T)represent the error achievable with a given number of queries 7', these can also be interpreted
as an evaluation of the number of queries required to achieve an error below a given threshold € > 0.
For example, the upper bound of O(n% / VT ) in the table indicates that an error no greater than e can
be attained with 7' < n? /e queries.

Our algorithm leverages the Lovasz extention (Lovasz,|1982), which extends a submodular function to
a continuous convex function, and employs the stochastic gradient descent (SGD) method for convex
minimization. A key property of the Lovasz extention is that the minimum of the original submodular
function coincides with the minimum of the extended convex function. Thus, solving the convex
minimization problem via SGD yields a solution to SFM. The update direction in SGD is determined
by an estimator of a subgradient of the convex function. To minimize the error introduced by SGD,
reducing the bias and variance of this estimator is crucial. In particular, an unbiased estimator, whose
expectation matches the true subgradient, leads to accurate solutions. The approach using the Lovasz
extention and SGD has already been explored by |Hazan & Kale| (2009); [Ito] (2019; [2022). However,
unlike these studies, direct access to function values is unavailable in our setting. While these works
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construct unbiased estimators of subgradients using the responses from a function value oracle, we
estimate subgradients using responses from a dueling oracle.

For the linear transfer function, unbiased estimators of subgradients can be constructed by using
responses from a dueling oracle. The general flow of the algorithm is similar to those proposed by
Hazan & Kale|(2009); [Ito (2019)), the difference being in the construction of the unbiased estimator.

In contrast, for the sigmoid transfer function, the construction of unbiased subgradient estimators
becomes infeasible, which poses a significant challenge. Using biased estimators in SGD can cause
error accumulation across iterations, resulting in considerable inaccuracies. In related work, [Saha
et al.| (2025)) addressed a similar issue in convex optimization with a dueling oracle. They considered
a gradient descent-based algorithm under similar conditions, where unbiased subgradient estimators
were unavailable. Their approach relies on the assumptions of 3-smoothness and a-strong convexity
of the objective function to control errors. Unfortunately, the convex function derived from the
Lovasz extention of a general submodular function does not satisfy these properties, making [Saha
et al.|(2025)’s error control techniques inapplicable.

To overcome this difficulty, we incorporate Firth’s method (Firthl|1993)) to reduce the bias in maximum
likelihood estimators (MLE). Firth’s method significantly reduces bias in estimation problems related
to the natural parameters of the exponential family of distributions. In this study, when the transfer
function of the dueling oracle is sigmoid, the resulting model corresponds to a logistic regression,
making it possible to apply Firth’s method. By incorporating Firth’s method into SGD, we mitigate
the impact of accumulated bias, reducing the total error, and enabling an effective optimization
algorithm. To our knowledge, no existing SFM algorithm based on SGD avoids the use of unbiased
subgradient estimators derived from the Lovasz extention. This is the significance of this work.

The proof of the lower bound is based on the techniques of Ito| (2019) and |Auer et al.|(2002). [Ito
(2019) establishes lower bounds for SFM, while |Auer et al.| (2002) addresses a lower bound for a
bandit problem. Both studies construct hard instances by carefully designing distributions for the
objective function or the optimal arm. In this study, since the dueling oracle responses follow a
probability distribution, we focus on constructing a specific objective function as a hard instance.

Leveraging Yao’s principle, we bound the error of randomized algorithms by the error of deterministic
algorithms under a carefully chosen distribution. For deterministic algorithms, the KL divergence
of the algorithm’s output is bounded by the KL divergence across all input sequences. Using these
results, we demonstrate that for two objective functions, the KL divergence of their respective input
sequences, and consequently, the KL divergence of their output, remains small. Finally, we show that
for two objective functions with different optimal solutions, any algorithm can only exhibit limited
changes in its output and thus incurs a non-negligible error.

1.1 RELATED WORK

Online Submodular Minimization in the Bandit Setting

The online submodular minimization introduced by Hazan & Kale (2009)) is closely related to
our algorithm. In this setting, an online decision maker iteratively selects a subset S; C [n] over
t =1,---,T. After each selection, the decision maker incurs a loss of f;(S;), where each f; is
a submodular function. The performance of the algorithm is evaluated by the regretr defined as

Regrety = 3, f:(S¢) — mingcp S, fi(S).

In the bandit setting, only the loss f;(S;) for the chosen subset S; is observed, and no other in-
formation is available. The algorithm proposed by |Hazan & Kale| (2009) is based on the Online
Gradient Descent algorithm of |Zinkevich| (2003), using unbiased subgradient estimators derived from
the Lovész extention extension of the submodular functions. The key idea of this algorithm is to
dynamically adjust the probabilities of choosing a subset and use just one sample for both exploration

and exploitation. The regret achieved by this algorithm is O (nT§ ), which translates to an error of
0] <n / T%) when applied directly to SFM.

Submodular Function Minimization with Noisy Oracles
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Our work is also influenced by the study of SFM using a noisy zero-order oracle by [Ito] (2019);
Lattimore| (2024). In their work, at each step ¢t = 1,--- ,T, a subset .S; is chosen, and a noisy

observation f;(S;) of the submodular objective function f is obtained, where f satisfies E[f;(S)] =
f(S)forall S C [n]andt =1,---,T.

The algorithm in their research is also based on SGD, with the final solution obtained as the average
of the iterations over 7" steps. Their approach achieves an error of O (n% / \/T), which improves to

O (n / \/T) under the assumption that each noisy observation ft is also submodular.

Furthermore, their approach also influences the proof of the lower bound for SFM in our study. They
constructed a distribution of objective functions that serves as a hard instance, showing that even
when a distribution is perturbed, the observed values change slightly, making it challenging for any
algorithm to distinguish between distributions. This was demonstrated using KL divergences of
distributions.

Convex Optimization with Dueling Oracle

Convex optimization using dueling oracles has been explored in|Saha et al.|(2021a)) and |Saha et al.
(2025)), which consider transfer functions p with specific properties. In|Saha et al.| (2021a), p is
assumed to be a sign function, while[Saha et al.|(2025) considers a function that satisfies p’(z) >
coplz|P~t forall z € (—r,r), wherep > 1, r > 0, and ¢, > 0. Both studies propose Gradient
Descent-based algorithms; however, unbiased estimators of subgradients cannot be constructed from
the information of dueling oracles.

To address this difficulty, Saha et al.|(2021a) determined the descent direction using the normalized
subgradient V f (z)/||V f (x)]|, and demonstrates that the algorithm produces an approximate solution.
Meanwhile, Saha et al.| (2025) introduces a scaled gradient approach using V f(x)||V f(x)|?~! and
shows that an approximate solution exists within the sequence of points generated by the algorithm.
Both approaches rely on the assumptions of 5-smoothness and a-strongly convexity of the objective
function, which enable the analysis of convergence and approximation guarantees.

2 PRELIMINARIES

2.1 SUBMODULAR FUNCTIONS

Let n be a positive integer and let [n] = {1,2,...,n}. Denote by 2/"! the power set of [n], i.e. the set
of all subsets of [1]. We consider a set function f : 2[") — [0, 1] defined in the decision space 20"

A function f : 21"} — [0, 1] is submodular if and only if for all sets X, Y" € 2[" such that X C Y and
for all elements ¢ € [n] \ Y, we have:

fFXU{i}) - f(X) > f(YU{i}) - f(Y). (1
2.2 LOVASZ EXTENTION

The Lovasz extention is a fundamental technique in designing algorithms for submodular function
minimization. Although a submodular function f is originally defined in the decision space 2", it

can be regarded as the vertices of the hypercube K = [0, 1]™. The Lovdsz extention f provides a
continuous extension of a submodular function f to the whole interior of K.

The Lovész extention is constructed by dividing the hypercube K into n! regions and defining f asa
piecewise linear function that interpolates between the values of the function at the vertices of /C.

Definition 1. Given a function f : 2"} — [0, 1], the Lov4sz extention f : K — [0,1] is defined
as follows; for w € I, order the components in decreasing order Wr(1) = " 2 Wr(n)s where
7 : [n] — [n] is a permutation. Let wy(oy = 1, B; = {n(1),...,n(i)} fori € [n] and By = @. The
value of the Lovész extention f(w) is defined as:

n—1

flw) = wa(z‘) [f(B:) = f(Bic1)] + f(2) = Z F(Bi)(Wr(iy — wagirr)) + f([n]). (@)

=0
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An alternative equivalent expression for the Lovasz extention is also utilized to construct our algo-
rithms.

Proposition 1. Let f be a Lovdsz extention of a function f : 2" — [0,1]. For any w € K, the
following equations hold:

flw) = /0 i wi = 2})dz = E.vumis(oap [f ({7 | wi > 2})]- ©)

The following theorem provides a connection between submodular function minimization and convex
function minimization.

Theorem 1. (Fujishige|(1991)) A function f : 20" — [0, 1] is submodular if and only if its Lovdsz
extention f : K — [0,1] is convex. For a submodular function f : 2" — [0,1] and its Lovdsz
extention f : K — [0, 1], we have min y com f(X) = ming,ecgo,13n f(w) = minye[o 1] f(w)

When analyzing the minimization of the convex function f , it is notable that f is piecewise linear.
Therefore, its subgradient is constant within each region of linearity, as formally stated in the
following proposition.

Proposition 2. Let f be a submodular function. For w € I, let m be a permutation that orders the
components of w in decreasing order, and let T be the inverse permutation of w. Then, a subgradient
g of f atw is given as follows:

Ir(iy = f(Bi) — f(Bi—1) or equivalently, g; = f(Br@y) — f(Brgy-1)-
2.3 STOCHASTIC GRADIENT DESCENT

By Theorem |1} submodular minimization can be reformulated as convex minimization. Therefore,
our algorithm is based on the stochastic gradient descent (SGD) method for convex minimization.

The algorithm initializes w(!) = % -1 € K. For each iteration t = 1,2,...,T, the point w(*) is
updated to w(*+1) using information about the objective function f obtained through oracle queries.
At each update, an estimator §; of a subgradient of f at w® is constructed, and the update rule
is given by: w(t1) = I (w® — ng,), where > 0 is a learning rate parameter that can be
arbitrarily chosen. Here, IIx : R™ — K represents the Euclidean projection onto K, defined as:
I (w) = arg min, ¢ ||v — wl|2. Since K = [0, 1]™, the projection is computationally efficient. For
any v € R™, the projection w = IIx (v) can be implemented by clipping each component of v to the
interval [0, 1]: w; = min{1, max{0,v; }}.

For the sequence of points {w()}”_, generated by this procedure, the average point w =
% ZtT:I w® satisfies the following error bound, as stated in/Hazan & Kale| (2009, Lemma 11).

Theorem 2. Let f : K — [0,1] be a convex function in the hypercube K = [0,1]". Let
w® w® L w T be defined by w) = 1.1 and wY = M (w® —ng,). When g1, Go, - .., g1
are unbiased estimators of subgradients, i.e., E[g, | w] = g;, where g, is a subgradient of f at

w®, then w := % Y°/_, w® satisfies E[f ()] — miny-ex f(w*) < % (% +IyT IE[HgtH%]).

3 PROBLEM STATEMENT

We address the problem of minimizing a submodular function f : 207 — [0,1]. In this setting,
the exact values of f are not directly accessible; instead, we rely on a dueling oracle, in other
words, a noisy comparison oracle of two points. The dueling oracle provides a random binary
response 0 € {#1} for a pair of subsets (S, S’) € 2"l x 2"l The probability of the response is
given as: Pr(o = +1) = 5 + 2p(f(S) — f(5)), Pr(o = =1) = 1 — 3p(f(S) — f(5")), where
p:[—1,1] — [—1,1] is a fixed transfer function that maps the difference in function values to the
distribution parameter.

Our goal is to design algorithms that minimize additive error Ez := f(S) — mingeou f(5), where
S is the algorithm output. The algorithm is given the decision set 21"/, the number of available oracle
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calls 7', and the transfer function p. At each iteration ¢t = 1,2, ..., T, the algorithm chooses a pair of
subsets (S, S7) and observes a response o; € {41} from the dueling oracle. After T iterations, the

algorithm outputs a subset S € 21",

This problem is motivated by the following applications:

Example 1 (recommendation system). Let us consider recommendation systems, in which we want
to find a collection of items S C [n] that maximizes a user’s satisfaction f(.5), based on feedback
obtained after presenting .S to various users. In practice, users rarely provide reliable cardinal scores
but can often express pairwise preferences between presented collections; such comparative feedback
is naturally modeled by a dueling oracle. Under certain conditions the resulting optimization can be
cast as submodular minimization. Let = € {0, 1}" be the indicator of S and suppose user utility f(.5)
has the quadratic form as f(S) = 7" | a;z; + Zlgigjgn bijxiz,. If b;; > 0 for all 7, j, which
models complementary interactions like camera and lens, then f is supermodular (Nemhauser et al.,
1978}, Boros & Hammer, 2002)). Hence, maximizing f is equivalent to minimizing — f, which is
submodular, and thus the problem is covered by our dueling-oracle SFM framework. Note that the
quadratic form above is only illustrative; our approach applies to general supermodular maximization
problems. More broadly, any selection task defined on a ground set, such as choosing keywords or
response components for a chatbot, can be addressed by the same framework.

Example 2 (multi-product price optimization). Consider price optimization over a set of products
to maximize total revenue. As shown in (Ito & Fujimaki, [2016), the total revenue function can be
formulated as a supermodular function under suitable assumptions, which means that the problem
is an instance of submodular minimization. In this setting, relative evaluations—such as pairwise
comparisons between pricing vectors—are often less sensitive to external factors like weather or
seasonality than absolute measurements, and thus more accurately capture the effect of price changes.

Following prior work on dueling convex optimization (Saha et al., [2021a; [2025), we consider a
transfer function p that satisfies the following properties:

1. Strictly monotonically increasing function: p(x) > p(y) if x > .
2. 0Odd function: p(—z) = —p(x) for all z € [—1, 1]. In particular, p(0) = 0.

In particular, this study focuses on the following two examples of p:

* Sigmoid transfer function: p(z) = 72 — 1, b>0.

* Linear transfer function: p(z) =ax, 0<a<1.

Our primary motivation for considering the sigmoid transfer function is that it is both natural and
important, particularly due to its connection with the Bradley—Terry model (Bradley & Terryl [1952).
The Bradley—Terry model is widely used in applications including ranking systems, recommender
engines and search engines. This models the probability that item ¢ is preferred over item j as

Pr(i = j) = W@)W, where ;, 8; € R are parameters associated with the items. Now,

suppose that for each subset S, the corresponding parameter Jg is proportional to the utility — f(.5),
i.e., Bs = —bf(S) for some b > 0. In this case, the output of a dueling oracle based on a sigmoid
transfer function is consistent with the Bradley-Terry model as Pr(o = +1) = 1 + 1p(f(5") —

f(9)) = chp(ib(fl(s)if(s/))) = Cxp(;;‘f’)(fg)’(;(ﬁs) . This model has been widely used as a standard

tool for modeling preferences based on pairwise comparisons, and appears in various domains such
as sports ranking, consumer behavior, and Al-based decision-making. Moreover, the Bradley—Terry
model can also be interpreted probabilistically—for example, as the probability that a random
variable drawn from an exponential distribution associated with item ¢ exceeds that of item j. This
interpretation further supports its relevance as a model for real-world phenomena.

The linear transfer function is important for two main reasons. First, any smooth transfer function
can be approximated by a linear function in a small neighborhood around zero. Therefore, even if the
true underlying transfer function is nonlinear, the linear case becomes relevant when the exploration
is restricted to regions where the difference in values is small. In such settings, approaches developed
for the linear case are expected to remain effective. Second, the linear case is the simplest from the
perspective of algorithm design and analysis. It thus serves as a natural starting point for investigating
our new problem setting.
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Algorithm 1 Submodular Stochastic Gradient Descent for linear transfer function

Input: The size n > 1 of the ground set, the number 7" > 1 of oracle calls and the coefficient
0 < a <1 of the transfer function p(z) = az.
1: Set the initial point w) = % - 1, the learning rate n = 2\/aﬁ and the number of steps 77 =
2: fort=1,2,...,7" do
3: Find a permutation 7 corresponding to w®, ie., wfrt()l) >0 > wfrt()n), and its
inverse permutation 7.

T
o

4: Define B; = {n(1),...,n(i)} fori € [n] and By = &

5: fori=1,2,--- ,ndo

6: Query the dueling oracle with (BT(¢)7 BT(i),l) and receive the feedback oy;.
7: Compute an unbiased estimator §;; = O: .

8: end for

9: Update w1 = I (w® — ng,).
10: end for

11: Setw = 4, Zf;l w® and choose a threshold z € [0, 1] uniformly at random.
12: return Sy = {i | w; > z} .

4 LINEAR TRANSFER FUNCTION

In this section, we present an algorithm for submodular minimization using a dueling oracle with a
linear transfer function. The proposed algorithm is based on the Stochastic Gradient Descent on the

~ 3
Lovisz extention f of the submodular function f. It achieves an additive error bound of O( a%)
Furthermore, we prove that, under the condition that the difference between the elements in the two

queried sets is bounded by a constant order, any algorithm suffers an error of at least Q2( \F) When

there are no restrictions on queries, the lower bound remains §2( \/T)
a

4.1 ALGORITHM

Our algorithm is based on the SGD method. To construct subgradient estimators in SGD, we use
information using a dueling oracle. When the transfer function p of the dueling oracle is linear,
we can construct unbiased estimators of subgradients by the definition of the dueling oracle. From
Proposition querying (B (;), B;(;)—1) provides o; that corresponds to the i-th component of the
subgradient g. By the linearity of expectation, we have E[%t] = f(B;@)) — f(Bru)-1) = i

From Proposition |1} the optimal value of the submodular function f over 2" is equivalent to the
optimal value of its Lovdsz extention f over KC. Using this equivalence, the algorithm performs SGD
to find a solution w € C with a small error relative to the optimal solution of f Fmally, leveraging
the representatlon of the Lovasz extention in equation |3 l the algorithm outputs a set Sy such that

E[f(S7)] = f().

This algorithm is a simple extension of the algorithms proposed by [Hazan & Kale|(2009) and |Ito
(2019). In these prior works, the algorithms rely on querying sets to obtain function values, which are
then used to construct unbiased estimators of the subgradients. In contrast, this algorithm leverages
the properties of the dueling oracle to perform SGD without directly using function values.

4.2 UPPER BOUND

3
We prove that Algorithm |1 achieves an error bound of O (:\%) for any submodular objective
function f. Similar proofs are given inHazan & Kale|(2009) and |Ito] (2019).
Theorem 3. Let f be a submodular function. Let n,T and a be the input of Algorithm|l| Then,

3
n2

Algorithmwith parameter 1 = zjﬁ achieves the following error bound: E[Er] = O - ﬁ)
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The expectation is taken with regard to the randomness of the oracle responses o;, and the internal
randomness of the algorithm.

5 SIGMOID TRANSFER FUNCTION

In this section, we present an algorithm for submodular minimization using a dueling oracle when
the transfer function is sigmoidal. This algorithm is similar to Algorithm [T]and performs SGD on the
Lovdsz extention.

However, when the transfer function is nonlinear, it is not possible to construct an unbiased estimator
of the subgradient of the Lovasz extention from responses of the dueling oracle. To reduce the error
introduced by SGD, it is necessary to design an estimator with small bias for the subgradient. We
employ Firth’s method to construct a small-bias estimator when the transfer function is sigmoidal,
thereby mitigating the estimation error.

Firth|(1993) has shown that in regular parametric problems, the first-order term of the asymptotic bias
of the maximum likelihood estimates can be eliminated by penalizing the log likelihood. In particular,
if € is the canonical parameter of an exponential family model, the penalized log likelihood becomes
% log L(0) + %% log |1(0)|, where I(6) denotes the Fisher information evaluated at 6.

Proposition 3. Consider a logistic regression model:

1 —bo

e
T DX =) = 1-Pr(Xi = +110) = ;5

withi =1,--- ,k, X; € {£1} denoting the binary outcome variable and b being a positive constant.
The penalized maximum likelihood estimator 0* for the regression parameter 6 € [—1,1] can be

written as: 0% = %log(:ti%), where ky = |{i | X; = +1} and k— = |{i | X; = —1}|

Then, the bias of 0* satisfies: |E[6*] — 0] < ‘24175211)(%@2

P = Ti*b We denote the coefficient Ofk% by C(b) = ’mﬁ%w)? .

Pr(X; = +1]6) =

k% +0 (k%) Here, v is a constant and

5.1 ALGORITHM

When the transfer function p is sigmoidal, querying (B ;), B;(;)—1) produces a dueling oracle
response following a logistic regression model with a parameter g;. From Proposition 3] estimating
with Firth’s method enables us to obtain low-bias estimators of subgradients. This algorithm can
efficiently perform SGD even if unbiased estimators of subgradients cannot be constructed.

5.2 UPPER BOUND

1 4
In this subsection, we prove that Algorithmachieves an error bound E7 = O <CI(7Z)5 -5 ) for
5

T35
any submodular objective function f. The proof structure closely follows that of Theorem [3] with
necessary adjustments to account for the sigmoid transfer function.

Theorem 4. Let f be a submodular function. Let n, T and b be the input of Algorithm|[2| Then,

17
Algorithm 2| achieves the following error bound: E[Er] = O (C}()bf“ . ;;) . The expectation is
taken with regard to the randomness of the oracle responses oy, and the internal randomness of the
algorithm.

1
The factor % diverges to 400, as b — +0 or b — +4-o00. Therefore, this algorithm cannot limit

b5
the error when b takes extreme values.

6 LOWER BOUND

This section establishes lower bounds for the submodular minimization problem using a dueling
oracle with linear or sigmoid transfer functions. Specifically, we analyze the following two scenarios.
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Algorithm 2 Submodular Stochastic Gradient Descent for sigmoid transfer function

Input: The size n > 1 of the ground set, the number 7" > 1 of oracle calls and the constant 0 < b of
the transfer function p(z) = 2/(1 + %) — 1.

1: Set the initial point w) = 1/2 - 1,
the constant ¢ = 1/(1 + e~%) and C(b) = |(2¢ — 1)/(24by%(1 — ¥)?)],
the learning rate n = b3 C(b)5n3 /T3,
the number of steps 7" = T's /n3 b3 C(b)3,
and the number of query repetitions k = b3 C(b)3T5 /n5.

2: fort=1,2,...,7" do

3: Find a permutation 7 corresponding to w(t), ie., wfrt()l) > 2> wfrt()n), and its
inverse permutation 7.
4: Define B; = {n(1),...,n (i)} fori € [n] and By = 2.
5: fori=1,2,--- ;ndo
6: Repeatedly query the dueling oracle with (B (;), B;(;)—1) for k times and receive feed-
back.
7: Let k4 and k_ be the number of times +1 and —1 are returned.
1
8: Compute an estimator of the subgradient g;; = % log (:*ii )
"= 2
9: end for
10 Update w1 = I (w® — ng,).
11: end for

12: Setw = 7 ZL w® and choose a threshold z € [0, 1] uniformly at random.
13: return S; = {i|w; >z} .

1. A lower bound for algorithms that satisfy the following Restriction [T}
2. A general lower bound for any algorithm.

Restriction 1. The symmetric difference between the two sets in each query remains constant order.
Specifically, for any query (St, S}), the condition |S; ASy| := [(S¢\\S;) U (SI\S:)| = O(1) holds.

We prove that for algorithms that satisfy Restriction[I] there exists an instance of the problem where
3
the error is at least ) (\"/2? . Additionally, for algorithms without any restrictions, we construct

VT

an instance where the error lower bound is {2 i) . Since Algorithm!satisﬁes Restriction itis
optimal up to a constant factor among algorithms restricted by this con

dition.

Theorem S. In SFM using a dueling oracle with linear or sigmoid transfer functions, there exists
3

an instance for which algorithms that satisfy Restriction|l|suffers an error of: E[Er] = Q <\"/T>

In addition, there is an instance for which algorithms without any restrictions suffer an error of:

E[Er] = Q (%) The expectation is taken with regard to the randomness of the instance f and

oracles oy, and the internal randomness of the algorithm.

7 CONCLUSION AND OPEN QUESTIONS

We have proposed algorithms with upper bounds and lower bounds for submodular function mini-
mization using dueling oracles with linear or sigmoid transfer functions. In the case of linear transfer
functions, the upper and lower bounds coincide in their dependence on 7', establishing algorithmic
optimality. By contrast, for nonlinear transfer functions, there remains a gap between the upper and
lower bounds in terms of 7-dependence, leaving room for improvement; we conjecture that the upper
bound can be tightened to O( \%T), which we leave as future work. Furthermore, we believe that a

more detailed investigation into the dependence on n in the linear case is also an important direction
for future research. Relaxing the assumption that the transfer function is known is also an important
direction for future work, and techniques in dueling convex optimization (Saha et al., 2025) and
derivative-free optimization (Jamieson et al.,|2012)) might provide an effective approach to this issue.
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Reproducibility statement The code necessary to reproduce the numerical experiments reported in
Appendix Blis included in the supplementary material. For the theoretical results, all claims without
external references are accompanied by complete proofs provided either in the main text or in the
appendix. These materials, together with the descriptions of assumptions and algorithmic details in
the paper, are intended to ensure the reproducibility of our results.
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APPENDIX

A OMITTED PROOFS

Proposition 1. Let f be a Lovdsz extention of a function f : 20" — [0,1]. Forany w € K, the
following equations hold:

fw) = / S | wi > 2})ds
= E. unieoap [f({i | wi > 2})].

Proof. Since the permutation 7 is defined so that (1 >)wy(1) > --+ > Wy (,) (> 0), the following
equations follows:

/ f({w > )z
0
1

Wr(n) W (4)
:/o f({sz})dz—F---—i—/ f({wzz})dz—i-'---l-/ fHw > z})dz

W (i41) Wr(1)

= [ (Wrny = 0) + - + f({m (1), -, (O} (Wr(i) = Wr(ign) + -+ (@)1 — wrry)

n—1

= Z fEm ), m (@)D (weiiy = wrgirn) + f([R)wr) + f(@) (1 = wrq))
= f(w).

If z is chosen uniformly at random from [0, 1], the probability density function of a random variable
z is 1. Then, we have:

1
E. umrouy f ({w > 2})] = / f({w > 2})1dz

= f(w).
O
Theorem 1. (Fujishige|(1991)) A function f : 20" — [0, 1] is submodular if and only if its Lovdsz
extention [ : K — [0,1] is convex. For a submodular function f : ol [0,1] and its Lovdsz

extention f : KK — [0, 1], we have:

. X — . r _ . P .
ngg%]ﬂ) wen{ﬂ.gg}nf(w) wg[lg}}]nf(w)

To begin with, we prove the first part of Theorem 1, which states that a function f is submodular if
and only if its Lov4sz extention is convex. To prove this, we first define the submodular polyhedron
in R™. We then consider a linear programming problem (LP) over the submodular polyhedron and
apply the strong duality theorem to this LP. For x x € R™, we use the notation (xx); = 1{i € X}.

Definition 2. Let f be a submodular function. The submodular polyhedron P(f) is defined as:
P(f) ={s e R" | ¥X €2l sTyx < f(X)}.

Theorem 6 (Strong Duality Theorem). Let x,c € R", y,b € R™, A € R™*™. Consider the
following primal problem and its corresponding dual problem in linear programming:

e Primal Problem:
maximize b'y

subject to ATy < ¢

13
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e Dual Problem:

minimize c¢'x
subject to Az =10
x>0

For these problems, if either the primal or dual problem has an optimal solution, then the optimal
values of both problems are equal. That is,

max{b'y | ATy > ¢} = min{c'z | Az = b,z > 0}.
The following proposition, given in/Bach| (2011} Proposition 3.2), serves as a key building block for

proof of the first part of Theorem [T}

Proposition 4. Let [ be a submodular function. Let w € K, w : [n] — [n] be a permutation
that orders the components of w in decreasing order, and define sy = f({m(1),...,7(i)}) —

fUr),...,w(i = 1)}) fori€2,--- ;nand syy = f({m(1)}) — f(D). Then s € P(f) and,

s = argmaxw' s,

sEP(f)
f(w) — f(2) = max w's.
flw) ~£(2) = max.
Proof. We consider the LP:
max w's.
sEP(f)

By the definition of P(f), the primal problem can be explicitly written as:

maximize w's

subject to  xxs < f(X) forall X € 2"

Let \x be a real number for all X € 2", The dual problem corresponding to this primal problem
can be written as:

minimize Z Ax f(X)
Xe2l
subject to Z AxXx =w
X2l
Ax >0 forall X € 2

A constant vector, where each component iS min y coim x4 fl()?\) , belongs to P(f), ensuring that

P(f) is non-empty and the primal problem has an optimal solution. Therefore, by the strong convex
duality (Theorem|[6)), the optimal values of both problems are equal.

We define as:
L {f({w(l)})f(@) (ifi = 1),
TV, w @) = f{rQ), . wi—1))) (i€ {2, n}),

Wr (i) — Wr(i41) (le = {ﬂ-(l)a o 7”(1)} fori € {17 e, = 1})a
)\X = § Wn] (le = [nbv
0 (other wise),

14
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and show that they are feasible solutions of primal and dual problems. Then, we show that they
achieve the same objective value and are optimal solutions. Without loss of generality, we assume
that w(k) = k for all k € [n]. For any set X, we have:

sTxx = Z(XX)ksk
k=1
= Z(XX)k[f({l’7k})_f({lv’k_1})]
k=1
< Y (xx)elf(XNn{1,....k}) — f(XN{1,...,k—1})] by the submodularity of f,

>
Il
—

I
MS

[F(XNn{L,...,k}) — f(XN{1,...,k=1})]

I
=

o

~—

Thus, s € P(f), i.e., s is a feasible solution of the primal problem. Ax are all non-negative according
to the definition of 7, and satisfy the constraint Xeal AxXxx = w. Therefore, \x are feasible
solutions of the dual problem. Since

T
w s = Zwﬂ(i)sﬁ(i)
i=1

=3 we F{r (), 7 (@) = F({r (1), - (i = DY)
=2
Funf({r(1)}) - F(2)

= f(w) = f(2),

> Axf(X Zf {w(1), -, (@)} (Wa(s) = Wa(is1)

Xe2ll
+f([ ])w‘n'(n _f(g)wfr(l)
= f(w) - f(2),

both the primal and dual problems achieve the value f(w) — f(2). Thus, by strong duality, this is
the optimal solution of both problems and s, Ax are the optimal solutions for the primal and dual
problems, respectively. O

Then, we prove the first part of Theorem [T]using this proposition.

Proof. If f is a submodular function, from Proposmon@ forallw € K, f (w) — f(2) is a maximum
of linear functions, and hence f(w) — f(@) is a convex function, i.e., f(w) is a convex function.
Conversely, suppose that the Lovasz extention f of f is a convex function. By definition, f isa
positively homogeneous function, i.e., f(Aw) = )\f(w) for any A € (0, 1]. For any X, Y € 20",

1 1 A 1
f(§XX + §XY) f( Xxuy + 2XXmY)
~ 1
(

XXuY) + f(§XXmY)

k’w M\H

(xxuy) + %f(Xme)

N = N =

FXUY)+ L f(XNY).
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The second equation holds because the components of each vector 2 xxuy + 2 Xxny, 3Xxny and
Xxuy can be ordered in the same sequence and can share the same permutation 7. Furthermore,
since f is a convex function, we also have:

A1 1 1 4 1
— _ < Z —
f(2XX + 2XY) = 2f(XX) + 2f(XY)
1 1
=-—f(X —f(Y
SFX) + 5 £(V)
Therefore, f is a submodular function. O

Next, we establish the second part of Theorem|[I} which states that the minimum value of a submodular
function is equal to the minimum value of its Lovasz extention.

Proof. Since f is an extension from {0, 1}" to [0, 1]™ and satisfies f(X) = f(xx) forall X € 2", it

follows that min y o f(X) = mingeo,13n flw) > min,,ejo,1j» f(w). Next, we prove the reverse

inequality. From equation [2| the following holds for any w € [0, 1]™:
Z JUR), o m(0) 1) (W) — Wagirn)) + F([)Wrn) + F(2)(1 = wa(1))
n—1

> i £(X)(Wngs) — Wa i -
_Z)?égl F(X)(wn ) ww(z+1))+XH€1121[ln]f( JWr(n) + m12r[1n]f( )1 — wr1))

O

Proposition 2. Let f be a submodular function. For w € K, let m be a permutation that orders the
components of w in decreasing order, and let T be the inverse permutation of w. Then, a subgradient

g off at w is given as follows:

Ir(i) = f(B:i) = f(Bi-1)
gi = f(BT(i)) - f(B‘r(i)—l)

Proof. From equation 2] the expression for a subgradient is immediately obtained. O

Theorem 2. Let f : K — [0,1] be a convex function in the hypercube K = [0,1]". Let
w® w® L w T be defined by w) = 1 -1 and wY) =TI (w® —ngy). When g1, G, ..., g7
are unbiased estimators of subgradients such that E[g; | w(t)] = gy, where g, is a subgradient of f at
w®), the average point 0 = Zthl w® satisfies:

T
BLF()] - min flw) < (55 + gz [:131)-

w* e

Proof. Let v = ") — ng,, so that w1 = I (v(*+1)). By expanding the squared norm, we
have:

(t+1)

[t — w3 = w® — w3 - 2097 (w® — ") + 7313

Rearranging terms, we obtain:

~ * 1 * * AT
g (" —w*) = %[llw(” = [l = o — w5 + 51915

Using the non-expansiveness property of Euclidean projections onto convex sets,

o — w3 < [l — w3,

16



Under review as a conference paper at ICLR 2026

we further obtain:
~ * 1 * * ’rl ~
9T (0 —w') < gollw® w3 = ) 3] + a3

Summing this inequality over ¢t = 1,...,7T, we have:

T T @A) k(12 oy (E+1) o #(|2
. . w w w w 7, .
> ool —u) <Y ” £ RN

T
Z 1¢113, “

since [|w —w*||3 < 2 (i —wr| < 1 foralli € [n] since w® = % -1and w* € [0,1]"). Next,
since E[j; | w®)] = g, a subgradient of f at w(*), we have:
Efg (w® —w*) | w®] = g (w® —w*) > f(w) = f(w?),

where the inequality follows from the convexity of f . Taking the expectation over the choice of w(*),
we have:

IN
OO
3
w\s

Elg (w® —w*)] > E[f(w®)] = f(w").
Summing overt = 1,...,T, we have:
T

T T
Y OEf(@) = flw) <E[Y g (w? —w)]

t=1 t=1 t=1

®©
=

o

Il

—

Finally, since f is convex, we can apply Jensen’s inequality to obtain the expected error bound as
follows:

1 T A T
= T(;Emw(”n - ;ﬂw*))
<7z +3 imngtn )

O

Theorem 3. Let f be a submodular function. Let n,T and a be the input of Algorithm|[I} Then,
Algorithmwith parameter 1 = 2\/aﬁ achieves the following error bound:

)

The expectation is taken with regard to the randomness of the oracle responses o;, and the internal
randomness of the algorithm.

Proof. Since §; in Algorithm [T]is an unbiased estimator of the subgradient g;, by Theorem [2] the
following inequality holds:

E[f(w)] — min f(w’) < (— Zi E{lg:I13)).

w* e

17
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Moreover, since j; = 2o, - ¢; and [|g¢]|3 = %, we have:

a29

2

T
n=T

> E[lgll3] = —

t=1 a

Then, we obtain:

T
£ . £ro n 77
_ < (= 1
Blf(@)] - min f(w) < 7 (3 +3 2 Bl )
_noom
- 8T + 2a?
4aVT’

where the last equality follows by setting n = 2\/aﬁ. Finally, from equation [3|and Theorem I} we
have the error bound:

E[Er] = E[f(ST)] — min f(5)

Seall
—E[f(w)] —
[f(@)] — min flw?)
3
< ne
~ 4aVT
O
Proposition 3. Consider a logistic regression model:
1 efbe
withi=1,--- ,k X; € {£1} denoting the binary outcome variable and b being a positive constant.

The penalized maximum likelihood estimator 6 for the regression parameter 6 € [—1,1] can be
written as:

=]

where ky = |{i | X; = +1}| and k_ = |{i | X; = —1}|. Then, the bias of 0* satisfies:
2 — 1 1 1
st O (i)

5. We denote the coefficient of 75 by C(b) = ‘% .

B[] — 0] < |

Here, 1 is a constant and ) =

1+p

First, we derive the form of the penalized maximum likelihood estimator, which constitutes the first
part of this proposition.

Proof. The log likelihood function and its partial derivative with respect to 6 are

k
log L(0) = Zlog (ﬁl_xibe)
i=1

1 1
= kialog (=g ) + ka8 (1575 )

9 L(O) = k (1+efb9)ﬂ+k (1+ebﬂ)ﬂ
g B\ T (1+eto)z " "1 (1+ ebf)?
1 1
= bbb

18
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The Fisher information is

2

0
10) = B[+ og 1(0) | 0]
Elk b kg
= Efk+ (1+6b0)2+ T (14 et0)2 | 6]
i o= b0
(1+e00)2’
since E[ky | 0] = m%be and E[k_ | 0] = H% Therefore, the modified score function is

0 10
U*(0) = = log L(0) + === log|I(0
(0) = 55108 L(9) + 5 55 log |1(6)]
1 1 b be ¥
N k+b1+eb9 7k_bl—|—e—b9 2 + 1+ e b0
— b Ly e 1
= e (ke + )7 = (-t 5)).
Finally, we obtain the solution 6%
b0 — k—+%
ky + 3
k_+3
—bH*zlog( %)
ky+ 3
0* = Z 1 2
b Og(k_+%)

Next, we establish the second part of Proposition |3} which demonstrates the bias of 6*. Our proof is
based on the method outlined in|Cox & Snell| (1989, §2.1.6). Although their work showed that the

leading bias term, proportional to ¢, can be eliminated, we extend this approach to derive terms up to
1

k2*

Proof. Let ¢ = He%bg, be the probability of X; = +1. The parameter 6 can be expressed as

3 log % Define a function h : [0,1] — R as h(z) = jlog lf:f’% Then, §* = h(%)

Considering the Taylor expansion of h(%) with respect to ¢, we have:

0 = h(5E) = (o) + )5 = 9) + 31 (B)(5E - 92
T éh///(¢)(% _¢)3+ ih////(qs)(% _¢)4_|_,.. . (®)]
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By the definition of k., ]E[%] = ¢. Therefore, IE[(’%r — ¢)"] is the r-th central moment of a binomial
distribution. Taking expectation of equation[5} we obtain:

B[] = b{(6) + W (SB[ — 6] + LH"(EISE — 6]+ Zh" (DRI — 97

1 " k 4
+ 5B - 9)')+- - }

d)—i——l 1 1\ 2 1\ 2 o(1 — ¢)
10g1—¢—|2—k21k+2{_(¢+2k) +<1_¢+2k) }k
1 1\ ° 1\ ® o1 —@)(1 —2¢)

+6{2<¢+2k‘> +2<1_¢+2k) } k2

1 1\ 1\ 7] [36%(1 - ¢)?
+24{—6<¢+2k> +6(1—¢+2k) }{k2

+¢(1—¢>(1—6¢<1—¢>)}+m

k3

¢ 1 1 1 1
1—¢ 20k 842k 2(1— o)k + 8(1 — ¢)2k2

1 1 1 1 1 1
+2{_¢2<l_¢k)+(1—¢>2(1_<1—¢>k>}¢(1_¢’)k
st g - =20
3( 1 1 , , 1 1
S e e o ()
1 1 1-6 6 11 1 1 1-6
¥ +{s s ™ el s s
6 (-@)1-20)  6(1-20) 3(1—¢)?° 3¢ 1
TaT-92 T 32 T 31-02 e +4<1¢>2}+O<k3)

(By the Taylor expansion of log(1 + z) and (1 +z)™")
20—1 1 1
=W+ -—— 5+0|=]-
* srgr @ O ()
Thus, the bias of 6* can be written as:
20 —1 1 1

—— |5 +0| = .
2062 (1— ) | K2 (k?’)
Considering ¢ as a function of 6 and b as a function of ¢(6) and 0, the relationship between ¢ and
6, and the relationship between the coefficient of the term kiz and ¢ are illustrated in Figure [1|and

Figure 2] For all b > 0, the coefficient reaches its maximum with § = 1 (or # = —1). Therefore, the
coefficient can be bounded using ) =

2¢ — 1
‘24b¢2(1 —¢)?

E[6*] — 6] =

1 .
14+e—b-
. ‘ 20— 1

2462 (1 — )2 | ).

O
Theorem 4. Let f be a submodular function. Let n, T and b be the input of Algorithm[2| Then,
Algorithm 2| achieves the following error bound:
O )

E[Er]| = O T~
[T] (bs T3
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[(29-1)/24be"2(1-9)"2|

~100 -075 050  -0.25 0.00 025 0.50 075 1.00 0.0 0.2 04 0.6 0.8 10

¢

Figure 1: Relationship between ¢ and 6. Figure 2: Relationship between |[(2¢ —
1)/(24b¢*(1 — ¢)*)| and ¢.

The expectation is taken with regard to the randomness of the oracle responses o;, and the internal
randomness of the algorithm.

Proof. Let w* be a minimizer of f in K.

’ ’

> (Fw®) = fw) <3 (of @ —w)

t=1 t=1

-
=3 (07w = )+ 0] = 6D - 0))

IN

non w® — :
8 §Z|\gf\|2+z -a) —w*) (By equation[d)

n 0 . . .
TR S + a7 = T lla® = w'le
" t=1 t=1
(By Holder’s inequality)
no T’ T’
T3 Z 192113 + Z g — 3/ Il
" t=1 t=1
The last inequality holds since w(), w* € K. By the definition of §;, we have:

N n N 1
o < 5 Cog(2-+ 112 g~ ilh =nC(4)0 (35 )

k2

Then, the following inequality follows by taking expectations and using Jensen’s inequality:

T’ T
BLf()] - min fw) < 7 (5 +3 >l + 3 o -9 Ih)

w* e
< L ek 4+ 1)) +nC)0
=877 + g {los 2
n’k  nny 9 1
Setting 1) = b5 C(b) T% and k = b5 C’(b)% % we have:

w*ek

B[f(@) — min f(u) = O (“’?5 -

i

~ ‘ 3

| @i
N~
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Finally, from equation [3]and Theorem [I] we have the error bound:

E[Er] = E[f(S7)] — min f(S)

Sealn
= E[f(@)] ~ min f(w")
~o (9t 2
bs T3

O

Theorem S. In SFM using a dueling oracle with linear or sigmoid transfer functions, there exists an
instance for which algorithms that satisfy Restriction[I|suffers an error of:

E[Er] = E[f(Sr) — SHelg[l] (85 =49 (ﬁ) :

In addition, there is an instance for which algorithms without any restrictions suffer an error of:

- n
E[Er] =E[f(S7) — min f(S)]=Q( — | .
(B = Elf(8r) — i £ = 0 (22 )
The expectation is taken with regard to the randomness of the instance f and oracles oy, and the
internal randomness of the algorithm.

Before presenting the proof of the lower bound, we introduce Yao’s principle, a powerful tool for
analyzing lower bounds of randomized algorithms. This principle allows us to derive lower bounds
by analyzing the expected performance of deterministic algorithms over a chosen distribution of
problem instances.

To begin with, we prove the lower bound for the linear transfer function.

Proposition 4 (Yao’s principle). The worst-case error of any randomized algorithm is at least the
error of the best deterministic algorithm under a specific distribution D. That is, let the error Ep
be expressed as a function E1(A, x), where A is an algorithm (deterministic or randomized) and x
represents the input (including the objective function f, oracle response o;). Define A as the set of
all deterministic algorithms, R as the set of all randomized algorithms, X as the set of all possible
inputs, and D as a specific input distribution. Then, the following inequality holds:

. < .
glel.,réllEzND [ET(Av 1‘)] = Iwnea%]E[ET<Ra Cﬂ)]

Proof. For simplicity, this proof considers the objective function to be a submodular function
f 20 — [—1,1]. Since submodular functions remain submodular under scaling by a constant or
adding/subtracting a constant, this proof is applicable to the problem setting as well.

First, we consider the case where the algorithm satisfies Restriction[I} By Proposition ] to establish
a lower bound, we construct a objective function in which any deterministic algorithm (satisfies

3
Restriction incurs an error of 2 ( n2 )

avT

Fix a subset S* € 2"l and a positive real value € € [0, 1]. Define a submodular function f : 20/ —
[—1,1]as f(X) = 5 (JX\S*|—|XNS*|). When a new element i is added to a subset, the increment
in the function value only depends on whether i is included in S*. Hence, as equation [I] holds, f
defined as above is a submodular function. It is obvious that f achieves its minimum value of
—5-|9*| at S*. Thus, the error of the output Spis given by the following expression:

f(57) = F(57)

€ _ ® | Q ®1Y _i *

C(9S 1808 - (- ]87)
€4 *

— 18087,
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According to the restriction, the query at iteration ¢ is given by (S; +¢,5;) (¢ ¢ S;). Based on the
definition of f, the result o; of the dueling oracle follows the probability distribution:

o Ber®(—as-) ifie S
b Bert(as)  ifi ¢ S*

Since the output o, does not depend on .S; but only depends on ., let i; represents the query in
iteration ¢.

Since we consider deterministic algorithms, the query in iteration ¢ is determined by (is, 0 )S 1, and

the output ST is determined by (i, 04)7_;. Therefore, if S* is fixed, the output S can be considered
as being sampled from a probability distribution that depends on S*.

To simplify the proof, we define & = x4 and 2™ = xg+. Then, the error can be expressed using

Zand z* as 5 |SpAS*| = 5= Y1 |# — x}|. Given that & follows a probability distribution D
determined by x*, we consider the error as a function of x*. Specifically, we define:

Er(2*) =Ezwp, Z|xz—x ]

First, we bound the KL divergence between the probability distributions followed by Sr when S*
and S*A{i} are respectively given. By the definition of & and z*, we consider the KL divergence
between the distribution D, «, which & follows when z* is given, and the distribution D, INGY which
Z follows when x*A{i} is given. By the chain rule for KL divergence [[Cover & Thomas| (2005,
Theorem 2.5.3)], we have:

DxL(Dy+ || D= agiy) = DrL(2|ox |22+ Afiy)
< Dkr((its 00)1—1 o || (3¢, 00) = i)
= Dxr.((it, 00)i=y o [| (i, 00) {1 it)
+ ]E(it,ot)g;m [Dxw((ir, or) 2= (i1, 07) |2+ £ g} )]
(By the chain rule)
= Dkr((ie, 00) {1 o || (it 00) 1! i})

+E i = i}DKL(Beri(ai)”Beri(_ai))]

i})

) T
(i¢,0) ;=1

= Dxw((it, 00) "

(it, 00){=1"

1+as;
+ Prp« (ir = i)(ai log(

)
2n 1— a%

(By the definition of KL divergence)

< Pra (s — (0 log(-T 030,
re (iy = 1) (a=— lo .
7t:1 ¢ 2n & 1—a=

T*

2n

The last inequality holds by applying the chain rule repeatedly. Since >, Zt 1 Pro-(ip =14) =T,
we have the following inequality:

- € 14+ as
Dxr(Da«||Dygspgin) < Ta—1 2n
; KL( T A{z}) = a2n Og(l _ai)
1 2T
og3 a T 5 ©)

_2 n2

m\&

)gb%x2f0r0<x§1,and0<a§§1.

The last inequality holds, since % log(

M\F
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Next, we define y;(z*) = Ez~p,.[Z;] and e;(2*) = |y;(z*) — «|. since z only takes values in
{0, 1}, the error Ex(x*) can be expressed as:

€ n
Er(z™) = o~ > Eiwp,.
i=1

By Pinsker’s inequality, the following inequality holds:

I0) 30 510D € /2 DD D a 1)

Then, we have:

>0~y Al € 3 S Dk (Do D)

"1
nZ§DKL(D£*||DI*A{i})

<
=1
log3 a2T
< &.Lez (7)
4 n

Therefore,

ei(e”) +ei(x Adi}) = [yi(2") — 27| + |yi(@™ Adi}) — (1 = z7)]
> Jyi(a™) —ai —yi(a" A{i}) + (1 — a7)|
2 [1 =227 = |yi(2") — yi (2" A{a})]
=1 —|yi(z") —yi(z" A{i})].

1 n

Then, we obtain the following inequality by setting € = Jos3 | avT

n

D (ea@) +e(@™ ) = Y (1= |wi(a™) — pi(@*2{i})])

i=1 i=1

T
- ——e2  (By equation[7)
n

®)
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Finally, if S* is chosen uniformly at random from 2l 2* also follows a uniform distribution (we
denote * ~ Unif). Then, we obtain the lower bound in Theorem E}
E[Er] = Eg« ounit[Er(2*)]
€ i %
%Ez*NUnif[; ei(z")]

Egrmnunit] Y | (€i(z*) + ei(@*A{i}))]

€

an
=1
> °E [n] (B ation[g)
—FE o o Unit| = equatio
= In Unif 2 yeq
1 n2

~ 8VIog3 aVT
The second equality follows from the fact that if 2* follows the uniform distribution, then x*A{i}
also follows the uniform distribution for any i € [n].

For algorithms without any restrictions, the following inequality holds instead of equation [6}
- log3 a*T
ZDKL(DT* D 08 . LEZ.
1

2 n
Then, by setting € = Jos3 f’ we have the same inequality as equatlonl Fmally, we obtain the
lower bound:

e afiy) <

1 n
E[Er] > ————.
[Br] = 8v/l1og 3 av/T
O

Next, we establish the lower bound for the sigmoid transfer function. The overall proof follows the
same structure as in the linear case, with the differences stated as the following lemma.
Lemma 1. Let p(z) = 14—%*% 1, and let the other definitions follow those used in the proof of

Theorem[3} For any algorithm that satisfies Restriction[l] the KL divergence between two distributions
Dy and D« 5 g4y satisfies the following inequality:

VT
DKL( z* ||D:L’ AT }) < me
For any algorithm without any restrictions, the following inequality holds:
VT

DKL( T* ||Dx AT }) < 76

Proof. By the chain rule for KL divergence, we have:

DL(Da || Dy agiy) < Dru((ie, 00) {1 oo |Gty 00) {21 o agiy)
€

E(y, 07, (i = 1} Dice (Ber™ (o)) [Ber* (p(—3-)))]

. _ . ., be €
<[] (4, Ot)tT=11 iy) + Pro«(ir = l)(%l)(%

(By the definition of KL divergence and p(x))
T

be €
<3 P )]

When the algorithm satisfies Restrlcmon itholds >0, Zthl Pr,-(i; = i) = T. Therefore, we
have the following inequality:

- be €
Z Dxr(Da+ | D ngiy) < To=p(5-)
i=1

)

= Dkv((ir, 00)1—"

2n' "2n
v2T
< 4—262 (. p(x) < bz forall 2 > 0)
n
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Moreover, for algorithms without any restrictions, it follows » ., Zthl Pr,-(iy = i) = nT.
Therefore, we obtain:

v:r

DKL(Dw* ||D:1:*A{'L}) S EeQ.

B NUMERICAL EXPERIMENT

We present numerical experiments for the algorithm proposed in this paper. We implemented the
algorithm with linear and sigmoid transfer functions and investigated the dependence of the error on
the number of oracle calls 7" and the dependence of the error on the size of the ground set n. Fig[3]
M1 51 [6] display the empirical results together with the upper and lower bounds derived in this paper.
As objective functions, we used nontrivial submodular functions derived from cut functions, so that
neither the empty set nor the full set is necessarily a minimizer.

The experimental settings are as follows. The linear transfer parameter a and the sigmoid transfer
parameter b were both set to 1. Algorithmic parameters are as specified in[I|and[2] For the experiments
on the dependence of the error on the number of oracle calls 7', we fixed the size of the ground set
at n = 5 and ran the algorithms with 7" € {500, 1000, 1500, 2000, 2500}. For the experiments on
the dependence of the error on the size of the ground set n, we fixed the number of oracle calls at
T = 2000 and varied n € {4,6,8,10,12, 14}.

For each objective function, we ran the algorithm 100 times and recorded the average error between
the algorithm’s output and the optimal solution. This procedure was repeated for 100 randomly
generated objective functions; the plots report the mean error across these functions together with the
corresponding standard deviations.

—— Upper Bound
—— Lower Bound
¢ data with error bars
1071 4
—
o
= 6x10-2
L
4%1072
3x1072

Figure 3: Dependence of the error on the number of oracle calls 7" under the linear transfer function.
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—— Upper Bound
—— Lower Bound
¢ data with error bars
101
| -
o
E
LIJ -
/l
10721 i . . . . :
3x10° 4 x10° 6 x 100 10!
n

Figure 4: Dependence of the error on the size of the ground set n under the linear transfer function.

10

Error
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—— Upper Bound
—— Lower Bound
@ data with error bars

Figure 5: Dependence of the error on the number of oracle calls 7" under the sigmoid transfer function.
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— Upper Bound
—— Lower Bound
10°7 @ data with error bars

Error

1071 1 E

3x10° 4% 10° 6x 107 101
n

Figure 6: Dependence of the error on the size of the ground set n under the sigmoid transfer function.

28



	Introduction
	Related Work

	Preliminaries
	Submodular functions
	Lovász extention
	Stochastic gradient descent

	Problem statement
	Linear transfer function
	Algorithm
	Upper Bound

	Sigmoid transfer function
	Algorithm
	Upper Bound

	Lower Bound
	Conclusion and open questions
	Omitted proofs
	Numerical Experiment

