
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NO MORE HARD PROMPTS: SOFTSRV PROMPTING FOR
SYNTHETIC DATA GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel soft prompt based framework, SoftSRV, that leverages a frozen
pre-trained large language model (LLM) to generate targeted synthetic text se-
quences. Given a sample from the target distribution, our proposed framework
uses data-driven loss minimization to train a parameterized “contextual” soft
prompt. This soft prompt is then used to steer the frozen LLM to generate syn-
thetic sequences that are similar to the target distribution. We argue that Soft-
SRV provides a practical improvement over common hard-prompting approaches
that rely on human-curated prompt-templates, which can be idiosyncratic, labor-
intensive to craft, and may need to be specialized per domain. We empirically
evaluate SoftSRV and hard-prompting baselines by generating synthetic data to
fine-tune a small Gemma model on three different domains (coding, math, reason-
ing). To stress the generality of SoftSRV, we perform these evaluations without
any particular specialization of the framework to each domain. We find that Soft-
SRV significantly improves upon hard-prompting baselines, generating data with
superior fine-tuning performance and that better matches the target distribution
according to the MAUVE similarity metric.

1 INTRODUCTION

In recent years, pre-trained large language models (LLMs) have proven to be effective in generating
synthetic natural language training data (Gunasekar et al., 2023; Li et al., 2023; Eldan & Li, 2023;
Mukherjee et al., 2023; Mitra et al., 2023; Abdin et al., 2024). This is particularly true when the
synthetic data is used to pre-train or fine-tune smaller language models, enabling performances that
rival models that are orders of magnitude larger (Liu et al., 2023). There are several motivations
for generating and using synthetic training data; chief among them is the need to train models for
domains where little natural high-quality text may be readily available or may be difficult to procure.

In order to generate synthetic text, a significant amount of human-driven prompt engineering is
invested into developing prompts that steer the generating LLM into producing high-quality text
from a targeted domain while also encouraging sufficient diversity. This point was very nicely
summed up by the authors of the open-source synthetic text repository Cosmopedia (Ben Allal
et al., 2024), when recounting their attempt to recreate a large synthetic dataset similar to the one
generated to train Phi 1.5 (Li et al., 2023):

“Heads up: If you are anticipating tales about deploying large-scale generation
tasks across hundreds of H100 GPUs, in reality most of the time for Cosmopedia
was spent on meticulous prompt engineering.” – Ben Allal et al. (2024)

Furthermore, and especially in the case of generating fine-tuning data for targeted domains (e.g.,
coding, math, customer service), this manual process may need to be repeated and refined per-
domain, or even per sub-domain (e.g., per coding language, math subject, service department).
Apart from the human engineering cost, these manual prompting approaches do not directly opti-
mize a data-driven objective. Rather they depend on human-in-the-loop style feedback for manually
adjusting the prompt templates, resulting in approaches that lack robust mechanisms for aligning the
LLM’s generated data with the desired distribution.

To address these issues, we propose an algorithmic framework, Soft prompt-based Synthesis with
Randomized Variation (SoftSRV), that leverages soft-prompting (also known as prompt-tuning) for

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

synthetic text data generation. Soft prompt training is a parameter efficient tuning method and re-
quires a relatively limited amount of compute (Lester et al., 2021; Li & Liang, 2021). Perhaps
equally important, since the soft prompt is trained using a data-driven training algorithm, it requires
essentially no human-in-the-loop intervention, enabling the process to be readily deployed across
many different domains. Furthermore, soft prompts themselves can allow for more expressive input
contexts to the generating LLM compared to natural language hard prompts. A soft “token”, rep-
resented by a dense vector, is not restricted to correspond to a particular discrete natural language
token (e.g., sub-word or character). This intuitive observation is formalized in Petrov et al. (2024b),
which shows that in specific settings soft prompts can induce an LMM to produce an exponential (in
sequence length) number of text completions, while hard prompts only allow for a linear number of
completions.

Why do we expect soft-prompting to be effective for targeted synthetic generation? Prior theoretical
research on fine-tuning language models suggests that a data-driven optimization of soft prompts
guides a pre-trained model towards specific concepts or tasks it has already learned, essentially
steering the model towards a relevant subspace of interest (Wies et al., 2023; Petrov et al., 2024b;a).
Our goal is to use soft prompts to steer the pre-trained model towards generating text that most
resembles the target distribution. Subsequently, fine-tuning a smaller model using the generated
data provides an effective way to transfer knowledge from the larger model to the smaller model.

Unlike in typical prompt-tuning approaches, we do not prepend a soft prompt to an existing hard
prompt, but instead use the soft prompt alone as input context to the LLM. We use a sample of text
sequences (i.e., a sample from the desired target text distribution) and language-modeling loss to
learn a parametrized soft prompt. Once trained, the soft prompt can be varied by conditioning on a
context vector derived from an example sequence, allowing for additional expressive power and the
potential to better fit different regions of a potentially complex target distribution.

Our contributions presented in this work are as follows:

• We demonstrate that soft prompts can be effectively trained for the purpose of targeted
synthetic text generation used to fine-tune downstream models.

• We investigate the value of learning parameterized families of soft prompts that can be
conditioned on an input context, finding they are critical for best fitting complex target
distributions.

• Our empirical evaluations on coding, math, and reasoning tasks find superior downstream
performance for models fine-tuned on SoftSRV generated text compared to that of models
fine-tuned on data generated by baseline hard-prompting approaches.

• We show that the SoftSRV approach is general and offers greater versatility than hard-
prompting approaches as it can be readily applied across different domains with minimal
manual intervention.

• We measure the similarity of the generated data to the target distribution using the MAUVE
metric and observe that SoftSRV methods align most closely with the target distribution.

2 PROPOSED APPROACH

In this section, we introduce the general SoftSRV framework as well as a few specific instantiations
that are studied in this work. First, we start with some basic notation and terminology.

Given a vocabulary V of textual tokens, let {x1, . . . , xn} denote a sample of n text sequences, be-
longing to the set of all possible sequences Sm of a finite maximum length m, drawn according to a
fixed but unknown distribution D. Although we are not able to directly sample additional sequences
from D, our goal is to synthesize sequences that could have plausibly been drawn according to D.
We assume access to a (frozen) LLM, denoted L : Sm → Sm, where we input and output sequences
of equal fixed length m for notational simplicity and without loss of generality. Furthermore, we
explicitly decompose the LLM, L = H ◦ E, where E : Sm → Rd×m represents the initial em-
bedding layer that embeds each token of the input sequence to a d-dimensional dense vector, and
H : Rd×m → Sm represent the remainder of the language model that maps the embedded tokens to
the output sequence. In contrast to the prompt tuning methods of Lester et al. (2021) in the standard
fine-tuning setting, we do not prepend the learned soft tokens to a hard prompt after it passes the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Data sample
(x1,...,xn) ~ D

x SoftSRV
(𝛉)z P𝛉(z) x'Sequence

embedder
Pre-trained

LLM
Loss(x, x')

Gradient update 
∇𝛉Loss(x, x')

Frozen parameters

Trainable parameters

Figure 1: A diagram illustrating the training workflow of the SoftSRV framework. An example
sequence x is embedded into a dense vector z via a (frozen) sequence encoder model. The SoftSRV
model, parameterized by θ and conditioned on the embedding z, produces a soft prompt Pθ(z).
This is then fed to a (frozen) pre-trained LLM, which produces a synthetic example x′. Similar
to autoencoder-based training, the gradient of a next-word-prediction “reconstruction” loss is com-
puted and used to update the SoftSRV parameters.

initial embedding layer, E. Instead, for our approach we discard E entirely method and rely on the
frozen model H .

The SoftSRV framework seeks to synthesize sequences similar to those drawn from D by train-
ing a “soft prompt”, i.e. a dense embedding (or parameterized family of embeddings) P ∈ Rd×t
consisting of 0 < t < m “soft-tokens”. A successfully trained soft prompt, P, should generate
a sequence x = H(P), via frozen model H , that has a high likelihood of occurring under the
distribution D. More generally, we can sample several different sequences from a fixed prompt,
x, x′, x′′ . . . ∼ H(P), by using randomized temperature-based decoding. Although temperature
sampling alone does allow for some variability, we can further increase the variety of generated text
by using a contextual soft prompt, P(·) : Rde → Rd×t. A contextual soft prompt can be conditioned
with different context vectors z ∈ Rde , during training and generation, to induce variations of the
soft prompt.

Before introducing specific soft prompt instantiations, we describe the SoftSRV training proce-
dure which is common throughout and also illustrated in Figure 1. In addition to the sample
of data (x1, . . . , xn) and frozen LLM (H), we assume access to a sequence embedding function
emb(·) : Sm → Rde and we let θ denote the trainable parameters of the (contextual) soft prompt
Pθ(·). During training, each training sequence is embedded zi = emb(xi) and used to generate
a conditioned soft prompt Pθ(z), which is fed into the frozen LLM H to produce a new sequence
x′i ∼ H(Pθ(zi)) using the standard sequential (next token) generation. A standard causal (next-
word) prediction loss, denoted `(·, ·), is backpropagated through the network up to the soft prompt
layer Pθ, and an SGD-style update is applied to θ using the gradient ∇θ`(xi, x′i). This loss can be
thought of as a “reconstruction” error and the entire pipeline is akin to an auto-encoder. Viewing the
pipeline through this lens, it is apparent that the sequence embedder emb(·) should be sufficiently
“lossy” in order to avoid making the learning problem trivial. This lossiness can be enforced by
restricting the dimension de of the embedding, for example.

Once the contextual soft prompt P(z) has been trained, we can then generate synthetic data by
prompting the LLM using P(z) as embedded input context for different choices of context vec-
tor z. A natural choice is to sample embeddings (z1, . . . , zn) derived from the data sample set
(x1, . . . , xn). We now introduce a few specific SoftSRV parameterizations studied in this work.

2.1 NON-CONTEXTUAL SOFT PROMPT (SSNSP)

The simplest parameterization treats the dt entries of a soft prompt, P ∈ Rd×t, directly as trainable
parameters, i.e., θ = P , resulting in the following objective:

argminθ

n∑
i=1

`(H(P), xi) , (1)

where it is understood that, in practice, the argmin over θ is only approximated via SGD. This param-
eterization is an instance of a non-contextual soft prompt, i.e., any context z is ignored. Despite the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

lack of context, the synthesized output may still be diversified by using non-greedy (i.e., temperature
sampling) decoding during LLM generation.

2.2 MIXTURE OF PROMPTS (SSMPk)

Here, we train k “basis” soft prompt matrices and define the final soft prompt, as a mixture of these
bases. More precisely, in this variant the parameter set is θ = {P1, . . . ,Pk, φ}, where Pi ∈ Rd×t
are the basis prompts,

Pθ(z) =

k∑
i=1

wiPi , (w1, . . . , wk) =Wφ(z), (2)

and Wφ(·) : Rde → Rk is a learned softmax function with parameters φ ∈ Rdw . The trained SSMPk

prompt is then the SGD solution to argminθ
∑n
i=1 `(H(Pθ(emb(xi)), xi).

The intuition behind this formulation is for each learned basis soft prompt Pi to encode a different
aspect (mode) of the target data distribution and have each training example xi approximated by
a mixture of these modes (similar to the intuition behind mixture or topic models (Hand, 2018)).
Previous prompt-tuning works have also made use of a mixture of soft prompts, albeit not focused
on training data synthesis (Qin & Eisner, 2021; Dun et al., 2023).

2.3 MLP CONCATENATED (SSMC)

We consider a collection of t small MLPs, whose output is concatenated to generate the final soft
prompt. Let Fφi

: Rde → Rt denote the ith MLP with parameters φi, and θ = {φ1, . . . , φt} denote
the parameters for the collection of MLPs. Then, we define:

Pθ(z) =
[
Fφ1

(z), . . . , Fφt
(z)

]
, (3)

and the trained SSMC soft prompt is the SGD solution to argminθ
∑n
i=1 `(H(Pθ(emb(xi)), xi).

This parameterization is the most expressive that we consider, in that each “soft-token” in the soft
prompt is computed using a distinct non-linear transformation of the context vector z.

3 EMPIRICAL EVALUATION

In the our empirical evaluation of the SoftSRV framework, we consider a supervised fine-tuning
setting where a small Gemma 2B model (Team et al., 2024) is fine-tuned on synthetic data generated
by a larger decoder-only language model across several different benchmark datasets.

3.1 DOMAINS AND DATASETS

In order to demonstrate the generality of the proposed approach, we consider fine-tuning for several
disparate domains (coding, mathematics, reasoning) using the same exact pipeline with no particular
specialization to any of the particular domains. We briefly describe the specific benchmark we use
from each domain.

Code – MBPP (Austin et al., 2021). For the coding domain, we consider the “Mostly Basic Python
Problems” (MBPP) benchmark, which consists of short Python programming exercises, e.g. “Write
a python function to find the first repeated character in a given string” and answers written in Python
code. The task is evaluated using a 3-shot prompt (i.e. a prompt pre-pended with three instructional
examples) and pass@1 metric, measuring if a single top generated result is correct.

Math – GSM8K (Cobbe et al., 2021). For the math domain, we use the grade school math word
problems from the GSM8K benchmark. This dataset contains only highly-curated word problems
written by humans that are conceptually simple, but require multi-step reasoning. For this generative
task we use a 5-shot prompt, again, measuring the pass@1 metric.

Reasoning – BoolQ (Clark et al., 2019). For the general reasoning domain, we consider the bi-
nary question answering dataset from the BoolQ benchmark. The questions arise organically from

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

anonymized Google search queries which can be answered as either ‘true’ or ‘false’. Each question
and answer is paired with a passage (average length of 108 tokens) that is extracted from a relevant
Wikipedia page. This is evaluated as a scoring/classification task and accuracy is reported.

The above chosen benchmarks aim to cover a wide variety of tasks, each with varying degrees of
complexity – both in terms of solving the task and in terms of generating synthetic data for the task.
The MBBP task requires basic Python programming knowledge to solve, but the questions are gen-
erally short, follow a similar pattern and are concerned with a relatively narrow set of themes. The
GSM8K task requires basic math and language comprehension skills, but generating the problem is
arguably even harder than solving it. It requires generating a premise containing several numerical
quantities and then a question that can be answered using the provided information in a non-trivial
fashion. Nonetheless the premises are somewhat formulaic and thematically similar. The BoolQ
reasoning task, which requires general reading comprehension to solve, is perhaps the most difficult
task to generate synthetic data for. Generating a problem requires writing a long (relative to MBPP
and GSM8K) passage on an arbitrary topic that contains a collection of facts, but that does not nec-
essarily stick to any formula or theme, and then generate a true/false question that can be answered
directly by the passage. As we shall see in the empirical evaluation that follows, the level of dif-
ficulty in generating a high-quality question can impact the relative quality and value of generated
synthetic data.

3.2 HARD-PROMPTING BASELINES

Typical hard prompt engineering approaches involve manually creating prompt templates that are
then seeded with text from the desired target domain, typically taken from the training set. To give
a (simplistic) illustrative example, a template could be:

Consider the following [article], write a textbook quality
summary of the topic suitable for a high-school audience,

where the placeholder [article] would be replaced with example texts from training fold, produc-
ing several distinct prompts. In this study, we consider the following two hard-prompting variants.

The first, denoted simply as hard prompt (HP), uses a domain-specific hard prompt template to
generate a question followed by another domain specific hard prompt template to generate answers
(the detailed workflow is discussed in Subsection 3.3). In Appendix B, we provide the exact tem-
plates used by the HP method. To reach these templates, we undertook several iterations of hard
prompt engineering and reported the result of the best performing method. In particular, we found
that prompting for a "diverse" set of questions was crucial (a comparison plot is presented in Ap-
pendix A.5).

The second approach, hard-prompting with self-refinement (HPSR), similarly uses a hard prompt
template to generate questions but also iteratively conducts several rounds of self-critique to im-
prove or accept the question (Madaan et al., 2023). Again, critique and refinement prompts are in
Appendix B.

3.3 EMPIRICAL EVALUATION PROCEDURE

For each benchmark dataset and each data generation approach, the evaluation pipeline is as follows.

1. Train SoftSRV prompts. For the SoftSRV methods, we first train the soft prompt parame-
ters with a frozen large decoder-only LM backbone using the questions found in the training fold
of the dataset, which serves as our sample from the target distribution. Recalling we embed each
question, zi = emb(xi), we run an Adam optimizer to minimize the causal next-word-prediction
loss, argminθ

∑n
i=1 `(H(Pθ(zi), xi), where Pθ(z) is the conditioned soft prompt and H is the

frozen LLM (post input embedding layer). The sequence embeddings, emb(·), are computed as
the average of token embeddings computed by a small off-the-shelf decoder-only LM. This simple
embedding approach is used to both limit the amount of additional computation, but also to en-
sure the embedding is somewhat lossy in order to make the reconstruction task (i.e. minimizing
`(H(Pθ(emb(xi)), xi) challenging. The simpler SSNSP method does not use this sequence embed-
ding as it operates with a non-contextual soft prompt.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#steps × batch-size / train set size

0.05

0.10

0.15

0.20

0.25

0.30

0.35
M

BP
P 

3-
sh

ot
 - 

pa
ss

@
1

Gemma 2B fine-tuning on MBPP

base
Train

HP
HPSR

SSNSP
SSMP2

SSMC

0.0 0.1 0.2 0.3 0.4 0.5 0.6
#steps × batch-size / train set size

0.25

0.30

0.35

0.40

0.45

0.50

GS
M

8K
 5

-s
ho

t -
 p

as
s@

1

Gemma 2B fine-tuning on GSM8K

base
Train

HP
HPSR

SSNSP
SSMP2

SSMC

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
#steps × batch-size / train set size

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Bo
ol

Q 
- a

cc
ur

ac
y

Gemma 2B fine-tuning on BoolQ

base
Train

HP
HPSR

SSNSP
SSMP2

SSMC

Figure 2: Full fine-tuning curves for the Gemma 2B model using different synthetically generated
datasets as well as the non-synthetic training set.

Since we seek an automated hands off approach, we avoid any domain-specific hyperparameter
tuning. Specifically, for all SoftSRV variants and all benchmarks, the length of the prompt t is
fixed to be 128, the number of training steps was set to 20K, and the learning rate is fixed to 5e−6,
which we found to be reasonable defaults. The SSMC method uses MLPs with 3 feed forward layers
and 128 hidden dimensions. For the SSMPk variant, we primarily evaluate with k = 2 to limit to
the total number of parameters, although a partial exploration for other values of k is presented in
Appendix A.4.

2. Generate Questions. Once trained, we generate synthetic questions with the SoftSRV model.
That is, we pass in the questions from the training dataset, xi, and produce a new sequence
x′i ∼ H(Pθ(emb(xi))) via temperature sampling (with default temp=1). For the SSNSP variant,
no context vector and, thus, no training examples are used during generation. For all SoftSRV
methods, no hard prompt template of any kind is used.

For the hard prompt baselines, we generate synthetic questions by querying the same backbone LLM
using the relevant domain specific hard prompt template and questions taken from the benchmark
training fold to populate the template. We conducted a search over temperature={1,2,4} and found
a temperature of 2 to provide a balance of diversity and quality for these hard prompting methods.

Both the SoftSRV and the hard prompt methods use all examples in the training set during this ques-
tion generation phase. For all methods, we generate 100K questions, repeating example questions
from the training fold in a round-robin fashion. We then run a simple filtering, deduplication and
subsampling pipeline to arrive at a target fine-tuning dataset size Ns. Details of this procedure are
provided in Appendix A.1. We use Ns=50,000 for MBPP and GSM8K and Ns=20,000 for BoolQ.

3. Generate Answers. After generating the questions, all methods essentially follow the same
procedure to generate answers using an off-the-self LLM. The only difference being, in the case
of SoftSRV, we pass the question directly the the LLM without any domain specific prompting
to preserve the domain agnostic nature. In the case of hard prompt baselines, we use a domain
specific hard prompt template combined with the generated question to query the off-the-shelf LLM
for an answer. Once we have full (questions, answer) fine-tuning examples generated, we run a
decontamination process to remove any examples that may have been inadvertently leaked to the
pretrained LLM, as is standard practice (details provided in Appendix A.2).

4. Fine-tune and Evaluate Downstream Model. Finally, for all methods, we use the generated
(question, answer) pairs to fine-tune the target Gemma 2B model. We use a batch-size of 16 with
sequence length 8192 and with a learning rate with linear warmup from 0 to 1e-6 over 100 steps,
followed by a cosine annealing schedule. We evaluate the performance of these fine-tuned models
on the test fold of the respective benchmark using the procedure and metric stated in Section 3.1.

3.4 GEMMA 2B FINE-TUNE & DOWNSTREAM EVALUATION

Here, we present the performance of Gemma 2B fine-tuned on the generated synthetic datasets.
Figures 2 plots the eval metrics for each dataset as a function of the number of fine-tuning steps

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Downstream task performance of Gemma 2B models fine-tuned on various sources of
data. The number of non-synthetic examples used as seed data for the hard prompt and SoftSRV
models is reported as Nr. The number of synthesized examples post-deduplication, Ns, is 50k apart
from BoolQ where it is 20k. The base column reports the pre-trained model performance without
fine-tuning. The ‘train’ column corresponds to the model fine-tuned on the non-synthetic examples.

task metric Nr base train HP HPSR SSNSP SSMP2 SSMC

(fixed epoch)
MBPP pass@1 384 0.304 0.314 0.254 0.250 0.334 0.324 0.348
GSM8K accuracy 7,473 0.29 0.441 0.435 0.422 0.411 0.439 0.471
BoolQ accuracy 9,427 0.757 0.877 0.833 – 0.832 0.835 0.852
(max metric)
MBPP pass@1 384 0.304 0.314 0.326 0.326 0.338 0.348 0.378
GSM8K accuracy 7,473 0.29 0.441 0.456 0.435 0.424 0.439 0.478
BoolQ accuracy 9,427 0.757 0.877 0.851 – 0.838 0.845 0.854

times batch size normalized by training set size (essentially the training epoch modulo an additional
constant factor due to sequence packing). These figures show that the model fine-tuned on data
generated by the SSMC method generally outperforms the models fine-tuned on the data generated
by the other methods. Comparing the hard prompt methods, the HP method outperforms the HPSR

method on the GSM8K benchmark. For the MBPP benchmark, HP initially attains a similar perfor-
mance as that of HPSR, but both methods start to degrade as a function of fine-tuning steps. This
may be due to a lack of diversity in the generated text given the small set of 384 training example
questions for MBPP. We do not report the results of the HPSR method for BoolQ as it appears to
struggle to produce reasonable outputs. The repeated self-critiques of HPSR on the lengthy input
passages seems to lead it astray from the original intention of the task, producing questions asking
for open-ended discussion of a passage rather than targeted true/false questions.

In our soft-prompting setting, two salient questions are what type of parametrization is effective for
soft prompts and whether it is essential to have a contextual soft prompt that leverages the context
token as opposed to a non-contextual soft prompt. Our empirical evaluations show that the non-
contextual soft prompt method, SSNSP, admits a lower performance than the other methods thereby
indicating the effectiveness of contextual soft prompts. Then, by comparing the performance of
the SSMC and SSMP2 methods, we observe that the more expressive parametrization of SSMC is
generally beneficial.

We also find that the model fine-tuned on the SSMC generated data outperforms the model fine-
tuned on the non-synthetic training dataset for MBPP and GSM8K, indicating that, given enough
of it, synthetic data can outperform even non-synthetic data. However, the same observation does
not hold for BoolQ. The training set curve on BoolQ admits high variance, but it attains a higher
accuracy overall. As discussed in Section 3.1, we expect generating questions for the BoolQ dataset
to be more difficult stemming both from the fact that the data was generated by search queries
thereby covering a wide range of topics, but also from containing much longer sequences extracted
from the Wikipedia passages.

In Table 1, we show a comparison of the methods at a fixed epoch and at their max metric value
attained over all tested fine-tuning steps. The fixed epoch was chosen to be the step where the
model admits the largest fine-tuning performance on the training dataset. This clearly gives an
advantage to the model fine-tuned on the training data, but it still provides a fair comparison between
the synthetically generated datasets. We again find that the model performance when fine-tuned
on the SSMC generated data outperforms the models fine-tuned on the other generated datasets at
both the fixed epoch and at the max metric. For the the BoolQ dataset, the HP method admits a
performance close to that of the SSMC method for the max metric, but its accuracy for the fixed
epoch is considerably lower than that of SSMC.

Even though the training datasets from our benchmark domains contain a relatively small number
of examples (see column Nr of Table 1 for exact sizes), our methods successfully generate tens of
thousands of synthetic examples, thereby showcasing that SoftSRV is well suited for the the data
scarce setting.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 250 500 750 1000 1250 1500 1750 2000
#steps

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Bo
ol

Q 
- a

cc
ur

ac
y

Gemma 2B fine-tuning on BoolQ (growing dataset)

HP (20k)
HP (50k)

HP (100k)
SSMC (20k)

SSMC (50k)
SSMC (100k)

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
#steps × batch-size / train set size

0.20

0.25

0.30

0.35

0.40

0.45

0.50

GS
M

8K
 5

-s
ho

t -
 p

as
s@

1

Gemma 2B fine-tuning on GSM (w/ TinyGSM)

base
Train

HP SSMC TinyGSM

(b)
Figure 3: In (a) we compare the BoolQ performance of Gemma 2B fine-tuned on data generated by
HP and SSNSP as the number of generated examples increases. In (b) for the GSM8K benchmark,
we show the Gemma 2B performance after fine-tuning on the SSMC and HP generated datasets
against a sample of the same size from the curated TinyGSM dataset.

3.5 DATA SCALING

Next, we analyze the effects of varying the number of synthetic examples generated. Specifically, we
increase the number of generated examples from 20K, 50K, to 100K, testing both the SSMC and HP
approaches for the BoolQ benchmark, given this benchmark appears the most challenging in terms
of generating effective synthetic questions. Figure 3a shows that the performance of the model fine-
tuned on HP stagnates between 20K and 50K synthetic examples, and only shows improvement
when the number of generated examples reaches 100K. In contrast, the model fine-tuned on SSMC

steadily improves as the generated dataset size increases. Going from 20K to 100K examples, SSMC

performance increases at a 1.8 times faster rate relative to HP with respect to the max metric value.
In particular, the HP method with 100K generated examples admits a comparable performance to
that of the SSMC method with 50K generated examples.

3.6 COMPARISON WITH CURATED HARD PROMPT GENERATED DATASET (TINYGSM)

Here, we compare against a high quality dataset, TinyGSM, within our fine-tuning evaluation frame-
work. TinyGSM was expertly curated by Liu et al. (2023) for GSM8K-PAL, which is a program
aided language model (PAL) variant of GSM8K that asks for questions to be answered in the form of
Python functions. This has the advantage of enabling verification of the answer in a programmatic
fashion. Liu et al. (2023) use GPT-3.5-turbo with hard prompts seeded with training questions from
the original GSM8K dataset and from the GSM-IC dataset, which is a dataset crafted to incorporate
irrelevant context in order to bolster model robustness (Shi et al., 2023). They use two types of
prompts: the first asks to generate both questions and answers while the second requires two calls
to the LLM to first generate a question and then an answer. Leveraging the fact that the solutions of
the math word problems are written in Python, they then filter out any data that contains code that
is not executable by a Python interpreter. They additionally filter out questions that do not contain
numbers as this indicates flawed math problems.

In order to evaluate the TinyGSM generated question in our setting, we randomly sample 100K
questions from the publicly available TinyGSM dataset, then further subsample down to 50K using
the same post-processing pipeline used by all other methods in our comparison. Finally, we generate
answers, fine-tune and evaluate in the same fashion as the other hard prompt baselines. Figure 3b
shows that a model fine-tuned on the SSMC dataset attains a performance close to that when fine-
tuned on the sample from the TinyGSM dataset while the HP method lags behind both. TinyGSM
performing closely to SSMC is encouraging given that the TinyGSM dataset is highly curated and
tailored specifically for the GSM8K benchmark.

3.7 DISTRIBUTION MATCHING ANALYSIS

We next investigate the capacity of the SoftSRV and hard-prompting baseline to generate data sam-
ples that can match a target distribution of text. To assess the proximity between the generated and
target distributions, we compute Mauve scores as in Pillutla et al. (2021), which can be viewed as a

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: The Mauve similarity scores of synthetic datasets computed with respect to the non-
synthetic training and test fold of each dataset. The similarity computed between the train and
test fold itself is also included in the final row of the table. Bolding indicates the max Mauve score
achieved by a synthetic dataset.

Train Test
MBPP GSM8K BoolQ MBPP GSM8K BoolQ

HP 0.622 0.933 0.663 0.463 0.914 0.784
HPSR 0.327 0.870 – 0.397 0.865 –
SSNSP 0.776 0.862 0.519 0.781 0.839 0.575
SSMP2 0.722 0.727 0.731 0.646 0.735 0.689
SSMC 0.604 0.993 0.997 0.477 0.991 0.995
Train 1.000 1.000 1.000 0.963 0.998 0.999

scalar summary of the divergence between the textual output of a generative model and a reference
distribution. The MAUVE score is able to simultaneously measure both the model’s ability to avoid
generating text outside the support of the target distribution (Type I error) and the ability to generate
text with a large coverage of the target distribution support (Type II error). The method essentially
computes a quantized distribution for the generated and target distribution and measures their KL
divergence, producing a normalized score between 0 and 1, where 1 indicates the two distributions
are maximally similar (for further details see Appendix A.3).

In Table 2, we report the MAUVE scores for hard-prompt and SoftSRV-based synthetic datasets on the
MBPP, GSM8K and BoolQ domains, measuring the distance to questions in both the train and test
folds. In all cases, we find that a SoftSRV variant can synthesize text that is closer to the training and
test dataset distribution than the hard-prompt approaches. This is perhaps unsurprising to see with
respect to the train set since, by design, the SoftSRV prompts are trained to optimize the likelihood
that the LLM sequentially decodes the text seen in these training examples, but is encouraging to
see that the trend holds for the test set as well. Notably, among the SoftSRV variants, the SSMC

method achieves the highest score on GSM8K and BoolQ, where it appears the additional flexibility
afforded by its parameterization allows a very high-fidelity match to the target distribution. On the
other hand, in the case of MBPP, which has relatively simple question distribution (see discussion in
Section 3.1), the simplest SoftSRV parameterization (SSNSP) attains the largest MAUVE score while
the more complex SoftSRV variants produce lower similarity scores, perhaps due to the relatively
small MBPP training set (only 384 examples). While the hard-prompt datasets generally have lower
MAUVE scores than the SoftSRV counterparts, the HP variant is able to achieve high scores on
GSM8K. Notably, in the case of the MBPP dataset, we measure very low similarity scores for
HPSR; we conjecture this may be due to the several rounds of rewriting, which results in straying
further from the original seed question.

Even though the MAUVE score is not a direct indicator of downstream fine-tuning performance (see
our experiments in Section 3.4 for downstream fine-tuning comparisons), it is a signal to provide
further support for SoftSRV as a high-fidelity approach for text generation across domains.

4 RELATED WORK

SoftSRV provides a novel contribution at the intersection of soft-prompting and synthetic text gen-
eration for targeted fine-tuning tasks. On each of these individual topics, there is a large and rapidly
growing literature, which we touch on only briefly in the section.

4.1 SYNTHETIC TEXT FOR LLM TRAINING

As mentioned in the introduction, there is a significant recent body of work demonstrating the effec-
tiveness of using a large language model to generate synthetic training data for a smaller model.

In terms for generating pre-training data, the collection of “Textbooks Are All You Need” white-
papers outlines the process of training the Phi series of small LMs, using carefully curated prompt
templates and seed data sources, and shows the large boost in quality that synthetic data can provide

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(Gunasekar et al., 2023; Li et al., 2023; Abdin et al., 2024). The Cosmopedia project (Ben Allal
et al., 2024) conducts a similar study, while also providing detailed and transparent steps as well as
open-sourcing the prompts and generated data. Li et al. (2024a) construct a pretraining set almost
“from scratch” using a diverse set of hard prompts. To build these prompts, they assume access
to taxonomies of fields/sub-fields/disciplines within an area of expertise and build a syllabus which
culminates in a series of “key concepts”, each of which a large language model is then queried
to generate a lesson on. Apart from focusing on pre-training rather than fine-tuning for a specific
domain, these works require a non-trivial amount human effort for building and/or curating hard
prompts for the generating LLM, which our effort seeks to minimize.

Mukherjee et al. (2023); Mitra et al. (2023) focus on building synthetic data for better instruction
tuning. In particular, they start with the FLAN-V2 instruction tuning dataset and ask a LLM to ex-
pand on the terse responses in different verbose styles (specified by so-called “system instructions”)
to introduce variation in presentation and approach. Although, shown to be quite effective across a
broad array of reasoning tasks, in our setting we wish to generate data focused on a specific target
task, likely requiring us to curate a set of bespoke “system instructions” for each task.

Several works build fine-tuning data for specific domains, such as coding (Haluptzok et al., 2023;
Luo et al., 2024) or mathematics (Yu et al., 2024). Although quite successful, these approaches
leverage specific qualities of the target domain, for example, using a code interpreter to check cor-
rectness of generated code or using the fact that math problems contain numerical quantities that can
be masked or manipulated to create variations of the original question.

Finally, in the recent work of Lee et al. (2024), the authors propose an adaptive procedure where
a large language model is used to generate targeted fine-tuning data for a small model based on
examples that the small model has made mistakes on. The large model is prompted to rewrite vari-
ants of these questions using specialized per-domain hard prompts. Extending the general-purpose
SoftSRV approach to an adaptive framework is a current area of investigation.

4.2 SOFT-PROMPTING & NON-TEXT DATA MODALITIES

As mentioned previously, the use of soft-prompting (or prompt-tuning) already has a significant
history outside of targeted synthetic fine-tuning data generation. Primarily known for its use as a
parameter efficient fine-tuning method (Lester et al., 2021), soft prompt training has also been used
as a framework to learn or compress in-context instructions (Mu et al., 2023). Li et al. (2024b) has
proposed training a secondary model to compress in-context instructions into soft prompt that is
then prepended to the task hard prompt and is meant to generalize to even new tasks.

While our study has been focused on generating synthetic text, there have been similar efforts in
other modalities. For example, the ControlNet approach of Zhang et al. (2023) trains a diffusion
model to produce images conditioned on contextual input, for example, image edges or 3D pose
skeletons. Similarly, Gao et al. (2024) train a diffusion-based speech model to condition on a “simple
speech representation” embedding to guide the generation of new synthetic speech data. Finally,
in the case of text-to-image generators, there has been a significant amount of work in solving
the “inverse” problem of mapping from an image back to a prompt (either hard prompt or a soft
representation), so that one can more predictably generate synthetic images in certain styles (see
Mahajan et al. (2024) and many references therein).

5 CONCLUSION

In this work, we have established the effectiveness of using contextual soft prompts, via the SoftSRV
framework, for generating targeted synthetic fine-tuning data and its applicability across several dif-
ferent domains. We deploy the same SoftSRV pipeline across math, coding, and reasoning tasks, in
each case we find SoftSRV is able to generate fine-tuning data that provide good downstream perfor-
mance and fits well to the target distribution without any per-domain specialization needed. Given
these results, there are several natural directions for further research. For example, we can view soft
prompts as one particular class of parameter efficient tuning approach that is natural to leverage for
data synthethesis, however, other approaches (such as LoRA) may be worth investigating as well.
Finally, adapting the choice of context vector in order to generate the most effective synthetic data
for improving the downstream model is a current and ongoing line of work.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Loubna Ben Allal, Anton Lozhkov, and Daniel van Strien. Cosmopedia: how to create large-scale
synthetic data for pre-training. https://huggingface.co/blog/cosmopedia, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Neural Information Processing Systems, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In North
American Chapter of the Association for Computational Linguistics, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. arXiv preprint arXiv:2110.14168, 2021.

Chen Dun, Mirian Del Carmen Hipolito Garcia, Guoqing Zheng, Ahmed Hassan Awadallah, Anas-
tasios Kyrillidis, and Robert Sim. Sweeping heterogeneity with smart mops: Mixture of prompts
for llm task adaptation. arXiv preprint arXiv:2310.02842, 2023.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

Heting Gao, Kaizhi Qian, Junrui Ni, Chuang Gan, Mark A. Hasegawa-Johnson, Shiyu Chang, and
Yang Zhang. Speech self-supervised learning using diffusion model synthetic data. In Interna-
tional Conference on Machine Learning, 2024.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
all you need. arXiv preprint arXiv:2306.11644, 2023.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach them-
selves to program better. In International Conference on Learning Representations, 2023.

D. J. Hand. Mixture Models: Inference and Applications to Clustering. Journal of the Royal
Statistical Society Series C: Applied Statistics, 2018.

Nicholas Lee, Thanakul Wattanawong, Sehoon Kim, Karttikeya Mangalam, Sheng Shen, Gopala Kr-
ishna Anumanchipalli, Michael W. Mahoney, Kurt Keutzer, and Amir Gholami. Llm2llm: Boost-
ing llms with novel iterative data enhancement. In Annual Meeting of the Association for Com-
putational Linguistics, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Empirical Methods in Natural Language Processing, 2021.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang,
Shaohan Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, et al. Synthetic data
(almost) from scratch: Generalized instruction tuning for language models. arXiv preprint
arXiv:2402.13064, 2024a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

11

https://huggingface.co/blog/cosmopedia


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yichuan Li, Xiyao Ma, Sixing Lu, Kyumin Lee, Xiaohu Liu, and Chenlei Guo. MEND: Meta
demonstration distillation for efficient and effective in-context learning. In International Confer-
ence on Learning Representations, 2024b.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel
Ward, and Yi Zhang. Tinygsm: achieving> 80% on gsm8k with small language models. arXiv
preprint arXiv:2312.09241, 2023.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In International Conference on Learning Representations, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. In Neural Information Processing Systems, 2023.

S. Mahajan, T. Rahman, K. Yi, and L. Sigal. Prompting hard or hardly prompting: Prompt inversion
for text-to-image diffusion models. In Computer Vision and Pattern Recognition, 2024.

Arindam Mitra, Luciano Del Corro, Shweti Mahajan, Andres Codas, Clarisse Simoes, Sahaj Agar-
wal, Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Aggarwal, et al. Orca 2: Teaching
small language models how to reason. arXiv preprint arXiv:2311.11045, 2023.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens. In
Neural Information Processing Systems, 2023.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv
preprint arXiv:2306.02707, 2023.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 2011.

Aleksandar Petrov, Philip Torr, and Adel Bibi. Prompting a pretrained transformer can be a universal
approximator. In International Conference on Machine Learning, 2024a.

Aleksandar Petrov, Philip Torr, and Adel Bibi. When do prompting and prefix-tuning work? a theory
of capabilities and limitations. In International Conference on Learning Representations, 2024b.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. MAUVE: Measuring the gap between neural text and human text using
divergence frontiers. In Neural Information Processing Systems, 2021.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of soft prompts.
In Conference of the North American Chapter of the Association for Computational Linguistics,
2021.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Huai hsin Chi,
Nathanael Scharli, and Denny Zhou. Large language models can be easily distracted by irrel-
evant context. In International Conference on Machine Learning, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. In Neural
Information Processing Systems, 2023.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In International Conference on Learning Representations, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In International Conference on Computer Vision, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EMPIRICAL EVALUATION ADDITIONAL DETAILS

This appendix provides supplementary details about our empirical evaluations.

A.1 SYNTHETIC QUESTION POSTPROCESSING

For all methods (hard prompt and SoftSRV based), we query the model to generate 100K sequences.
From these 100K, we first filter exact duplicates. From the remainder, we subsample to achieve the
target size Ns. To encourage a diverse subsample, again for all methods, we cluster the data and
select examples from each cluster randomly in round-robin fashion.

Concretely, using the scikit-learn library (Pedregosa et al., 2011), we apply MiniBatch k-means to
vectorized data, which has been reduced in dimensionality using SVD. For all methods, we set the
number of clusters for MiniBatch k-means to 700, reduced the dimensionality to 100 features and
used sk.TfidfVectorizer for vectorization. Given the k-means clustering, we randomly select without
replacement one point per cluster until Ns questions are chosen.

A.2 DECONTAMINATION PROCESS

Even though the test set was never used in our synthetic data generation pipeline, the frozen LLM
models that are leveraged to generate questions and answers might have been exposed to the test set
during their pretraining phase. Thus, for all methods, we decontaminate the generated sequences
against the respective benchmark’s test set by removing any n-gram matches where n = 13 as is
common practice (Brown et al., 2020). Prior to calculating the matches, we eliminate all punctuation
and numerical characters. We found that the contamination of the generated sequences to the test
set is minimal with less than 0.1% for GSM8K and MBPP and around 1% for BoolQ.

A.3 MAUVE SCORE COMPUTATION

We let G and D denote the generated and target/reference distributions, respectively, and compute
the MAUVE scores for each synthetic dataset as follows. Using an embedding model, a vector
representation is computed for each sequence in the synthetic and reference sets. These embeddings
are then projected into a discrete set using k-means clustering, and a divergence curve is traced
between the cluster distributions of G and D, see Equation 1 in Pillutla et al. (2021). The MAUVE
has value between 0 and 1 and corresponds to the area under the divergence curve, where higher
scores are indicative of a closer match between G and D. The same small LM serving as the context
embedder for SoftSRV in Subsection 3.3 is used to compute per-token representations, which is then
averaged to produce the sequence-level embedding. We use k = 32 clusters for all domains as we
found that k = 16 or k = 64 yields similar qualitative results.

A.4 MIXTURE OF PROMPTS WITH VARIOUS VALUES OF k

Here, we conduct a exploration to measure the effect of changing the number of basis soft prompt
matrices, k, of the SSMPk method.

Figure 4 shows the comparison in performance on various benchmarks across different values of
k. We see an inherent trade-off as we increase k, which increases the capacity of the contextual
soft-prompt but also then require training more parameters. For MBPP we see that the value k = 4
appears to be optimal, while for GSM8K and BOOLQ we see performance peaks at k = 2. We fix
k = 2 throughout the evaluations in the main paper as a good general choice across different tasks.

A.5 DIVERSIFICATION OF THE HP METHOD

To arrive at the the HP method presented in the main body of the paper, we conducted multiple itera-
tions of prompt engineering and template refinements. In particular, we found that asking the model
to generate "10 different questions" per example question and using a higher decoding temperature
was critical. We demonstrate this effect on the GSM8K benchmark in Figure 5 which compares
the performance of a model fine-tuned on data generated by HP method to that of the model fine-
tuned on its undiversified counterpart where the question template asks to generate one question per

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#steps × batch-size / train set size

0.26

0.28

0.30

0.32

0.34

0.36

0.38

M
BP

P 
3-

sh
ot

 - 
pa

ss
@

1

Gemma 2B fine-tuning on MBPP (SSMPk)
(smoothing=3)

base
SSNSP

SSMP2 SSMP4 SSMP8

0.0 0.1 0.2 0.3 0.4 0.5 0.6
#steps × batch-size / train set size

0.20

0.25

0.30

0.35

0.40

0.45

GS
M

8K
 5

-s
ho

t -
 p

as
s@

1

Gemma 2B fine-tuning on GSM (SSMPk)

base SSNSP SSMP2 SSMP4

0.0 0.1 0.2 0.3 0.4 0.5 0.6
#steps × batch-size / train set size

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Bo
ol

Q 
- a

cc
ur

ac
y

Gemma 2B fine-tuning on BOOLQ(SSMPk)

base SSNSP SSMP2 SSMP4

Figure 4: Comparison of SSMPk variants for different values of k. SSNSP corresponds to k = 1.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5 0.6
#steps × batch-size / train set size

0.25

0.30

0.35

0.40

0.45

GS
M

8K
 5

-s
ho

t -
 p

as
s@

1

Gemma 2B fine-tuning on GSM (HP diversification)

base HP (undiversified) HP

Figure 5: Performance of HP method with and without diversification.

given example question and the default decoding temperature is used. We found similar results for
the other datasets. Despite the relative small change in the settings, the difference in model perfor-
mance is significant, demonstrating some of the idiosyncratic nature of hard-prompting approaches.
We provide the template for the undiversified HP in Appendix B.

B HARD PROMPT TEMPLATES

Below, we report the templates used for hard-prompting baselines for each benchmark dataset. Fig-
ure 6 provides the question templates while Figure 7 shows the answer templates. Figure 8 reports
the critique and refine templates for HPSR. Figure 9 provides the template for the undiversified HP
method, described in Appendix A.5, for the GSM8K benchmark .

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

MBPP Question Template:
Consider the following python question:

[insert example question]

Now generate 10 different questions that require writing a Python
function similar to the example above. Make sure each question is
different and sufficiently rephrased. Please make sure you generate
questions, and not answers. Please make sure each question you
generate has a well-defined answer.

Question 1:

GSM8K Question Template:
Consider the following grade-school math problem:

[insert example question]

Now generate 10 different questions that require solving a
grade-school math problem similar to the example above. Make sure
each question is different and sufficiently rephrased. Please make
sure you generate questions, and not answers. Please make sure each
question you generate has a well-defined answer.

Question 1:

BoolQ Question Template:
Consider the following passage and question:

[insert example question]

Now generate 10 different passages and questions similar to the
example above. Please make sure each question you generate has a
boolean answer that can be answered by the passage. Make sure each
passage and question is different and sufficiently rephrased. Please
make sure you generate passages and questions, and not answers.

Passage and Question 1:

Figure 6: Question template for MBPP, GSM8K and BoolQ benchmarks for the HP method.

MBPP Answer Template:
Please answer the following python question:

[insert example question]

Please generate your answer as a Python function. The docstring of
the function should contain the above question as-is, without any
modification. Please make sure that your function is valid Python
code that compiles. Please try your best to correctly answer the
question.

Answer:

GSM8K Answer Template:
Please answer the following question that tests reasoning:

[insert example question]

Answer:

BoolQ Answer Template:
Please answer the following question based on the passage. Your
answer should be either True or False. Do not provide any other
justification.

[insert example question]

Answer:

Figure 7: Answer template for MBPP, GSM8K and BoolQ benchmarks for the HP and HPSR

method.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Critique Template:
Please provide actionable feedback on the clarity, difficulty, and
originality of the following {Python question, grade school math
problem, passage/question problem}:

[insert question]

MBPP Refine Template:
Read the following Python question and the critique, and write a new
Python question based on the critique:

Question:

[insert question]

Critique:

[insert critique]

If the critique is strongly positive, say ’Stop’. Otherwise, write
a new Python question in a single sentence starting with ’Write a
Python function’ based on the critique. Do not ask for docstring or
test cases.

GSM8K Refine Template:
Read the following grade-school math problem and the critique, and
write a new grade-school math problem based on the critique:

Question:

[insert question]

Critique:

[insert critique]

If the critique is strongly positive, say ’Stop’. Otherwise, write
a new grade-school math problem based on the critique. Write the
question only, do not include the answer.

BoolQ Refine Template:
Read the following passage/question problem and the critique, and
write a new passage/question problem based on the critique:

Question:

[insert question/passage]

Critique:

[insert critique]

If the critique is strongly positive, say ’Stop’. Otherwise, write
a new passage/question problem based on the critique. Write the
passage and question only, do not include the answer.

Figure 8: Refine template for MBPP, GSM8K and BoolQ benchmarks for the HPSR method.

GSM8K Question Template for undiversified HP:
Please generate a question that requires solving a grade-school math

problem. Here is an example of such a question:

[insert example question]

Now generate a new question. Please make sure your question is not
too similar to the example above. Please make sure you generate
a question, and not an answer. Please make sure the question you
generate has a well-defined answer.

Figure 9: Question template for the undiversified HP method for the GSM8K benchmark.

18


	Introduction
	Proposed Approach
	Non-contextual soft prompt (SSNSP)
	Mixture of prompts (SSMPk)
	MLP Concatenated (SSMC)

	Empirical Evaluation
	Domains and datasets
	Hard-prompting baselines
	Empirical evaluation procedure
	Gemma 2B fine-tune & downstream evaluation
	Data scaling
	Comparison with curated hard prompt generated dataset (TinyGSM)
	Distribution matching analysis

	Related Work
	Synthetic text for LLM training
	Soft-prompting & non-text data modalities

	Conclusion
	Empirical Evaluation Additional Details
	Synthetic Question Postprocessing
	Decontamination Process
	Mauve Score Computation
	Mixture of prompts with various values of k
	Diversification of the HP method

	Hard Prompt Templates

