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Abstract

Overparameterized deep networks that generalize well have been key to the dramatic success
of deep learning in recent years. The reasons for their remarkable ability to generalize are
not well understood yet. When class labels in the training set are shuffled to varying degrees,
it is known that deep networks can still reach perfect training accuracy at the detriment
of generalization to true labels — a phenomenon that has been called memorization. It
has, however, been unclear why the poor generalization to true labels that accompanies
such memorization, comes about. One possibility is that during training, all layers of the
network irretrievably re-organize their representations in a manner that makes generalization
to true labels difficult. The other possibility is that one or more layers of the trained
network retain significantly more latent ability to generalize to true labels, but the network
somehow “chooses” to readout in a manner that is detrimental to generalization to true
labels. Here, we provide evidence for the latter possibility by demonstrating, empirically,
that such models possess information in their representations for substantially-improved
generalization to true labels. Furthermore, such abilities can be easily decoded from the
internals of the trained model, and we build a technique to do so. We demonstrate results
on multiple models trained with standard datasets. Our code is available at: https://
github.com/simranketha/MASC_DNN.

1 Introduction

Prior to the advent of deep learning, the conventional wisdom for longﬂ was that in building a predictive
model, the model should have as few parameters as possible and this number should certainly be less than
the number of training samples that one was fitting. The dogma was that, otherwise, the model would
exactly fit the training points, but invariably generalize poorly to unseen data, i.e. overfit. This intuition
was also largely borne out by the models of the day. Modern deep learning, however, has gone on to
show the opposite, namely that overparameterized models not only don’t necessarily overfit, but that they
can generalize remarkably well to unseen data. However, over a decade later, we still do not satisfactorily
understand why this is so. Interestingly, it has been shown (Zhang et al.,[2017;[2021) that when one randomly
shuffles class labels of data points from standard training datasets to varying degrees, deep networks can still
have high/perfect training accuracy when trained on such corrupted training data; however, this appears to
typically be accompanied by poor performance on unseen test data (that have true labels). This phenomenon

1von Neumann famously said, “With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.”

(Dyson et al., [2004])
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has been called memorizatioﬂ since it is thought that the model rote-learned the training data without
acquiring the ability to generalize to true labels. It has been suggested that progress on understanding
memorization could enable a better understanding of generalization to true labels in deep networks trained
on real-world data (Zhang et al. [2017; 2021) and indeed that a detailed understanding of mechanisms of
generalization to true labels should also be able to explain the phenomenon of memorization.

An open question arising in this context is about the detailed mechanisms that lead to poor generalization
to true labels in models trained with shuffled labels, i.e. models that memorize. A natural hypothesis
governing such mechanisms, stated informally, is that, during training, the network organizes its internal
representations in all layers, in a manner suited to doing well on the (corrupted) training data. Since this
data is significantly noisy, on being given unseen data with true labels, it fundamentally lacks the ability to
have good prediction performance, leading to poor generalization to true labels. An alternative hypothesis
is that layerwise representations on a subsetﬂ of the layers in the network retain significantly more ability to
generalize to true labels, than the model, but that the network somehow chooses to readout in favor of high
training accuracy in a manner that incidentally causes poor generalization to true labels. A consequence of
this alternative hypothesis is that one ought to be able to construct a decoder (i.e. a probe) for the outputs
of such layers that has better generalization performance on true labels.

Here, surprisingly, we show evidence for this alternative hypothesis. In particular, we study the organization
of subspaces of class-conditioned training data on layerwise outputs, in deep networks. We estimate these
subspaces using Principal Components Analysis (PCA). In order to remain oblivious to the information
decoded by subsequent layers, we build a simple probe that leverages the geometry of the present layer’s
output of an incoming datapoint, relative to these class-conditioned subspaces. Specifically, we measure the
angle between this output vector and its projection on each of these class-conditioned subspaces and the
probe predicts the datapoint’s class to be the class whose subspace has the minimum such angle. We call this
probe the Minimum Angle Subspace Classifier (MASC). Notably, unlike probes used conventionally (e.g. in
(Alain & Bengio, 2018)) whose parameters are determined by iteratively minimizing a crossentropy loss, the
parameters of MASC are directly determined from the subspace geometry of the training data. A schematic
illustrating the geometry of MASC is presented in Figure

We train a number of deep networks with standard datasets in the memorization setting. Here, a randomly-
chosen fraction of training data points have their labels changed to a randomly-chosen label from the available
labels in the dataset. We do so for differing fractions of the training dataset and — consistent with previous
work (Zhang et al.l |2017;|2021} |Arpit et al., 2017) — see that training with such corrupted training datasets
causes correspondingly poor test accuracies in the model. However, MASC — which uses the internals of
the network to predict the class label — tends to do significantly betterﬁ than the model on the test set. A
schematic illustration of the memorization setting with MASC is shown in Figure

We outline a more detailed summary of our main contributions below.

1. For models trained with standard methods & datasets with training data corrupted by label noise
to varying degrees, we demonstrate (with one exception) that MASC applied on at least one layer,
when using subspaces corresponding to such corrupted training data, has significantly better test ac-
curacy than the model. For example, MASC outperforms the model test accuracy by upto 159.93%,
189.00%, 64.86% and 119.16% on MLP-MNIST, CNN-Fashion-MNIST, AlexNet-CIFAR-100 and
ResNet-18-CIFAR-10 respectively. A more detailed account of these numbers is in Table

2. For the models discussed above, we perform a comparison study evaluating five probes namely
Logistic regression , K-Nearest Neighbor (KNN), Linear Discriminant Analysis(LDA), Quadratic
Discriminant Analysis (QDA), and Nearest Class Mean (NCM) over the layers of multiple deep
networks under varying corruption degrees. While many of these probes exhibit similar overall
accuracies and show no consistent trends across corruption degrees, their computational costs differ
considerably, which we have empirically analyzed.

2We direct the reader to Section for a formal description of our setting.

31t is indeed possible that certain Jayers of the network have representations that are significantly more generalizable to true
labels than others and these layers may be early or later layers.

4We find that a few other probes do comparably well.
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Figure 1: A schematic of the memorization setting used in our work and the application of the MASC
classifier in it. a) Illustration of a standard training dataset. b) A corrupted training dataset is created
by changing the labels of the standard training dataset with a specific probability (due to which a few of
the colors are changed, representing the changed labels). Changing the labels happens uniformly at random
for the whole dataset. ¢) A deep network is trained with this corrupted training dataset to achieve ~100%
training accuracy, which is usually accompanied by poor test accuracy (as measured on true labels from the
test set). We have shown that the Minimum Angle Subspace Classifier (MASC) — our technique — which
uses the internals of the deep network, tends to have significantly better generalization to true labels (test
accuracy) than the deep network itself.

3. For the aforementioned models, if the true training class labels are known post hoc, i.e. after the

model is trained, we can build MASC using subspaces corresponding to true class labels. These
MASC classifiers usually have better generalization to true labels than in (1). For example, MASC
using true labels outperforms the model by upto 198.43%, 212.42%, 337.51% and 228.64% on MLP-
MNIST, CNN-Fashion-MNIST , AlexNet-CIFAR-~100 and ResNet-18-CIFAR-10 respectively. A more
detailed account of these numbers is in Table[7] This demonstrates that the layers of the memorized
network maintain representations in a manner that is amenable to straightforward generalization to
true labels to a degree not previously recognized.

. Conversely, we asked if a model trained on true training labels similarly retained internal representa-

tions that have the capability to memorize easily, as manifested by MASC. Adapting our technique
to this setting, we create corrupted training sets which we use to build MASC. In this setting, we

find that we can extract a high degree of memorization, in some cases. The results are presented in
Section [Hl
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5. Finally, leveraging the MASC classifiers built in (1) and (3), we ask, if we can retrain the memorized
model for a few epochs to achieve better model generalization to true labels. We find that indeed,
in many cases, there is an improvement in the generalization to true labels of the model.

2 Related work

The idea of probing intermediate layers of deep networks isn’t new. For example, kernel-PCA (Montavon
et all 2011) with RBF kernels has been used to analyze layerwise evolution of representations of deep
networks. In that work, they quantify the quality of layerwise representations and find that the last layers of
the network tend to have representations that are more simple and accurate than previous layers. Likewise,
linear classifier probes (Alain & Bengio, [2018) have been used to study the roles and dynamics of intermediate
layers in deep networks. There, they show that the degree of linear separability increases over the layers of
the network. However, they explicitly avoid examining memorized networks (Zhang et alJ 2017)) because
they thought such probes would inevitably overfit. Our results are therefore especially surprising in this
context, because we demonstrate, on the contrary, that intermediate representations, in fact, tend to resist
overfitting, to a degree not previously recognized.

The authors in (Zhang et al.2017)) investigate the question of whether deep networks can perfectly learn noise
by training on randomly relabeled data, showing that although such models achieve near-perfect training
accuracy, they exhibit poor generalization to the true labels. Subsequent work by (Arpit et al., [2017) shows
that early on in training, memorized networks (Zhang et al, |2017)) start off by having better generalization
to true labels; however generalization to true labels worsens as training accuracy increases across epochs of
training. Despite these observations, there have been limited efforts to analyze the internal representations of
models in the memorization regime (i.e. one where the labels of a subset of training data points are shuffled
randomly) using probing methods. It was assumed that the cause of poor generalization to true labels in
memorization settings directly manifests from poor representations. For example, in a probe-based analysis
(Alain & Bengio, 2018) argue that probe measurements would be “entirely meaningless” in memorization
settings. They say

“It was recently demonstrated that very large models can fit random labels on ImageNet
(Zhang et al., 2016). This is a situation that we want to avoid because the probe measure-
ments would be entirely meaningless in that situation.”

This view aligns with our null hypothesis that, during training, all layers of the network irretrievably re-
organize their representations in a manner that makes generalization to true labels difficult. However, the
alternative hypothesis that we articulate here has not been explicitly examined in past work, presumably
because it was not considered plausible: that one or more layers of the trained network retain significantly
more latent ability to generalize to true labels, but the network somehow “chooses” to readout in a manner
that is detrimental to generalization to true labels.

There have been efforts to build training algorithms that are designed to extract better generalization to true
labels in the case where the data is known to be noisy (Jiang et al., 2018; Han et al., 2018} |Liu et al., |2020)).
Stephenson et al (Stephenson et al., |2021)) investigate memorized models, suggesting that memorization
predominantly occurs in the later layers. This is based, in part, on the observation that rewinding early-
layer weights to their early-stopping values can recover generalization to true labels, whereas rewinding
later-layer weights does not yield the same effect. In general, the thinking in the field has been that while
there is an initial peak in generalization to true labels, it is lost during further training, although one can
mitigate some of this loss by modifying training (Jiang et al) [2018) or by rewinding a subset of weights
to their early values. On the contrary, our results suggest that layerwise outputs of deep networks retain
significant ability to generalize after training and we demonstrate that this generalization to true labels can
be extracted without modifying the weights of the trained network that are obtained via standard training
methods.
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An important line of theoretical research on deep linear models has explored the question of generalization
to true labels (Saxe et all 2013). Here, a theoretical explanation for the phenomenon of memorization in
networks trained with noisy labels has been proposed (Lampinen & Ganguli, 2018]).

Studies have investigated training dynamics across layers using various forms of Canonical Correlation Anal-
ysis (Raghu et al., [2017), including analyses in both generalized and memorized networks (Morcos et al.
. Centered Kernel Alignment has been employed to examine the effects of different random initializa-
tions (Kornblith et al., [2019), as well as to study network similarity between models trained on the same
data with different initializations (Kornblith et al., 2019). Additionally, experiments have explored the use
of representational geometry measures to understand the dynamics of layerwise outputs (Chung et al., 2016
Cohen et al., [2020)), along with other structural measures such as curvature dimensionality (Hénaff et al.
2019), which aim to capture underlying properties of learned representations (Sussillo & Abbott, 2009; Far-|
rell et all, [2019; [Gao & Ganguli, [2015} Litwin-Kumar et al [2017; Bakry et al. 2015} [Cayco-Gajic & Silver,
2019} [Yosinski et al., 2014} [Stringer et al. [2019)).

To address label noise, various heuristic approaches have been proposed (Khetan et al., [2017} [Scott et al.|
[2013; Reed et all 2014;Zhang & Sabuncu, [2018; Malach & Shalev-Shwartz, 2017)), particularly in the context
of classification tasks (Frénay et al. 2014; Ren et al., 2018; Menon et al., 2018; [Shen & Sanghavi, 2019).
In the case of overparameterized models, Li et al demonstrate that memorization requires
the network weights to deviate significantly from their initial random state in order to overfit noisy labels.
Additionally, in a theoretical model of epochwise double descent (Stephenson & Lee, [2021)), it has been
suggested that for smaller models, moderate levels of label noise can lead to a reduction in generalization
error at later stages of training.

3 Methods

3.1 Preliminaries

In this subsection, we state precisely the setting that is treated in this paper.

We study a classification task defined over a data distribution D, with an i.i.d. training dataset 7" drawn from
D. For a given corruption degree we generate a modified training set 7}, by randomly relabeling a certain
expected fraction of the training samples uniformly at random. The resulting label corrupted training data

distribution is denoted by D,,.

A series of prior studies (e.g., |Zhang et al.| (2017)); Arpit et al.| (2017))) have demonstrated that deep networks
can successfully fit such corrupted datasets T},, even when a substantial fraction of the labels are random-
ized. These findings highlight the remarkable expressive power of the hypothesis class H associated with
contemporary deep models. In particular, they show that H is sufficiently rich to learn training data arising
from highly perturbed label distributions such as D, thereby enabling the model to achieve near perfect
training accuracy despite the presence of significant label noise.

As the corruption degree p increases, the distribution of the corrupted data ﬁp diverges progressively from
the true distribution D. Consequently, one would expect that any network A trained to fit samples 7}, drawn
from D,, becomes increasingly misaligned with the task defined by D, and therefore performs poorly on test

dataset 77 drawn from distribution D. This phenomenon has been callecﬂ memorization in past work (e.g.
(Zhang et al., |2017} |2021} |Arpit et all [2017)).

5When we say the training dataset has corruption degree p, we mean that with probability p, we attempt changing the label
for each training datapoint. Changing the labels happens uniformly at random to any of the class labels. Note that this may
result in the label remaining the same; therefore the expected fraction of datapoints whose labels changed are p — p/K, where
K is the number of class labels. So, e.g. for a dataset with 10 classes, this would mean that for corruption degrees of 20%,
40%, 60%, 80% and 100%, the expected percentage of training datapoints with changed labels is 18%, 36%, 54%, 72% and 90%
respectively. We have run experiments for values of p being 0% (generalized model), and memorized models with p being 20%,
40%, 60%, 80% and 100% .

6This phenomenon could also be viewed as learning under label noise. However, given the usage of the term memorization
to refer to this phenomenon in past work, we choose to continue to do so here.
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For a network trained on Tp drawn from ﬁp, generalization would, usually, refer to network’s performance
on Dp after learning from Tp. In this work, however, we examine whether a network trained on Tp (using
the network’s internal representations) can perform well on test data drawn i.i.d. from the true distribution
D. Accordingly, we define good generalization in terms of high performance on a test set 77 sampled from
D. Throughout the rest of the paper, we refer to this notion simply as generalization to true labels.

3.2 Experimental setup

We have used multiple models and datasets, namely Multi-layer Perceptron (MLP) trained on MNIST
(Deng, 2012) and CIFAR-10 (Krizhevsky, [2009)) datasets, Convolutional Neural Networks (CNN) |Z| trained
on MNIST, Fashion-MNIST (Xiao et al.,[2017)), and CIFAR-10, AlexNet (Krizhevsky et al.,[2012) trained on
CIFAR-100 (Krizhevsky, [2009)) and Tiny ImageNet (Moustafal [2017)) and ResNet-18(He et al.| [2016) trained
on CIFAR-10. We have trained these models with training data having true labels (“generalized models”) as
well as separately using training data with labels shuffled to varing degrees (“memorized models”) (Zhang
ot al), 2017} [2021).

A summary of the models, datasets, training set sizes, and number of parameters is provided in Table
Tables [3] and [4 report the average training and test accuracies of all models over three runs. Additional
details on the models, hyperparameters, and training procedures are also included in the Appendix. The
general terminology used in this work is also explained in the Appendix.

Following standard practice in studying memorized models (e.g. |Stephenson et al. (2021)), we do not use
explicit regularizers such as dropout or batchnorm, or early stopping, unless otherwise mentioned, as a
result of which our baseline test accuracy numbers are often much lower than what is usually found with
standard training of these models. All the models are trained to either reach very high training accuracies
(i.e. 99% — 100%) or trained until 500 epochs. Some models did not reach such high accuracies, in which
case, results have been shown on the model obtained at epoch 500. We trained 3 instances of each model
and results displayed are averaged over these instances with the shaded region indicating the range of results
also indicated in the plots.

3.3 Minimum Angle Subspace Classifier Algorithm (MASC)

For a given data point « from the training or test set, a layer output data point x; from layer [ when input
x is passed through the network and its corresponding training subspaces {S;}5_, with K classes, we use
Minimum Angle Subspace Classifier (MASC) Algorithm [1] for predicting class labels y(x;).

Algorithm 1 Minimum Angle Subspace Classifier (MIASC)

Input: Training subspaces {Sk}le, layer output data point x; from layer [ when input « is passed through
the network and classes {C) }X ;.
Output: MASC prediction class label y(a;) according to layer [ .

: for each class C} do
xy <— compute the projection of x; onto subspace Sk.
Compute the angle 6(x;, xix) between x; and xyg

end for

. Assign the label y(x;) = C) where k = argminy, 0(x;, Tix)

: Return: label y(x;)

Given training dataset D{(z;,y;)}™,, where each x; € R? and y; € {Cy}5_, are input-label pairs, we
estimate training subspaces {.5, k}szl for all classes K, for a given layer [ of the neural network using Algorithm
and [3] In practice, Sy is represented via its principal components, which form a basis for the subspace.

We have used 99% as the percentage of variance explained by the principal components, unless otherwise
mentioned. While the subspaces are estimated using the training data alone, accuracy of the MASC is

"The CNN models were built along the lines of (Tran et al., [2022).



Published in Transactions on Machine Learning Research (02/2026)

Algorithm 2 Subspaces Estimator for MASC

Input: Training dataset D{(x;,y;)}™,, where each z; € R? and y; € {C)}X_, are input-label pairs, neural

network, and layer .

Output: Subspaces {Sy}X_, for classes K, for given layer [.

D=¢

: for each input pair (x;,y;) in D do
Pass x; through the network layers to obtain the output of layer I, denoted as x; € R!?.
Dy= Dy U{(z1,9:)}

end for

. Estimated subspaces {Sj}& ;| +— PCA-Based Subspace Estimation(D,)

: Return: Subspaces {S;}5_,

NP g W

Algorithm 3 PCA-Based Subspace Estimation
Input: Layer output D; = {(x;,y:)}", where &, € R and y; € {Cx}E .
Output: Subspaces {S;}5_, for classes K.
Drew < Dy
for each (x;,y;) € D; do
Dnew — Dnew ) {(_wmyz)}
end for
for cach k € {1,...,K} do
Extract the subset of data Dpew,x = {xi | ys = Ck}
Si =PCA(Dnew,k)
end for
Return: Subspaces {Si}_;

determined for the training data and the test data separately. This process is followed for all the layers in
the network independently. MASC is using labels of the dataset while creating the class-specific subspaces.
The process of creation and use of subspaces with MASC for a new data point are shown schematically in
Figure

We apply MASC on each layer of the network with respect to different subspaces. For MLP models, all
the MASC experiments were performed for all the layers in the network including on the input (after it
is pre-processed). For CNN models and AlexNet models, the experiments were performed on flatten layer
(Flat) and fully connected layers (FC). For ResNet-18 model, we evaluated nine layers — L0, L0-1, L0-2,
L0-3, L1, L2, L3, L4, and the average-pool (avg_pool) layer — containing 16,384; 16,384; 16,384, 16,384;
16,384; 8,192; 4,096; 2,048; and 512 neurons respectively. Here, LO denotes the layer immediately before the
L1 block; LO-1, LO-2, and LO-3 are intermediate outputs within the L1 block; and L1-L4 correspond to the
outputs of successive residual blocks. All layer outputs were flattened prior to analysis. While we ran the
experiments on the input layer for CNNs, we did not do so for AlexNet or ResNet-18.

3.4 Leveraging MASC to retrain the model

Here, the idea is to use one of the layerwise MASC classifiers in order to relabel the corrupted training set.
This relabeled training set is then used to retrain the existing model. To determine the layer whose MASC
classifier we will use, we find the layer whose MASC classifier generalizes best. To this end, we first split the
test data set into 80%-20%. We use the MASC accuracy on the corrupted subspaces in the validation set
(created from 20% of the test dataset) to identify the model’s best-layer. Then, using the best-layer MASC
predictions, we relabel the corrupted training dataset. We train with the relabeled corrupted training dataset
for upto 30 epochs and perform early stopping with patience of 3 by considering the 20% test dataset as a
validation dataset; this validation dataset was not used in reporting test accuracy. A similar process was
followed while working with subspaces corresponding to true labels. The test accuracy on the models is
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Figure 2: A schematic of the Minimum Angle Subspace Classifier (MASC) constructed for a specific hidden
layer. a) Illustration of the process of fitting a subspace (i.e. a linear space that passes through the origin)
corresponding to a single class, for the outputs of a specific hidden layer. For a specific layer, class-wise
training dataset (Class 1) is passed through the model till the hidden layer in question. For every output
datapoint (activation values) of the layer, a negative data point is added to the point set in order to zero-
center the outputs / dataset before performing Principal Components Analysis (PCA).

b) Such subspaces for the hidden layer are constructed for every class. When a new (e.g. unseen) datapoint
needs to be classified by MASC, its output from the hidden layer is computed, which is a datapoint in
the ambient space of the hidden layer. This datapoint is projected onto the individual class-conditional
subspaces and the angle between the data point and its respective projections, 61,...60, are determined.
MASC predicts the datapoint’s class to be the one whose subspace the datapoint has the smallest such angle
with, i.e arg min;{6;}.

calculated with respect to the 80% test dataset, obtained in the aforementioned split. A schematic of the
retraining process using MASC is shown in Figure [0

4 Enhanced innate generalization to true labels in memorized models

Models trained with corrupted labels have high training accuracy (on corrupted labels) while also having
low accuracy on the test set with true labels (Zhang et all 2017, [2021)). We ask if we can decode the
representations of the hidden layers of these memorized models to obtain better generalization to true labels.
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Figure 3: Minimum Angle Subspace Classifier (MASC) accuracy over the layers of the network when the
data is projected onto corrupted training subspaces with the indicated corruption degree, for multiple mod-
els/datasets. Rows corresponds to plots with the same corruption degree & the columns correspond to the
models, as noted. Training accuracy (dashed line) & test accuracy (dotted line) of the model is shown. FC
corresponds to fully connected layer with ReLU activation whereas Flat corresponds to flatten layer without
ReLU activation. The number of class-wise PCA components of these models are shown in Figure[30] SGD
optimizer was used for training MLP models, whereas Adam optimizer was
used for other models. ResNet-18 has layer outputs of size 16,384 for L0O-L1, followed by 8,192 (L2), 4,096
(L3), 2,048 (L4), and 512 (avg_pool) layer.
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To do so, we build a probe that we call Minimum Angle Subspace Classifier (MASC) using class-conditioned
corrupted training subspaces obtained from the memorized models’ hidden layer outputs. MASC is performed
layer-wise for the layers of the network independently. More details on MASC are available in the Methods
section. MASC accuracy on corrupted training data, MASC accuracy on original training data (with true
labels), and MASC accuracy on test data (with true labels) over the layers of MLP trained on MNIST,
CNN trained on Fashion-MNIST, AlexNet trained on CIFAR-100, and ResNet-18 trained on CIFAR-10 for
various randomly-chosen fractions of label corruption in training data (i.e. corruption degrees) are shown
in Figure Likewise, results for MLP trained on CIFAR-10, CNN trained on MNIST & CIFAR-10 and
AlexNet trained on Tiny ImageNet are presented in Figure 27]

Importantly, for every corrupted model we have (with non-zero corruption degree), except those with 100%
corruption degree, we find that our Minimum Angle Subspace Classifier (MASC) in at least one layer
(with one exceptiorE[) has better test accuracy than the corresponding model itself. Table |1 reports by
what percentage the MASC classifier outperformed the model for the best such layer, for each model. In
Table [6] we also report the accuracy difference between the MASC classifier and the model for the best
such layer, for each model. In many cases, the MASC test accuracy is dramatically better than that of the
model. This is remarkable, because, in addition to the layerwise outputs, MASC used precisely the same
information (including the same corrupted training dataset) that was available to the model itself, and yet
is able to extract better generalization to true labels. This suggests that the model retains significant latent
generalization to true labels, which is not captured in its own test-set performance. In many models, the
same MASC, especially on the later layers, also approaches perfect accuracy on the corrupted training set,
indicating that this improved generalization to true labels can happen concurrently with memorization of
training data points with shuffled labels. Below, we make more specific observations on the performance of
the models.

Table 1: Percentage by which the MASC classifier (run on the best layer) outperformed the model’s test
accuracy when the data is projected onto corrupted training subspaces. The best layer corresponds to the
one that has the highest measured MASC test accuracy among the layers for the said model/dataset. The
accuracies in each case are averaged over three runs and are rounded to the second decimal place. Some of
the detailed results are available in Appendix, as indicated.

Corruption degree 20% 40% 60% 80%

MLP-MNIST 10.93% 31.63% 75.04% 159.93%
MLP-CIFAR-10 (Appendix) 9.90% 24.42% 46.97%  64.75%
CNN-MNIST (Appendix) 9.81% 37.03% 98.69% 201.06%
CNN-Fashion-MNIST 7.49%  33.50% 84.93% 189.00%
CNN-CIFAR-10 (Appendix) 2.29% 6.26% 27.03% 60.17%
AlexNet-CIFAR-100 33.58% 53.10% 64.86%  45.00%
AlexNet-Tiny ImageNet (Appendix) 27.50% 53.46% 45.38%  14.16%
ResNet-18-CIFAR-10 -0.41% 20.34% 67.28% 119.16%

With generalized models i.e. those with 0% corruption degree, at the later layers of the network, it is observed
that in most of the cases MASC accuracy on training data approaches the models training accuracy. Similarly,
MASC accuracy on test dataset is comparable to or performed better than the models’ test accuracy, with
the exception of the ResNet-18 model.

Even for high corruption degrees, we find that MASC performs well. For example, with 80% corruption
degree, which implies that approximately 72% of the training labels have been changed, we observed good
MASC test accuracy in many cases. Notably, the MASC test accuracy on the later layers is over 80% on
MLP-MNIST, in comparison to 34% test accuracy by the model. Similarly, MASC test accuracy on one of
the layers is about 75% for CNN-Fashion-MNIST, in contrast to 25% model test accuracy. Even for larger

8ResNet-18 trained on CIFAR-10 with 20% corruption degree is the lone exception. See Figure [3| and Table [1] for the
corresponding results.
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models/datasets such as AlexNet-CIFAR-100, MASC test accuracy outperforms the model test accuracy by
45%, for training sets with 80% corruption degree. Likewise, for ResNet-18-CIFAR-10, several layers exhibit
MASC test accuracies that exceed the model’s test accuracy.

Not only does MASC have better accuracy than the model on the test data but, when applied to some
layers, it also does well on the training data with the true labels. Although the model has memorized the
training data with corrupted labels, outputs from certain layers have the ability to predict the trained true
labels. For example, in MLP-MNIST, for low to moderate degrees of corruption, MASC on the middle
layer (FC (512)) has good accuracy on the true training labels, while also retaining good accuracy on the
test set. With 40% corruption degree, approximately 36% are changed labels and yet the model has good
accuracy on the true training labels in at least one layer of the network. e.g. MLP-MNIST has over 90%
true training accuracy at layer FC(512), CNN-Fashion-MNIST has approximately 85% in Flat (576) layer
& AlexNet-CIFAR-100 has approximately 60% in FC (4096) layer. This means that almost 20% of those
labels are predicted correctly even though the model was trained for 500 epochs or has reached high training
accuracy on corrupted labels. In the process of doing this, the model does not have any direct information
about the true labels and neither does MASC.

For a subset of models, we also compare the results of test accuracy of MASC on trained model with early
stopping model accuracy. MASC accuracy over the layers of the network when the data is projected onto
corrupted training subspaces is shown in Figure[d Best model test accuracy and trained model test accuracy
are shown for reference. Best model test accuracy corresponds to the accuracy of the test data of the model
if early stopping was used.

For MASC when the data is projected onto corrupted training subspace, in AlexNet-CIFAR-100, the MASC
in at least one layer shows better performance than the best model test accuracy for less than 60% corruption
degree. For MLP-MNIST, the best model (early stopping) maintains over 90% accuracy even when the data
is corrupted up to 80%. Despite the increase in corruptions (except 100% corruption), the accuracy of
the last layer remains close to that of the best model accuracy. For CNN-Fashion-MNIST (except 100%
corruption), in at least one layer MASC performance is near to that of best model test accuracy.

One way to think about a deep network, is as one that successively transforms input representations in a
manner that aids in good prediction performance. Therefore, performance of MASC on the input is a good
baseline measure to assess if subsequent layers have favorable accuracies. Naively, for models trained with
corrupted data, one would expect layered representations that enable the model to do well on the corrupted
training data, but not do well on the test/training data that have true labels. While this expectation seems
to hold with respect to the model itself, we find that the layer-wise representations do not necessarily follow
this expectation. That is, MASC applied to subsequent layers, often have better true training accuracy and
test accuracy than MASC applied to the input, suggesting that the deep network does indeed transform the
data in a manner amenable to better generalization to true labels, even if its labels are dominated by noise.

5 Generalization to true labels comparison: MASC versus other probes

Given that MASC is a probe on layerwise outputs, it is natural to ask how a few other probes might perform
in the memorization setting. Accordingly, we have used five different probesﬂ on the layer of the deep neural
networks namely, Logistic Regression (LR) , K-Nearest Neighbor (KNN), Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), and Nearest Class Mean (NCM). Figure [5| reports the test
accuracies of all probes across the layers of MLP-MNIST, CNN-Fashion-MNIST, and AlexNet-CIFAR-100.
Model and MASC test accuracies are overlaid for comparison. Results for additional models are provided in
Section We also report computational cost (GFLOPS) for different probes over the layer of the network
in Section

We find that, although all probes achieve broadly comparable test accuracies — with no consistent pattern
regarding which probe performs best at different corruption levels — their computational costs (GFLOPs)
differ substantially. For AlexNet, the probes ranked from highest to lowest computational cost are: QDA,
LDA, KNN, MASC, LR, and NCM. For the CNN models, the ordering is KNN, followed by QDA and LDA

9Experimental setup is provided in Section
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(which have identical cost), MASC, LR and NCM. For the MLP models, the sequence is KNN, QDA, LDA,
MASC, LR, and NCM. Across all models, MASC consistently exhibits lower computational cost compared
to the KNN, QDA, and LDA probes, although its cost remains higher than that of LR and NCM.

Given this computational profile, we focus on results comparing the test accuracy of MASC with LR and
NCM; the corresponding results are detailed in Section [C.4] The three probes display distinct trends across
layers and corruption degrees. On AlexNet—CIFAR-100 and MLP-MNIST at 20%-40% corruption, MASC
surpasses both NCM and LR on most layers. For CNN-based models, NCM generally performs best, with
MASC typically ranking above LR. Notably, MASC matches or exceeds NCM in specific cases such as
CNN-MNIST and CNN-Fashion-MNIST at 20%, 40%, and 60% corruption, at the Flat(576) layer.

While our initial focus had been on MASC, it is interesting that other probes also have comparable per-
formance, and indeed, this performance isn’t always correlated with that of MASC. That is, in some cases,
these probes perform better than MASC in some layers and worse than MASC in other layers. This suggests
that latent representations that contain information useful for generalization to true labels may manifest in
different forms, which result in different probes decoding them with differing accuracies. This phenomenon
requires deeper investigation, which has been beyond the scope of the present paper.

6 Generalization to true labels via true training label subspaces in memorized
models

While Section [4] demonstrated improved generalization to true labels by MASC, here, we investigate if there
exist subspaces that can offer even better generalization to true labels. To this end, we consider the setting
where the true label identities of the training set are known, after training with corrupted labels is complete.
Can we extract significantly high training as well as test performance in this case from the layerwise outputs
of the network? To do so, we build MASC using subspaces obtained from training data with true labels.
It is a priori unclear if MASCs trained in this manner will have high accuracy. Since the network trained
assuming different labels for many of the datapoints, it is conceivable that class-wise subspaces corresponding
to true labels lack structure and predictive power. We find, however, that these possibilities do not bear out.

MASC accuracy on original training data and on test data projected on true training label subspace over
the layers of the same networks is shown in Figure [6] and Figure For comparison, MASC accuracy on
corrupted training data and test data projected on corrupted training subspace is also shown. We find that,
in many cases, accuracies on the true training labels, as well as the test set are dramatically better here than
with the experiments where subspaces were determined for the corrupted training data. In Table[7] we show
by what percentage the MASC classifier outperformed the model for the best layer for corruption degrees
20%, 40%, 60% and 80%. In Table|8] we also report the accuracy difference between the MASC classifier
and the model for the best such layer, for each model. In fact, the MASC test accuracies for the corrupted
models (with non-zero corruption degree) are sometimes fairly close to the test accuracy of the uncorrupted
model.

Notably, even for models trained with 100% corruption degree, in most cases, MASC retains significant
accuracy on the true training labels as well as the test set. This is in spite of the fact that the model itself
has chance-level test-set accuracy. For example, MASC classifier has 95% test accuracy in the last FC(2048)
layer for MLP-MNIST, 69% test accuracy for Flat(576) layer in CNN-Fashion-MNIST, and 4% test accuracy
for Flat(256) layer in AlexNet-CIFAR-100.

The results here are proof of principle that suggest the existence of subspaces which allow one to extract
significantly high generalization to true labels on models trained with datapoints whose labels are shuffled to
a remarkably high degree. This has two implications. On the one hand, it demonstrates that models trained
with very high label noise, surprisingly, retain the latent ability to generalize very well. On the other hand,
it suggests that development of new techniques to identify favorable subspaces could help markedly boost
generalization to true labels of models, whose training data is known to have label noise.

The results comparing MASC test accuracy over the layers of the network when the data is projected onto
true training subspaces with early stopping model accuracy is shown in Figure [7]
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Figure 6: Minimum Angle Subspace Classifier (MASC) accuracy over the layers of the network when the
data set is projected onto corrupted subspace and subspace corresponding to true training labels. Rows
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noted. Training and test accuracy of the model is shown. FC corresponds to fully connected layer with
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of class-wise PCA components for true training label subspaces of the models is shown in Figure SGD
optimizer was used for training MLP models, whereas Adam optimizer was used for other models. ResNet-18
has layer outputs of size 16,384 for L0-L1, followed by 8,192 (1.2), 4,096 (L.3), 2,048 (L4), and 512 (avg_ pool)

layer.
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The Appendix presents MASC comparison results across different PCA variance thresholds, along with an
analysis of MASC’s computational and time complexity. The Appendix also describes a control experiment
with MASC accuracies on a random initialization of the network. We have results corresponding to MLP
trained on CIFAR-10, CNN trained on MNIST and CIFAR-10, and AlexNet trained on Tiny ImageNet in
the Appendix for all the experiments. We also have a section comparing MLP models trained on MNIST
and CIFAR-10 with SGD and Adam optimizer.

In Section [H] we also investigating the latent memorization capabilities of uncorrupted models. Here, con-
versely, we ask how well a network trained on true labels can manifest memorization of an arbitrary relabeling
of its training data. More specifically, we built a MASC classifier on a model trained on true training labels,
with the goal of memorizing training data whose labels are corrupted to varying degrees post hoc. Interest-
ingly, we find a dichotomy in model behavior here, with some models trained on specific datasets having the
propensity to memorize to a high degree, whereas others not demonstrating such ability.

7 Leveraging MASC to retrain the base memorized model for improved
generalization to true labels

Taking into account the better generalization to true labels using MASC on memorized models, in this
section, we ask the following question. Can we use the MASC classifier to retrain the existing model to
achieve better generalization to true labels?

Details of the pipeline for retraining existing models, leveraging MASC are already presented before. For
different corruption degrees, test accuracy@ before and after retraining with relabeled data using MASC
(corrupted and true subspaces) for MLP-MNIST, MLP-CIFAR-10, CNN-MNIST, CNN-Fashion-MNIST,
CNN-CIFAR-10 models are shown in Figure [§] Similar results for AlexNet-CIFAR-100, AlexNet-Tiny Ima-
geNet models are shown in Figure 2]

In order to study the dynamics of accuracy during retraining, unencumbered by the early stopping criterion,
we also performed a similar experiment without using early stopping, for 10 epochs. The results for model
before training, model after retraining on MASC corrupted subspace, and model after retraining on MASC
subspace with true labels over the 10 epochs for all model-dataset pairs with various corruption degrees are
shown in Figure 6]

In Figure [§ and we find that for some models (MLP-MNIST, CNN-MNIST, CNN-Fashion-MNIST,
CNN-CIFAR-10) with non-zero corruption degrees, there is an improvement in the test accuracy of models
retrained using relabelling with MASC on corrupted subspaces, in comparison to the models’ test accuracy
before retraining (existing models). Indeed, in some cases, the improvement is quite significant, especially
for larger corruption degrees (that are below 100% corruption degree).

However, for some models (MLP-CIFAR-10, AlexNet-CIFAR100), the accuracy gains due to such retraining
appear marginal. Indeed, in some cases (MLP-CIFAR10, AlexNet-Tiny ImageNet for 20% corruption degree),
there is a decrease in the test accuracy with such retraining. In order to study why, we checked the fraction
of incorrect labels in the relabeled training dataset and compared it with the same measure for the existing
corrupted training dataset. For the corruption degrees 20%, 40%, 60%, and 80%, these results are plotted
in Figure Table [9] lists the exact values of the same.

In particular, it turns out that for MLP-CIFAR-10 and AlexNet-CIFAR-100 this fraction is almost equal to
the fraction on the existing corrupted dataset; for MLP-CIFAR-10 the fraction is marginally higher for the
relabeled dataset and for AlexNet-CIFAR-100, it is marginally lower. This simply implies that the MASC
classifier on the best layer that uses corrupted subspaces does roughly as well on the training set with true
labels as the existing model, while surprisingly, the same MASC classifier is able to perform significantly
better than the existing model on the test-set with true labels (See light orange bar in Figure [§] and .
With regard to retraining, it would seem that the relabeled training isn’t more effective than the existing
corrupted training set in training the model, which possibly reflects in the lack of significant improvement in
test accuracy. More broadly, this suggests that MASC’s better generalization to true labels isn’t necessarily

10Note that the test accuracy on the models is calculated with respect to the 80% test dataset.
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Figure 8: Test accuracies averaged over three runs on the 80% test dataset is plotted for different model-
dataset pairs for various corruption degrees and for various models/MASC classifiers. Model before retraining
corresponds to the existing memorized model. Model after retraining on MASC corrupted subspace corre-
sponds to model trained with training dataset relabeled using MASC corrupted subspace predictions on
the best layer. Model after retraining on MASC true subspace corresponds to model trained with training
dataset relabeled using MASC subspaces corresponding to true label predictions on the best layer. MASC
test accuracy on the best layers for corrupted and true label subspaces on existing corrupted models (before
retraining) are shown for comparison. The best layer was identified using a validation set that was carved
out of the test dataset, for this experiment. Error bar represents the range on three different runs.

accompanied by better training set performance on true labels. This phenomenon requires a more detailed
future investigation.

Secondly, for AlexNet-Tiny ImageNet with 20% corruption degree, the relabeled training set has significantly
fewer fraction of correct labels (92.46% lower) than in the existing corrupted training set. We wanted
to determine to what extent this lower fraction is driven by previously incorrect label predictions (in the
existing corrupted training dataset) being predicted correctly (in the relabeled set), versus previously correct
predictions being relabeled incorrectly. For all models, these numbers are visualized in Figures [44] & [45] and
Tables & list corresponding numbers. We find for the case of AlexNet-Tiny ImageNet with 20%
corruption degree that there is a small fraction (5.94%) of previously incorrect labels that are correctly
relabeled and a large fraction (24.46%) of correctly labeled points that are incorrectly labeled by the MASC
classifier trained on the corrupted label subspaces. Notably, even though this MASC classifier while doing
significantly worse on the training data than the model happens to do markedly better than the model in
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test accuracy. As before, we think that the poor performance of the retrained model is driven by the fact
that relabeling results in a dataset with larger fraction of incorrect labels.

Thirdly, in some cases (e.g., AlexNet-Tiny ImageNet with 40%, 60%, 80% corruption degree), we observe
that even though relabeling results in a somewhat larger fraction of incorrect labels, the test accuracy of the
retrained model is slightly better. This suggests that retraining performance is not simply driven by fraction
of correct labels, but that specifics of which points are relabeled can drive retraining performance in ways
that remain to be investigated.

With respect to models retrained on MASC true label subspaces, it was observed that the test accuracy of
such models usually performed significantly better than the models before retraining.

By-and-large, we find that the retrained models that use MASC corrupted subspace relabeling don’t have
better test performance than the corresponding MASC classifiers. However, it would be interesting to apply
MASC on the retrained models to see if that would further improve generalization to true labels performance.

8 Discussion

In this work, we investigated the phenomenon of memorized networks not generalizing well, asking why the
ability to generalize is apparently diminished due to the act of memorizing. We find, surprisingly, that the
intrinsic ability to generalize remains present to a degree not previously recognized, and this ability can be
decoded from the internals of the network by straightforward means. On the one hand, we design probes
that use the subspace geometry of the corrupted training data to decode such better generalization to true
labels. We also demonstrate using true labels post hoc that there exist subspaces that allow for an even more
improved decoding. Furthermore, we show that such decoding can be leveraged to retrain the models to
have better generalization to true labels. We also show (Appendix) that the internal representations of some
deep networks trained on true labels, possess the ability to substantially memorize relabelings of its training
data. Moreover, the new type of probe — MASC — that we use here, is relatively lightweight computationally
while being easy to implement and lending itself to a straightforward geometric interpretation.

In building MASC, we were motivated by the manifold hypothesis in machine learning [Goodfellow et al.
(2016) that posits that high-dimensional data typically reside on a low-dimensional manifold. It has also
been suggested (Brahma et al.||2015) that such manifolds in layerwise representations flatten across layers of
deep networks. Fitting manifolds can be computationally expensive, so we were interested in examining the
organization of classwise data in subspaces, even if such subspaces might be somewhat higher dimensional
than the corresponding manifolds. Indeed, this view leads to the natural idea of classifying unseen data
points by determining which class manifold it is closest to. MASC is simply a formalization of this idea.
In particular, this classifier lends strong geometric motivation and intuition, in contrast to e.g. training a
standard linear probe that iteratively minimizes a crossentropy loss. However, the reasons for the success
of MASC in this setting are still largely unclear to us. The difficulty is that the principles that underlie the
nature of layerwise representations in deep networks trained with standard techniques are not well understood
at this time and it appears that such representations play a significant role in the success of MASC in the
memorization setting. Indeed, it is even a bit surprising that the deep network does not directly leverage this
structure to obtain better generalization to true labels, although that may also be because its loss function
aims to maximize training accuracy which might run counter to the act of bettering generalization to true
labels.

An interesting question is about why this phenomenon even occurs; naively one would expect that deep
networks, on being trained with noisy data, discard the ability to generalize in favor of learning noise. Are
there specific inductive biases that promote such generalization to true labels? And, do such mechanisms also
promote generalization to true labels in networks whose training data isn’t corrupted significantly by such
noise? It would also be instructive to study the dynamics of this form of generalization to true labels during
training. It is known (Arpit et al.,|2017)) that the model’s test accuracy transiently peaks in the early epochs
of training with corrupted data, before dropping while training accuracy of the corrupted training data rises.
It is unclear whether this transient rise in model generalization to true labels is caused by the subspace
organization seen here, & if so, why such subspace organization isn’t degraded as much as the model’s test

19



Published in Transactions on Machine Learning Research (02/2026)

accuracy over further epochs of training. Additionally, certain deep networks trained on specific uncorrupted
datasets seem to possess internal representations that are amenable to significant memorization, whereas
others aren’t. The mechanistic basis of this ability is unclear & its possible connections to generalization to
true labels in the such models merit further investigation.

It is interesting that probes other than MASC also often have generalization to true labels comparable to
MASC, and this performance often manifests in layers different from those that have best accuracies of
MASC. The reasons for this are unclear and remain to be investigated.

The work has a number of implications. On the one-hand, it suggests that the ability to memorize and
generalize may not be antithetical. Indeed, in multiple cases, we are able to construct single MASC classifiers
that perform well both on the shuffled training labels as well as on the held-out test data that has true labels.
Secondly, theories proposed to explain generalization to true labels in deep networks have traditionally
argued for the setting where the data distribution is well-behaved, i.e. corresponding to real-world data,
but not for data with shuffled labels. We suggest, in light of the present results, that such theories also
ought to be able to explain why networks retain the ability to generalize even in the face of noisy training
data. That is, a satisfactory understanding of generalization to true labels in deep networks should also
cover settings where the training data is noisy and its distribution is not well-behaved. Thirdly and more
pragmatically, techniques such as the MASC classifier might suggest a way of boosting generalization to true
labels in trained deep networks, whose training data intrinsically contains varying degrees of label noise.
While this has been beyond the scope of the present paper, possibilities of designing new techniques for
learning subspaces that have good generalization to true labels could be explored. Indeed, it is possible
that significantly better subspaces exist than the ones uncovered here, & it would be interesting to see how
much the generalization to true labels accuracy can be improved by pursuing this direction. Relatedly, it
is possible that other classifiers operating on layerwise outputs have better performance than MASC — a
possibility that merits further exploration. Fourthly, it would be interesting to formulate a measure to study
representational similarity between memorized & generalized networks to see if they use similar mechanisms.
Does the answer depend on the particular class of networks (e.g. MLPs vs. CNNs)?

Finally, the results here are reminiscent of a puzzling phenomenon observed in Neuroscience. In multiple
settings (Miura et al.l 2012} |Stringer et al., 2021)), in the rat olfactory system and the mouse visual system,
it has been shown that a decoder using data from a subset of neurons from specific areas in the brain of a
well-trained behaving animal has accuracy significantly better than the behavioral accuracy of the animal
on novel trials, even though the animal is motivated to do well on the task. This implies that those animals
have better innate generalization to true labels ability on that task — which can be easily decoded from a
subset of their neurons — than is manifested by their behavior. It may therefore be that this is a phenomenon
shared between brains and machines, whose underlying mechanisms and potential trade-offs remain to be
investigated.

Broader impact statement

The Minimum Angle Subspace Classifier (MASC) is primarily an analytical probing method, and its direct
societal risks are therefore limited. However, caution is advised when applying it to models trained on sen-
sitive or proprietary data. In addition, probe-derived labels should not be repurposed for model retraining
without appropriate safeguards, as this may reinforce existing biases or propagate systematic mislabeling;
robust validation procedures, uncertainty thresholds, and human oversight are recommended. Finally, the
diagnostic performance of MASC should not be interpreted as equivalent to the underlying model’s gen-
eralization to true labels ability. MASC’s results are about understanding representations and not about
predicting how the model will perform when deployed.
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A Model details

Multilayer Perceptron (MLP) model has 4 hidden layers with 128, 512, 2048 and 2048 units respectively.
ReLU activation was used after every layer and for classification softmax activation was applied. We have
trained the models with two different optimizers namely, SGD and Adam. Learning rate of 1 x 1073 and
momentum = 0.9 was used with SG'D optimizer. Learning rate = 1 x 10~* was used for Adam in experiments.
Batch size of 32 was used in all the models. The dataset was normalized by dividing each pixel value with
255.

Convolutional Neural Network (CNN) network has 3 blocks, each consisting of two convolutional layers, one
max pooling layer. These blocks are followed by three fully connected layers. Convolutional layers have
16, 32, and 64 filters, respectively with stride=1 and filter size = 3 x 3. Max pooling layer has stride of
1 and filter size of 2 x 2. The fully connected layers at the end has 250 units each. It was trained with
Adam optimizer with learning rate of 0.0002. For MNIST and Fashion-MNIST batch size of 32 whereas for
CIFAR-10 batch size of 128 were used. The dataset was normalized by subtracting the mean and diving
by the standard deviation for each channel. ReLU activation was used after every layer except pooling and
softmax activation for classification.

AlexNet model was slightly modified for the use of each dataset. Adam optimizer with learning rate of
0.0001 was used. For CIFAR-100, batch size of 128 and for Tiny ImageNet, batch size of 500 was used. All
the results with respect to test on AlexNet trained on Tiny ImageNet are shown with the validation dataset.
CIFAR-100 dataset before training was normalized by subtracting the mean and diving by the standard
deviation for each channel. No data normalization was performed on Tiny ImageNet dataset.

ResNet-18 model was slightly modified for the use of CIFAR-10 dataset. SGD optimizer with learning rate
of 0.001 and momentum of 0.9 was used. Batch size of 32 was used for training. The dataset was normalized
by subtracting the mean and diving by the standard deviation for each channel.

The experiments were performed on workstations/servers with a variety of GPUs; including Nvidia GeForce
RTX3080s, GeForce RTX3090s, Tesla V100s and A100s.

A summary of the models and datasets with training set size and number of parameters is in Table 2l The
average training and test accuracies of the models over three different runs used in the paper are shown in
Tables Bl and [

Table 2: Training set size of the datasets and the number of parameters of the models.

Training Number of

Model Dataset .
set size parameters

MLP MNIST 60,000 5,433,994
CIFAR-10 50,000 5,726,858
CNN MNIST 60,000 344,042
Fashion MNIST 60,000 344,042
CIFAR-10 50,000 456,330
AlexNet  CIFAR-100 50,000 38,738,952
Tiny ImageNet 100,000 39,776,464
ResNet-18  CIFAR-10 50,000 11,173,962

A.1 General terminology

The general terminology used in this work is as follows:

e« Model Training Accuracy: The accuracy of the model on the training set with corrupted labels.

e Model Test Accuracy: The accuracy of the model on the test dataset with true labels.
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Table 3: Average training accuracy in percentages of all the models over three runs over different corruption
degrees (indicated in the last six columns). The values are rounded to the second decimal place.

Model Dataset Parameter 0% 20% 40% 60% 80% 100%
MLP MNIST SGD 99.99 99.99 99.99 99.99 100.0 100.0
Adam 100.0 99.87 99.73 99.77 99.73 99.66

CIFAR-10 SGD 99.99 99.99 99.99 99.99 99.99 99.99

Adam 99.63 99.53 99.43 99.61 99.52 30.21

CNN MNIST Adam 99.90 99.32 98.62 97.25 95.11 94.92
Fashion-MNIST Adam 99.15 99.14 97.90 96.25 91.65 83.14

CIFAR-10 Adam 99.70 99.29 99.26 99.03 99.02 39.69

AlexNet CIFAR-100 Adam 99.19 99.15 99.11 99.16 99.14 97.88
Tiny ImageNet Adam 99.92 99.90 99.91 99.93 &87.71 85.95

ResNet-18 CIFAR-10 SGD 100.0 100.0 100.0 100.0 100.0 -

Table 4: Average test accuracy in percentages of all the models over three runs over different corruption
degrees (indicated in the last six columns). The values are rounded to the second decimal place.

Model Dataset Parameter 0% 20% 40% 60% 80% 100%
MLP MNIST SGD 97.87 87.38 73.28 54.16 32.09 9.81
Adam 98.31 90.49 76.78 55.59 31.85 9.77

CIFAR-10 SGD 56.37 48.62 40.35 30.55 19.68 9.80

Adam 52.24 44.11 35.55 25.24 15.18 10.07

CNN MNIST Adam 99.15 87.51 69.44 47.10 28.30 9.85
Fashion-MNIST Adam 90.74 T77.74 61.35 43.26 25.57 10.08

CIFAR-10 Adam 74.95 60.48 46.15 30.96 18.32 9.89

AlexNet CIFAR-100 Adam 36.75 28.44 20.53 9.64 3.43 0.96
Tiny ImageNet Adam 1588 974 544 202 0.73 0.43

ResNet-18 CIFAR-10 SGD 80.02 67.39 51.53 34.48 20.02 -

e Minimum Angle Subspace Classifier (MASC) Accuracy on Corrupted Training: Using
Algorithm 1 (main paper), the accuracy of MASC predicted class labels with respect to corrupted
labels of training dataset.

o Minimum Angle Subspace Classifier (MASC) Accuracy on Original Training: Using
Algorithm 1 (main paper), the accuracy of MASC predicted class labels with respect to true labels
of training dataset.

o Minimum Angle Subspace Classifier (M ASC) Accuracy on Test: Using Algorithm 1 (main
paper), the accuracy of MASC predicted class labels with respect to true labels of test dataset.

B Minimum Angle Subspace Classifier

A schematic illustrating the retraining process using Minimum Angle Subspace Classifier (MASC) is shown
in Figure [9]
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Figure 9: A schematic of the memorized model retraining pipeline that leverages MASC. Step 1: We first
split the test dataset into 80%-20%. Step 2: We use the MASC accuracy on the corrupted subspaces on the
20% of the test dataset to identify the model’s best-layer. Step 3: Using the best-layer MASC predictions,
we relabel the corrupted training dataset. Step 4: We train with the relabeled corrupted training dataset
for upto 30 epochs and perform early stopping with patience of 3 by considering the 20% test dataset as
a validation dataset. A similar process was followed while working with subspaces corresponding to true
labels. Step 5: The test accuracy on the models is calculated with respect to the 80% test dataset.
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C Generalization to true labels comparison: MASC vs. other probes

C.1 Experiment setup

For comparison, we evaluated five probes across all network layers: Logistic Regression (LR), K-Nearest
Neighbors (KNN), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Near-
est Class Mean (NCM).

For LR, we load the full corrupted training and test layer outputs along with labels, construct respectively
data loaders with batch size 128, and train a PyTorch logistic regression model for 20 epochs using the Adam
optimizer (learning rate 1 x 10~2) with cross-entropy loss. The test loader is used for inference.

For NCM, we load the corrupted training and test layer outputs along with labels, compute class-wise mean
vectors from the training data, and classify each test example by cosine similarity to these class means.

For LDA and QDA, we load the same training and test layer outputs along with labels. We use scikit-learn
library to build and train the corresponding models on the corrupted training layer outputs. Evaluating is
performed using the test layer outputs.

For KNN, we use scikit-learn library to build the model with n_ neighbors=5 and cosine distance, following
the same training and evaluation protocol as LDA.

C.2 Results on additional models

Test accuracy of various probes over the layers of the MLP trained on CIFAR-10, CNN trained on MNIST
and CIFAR-10, and AlexNet trained on Tiny ImageNet are shown in Figure MASC test accuracy was
overlaid for comparison.

C.3 Computational cost across layers

The computational costs (in GFLOPs) for the various probes over the layers of the network are presented
in Figure [L1] for MLP-MNIST, CNN-Fashion-MNIST, and AlexNet—CIFAR-100, and in Figure [12] for the

remaining models.

C.4 Comparing generalization to true labels of MASC with logistic regression and nearest class mean

Test accuracy of Logistic Regression (LR), Nearest Class Mean (NCM) and MASC over the layers of the
network for MLP-MNIST, CNN-Fashion-MNIST, and AlexNet-CIFAR-100 are shown in Figure [13] and for
MLP-CIFAR-10, CNN-MNIST, CNN-CIFAR-10, and AlexNet-Tiny ImageNet are shown in Figure

The three probes exhibit distinct behaviors across network layers and corruption degrees.  For
AlexNet—CIFAR-100 and MLP-MNIST at 20% and 40% corruption, MASC outperforms both NCM and
LR on most layers. In contrast, for CNN-based models, NCM generally achieves higher accuracy than
MASC across the majority of layers, while MASC typically performs better than LR. However, there are in-
stances where MASC matches or surpasses NCM — for example, in CNN-MNIST and CNN—Fashion-MNIST
at 20%, 40%, and 60% corruption degrees, at the FLAT (576) layer.

D MASC comparison results with various PCA variance thresholds.

In this section, we compare MASC performance using subspaces constructed with different variance
thresholds: 99%, 75%, 50%, 25%, and a single principal component (1PC). Results for MLP-MNIST,
CNN-Fashion-MNIST, and AlexNet—CIFAR-100 are presented in Figure with additional model results
shown in Figure

For these experiments, a single trained model was used, and the MASC computations for the variance
comparison were repeated across different seeds. To assess robustness with respect to randomness, we
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Figure 10: Test accuracies for different probes over the layers of the network. Rows corresponds to plots
which have the same corruption degree and the columns correspond to the models as noted. Test accuracy
of the model and MASC are shown for comparison. FC corresponds to fully connected layer with ReLU
activation whereas Flat corresponds to flatten layer without ReL U activation.
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Figure 11: Computational costs (GFLOPS) for different probes over the layers of the network. Computational
costs (GFLOPS) of MASC are shown for comparison. FC corresponds to fully connected layer with ReLU
activation whereas Flat corresponds to flatten layer without ReLU activation.

performed five runs using seeds 10, 20, 30, 40, 50, and report the results as the mean along with the 95%
confidence interval (CI).

For most models, we observed that under non-zero corruption degrees, several variance thresholds across
many layers outperform the model’s generalization to true labels. However, no consistent pattern emerges
across all model-dataset pairs as the variance thresholds vary.

For MLP-MNIST and CNN-Fashion-MNIST, subspaces capturing variance of 75%, 50%, 256%, and even
1-PC often outperformed the subspace capturing 99% variance across multiple layers. In contrast, for
AlexNet—CIFAR-100, the 99% variance threshold performed better than the other thresholds at 20% and
40% corruption degrees. Additionally, we found that the 1-PC subspace exceeded the performance of other
thresholds in several models.

E Computational costs of MASC

In this section, we report total time taken (in seconds) and computation cost (GFLOPS) of MASC for
building the subspaces and inference over the layers of the network, for multiple models/datasets are shown
in Figure (17| and Figure The computational cost (GFLOPS) for building per-class subspaces are shown
in Figure

It was observed that, although inferencdﬂ requires more computational operations (in GFLOPs) than sub-
space construction, the total time taken for inference is nevertheless lower. This is likely because inference

1By inference in the context of MASC, we mean act of using the already determined subspaces to classify incoming data
point(s).
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Figure 12: Computational costs (GFLOPS) for different probes over the layers of the network. Computational
costs (GFLOPS) of MASC are shown for comparison. FC corresponds to fully connected layer with ReLU
activation whereas Flat corresponds to flatten layer without ReL U activation.

computations are highly optimized and benefit more from hardware acceleration than the covariance and
PCA steps involved in building subspaces.

We also find a clear scaling trend with respect to layer dimensionality. Layers with higher feature dimen-
sionality — such as FC(2048), FC(4096), or Flat(1024/576) — consistently require higher computational cost
during subspace construction. In contrast, lower-dimensional layers (e.g., FC(128) or FC(250)) remain com-
paratively inexpensive. This behavior aligns with the expected quadratic dependence of PCA based subspace
construction on the feature dimension, and highlights that computational cost grows steadily as the layer
dimensionality increases.

F Experiments with AlexNet model trained on Tiny ImageNet

MASC test accuracy over the layers of AlexNet trained on Tiny ImageNet when the data is projected onto
corrupted training subspaces with the indicated corruption degree is shown in Figure Test accuracy of
the model and best model test accuracy is shown for comparison. Best model test accuracy corresponds
accuracy of the test data of the model if early stopping was used.

Even for AlexNet-Tiny ImageNet corrupted model (with non-zero corruption degree), except those with
100% corruption degree, we find that our Minimum Angle Subspace Classifier (MASC) in at least one layer
has better test accuracy than the corresponding model itself.

MASC test accuracy over the layers of AlexNet trained on Tiny ImageNet when the data set is projected
onto corrupted training and true training subspace is shown in Figure
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Figure 13: Test accuracies for different probes over the layers of the network. Rows corresponds to plots
which have the same corruption degree and the columns correspond to the models as noted. Test accuracy
of the model and MASC are shown for comparison. FC corresponds to fully connected layer with ReLU
activation whereas Flat corresponds to flatten layer without ReL U activation.
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Figure 14: Test accuracies for different probes over the layers of the network. Rows corresponds to plots
which have the same corruption degree and the columns correspond to the models as noted. Test accuracy
of the model and MASC are shown for comparison. FC corresponds to fully connected layer with ReLU
activation whereas Flat corresponds to flatten layer without ReLLU activation.
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G Random initializations of control models versus trained models

This section covers a set of control experiments to show MASC performance on random initialized model
and contrast this with the trained models presented in the main text. We have verified that, for every such
control model, the model training and test accuracies for the randomly initialized models is at chance level,
for the corresponding dataset in question.

MASC accuracy on test for randomly initialized model and trained model when data is projected on corrupted
training subspaces is shown in Figure [22| and Trained model training and test accuracies are shown for
reference.

We find that indeed accuracies of the MASC classifier on the random initialization outperforms the network,
except for low corruption degrees (i.e. <= 20% corruption degree). However, in the experiments where
subspaces are trained on corrupted training data from corrupted models, by-and-large, the MASC classifier
usually, and on at least one layer outperforms the MASC classifier trained on the random initialization with
exceptions being the 80% corruption degree models on MLP-MNIST, AlexNet-Tiny ImageNet and 100%
corruption degree on CNN-Fashion-MNIST.

MASC accuracy on test for random initialized model and trained model when data is projected on sub-
spaces corresponding to true training labels is shown in Figure 23] and 25] Notably, for the experiments
where subspaces are constructed with true labels on corrupted models, the MASC classifier on these models
outperforms the MASC classifier on random initializations usually and certainly in at least one layer on
every model tested. These results are consistent with the main message of the paper, namely that even with
memorized models, the layerwise representations of the models are organized in a manner that they develop
significant ability to generalize over and above that bestowed by a random initialization, and in particular,
they do not lose this ability, as one might have naively expected, due to label noise. If they were losing this
ability, then the MASC classifier on the subspaces would end up performing significantly worse than the
MASC classifier run on randomly initialized models.

Although it is interesting that random projection have good generalization to true labels, it is not surprising
as this has been shown (Alain & Bengio| 2018) and also studied (Jarrett et al., 2009).

H Investigating latent memorization capabilities of uncorrupted models

Conversely, we ask how well a network trained on true labels can manifest memorization of an arbitrary
relabeling of its training data. More specifically, we built a MASC classifier on a model trained on true
training labels, with the goal of memorizing training data whose labels are corrupted to varying degrees post
hoc.

To do this, we shuffle the labels of the training set to some corruption degree and construct the corresponding
class-specific subspaces with respect to the layerwise outputs of the generalized models, i.e. models trained
with uncorrupted training data. We then build a MASC classifier corresponding to these subspaces.

MASC accuracy on corrupted training data, original training data and MASC accuracy on test data over the
layers of the networks are shown in Figure We have results on additional models, namely MLP trained
on CIFAR-10, CNN trained on MNIST and CIFAR-10, and AlexNet trained on Tiny ImageNet; see Figure
29 In Table[}] we show by what percentage the MASC classifier outperformed the model train accuracies
on the corrupted labels for the best layer for corruption degrees 20%, 40%, 60% and 80%.

Interestingly, we find a dichotomy in model behavior here, with some models trained on specific datasets hav-
ing the propensity to memorize to a high degree, whereas others not demonstrating such ability. Specifically,
we observe that for uncorrupted models with low/modest model test accuracies (i.e. AlexNet-CIFAR-100
and AlexNet-Tiny ImageNet), the MASC classifiers described above have high accuracies on the corrupted
training set (i.e. appear to be able to memorize with high accuracies). Conversely, in most uncorrupted
models with high model test accuracies (i.e. MLP-MNIST and CNN-Fashion-MNIST), we find that these
MASC classifiers have more modest accuracies on the training set with corrupted labels (i.e. do not memorize
to a high degree). This suggests the hypothesis that high generalization to true labels inhibits the innate
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Table 5: Percentage by which the MASC classifier (run on the best layer) outperformed the model’s train
accuracy on corrupted labels. The model is trained on images with true training labels. MASC classifier is
operating on subspaces corresponding to corrupted training data. The best layer corresponds to the one that
has the highest measured MASC train accuracy among the layers for the said model/dataset. The accuracies
in each case are averaged over three runs. The values are rounded to the second decimal place.

Corruption degree 20% 40% 60% 80%

MLP-MNIST -2.714%  -2.35% -1.81% 3.11%

MLP-CIFAR-10 (Appendix) 18.4% 51.28% 112.81% 255.93%
CNN-MNIST (Appendix) -0.24%  0.40% 3.50% 26.76%
CNN-Fashion-MNIST -5.33%  -1.01% 7.79%% 50.05%
CNN-CIFAR-10 (Appendix) 13.17%  42.65% 101.38% 243.12%
AlexNet-CIFAR-100 27.91% 70.03% 152.78%  394.89%

AlexNet-Tiny ImageNet (Appendix) 23.19% 63.18% 144.52%  389.85%

ability of models to memorize and conversely that low/moderate generalization to true labels is accompanied
by representations that offer greater propensity to memorize, at least as manifested by the MASC classifier.
However, more work is needed to study this phenomenon to understand the trade-offs and the mechanisms
underlying them, which has been beyond the scope of the present work. Also, surprisingly, we find that
MASC classifiers often have test accuracies that approach or exceed uncorrupted model test accuracies, even
though they correspond to corrupted subspaces (see e.g. AlexNet-CIFAR-100 and AlexNet-Tiny ImageNet).

I Experimental results on additional models (MLP-CIFAR-10, CNN-MNIST,
CNN-CIFAR-10, AlexNet-Tiny ImageNet and ResNet-18-CIFAR-10)

In Table[6] we report the accuracy difference between the MASC classifier — when the data is projected onto
corrupted training subspaces — and the model for the best such layer.

Table 6: Accuracy difference between the MASC classifier (run on the best layer) and the model’s test
accuracy when the data is projected onto corrupted training subspaces. The model’s test accuracy are
reported in Table [df The best layer corresponds to the one that has the highest measured MASC test
accuracy among the layers for the said model/dataset. The accuracies in each case are averaged over three
runs. The values are rounded to the second decimal place. The values are rounded to the second decimal
place.

Corruption degree 20% 40% 60% 80%
MLP-MNIST 9.55 23.18 40.65 51.33
MLP-CIFAR-10 (Appendix) 4.81 9.85 14.35 12.75
CNN-MNIST (Appendix) 8.59 2572 46.49 56.91
CNN-Fashion-MNIST 5.82 20.55 36.74 48.33
CNN-CIFAR-10 (Appendix) 1.39 289 837 11.02
AlexNet-CIFAR-100 9.55 1090 6.26  1.54
AlexNet-Tiny ImageNet (Appendix) 2.68 291 0.92 0.10
ResNet-18-CIFAR-10 -0.28 10.48 23.20 23.86

In Table|7, we show by what percentage the MASC classifier (subspace corresponding to true labels) outper-
formed the model for the best layer for corruption degrees 20%, 40%, 60% and 80%. In fact, the MASC test
accuracies for the corrupted models (with non-zero corruption degree) are sometimes fairly close to the test
accuracy of the uncorrupted model. In Table [8] we also report the accuracy difference between the MASC
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classifier — when the data is projected onto training subspaces corresponding to true labels — and the model
for the best such layer.

Table 7: Percentage by which the MASC classifier (run on the best layer) outperformed the model’s test
accuracy when the data is projected onto training subspaces corresponding to true labels. The best layer
corresponds to the one that has the highest measured MASC test accuracy among the layers for the said
model/dataset. The accuracies in each case are averaged over three runs. The values are rounded to the
second decimal place.

Corruption degree 20% 40% 60% 80%

MLP-MNIST 10.96% 32.01% 77.77%  198.43%
MLP-CIFAR-10 (Appendix) 11.00% 30.27%  66.92%  146.09%
CNN-MNIST (Appendix) 10.69% 39.50% 104.97%  239.44%
CNN-Fashion-MNIST 837%  33.09% 88.97%  212.42%
CNN-CIFAR-10 (Appendix) 3.29% 13.43% 58.23%  138.65%
AlexNet-CIFAR-100 38.78% 68.91% 133.76% 337.51%
AlexNet-Tiny ImageNet (Appendix) 33.31% 83.85% 157.10% 212.33%
ResNet-18-CIFAR-10 2.92% 32.23% 93.55%  228.64%

Table 8: Accuracy difference between the MASC classifier (run on the best layer) and the model’s test
accuracy when the data is projected onto training subspaces corresponding to true labels. The model’s test
accuracy are reported in Table [l The best layer corresponds to the one that has the highest measured
MASC test accuracy among the layers for the said model/dataset. The accuracies in each case are averaged
over three runs. The values are rounded to the second decimal place.

Corruption degree 20% 40% 60% 80%
MLP-MNIST 9.57 23.46 42.13 63.69
MLP-CIFAR-10 (Appendix) 5.35 1221 20.44 28.76
CNN-MNIST (Appendix) 9.36 27.43 49.45 67.77
CNN-Fashion-MNIST 6.51 20.30 38.49 54.32
CNN-CIFAR-10 (Appendix) 1.99 6.20 18.03 25.40
AlexNet-CIFAR-100 11.03 14.15 12.90 11.58
AlexNet-Tiny ImageNet (Appendix) 3.25 457  3.17 1.55
ResNet-18-CIFAR-10 1.97 16.61 32.26 45.77

All the experimental results on additional models i.e, MLP-CIFAR-10, CNN-MNIST, CNN-CIFAR-10 and
AlexNet-Tiny ImageNet are shown in this section.

MASC accuracy over the layers of the MLP trained on CIFAR-10, CNN trained on MNIST, CNN trained
on CIFAR-10, and AlexNet trained on Tiny ImageNet when the data is projected onto corrupted training
subspaces is shown in Figure MASC accuracy over the layers of the MLP trained on CIFAR-10, CNN
trained on MNIST, CNN trained on CIFAR-10, and AlexNet trained on Tiny ImageNet when the data set
is projected subspace corresponding to true training labels is shown in Figure MASC accuracy over
the layers of the generalized MLP network trained on CIFAR-10, CNN trained on MNIST, CNN trained
on CIFAR-10 and AlexNet network trained on Tiny ImageNet when the data is projected onto corrupted
training subspaces is shown in Figure 29]

J  Number of PCA components

This section covers the number of class-wise PCA components used in all the experiments.
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Number of class-wise PCA components of corrupted training subspace over the layer of MLP-MNIST,CNN-
Fashion-MNIST, and AlexNet-CIFAR-100 is shown in Figure |30| and MLP-CIFAR-10,CNN-MNIST, CNN-
CIFAR-10 and AlexNet-Tiny ImageNet is shown in Figure For generalized models, it is observed that for
99% variance captured, the number of PCA components is significantly smaller in comparison to the ambient
dimensionality of the layer (number of units in that layer). Over corruption, it is observed that for MLP-
MNIST, MLP-CIFAR-10, and CNN-Fashion-MNIST, the number of class-wise PCA components increase.
And the variance between the number of dimensions decrease. For AlexNet-CIFAR-100 and AlexNet-Tiny
ImageNet, it is the opposite case, wherein the number of PCA components over corruption decreases.

Number of class-wise PCA components of original training subspaces over the layer of networks is shown
in Figure 32 and Figure [33] We find that for original training subspaces, although the dimensionality has
increased with corruption degree, the variance has remained the approximately similar.

Number of class-wise PCA components of original training subspaces over the layer of networks of the
generalized model is shown in Figure [34 and Figure [35] .

K SGD vs Adam

We have also trained MLP networks with Adam optimizer on MNIST and CIFAR-10 with various degrees
of corruption. The results for MASC accuracy using corrupted subspaces is shown in Figure [36] and its
respective average number of PCA components is shown in Figure [37. With both optimizer choices, even
with high corruption degrees, we find that the MASC have better accuracy than the model on the test data.
MASC on corrupted training accuracy in most cases reaches the models training accuracy at the latter layers
of the network with an exception of MLP trained on MNIST. In most cases, at the initial FC (128) layer of
the network, there is a drop in accuracy observed in comparison to the corresponding value for the input and
then an increase in latter layers of the network; the MLP trained on CIFAR-~10 with SGD is an exception,
however.

For 40% corruption degree, although approximately 36% of labels are flipped, with MLP trained on MNIST,
model trained on Adam has MASC test accuracy of around 95%, and around 50% for CIFAR-10. This is
better than the MASC accuracy at the input layer and models test accuracy. For 60% corruption degree
with MLP trained on MNIST, model trained on Adam has MASC test accuracy of around 90% whereas for
model trained on SGD is around 85%. Although the networks are trained with 56% of label corruption, yet
in FC (512) layer, the MASC training original accuracy is about 70% for model trained on Adam whereas
it is 85% for model trained on SGD. MASC on original training data does unfavorably on model trained
with SGD rather than with Adam, although further investigation is required.

The results for MASC accuracy using original subspaces are shown in Figure 38 and its respective average
number of PCA components are shown in Figure MLP models trained with Adam have qualitatively
similar results. The results for MASC accuracy using corrupted subspaces of generalized models are shown
in Figure [0] and its respective average number of PCA components are shown in Figure MLP models
trained with Adam have qualitatively similar results.

L Retraining experiment results on AlexNet models and additional analysis results.

Retraining the model using MASC experiment results on AlexNet models i.e, AlexNet-CIFAR-100 and
AlexNet-Tiny ImageNet for different corruption degrees are shown in this section. Test accuracies averaged

over three runs on the 80% test dataset is plotted for different AlexNet-dataset pairs for various corruption
degrees and for various models/MASC classifiers is shown in Figure

Decrease in fraction of incorrectly labeled data points resulting from relabeling the training set expressed as
a fraction of size incorrectly labeled points in the existing corrupted data, using the corresponding best-layer
MASC classifier (corrupted subspace and true subspace) is shown in Figure 43| for all models-dataset pairs
and corruption degree 20%, 40%, 60%, & 80%. The average values for reference are available in Table @
The percentage of incorrect labels that are correctly relabeled using MASC (corrupted subspace and true
subspace) for all models-dataset and corruption degrees 20%, 40%, 60%, 80% is shown in Figure The
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average values for reference are available in Table The percentage of incorrect labels that are correctly
relabeled using MASC (corrupted subspace and true subspace) for all models-dataset and corruption degrees
20%, 40%, 60%, 80% is shown in Figure The average values for reference are available in Table

Table 9: The average decrease in fraction of incorrectly labeled data points resulting from relabeling the
training set expressed as a fraction of size incorrectly labeled points in the existing corrupted data, using
the corresponding best-layer MASC classifier. The values are rounded to the second decimal place.

Subspace Corrupted labels True labels

Corruption degree 20% 40% 60% 80% 20% 40% 60% 80%
MLP-MNIST 76.93%  38.63% 19.90% 7.75% | 97.83%  99.66%  99.93%  99.95%
MLP-CIFAR-10 3.45% 238%  1.10% 0.22% | 95.49%  97.91%  98.75% 99.14%
CNN-MNIST 88.15%  89.19% 86.44%  71.12% | 92.42%  96.46%  96.93% 97.12%
CNN-Fashion-MNIST 40.69%  64.96% 69.38%  62.61% | 35.96%  66.08%  79.26%  80.59%
CNN-CIFAR-10 6.25% 3.30%  9.18% 3.79% | 16.44%  40.22%  81.75% 80.09%
AlexNet-CIFAR-100 -0.09% 0.26% -0.20%  -0.32% | 99.61%  98.96%  90.20% 95.13%
AlexNet-Tiny ImageNet | -92.46% -26.50% -3.95% -11.55% | -91.32% -20.24% 2.89% -12.38%

Table 10:

The average percentage of incorrect labels that are correctly relabeled using MASC (corrupted

subspace and true subspace) for all models and for corruption degrees 20%, 40%, 60%, 80%. The values are
rounded to the second decimal place.

Subspace Corrupted labels True labels

Corruption degree 20% 40% 60% 80% 20% 40% 60% 80%
MLP-MNIST 77.62% 38.65% 19.90%  7.75% | 99.23% 99.80% 99.95% 99.96%
MLP-CIFAR-10 559%  2.82% 1.20%  0.24% | 99.08% 99.12% 99.23% 99.37%
CNN-MNIST 93.71% 91.34% 87.64% 72.08% | 98.27% 98.54% 98.26% 97.88%
CNN-Fashion-MNIST 81.42% 79.18% 76.16% 66.23% | 83.82% 86.80% 88.76% 86.08%
CNN-CIFAR-10 17.70% 11.54% 12.30%  5.51% | 41.98% 55.63% 89.85% 85.41%
AlexNet-CIFAR-100 0.15%  0.43%  0.19%  0.06% | 99.84% 99.32% 91.06% 95.34%
AlexNet-Tiny ImageNet | 5.94%  3.96%  051%  0.41% | 25.01% 24.43% 18.77%  3.26%

Table 11: The average percentage of correct labels that are incorrectly relabeled using MASC (corrupted
subspace and true subspace) for all models and for corruption degrees 20%, 40%, 60%, 80%. The values are

rounded to the second decimal place.

Subspace Corrupted labels True labels
Corruption degree 20% 40% 60% 80% 20% 40% 60% 80%
MLP-MNIST 0.15%  0.01% 0% 0% | 0.31%  0.08%  0.03%  0.03%
MLP-CIFAR-10 047%  0.25% 0.13%  0.06% | 0.79%  0.69%  0.58%  0.59%
CNN-MNIST 1.22%  1.20% 1.40%  249% | 1.28%  1.17%  1.55% 1.97%
CNN-Fashion-MNIST 8.86%  8.06% 8.04%  9.30% | 10.42% 11.76% 11.26% 14.12%
CNN-CIFAR-10 2.52%  4.67% 3.69%  4.48% | 5.62%  873%  9.60%  13.82%
AlexNet-CIFAR-100 0.06% 0.11% 0.57%  1.44% | 0.06%  0.23%  1.26%  0.81%
AlexNet-Tiny ImageNet | 24.46% 20.10% 6.60% 46.97% | 28.92% 29.48% 23.51% 61.39%

37




Published in Transactions on Machine Learning Research (02/2026)

M Retraining experiment: epoch-wise results

To study the dynamics of accuracy during retraining, unencumbered by the early stopping criterion, we also
performed a similar experiment without using early stopping, for 10 epochs. The results for model before
training, model after retraining on MASC corrupted subspace, and model after retraining on MASC original
subspace for all model-dataset pair and for various corruption degrees are shown in The following steps
are performed to retrain the model for corrupted and original subspaces independently.

1. Test dataset is split into 80%-20%.

2. The model’s best layer is identified using MASC accuracy on the validation set (carved out from
20% of the test dataset).

3. The corrupted training dataset was relabeled using the best layer MASC predictions.

4. The existing corrupted model was loaded for retraining purpose. Using the relabeled corrupted
training dataset, the model was further trained for 10 epochs.

5. The remaining 80% test dataset was used to calculate generalization to true labels.
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Test Accuracy

Figure 15: Minimum Angle Subspace Classifier (MASC) test accuracy over the layers of the network when
the data is projected onto corrupted training subspaces with the indicated corruption degree, for multiple
models/datasets. Rows corresponds to plots with the same corruption degree & the columns correspond to
the models, as noted. Test accuracy (dotted line) of the model is shown. FC corresponds to fully connected
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Figure 16: Minimum Angle Subspace Classifier (MASC) test accuracy over the layers of the network when
the data is projected onto corrupted training subspaces with the indicated corruption degree, for multiple
models/datasets. Rows corresponds to plots with the same corruption degree & the columns correspond to
the models, as noted. Test accuracy (dotted line) of the model is shown. FC corresponds to fully connected
layer with ReLU activation whereas Flat corresponds to flatten layer without ReLU activation.
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Figure 17: Total time taken in seconds by MASC for building the subspaces and inference over the layers of
the network, for multiple models/datasets. FC corresponds to fully connected layer with ReLU activation
whereas Flat corresponds to flatten layer without ReLU activation.
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Figure 18: Total computational cost (GFLOPS) by MASC for building the subspaces and inference over the
layers of the network, for multiple models/datasets. FC corresponds to fully connected layer with ReLU
activation whereas Flat corresponds to flatten layer without ReLU activation.
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Figure 19: Computational cost (GFLOPS) by MASC for building per-class subspace over the layers of
the network, for multiple models/datasets. FC corresponds to fully connected layer with ReLU activation
whereas Flat corresponds to flatten layer without ReLU activation.
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Figure 20: MASC test accuracy over the layers of AlexNet trained on Tiny ImageNet when the data is
projected onto corrupted training subspaces with the indicated corruption degree. Test accuracy of the model
and best model test accuracy is shown for comparison. Best model test accuracy corresponds accuracy of
the test data of the model if early stopping was used.
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Figure 21: MASC test accuracy over the layers of AlexNet trained on Tiny ImageNet when the data set is
projected onto corrupted training and true training subspace. Test accuracy of the model and best model
test accuracy is shown for comparison. Best model test accuracy corresponds accuracy of the test data of
the model if early stopping was used.
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Figure 22: MASC accuracy over the layers of trained and random initialized network when the data is
projected onto corrupted training subspaces with the indicated corruption degree.
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Figure 23: MASC accuracy over the layers of trained and random initialized network when the data set is
projected onto subspace corresponding to true training labels. Test accuracy of the trained model is shown
for comparison.
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Figure 24: MASC accuracy over the layers of trained and random initialized AlexNet-Tiny ImageNet when
the data is projected onto corrupted training subspaces with the indicated corruption degree.
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Figure 25: MASC accuracy over the layers of trained and random initialized AlexNet-Tiny ImageNet when
the data set is projected onto subspace corresponding to true training labels.
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Figure 26: Minimum Angle Subspace Classifier (MASC) accuracy over the layers of the generalized network
when the data set is projected onto corrupted training subspaces with the indicated corruption degree. Rows
corresponds to plots which have the same corruption degree & the columns correspond to the generalized
models as noted. Training & test accuracy of the generalized model is shown. FC corresponds to fully
connected layer with ReLU activation whereas Flat corresponds to flatten layer without ReLU activation.
The respective number of class-wise PCA components of the models is shown in Figure SGD optimizer
was used for training MLP models, whereas Adam optimizer was used for other models.
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Figure 27: MASC accuracy over the layers of the network when the data is projected onto corrupted training
subspaces with the indicated corruption degree. The number of class-wise PCA components of these models
are shown in Figure 31}
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Figure 28: MASC accuracy over the layers of the network when the data set is projected onto corrupted
subspace and subspace corresponding to true training labels. The respective number of class-wise PCA
components for true training label subspaces of the models is shown in Figure [33]
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Figure 29: MASC accuracy over the layers of the generalized network when the data set is projected onto
corrupted training subspaces with the indicated corruption degree. The respective number of class-wise PCA
components of the models is shown in Figure
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Figure 30: Class-wise number of PCA components of the corrupted training subspace over the layers of
multiple networks with various corruptions degrees. Although it is not mentioned in the legend, all the 100
classes of CIFAR-100 are plotted.
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Figure 31: Class-wise number of PCA components of the corrupted training subspace over the layers of
multiple networks with various corruptions degrees. Although it is not mentioned in the legend, all the 200
classes of Tiny ImageNet are plotted.
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Figure 32: Class-wise number of PCA components of the subspace corresponding to true training labels over
the layers of multiple networks with various corruptions. Although it is not mentioned in the legend, all the
100 classes of CIFAR-100 are plotted.
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Figure 33: Class-wise number of PCA components of the subspace corresponding to true training labels over
the layers of multiple networks with various corruptions. Although it is not mentioned in the legend, all the
200 classes of Tiny ImageNet are plotted.
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Figure 34: Class-wise number of PCA components of the corrupted training subspace over the layers of
multiple generalized networks with various corruption degrees. Although it is not mentioned in the legend,
all the 100 classes of CIFAR-100 are plotted.
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Figure 35: Class-wise number of PCA components of the corrupted training subspace over the layers of
multiple generalized networks with various corruption degrees. Although it is not mentioned in the legend,
all the 200 classes of Tiny ImageNet are plotted.

o7



Published in Transactions on Machine Learning Research (02/2026)

—=- Model Training Accuracy =~ —®— MASC Accuracy on Corrupted Training ~ —#— MASC Accuracy on Test
----- Model Test Accuracy —&— MASC Accuracy on Original Training

MLP-SGD-MNIST MLP-Adam-MNIST MLP-SGD-CIFAR-10 MLP-Adam-CIFAR-10

0% corruption degree

20% corruption degree

40% corruption degree

Accuracy

60% corruption degree

80% corruption degree

I o o
> o o
L L s
L L L
L L L

100% corruption degree
o
N

o
S

K )\ ) ) ) K ) N ) )\ K ) ) )\ ) K ) N ) )
o ;c,\ﬂ%?c e CGQ&%C(LB&% o < 01%\20\6\1 c\"”ou%c\”‘gu% o QC&%YC &P C(LQD‘%COQ&% o < &%Qc e CG“&%C(LQ&%
< < < < < < < <

T T T

Network layers

Figure 36: MASC accuracy over the layers of the MLP network when the data is projected onto cor-
rupted training subspaces with the indicated corruption degree, for MLP models with MNIST and CIFAR-10
datasets. Rows corresponds to plots which have the same corruption degree and the columns correspond to
the models with SGD and Adam optimizer as noted. Training and test accuracy of the model is shown.
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Figure 37: Class-wise number of PCA components of the corrupted training subspace over the layers of MLP
networks trained with MNIST and CIFAR-10 datasets with various corruption degree. Rows corresponds
to plots which have the same corruption degree and the columns correspond to the models with SGD and
Adam optimizer as noted.
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Figure 38: MASC accuracy over the layers of the MLP network when the data set is projected onto subspace
corresponding to true training labels. Rows corresponds to plots which have the same corruption degree and
the columns correspond to the models with SGD and Adam optimizer as noted. Training and test accuracy
of the model is shown. FC corresponds to fully connected layer with ReLU activation.
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Figure 39: Class-wise number of PCA components of the subspace corresponding to true training labels
over the layers of MLP networks with various corruption degrees. Rows corresponds to plots which have the
same corruption degree and the columns correspond to the models with SGD and Adam optimizer as noted.
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Figure 40: MASC accuracy over the layers of the generalized MLP network when the data set is projected
onto corrupted training subspaces with the indicated corruption degree. Rows corresponds to plots which
have the same corruption degree & the columns correspond to the generalized models with SGD and Adam
as noted. Training & test accuracy of the generalized model with SGD and Adam is shown.
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Figure 41: Class-wise number of PCA components of the corrupted training subspace over the layers of
generalized MLP network with various corruption degrees. Rows corresponds to plots which have the same
corruption degree and the columns correspond to the models with SGD and Adam optimizer as noted.
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Figure 42: Test accuracies averaged over three runs on the 80% test dataset is plotted for different AlexNet-
dataset pairs for various corruption degrees and for various models/MASC classifiers. Model before retraining
corresponds to the existing memorized model. Model after retraining on MASC corrupted subspace corre-
sponds to model trained with training dataset relabeled using MASC corrupted subspace predictions on
the best layer. Model after retraining on MASC true subspace corresponds to model trained with training
dataset relabeled using MASC subspaces corresponding to true label predictions on the best layer. MASC
test accuracy on the best layers for corrupted and true label subspaces on existing corrupted models (before
retraining) are shown for comparison. The best layer was identified using the validation set which was carved
out of the test set for this experiment. Error bar represents the range on three different runs.
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Figure 43: Decrease in fraction of incorrectly labeled data points resulting from relabeling the training set
expressed as a fraction of size incorrectly labeled points in the existing corrupted data, using the correspond-
ing best-layer MASC classifier. That is if X is the number of data points incorrectly labeled in corrupted
dataset and Y is the number of data points incorrectly labeled in relabeled dataset then each of these plots
refer to (X-Y)/X. Rows corresponds to results with the same corruption degree. The first column correspond
to results with MLP and CNN models and second column with AlexNet model, as noted. The fractions are
averaged over three runs. Error bar represents the range on three different runs.
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Figure 44: The percentage of incorrect labels that are correctly relabeled using MASC (corrupted subspace
and true subspace) for all the models and for corruption degrees 20%, 40%, 60%, 80%. Rows corresponds to
results with the same corruption degree. The first column correspond to results with MLP and CNN models
and second column with AlexNet model, as noted. The percentage are averaged over three runs. Error bar
represents the range on three different runs.
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Figure 45: The percentage of correct labels that are incorrectly relabeled using MASC (corrupted subspace
and true subspace) for all the models and for corruption degrees 20%, 40%, 60%, 80%. Rows corresponds to
results with the same corruption degree. The first column correspond to results with MLP and CNN models
and second column with AlexNet model, as noted.The percentage are averaged over three runs. Error bar
represents the range on three different runs.
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Figure 46: Test accuracy on 80% dataset is plotted for different model-dataset pairs for various corruption
degrees over 10 epochs. The experiment was performed without using early stopping. Model before re-
training corresponds to the existing memorized model. Model after retraining on MASC corrupted subspace
corresponds to model trained with training dataset relabeled using MASC corrupted subspace predictions on
the best layer. Model after retraining on MASC true subspace corresponds to model trained with training
dataset relabeled using MASC subspaces corresponding to true label predictions on the best layer. Error
bar represents the range on three different runs.
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