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ABSTRACT

Large-scale data with contamination are ubiquitous in biomedicine, economics
and social science, but its statistical learning often suffers from computational bot-
tlenecks and robustness. Subsampling offers an efficient solution by sampling a
representative subset of uncorrupted data from full dataset, thereby reducing com-
putational costs while enhancing robustness. Existing subsampling methods, like
leverage- and gradient-based approaches, focus on parametric models and fail un-
der nonparametric models or severe contamination. To address these limitations,
we propose a kernel-based robust Markov subsampling (KRMS) method for non-
parametric regression with contaminated data in reproducing kernel Hilbert space
(RKHS). By dynamically adjusting Markov sampling probabilities based on the
ratio of residuals to kernel norms of predictors, our method simultaneously sup-
presses contaminated observations and prioritizes informative observations, en-
abling robust learning from contaminated datasets. Theoretically, we establish the
asymptotic properties of the estimators, including consistency and asymptotic nor-
mality, and generalization bounds under RKHS regularization, providing the first
unified framework for robust subsampling in nonparametric settings. Simulations
and real-data applications demonstrate KRMS’s superiority over existing meth-
ods, particularly for high contamination levels. Our approach bridges a critical
gap in scalable and robust statistical learning, with broad applicability to large-
scale, non-i.i.d. data.

1 INTRODUCTION

The rapid development of data collection technologies has ushered in an era of unprecedented data
proliferation across nearly all scientific and industrial fields. Data in fields ranging from biomedical
imaging and financial risk analysis to environmental monitoring and social network analytics exhibit
not only massive scale but also increasingly frequent contamination, including outliers, measure-
ment errors, and systematic biases (Fan et al., 2014). While this data deluge offers unprecedented
opportunities for scientific discovery and practical applications, it simultaneously faces critical lim-
itations in conventional statistical learning methods, particularly their inability to scale computa-
tionally with massive datasets and their vulnerability to pervasive data contamination. Traditional
statistical learning approaches, developed for uncontaminated, or smaller-scale data, frequently fail
when applied to the complicated or contaminated data, where contamination is not merely an occa-
sional nuisance but an inherent characteristic. This dual challenge of computational scalability and
statistical learning robustness has emerged as a fundamental bottleneck in the era of big data.

To mitigate these challenges posed by massive datasets, subsampling has emerged as a widely used
strategy. Specifically, by selecting a representative subset of uncontaminated data from the full
dataset with contamination, this subsampling method possesses dual merits: substantial computa-
tional efficiency and potentially improving parameter estimation accuracy. However, the effective-
ness of subsampling hinges critically on its ability to preserve statistical properties of the full dataset,
a non-trivial challenge in practice. Existing solutions to this challenge can be classified as three cat-
egories: (i) optimal design-based approaches (Ai et al., 2021; Wang & Ma, 2021) that minimize
asymptotic variance of parameter estimator for uncontaminated data; (ii) informative subsampling
techniques for the massive data without contamination or with relatively low level of contamination,
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including leverage-based subsampling (Ma et al., 2015; Rudi et al., 2018), gradient-based subsam-
pling (Zhu, 2016) and influence function-based subsampling (Ting & Brochu, 2018), however, these
methods typically produce biased estimators when applied to highly contaminated data; (iii) robust
subsampling methods for corrupted massive data based on the idea of quantile breakdown point
for linear regression models (Camponovo et al., 2012), robust gradient-based Markov subsampling
(Gong et al., 2020), and low-gradient subsampling (Jing, 2023). Notably, Markov subsampling
has shown particular promise by adaptively refining parameter estimate through sequential transi-
tions, and self-correcting for contamination via Metropolis-Hastings (MH) rejection scheme while
preserving structural information in the dataset. But existing Markov subsampling methods are
fundamentally constrained to parametric models with contaminated data, leaving it ill-equipped for
nonparametric regression problems where the target is an infinite-dimensional function rather than
finite-dimensional parameters. Three key challenges are encountered in nonparametric regression
models with contaminated data. First, existing subsampling methods fail to properly weight obser-
vations in RKHS, where contamination distorts both local smoothness and global structure. Second,
the “curse of dimensionality” exacerbates contamination effects in high-dimensional function esti-
mation. Third, non-i.i.d. data dependencies, such as those in Markov chains, interact with contami-
nation in ways that linear regression models cannot capture. These limitations become particularly
severe under heavy contamination scenarios like Huber’s ε-model, where existing subsamplers fail
to retain the essential topological properties of the target function.

To overcome these challenges, we propose a Kernel-based robust Markov Subsampling (KRMS),
which introduces several key innovations. By mapping the original data to an RKHS, our con-
tamination scoring mechanism combines residual with features similarity to identify contaminated
observations through relative data structure rather than absolute values. This kernel-based approach
enables effective separation of contaminated observations that would be indistinguishable in the
original feature space. The KRMS framework incorporates these scores into a MH sampling pro-
cess that naturally accommodates non-i.i.d. data dependencies while maintaining computational
efficiency. Theoretically, we establish consistency of nonparametric function estimator under mild
regularity conditions, while demonstrating robustness to both contamination and high dimension-
ality. Our approach thus solves what existing methods cannot: simultaneous robustness to severe
contamination, computational scalability, and theoretical soundness for nonparametric regression
with complex dependencies.

Our work has three key contributions to nonparametric regression with contaminated data. First,
we propose a KRMS method in RKHS by dynamically adjusting Markov subsampling probabil-
ities based on the ratio of residuals to kernel norms of predictors, which is the first subsampling
method specifically designed for contaminated data in complex nonparametric regression settings.
Unlike existing approaches limited to parametric models, KRMS adapts to the intrinsic geometry
of function spaces through kernel learning. Second, within the framework of kernel regularized
regression with symmetric periodic Gaussian kernels in Sobolev spaces (Zeng & Xia, 2019), we
establish rigorous theoretical guarantees for the KRMS estimator of nonparametric function. Based
on assumption that the data follow a uniformly ergodic Markov chain (u.e.M.c.), we obtain optimal
consistency rates and asymptotic normality of KRMS estimator, and explicit error bound of excess
risk under contamination. Third, we extend the theoretical framework to characterize the gener-
alization performance of kernel regularized regression in RKHS, providing new insights into the
interaction between subsampling robustness and function space geometry.

The rest of this paper is organized as follows. Section 2 introduces regularized nonparametric
regression model and RKHS. Section 3 details the proposed method. Section 4 presents asymp-
totic properties and generalization bounds for kernel-based regularization regression under Huber
ε-contamination for u.e.M.c. samples. Simulation studies are conducted in Section 5. Concluding
remarks are given in Section 6. The proofs of theorems, additional simulations and real examples
analysis are presented in the Appendices C and D. The convergence analysis and parameter sensi-
tivity analysis are presented in the Appendix E.
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2 PRELIMINARIES

2.1 REGULARIZED NONPARAMETRIC REGRESSION MODEL

Consider learning a continuous function f(x) ∈ H(X) from a dataset D = {zi = (xi, yi) : i =
1, . . . , n}, where xi = (xi1, . . . , xip)

⊤ ∈ X is the input vector of the i-th individual, yi ∈ Y is the
corresponding observed output, X is a compact subset of Rp (p ≥ 2), and H = H(X) is a space of
continuous functions. The relationship between xi and yi is modeled as yi = f0 (xi) + ϵi, where
f0(xi) : Rp → R is an unknown target function, and the random noise ϵi satisfies E (ϵi) = 0 and
E
(
ϵ2i
)
= σ2, and is independent of xi for i = 1, . . . , n. The goal is to find a function f(x) : X →

Y that approximates f0 well by minimizing the generalization risk: RF (f) = E{ℓ(f(x), y)} =∫
Z ℓ(f(x), y)dF , where ℓ(f(x), y) is a nonnegative loss function measuring the fitting error when

using f(x) to fit the output y, Z = X × Y represents the sample space, F is an unknown joint
distribution of z = (x, y) ∈ Z , E(·) is the expectation taken with respect to distribution function F .
It is difficult to directly compute minimizer of RF (f) due to unknown distribution F involved. To
solve the difficulty, we instead minimize the empirical risk (ER) over a function space H: RD(f) =
(2n)−1

∑n
i=1 ℓ(f(xi), yi). Throughout this paper, we consider the following squared-error loss:

ℓ(f(xi), yi) = {yi − f(xi)}2. Thus, for the considered squared-error loss, the ER minimizer is

fD = argmin
f∈H

RD(f) = argmin
f∈H

1

2n

n∑
i=1

{yi − f (xi)}2 , (1)

which is an approximation of function f0(x). However, when H is highly complex, the optimization
problem (1) becomes ill-posed and prone to overfitting (Zou et al., 2014). To address this issue, we
restrict the function space H to a RKHS and solve the following regularized optimization problem:

fD,λ = argmin
f∈H

{RD(f) + λJ(f)} , (2)

where J(f) : H → R+ is a penalty functional with J(0) = 0 that controls complexity of f ,
and λ > 0 is an appropriate regularization parameter depending on the sample size n such that
λ = λ(n) and limn→∞ λ(n) = 0 as n → ∞. For any estimator fD,λ of function f0(x), its quality
is measured by its excess risk (i.e., the difference between the L2 expected risks of fD,λ and f0):
∥fD,λ − f0∥2L2

FX
= RF (fD,λ) − RF (f0), where FX is the marginal distribution of F on X, and

L2
FX

denotes the space of square-integrable functions with respect to the measure FX.

2.2 REPRODUCING KERNEL HILBERT SPACE

Following Aronszajn (1950), an RKHS H is a Hilbert space of functions where all evaluation func-
tionals are continuous and bounded. To wit, for any f(x) ∈ H and x ∈ X, there exists a positive
constant C such that Lx(f) = |f(x)| ≤ C∥f∥H, where Lx is the evaluation functional at obser-
vation x, and ∥ · ∥H is the norm on H. A function K(·, ·) : X × X → R is called a reproduc-
ing kernel (RK) if it is symmetric and positive definite:

∑n
i=1

∑n
j=1 aiajK (xi,xj) ≥ 0 for any

x1, . . . ,xn ∈ X and a1, . . . , an ∈ R. By the Moore-Aronszajn Theorem (Aronszajn, 1950), every
symmetric positive definite function K(·, ·) uniquely defines an RKHS HK of real-valued functions.
Specifically, H is the closure of the linear span of kernel functions:

HK =

{
f(·) =

n∑
i=1

αiK (xi, ·) : xi ∈ X, αi ∈ R

}
,

and the corresponding inner product is defined as ⟨K(xi, ·), K (xj , ·)⟩HK
= K (xi,xj).

3 METHODOLOGIES

The optimization problem in Equation (2) yields an efficient estimator of the target function f0 when
the dataset D is sampled independently from the true distribution F . However, in many applications,
D often contains contaminated observations due to outliers or adversarial contamination. In such
cases, D is instead generated from Huber’s contamination model (Huber, 1992): P = (1−θ)F+θQ,
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where F is the true (uncontaminated) distribution, Q is an arbitrary contaminating distribution, and
θ ∈ [0, 1/2) controls the contamination level. This model captures scenarios where a fraction θ of
the data may be arbitrarily contaminated, while the majority 1− θ follows the true distribution F .

It is well established that estimators obtained from contaminated datasets can exhibit significant
bias and provide poor approximations of the target function f0. To address this challenge, a natu-
ral strategy involves identifying and sampling uncontaminated observations from the contaminated
dataset D̃ = {z̃i = (x̃i, ỹi)}ni=1 to obtain an optimal solution of f for Equation (2). Therefore,
our objective is to develop an effective subsampling method that is capable of robustly selecting a
representative subset of uncontaminated observations, even in the presence of severe contamination.
Unlike conventional linear regression models, we consider a more general setting where contami-
nated observations reside within a RKHS framework. This approach leverages kernel methods to
map the contaminated data into high-dimensional or infinite-dimensional feature spaces, where con-
taminated observations, which are difficult to distinguish in the original input space, becomes more
separable. Building on this insight, we propose a novel kernel-based robust subsampling method
for nonparametric models. A key advantage of our approach is its reliance on the relative distance
between data points in the kernel-induced feature space, rather than the absolute magnitude-based
criteria typically used in linear regression models. This property enables more reliable identification
of contamination, particularly in complex and nonlinear settings.

For an uncontaminated dataset D, the squared-error loss in the RKHS HK takes the form

RD(f) =
1

2n

n∑
i=1

yi −
n∑

j=1

αjK(xj ,xi)


2

.

The regularized estimatorfD,λ = argminf∈H{RD(f) + λJ(f)} provides an unbiased estimate of
function f0. When dealing with a contaminated dataset D̃, the squared-error loss becomes

RD̃(f) =
1

2n

n∑
i=1

yi −
n∑

j=1

αjK(x̃j , x̃i)


2

,

where x̃i is contaminated input vector, and ỹi is contaminated output. Here we consider Huber’s
contamination model for contaminated data mechanism, i.e., for input vector x̃i and output ỹi, a
proportion θ of observations follows the arbitrary contaminating distribution W and O, respec-
tively. Under this mechanism, observations (x̃i, ỹi) are corrupted with probability θ and remain
uncorrupted with probability 1− θ. The specific forms of W (e.g., sparse noise, adversarial pertur-
bations) and O (e.g., outliers, multiplicative errors) characterize the nature of the corruption. The
corresponding estimator fD̃,λ = argminf∈H{RD̃(f) + λJ(f)} is biased when the contamina-
tion level θ is relatively large, and its computation becomes prohibitively expensive for a relatively
large sample size n. To overcome these challenges, some robust subsampling methods like low-
gradient subsampling (Jing, 2023), robust gradient-based Markov subsampling (Gong et al., 2020)
and Markov subsampling based on Huber criterion Gong et al. (2022) have been proposed. How-
ever, these subsampling methods often yield unstable estimators due to sensitivity to unbalanced
sampling probabilities, loss of important gradient information, poor performance with contaminated
data. To this end, we propose a novel robust kernel-based Markov subsampling method that operates
in the RKHS to better separate contaminated observations, uses modified gradient information for
more reliable sampling, maintains computational efficiency while being robust to contamination.
The method specifically addresses the limitations of existing subsampling approaches by carefully
preserving the geometric structure of the uncontaminated data while downweighting the influence
of contaminated observations in the kernel space.

The gradient of the empirical risk RD̃(f) with respect to the coefficient vector α = (α1, . . . , αn)
⊤

at the i-th observation (x̃i, ỹi) is

gi(α) = − 1

n

ỹi −
n∑

j=1

αjK (x̃j , x̃i)




K (x̃1, x̃i)
K (x̃2, x̃i)

...
K (x̃n, x̃i)


4
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whose norm is given by

∥gi(α)∥ =
1

n

∣∣∣∣∣∣ỹi −
n∑

j=1

αjK (x̃j , x̃i)

∣∣∣∣∣∣
√√√√ n∑

j=1

K (x̃j , x̃i)
2
,

which implies that the magnitude of gi(α) depends on ẽi =
∣∣∣ỹi −∑n

j=1 αjK (x̃j , x̃i)
∣∣∣ and d̃i =√∑n

j=1 K (x̃j , x̃i)
2. The absolute value of prediction error ẽi measures absolute deviation between

observed and predicted responses, and large values of ẽi indicate poor model fit, potentially signaling
contamination. The quantity d̃i depicts overall similarity of x̃i to other observations in the RKHS
HK . Generally, large value of d̃i indicates that x̃i is closely related to most of other observations
(i.e., exhibiting high similarity), and small value of d̃i implies that x̃i deviates considerably from
the majority of the dataset D̃ and can be regarded as a contaminated observation or outlier in feature
space. Based on the preceding argument, we define the residual kernel-norm score as

w(z̃i, α) =

∣∣∣ỹi −∑n
j=1 αjK (x̃j , x̃i)

∣∣∣√∑n
j=1 K (x̃j , x̃i)

2
. (3)

A large value of w(z̃i, α) can be regarded as a strong indicator of contaminated observation or out-
lier. The score (3) normalizes residuals against the local geometry of HK , ensuring robust outlier
detection regardless of the kernel structure. We can regard w(z̃i, α) as a modified version of the low-
gradient subsampling. Similarly to low-gradient subsampling technique, we can utilize w(z̃i, α) to
assign subsampling probabilities, i.e., πi ∝ 1/w(z̃i, α) is taken as the subsampling probability of
observation z̃i = (x̃i, ỹi) in which the observations with smaller (larger) values of w(z̃i, α) are as-
signed larger (smaller) subsampling probabilities. This method is effective for moderate sample size
n, but it faces high computational cost for large sample size n (i.e., large-scale dataset), and sensitiv-
ity to highly contaminated data at small subsampling ratios (Gong et al., 2020). To overcome these
problems, we develop a robust kernel-based Markov subsampling procedure by utilizing w(z̃i, α) to
construct transition acceptance probabilities. This approach ensures that the generated subsamples
are uniformly ergodic Markov chain (u.e.M.c.) samples, and maintains robustness while improving
computational efficiency. The detailed procedure is summarized in Algorithm 1.

Remark 1. (i) The probabilities w(z̃i, α) in (3) depend on the parameter vector α = (α1, . . . , αn)
⊤.

A key challenge in obtaining a high-performance estimator f̂ = fS,λ of function f0 is the need for
a good initial estimate of α, which is particularly difficult in heavily contaminated data settings. To
address this issue, we employ a recursive updating approach, where α(κ) is refined iteratively using
the (κ − 1)-th subsample drawn from the contaminated dataset D̃ via the proposed subsampling,
and used to recompute w(z̃i, α

(κ−1)).

(ii) The choice of subsample size n0 balances computational complexity of Algorithm 1 and estima-
tion precision. It should be selected based on available computing resources and desired approxi-
mation accuracy.

(iii) Steps 6 and 9 of Algorithm 1 can be implemented using some standard subsampling technique,
such as Poisson sampling or replacement sampling.

(iv) Parameter λ can be determined via leave-one-out cross-validation (LOOCV) criterion to opti-
mize model performance.

(v) The overall computational complexity of Algorithm 1 is O(T0(nn0p + n3
0)). The term nn0p

arises from evaluating the residual kernel-norm scores across the full dataset, while n3
0 corresponds

to solving the sub-problem. Crucially, this linear dependence on n represents a substantial improve-
ment over the cubic O(n2p+ n3) complexity of standard kernel regression. Additionally, the space
complexity is reduced to O(np + n2

0), avoiding the O(np + n2) storage required for the full Gram
matrix. Thus, when n0 ≪ n, our method offers significant computational and spatial advantages.

5
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Algorithm 1 Robust Kernel-based Markov Subsampling

1: Initialization: Contaminated data D̃ = {z̃i = (x̃i, ỹi)}ni=1, Sκ = ∅, subsample size n0 < n, burn-in
period t0, maximum number of iterations T0, stopping criterion ξ0 (e.g., 0.001).

2: Output: f̂
3: Train a pilot estimate α(0) for uniformly drawn observations {z̃i}n0

i=1 from D̃ via α(0) =

argminα

∑n0
i=1{ỹi −

∑n0
j=1 αjK(x̃j , x̃i)}2 + λJ(f), and set κ = 1

4: while κ ≤ T0 or ∥α(κ) − α(κ−1)∥2 ≥ ξ0 do
5: Set α = α(κ−1)

6: Randomly draw an observation z̃1 from D̃, and compute w(z̃1, α) via (3) and set Sκ = Sκ ∪ z̃1
7: for 2 ≤ t ≤ n0 + t0 do
8: while |Sκ| < t do
9: Randomly draw a candidate observation z̃∗ from D̃ and compute w(z̃∗, α) via (3)

10: Calculate acceptance probability: πα = min {1, w(z̃t−1, α)/w(z̃∗, α)}
11: Set Sκ = Sκ ∪ z̃∗ with probability πα

12: If z̃∗ is accepted, set z̃t = z̃∗

13: end while
14: Set w(z̃t, α) = w(z̃∗, α)
15: end for
16: Denote the last n0 observations of Sκ as {(x̃∗

i , ỹ
∗
i )}n0

i=1

17: Set α(κ) = argminα

∑n0
i=1

{
ỹ∗
i −

∑n0
j=1 αjK(x̃∗

j , x̃
∗
i )
}2

+ λJ(f)

18: Set f (κ)
S,λ (x̃) =

∑n0
j=1 α

(κ)
j K(x̃∗

j , x̃)
19: Update κ = κ+ 1
20: end while
21: Return f̂ = f

(κ+1)
S,λ

4 THEORETICAL RESULTS

4.1 VALIDITY OF SUBSAMPLING

We first show that the Markov chain generated by the KRMS Algorithm 1 is uniformly ergodic. This
property ensures convergence to a unique stationary distribution in finite time, which is a crucial
requirement in establishing our subsequent theoretical properties.
Theorem 1. Let α̂ be estimate of parameter vector α obtained with Algorithm 1. Consider the
Markov chain {z̃t}t≥0 generated by the following process: given the current state z̃t together with
the α̂, a candidate z̃∗ is generated by randomly sampling from D̃ and accepted with probability
p∗a = min {1, w (z̃t, α̂) /w (z̃∗, α̂)}. Then, the Markov chain {z̃t}t≥0 is irreducible and aperiodic
on the finite state space D̃, and is therefore uniformly ergodic. Its unique stationary distribution P ′

has the probability mass function:

π(z̃) =
1/w(z̃, α̂)∑

z′∈D̃ 1/w(z′, α̂)
, ∀z̃ ∈ D̃.

Consequently, the limiting probability of each sample is proportional to the inverse of its kernel
residual score w(z̃, α̂).

By Theorem 1, our subsampling algorithm yields a u.e.M.c sample converging to P ′, which repre-
sents a “cleaner” version of the initially contaminated distribution P , with a reduced contamination
proportion 0 ≤ θ′ < θ.

Theorem 2. (Contamination Reduction) Let the original distribution be P = (1− θ)F + θQ. The
stationary distribution is a mixture P ′ = (1−θ′)F ′+θ′Q′, where the new contamination proportion
is given by:

θ′ =
θSQ

(1− θ)SF + θSQ
,

where SF = EF (1/w) and SQ = EQ(1/w) are the expected inverse scores for inliers and outliers,
respectively. Consequently, θ′ < θ if and only if SQ < SF .

6
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Remark 2. Theorem 2 quantifies the robustness gain. The condition θ′ < θ holds provided
SQ < SF , implying that outliers possess larger average residual kernel-norm scores (i.e., EQ(w) >
EF (w)). This aligns with the intuition of residual-based detection: reweighting inversely to resid-
ual scores effectively downweights contamination. To ensure SQ < SF , we rely on the geometric
separation in RKHS. Specifically, we assume outliers are incoherent with the kernel structure (see
Proposition 1 in Appendix B ).

4.2 ASYMPTOTIC PROPERTIES OF ESTIMATOR

Now we investigate the theoretical properties of the regularized estimator fS,λ defined in Algo-
rithm 1. Due to the theoretical challenges posed by the standard Gaussian kernel, we employ
instead a symmetric periodic Gaussian kernel (introduced in the Appendix B). This choice en-
ables analytically tractable approximations, facilitating eigen-decomposition and simultaneous di-
agonalization for asymptotic analysis (Lin & Brown, 2004; Zeng & Xia, 2019). Specifically,
the regularization scheme for regression with symmetric periodic Gaussian kernel is given by
J(f) = ∥f∥2Hω

= ⟨f, f⟩Hω , where the inner product ⟨f, f⟩Hω is defined analogously to ⟨f, f⟩HK
.

The estimator fS,λ is obtained by minimizing the regularized empirical risk using samples S =
{z̃i = (x̃i, ỹi)}ni=1 drawn from the distribution P ′. Define

RS(f) =
1

n

n∑
i=1

{f(x̃i)− ỹi}2, fS,λ = arg min
f∈Hω

{RS(f) + λJ(f)},

RP′(f) =

∫
Z
{f(x̃)− ỹ}2 dP ′, fP′ = arg min

f∈Hω

RP′(f).

Condition 1. {x̃i}ni=1 is a uniformly ergodic Markov chain sample of variable x̃, exhibiting uni-
formly mixing (ϕ-mixing) properties. The density function p′(x̃) of x̃ is supported on [0, π] and
satisfies the boundedness: 0 < c ≤ p′(x̃) ≤ C < ∞ for the positive constants c and C.
Condition 2. {ϵi}ni=1 is a sequence of i.i.d. random variables that are independent of x̃, and satisfy
E (ϵi) = 0 and E

(
ϵ2i
)
= σ2.

Condition 3. fP′ ∈ H∞
ω[−π,π].

Condition 4. fP′ ∈ Hm
[−π,π].

The explanation of these conditions and the definition of norms and inner products are given in the
Appendix B. For n-dependent sequences an and bn, the notation an ∼ bn means limn→∞ an/bn =
c ∈ (0,∞).

Theorem 3. Suppose that Conditions 1, 2 and 3 hold. If λ ∼ (lnn)
1
2 /n as n → ∞, the regulariza-

tion estimator fS,λ satisfies

∥fS,λ − fP′∥20 = Op

(
(lnn)

1
2

n

)
.

Theorem 4. Suppose that Conditions 1, 2 and 4 hold, and ω is a constant. If λ = o(1) and
(− lnλ)

1
2 /ω ∼ n

1
2m+1 as n → ∞, the regularization estimator fS,λ satisfies

∥fS,λ − fP′∥20 = Op

(
n− 2m

2m+1

)
.

Theorems 3 and 4 establish that for an infinitely or finitely smooth m-th order target function, the
estimation error tends to zero as the sample size approaches infinity provided the regularization
parameter λ is appropriately chosen, demonstrating the consistency of the estimator. While we
employ the Gaussian kernel to establish logarithmic convergence, our framework accommodates
polynomial-decay kernels (e.g., Sobolev) under Conditions 3–4, readily yielding polynomial rates.

To derive the functional Bahadur representation (FBR) of the estimator, a key prerequisite for estab-
lishing its asymptotic theory, we first introduce necessary notation. Let Hωt = Hω(t, ·). For any
f,∆f ∈ Hω , define

Snλ(f) = − 2

n

n∑
i=1

(ỹi − f (x̃i))Hωx̃i
+ 2λf,

7
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DSnλ(f)∆f =
2

n

n∑
i=1

∆f (x̃i)Hωx̃i
+ 2λ∆f.

Let DSλ(f)∆f = Ep′ {DSnλ(f)∆f}, Sλ(f) = Ep′ {Snλ(f)}, RS,λ(f) = RS(f) + λJ(f),
RP′,λ(f) = E{RS,λ(f)}, fP′,λ = argminf∈Hω RP′,λ(f). Thus, we have fS,λ − fP′ =

(fP′,λ − fP′) + fS,λ − fP′,λ. Denote f̃ = fP′,λ − DS−1
λ (fP′,λ)Snλ(fP′,λ), fS,λ − fP′,λ =

(fS,λ − f̃) + (f̃ − fP′,λ).
Theorem 5. (Functional Bahadur representation) Suppose that Conditions 1, 2 and 3 hold. If
λ ∼ (lnn)

1
2 /n = o(1) as n → ∞, we have∥∥∥fS,λ − fP′ + {DSλ (fP′)}−1

Snλ (fP′)
∥∥∥2
λ
= Op

(
lnn

n2

)
.

Theorem 5 shows that the estimation error can be accurately approximated by a leading linear ran-
dom term, with the remainder term converging to zero at the high-order rate of Op

(
lnn/n2

)
. Now

we apply this FBR to show pointwise asymptotic normality of estimators in Sobolev spaces.
Theorem 6. Suppose that Conditions 1, 2 and 3 hold. Let fP′(x̃) =

∑∞
k=0 fP′,kϕk(x̃), where

fP′,k =
∫
X f(x̃)ϕk(x̃)dx̃, f0(x̃) =

∑∞
k=0 λkfP′,kϕk(x̃)/(λ+λk). If λ = o(1) and (− lnλ)

1
2 /ω ∼

n
1

2m+1 as n → ∞, for any x̃0 ∈ [−π, π], there exists a constant σ2
x̃0

> 0 such that

lim
n→∞

σ2

(lnn)
1
2

∞∑
k=0

(
1 +

λ

λk

)−2

ϕ2
k (x̃0) = σ2

x̃0
,

we have √
n

(lnn)
1
2

{fS,λ (x̃0)− f0 (x̃0)}
d−→ N

(
0, σ2

x̃0

)
,

Theorem 7. Suppose that Conditions 1, 2 and 4 hold. If λ = o(1) and (− lnλ)
1
2 /ω ∼ n

1
2m+1 as

n → ∞, we have ∥∥∥fS,λ − fP′ + {DSλ (fP′)}−1
Snλ (fP′)

∥∥∥2
λ
= Op

(
n− 4m

2m+1

)
.

For any x̃0 ∈ [−π, π], if there exists a constant σ̃2
x̃0

> 0 such that

lim
n→∞

σ2

n
1

2m+1

∞∑
k=0

(
1 +

λ

λk

)−2

ϕ2
k (x̃0) = σ̃2

x̃0
,

we have
n

m
2m+1 {fS,λ (x̃0)− f0 (x̃0)}

d−→ N
(
0, σ̃2

x̃0

)
.

Theorems 6 and 7 establish that for a target function with an infinitely or finite smooth m-th order,
the estimator achieves a fast convergence rate. Moreover, when centered by its oracle-smoothed
counterpart and properly scaled, the estimator’s distribution converges to a normal distribution.

4.3 GENERALIZATION BOUND

To characterize the generalization ability of Algorithm 1, we evaluate the quality via its excess risk
RF (fS,λ) −RF (f0). In what follows, we discuss non-asymptotic upper bound of the excess risk.
We refine estimation error by exploiting the boundedness of the target function, restricting regression
function to a pregiven interval. To this end, we assume that there exists a constant M > 0 such that
|y| ≤ M for any y ∈ Y and |f(x)| ≤ M for any x ∈ X. Given Hω ⊂ HK , let C(X) denote
the space of continuous function on X equipped with the norm: ∥f∥∞ = supx∈X |f(x)|. By the
continuity of kernel K(·) and compactness of X, we have κ = supx∈X K(x,x) < ∞, which implies
the following key inequality: ∥f∥∞ ≤ κ∥f∥2K for ∀f ∈ HK .

When the sample dataset contains contaminated observations, the traditional error decomposition
approach faces additional challenges. To address this issue, we consider a new error decomposition
for the excess risk: RF (fS,λ)−RF (f0), which is given in Propositions 2–5.
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Theorem 8. Suppose that S = {z̃i = (x̃i, ỹi)}ni=1 is a u.e.M.c sample. If D(λ) satisfies D(λ) ≤
cqλ

q with λ = n−ϑ1 and ϑ1 = min {1/(2− q), 1/((1 + s)q), 1/q}, thus, for any 0 < δ < 1, with
probability at least 1− δ,

RF (fS,λ)−RF (f0) ≤ C2 ln(2/δ)n
−ϑ1q + 48M2θ′,

where C2 is a constant independent of n and δ, θ′ is the proportion of contaminated data in the
subsample set after subsampling.

Theorem 8 establishes asymptotic property of the excess risk, and its convergence rate is O(n−1)
as n → ∞ and θ′ → 0, which is consistent with the known optimal rate for regularized least square
type algorithms Li et al. (2017).

5 SIMULATION STUDIES

Simulation studies are conducted to evaluate the finite-sample performance of the proposed KRMS
method for kernel-based regularized least squares regression. Our evaluation focuses on the
method’s robustness under different data contamination scenarios. The simulation design incor-
porates two fundamentally distinct data generating processes: a linear regression and a nonlinear
regression. For each experimental configuration, we generate a training set with N = 10000 ob-
servations and an independent test set with Ntest = 2000 observations. The proposed subsam-
pling algorithm is applied to draw subsamples of sizes n ∈ {500, 1000, 1500}. The entire ex-
periment is repeated M = 100 times to ensure statistical reliability. For each replication m, we
compute mean squared error (MSE) for the test set via MSEm = 1

Ntest

∑Ntest
i=1 (ỹi − ˆ̃yi)

2, where
ˆ̃yi is the predictive value of ỹi. Our primary performance metric is the average mean squared er-
ror (AMSE) for all replications: AMSE = 1

M

∑M
m=1 MSEm. To assess method stability and the

performance of the proposed algorithm, we report the standard deviation (SD) of the MSEs val-
ues among M replications, and the positive screening rate (PSR, %), defined as the proportion of
correctly identified uncontaminated observations in each subsample, respectively. For comparison,
we consider the following five subsampling algorithms: MS-KLSR–Markov sampling with kernel-
based regularized least squares regression (Zou et al., 2014), UNIF-KLSR–uniform subsampling
with kernel-based regularized least squares regression, UNIF-LSR–uniform subsampling for linear
least squares regression, GMS-LSR–gradient-based Markov sampling for linear least squares re-
gression (Gong et al., 2020), and LGS-LSR–low gradient-based subsampling for linear least squares
regression (Jing, 2023). To implement kernel-based regression algorithms , we take the Gaussian
kernel K(x, t) = exp{−(x − t)2/4}. The regularization parameter is selected using the LOOCV
strategy.

Experiment 1 (Linear model). Dataset {(xi, yi)}Ni=1 is generated from linear model yi = xi1 +
2xi2 + 3xi3 + 4xi4 + ϵi, where xi1, . . . , xi4 are independently generated from uniform distribu-
tion U(0, 1), and ϵi’s are independently sampled from the standard normal distribution. To create
corrupted observations using the mechanism: for predictors xi, we replace a proportion θ of ob-
servations with random values drawn from Wi; for corresponding response variable yi, we replace
contaminated cases with values drawn from Oi for θ ∈ {0.1, 0.2, 0.3, 0.4}. We assume that Oi

follows the normal distribution N (0, 10), inducing significant fluctuations of contaminated observa-
tions, and Wi follows the following three distributions: (M1) Wij ∼ t(1), (M2) Wij ∼ exp(1) and
(M3) Wij ∼ F (1, 1), where t(1) represents the t-distribution with one degree of freedom, exp(1)
denotes standard exponential distribution, F (·, ·) is the F-distribution, and Wij is the j-th component
of Wi, which are designed to investigate robustness to different types of outliers.

Tables 1–3 (Tables 2 and 3 are given in Appendix D) indicate that the KRMS-KLSR method out-
performs others in that the former consistently achieves the relatively small AMSE and SD values
and maintains high PSR values for nearly all scenarios. For contamination schemes M1 and M3
together with low values of θ (e.g., θ ≤ 0.2), the LGS-LSR method shows marginally superior
performance over KRMS-KLSR based on AMSE values, but it exhibits lower SD and higher PSR
values, implying poorer stability and reliability compared to KRMS-KLSR. However, under severe
contamination (e.g., θ > 0.2) or complex outliers (e.g., M2 mechanism), KRMS-KLSR offers con-
siderable improvements: it exhibits only moderate AMSE increases while LGS-LSR suffers from
substantial performance degradation. GMS-LSR demonstrates intermediate performance, bridg-
ing the gap between LGS-LSR and conventional methods. Non-robust methods (e.g., UNIF-LSR)

9
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Table 1: Performance comparison of KRMS and five competing subsampling methods for corrupted
mechanism M1 in Experiment 1

n = 500 n = 1000 n = 1500

θ Method AMSE SD PSR AMSE SD PSR AMSE SD PSR

0.1

UNIF-KLSR 1.605 0.513 90.04% 1.861 0.520 89.92% 2.238 0.526 90.15%
MS-KLSR 1.364 0.324 96.75% 1.500 0.346 96.60% 1.857 0.476 96.76%

KRMS-KLSR 1.118 0.043 99.93% 1.084 0.035 99.94% 1.070 0.033 99.93%
UNIF-LSR 18.175 4.974 90.04% 22.156 3.359 89.92% 23.867 2.799 90.15%
GMS-LSR 2.975 1.681 94.38% 4.085 1.760 93.61% 5.076 2.323 93.56%
LGS-LSR 1.032 0.050 99.30% 1.032 0.045 99.26% 1.032 0.081 99.16%

0.2

UNIF-KLSR 2.545 0.521 80.02% 2.797 0.507 80.16% 3.225 0.444 80.22%
MS-KLSR 2.133 0.528 91.52% 2.425 0.509 91.57% 2.862 0.437 92.22%

KRMS-KLSR 1.117 0.046 99.89% 1.082 0.035 99.87% 1.074 0.035 99.86%
UNIF-LSR 25.266 2.203 80.02% 26.584 1.449 80.16% 27.235 0.844 80.22%
GMS-LSR 9.647 3.397 85.40% 11.755 3.094 85.25% 13.691 2.706 85.55%
LGS-LSR 1.083 0.092 98.42% 1.065 0.083 98.30% 1.068 0.089 98.14%

0.3

UNIF-KLSR 3.337 0.702 70.41% 3.859 0.543 70.08% 4.434 0.556 70.00%
MS-KLSR 2.981 0.587 84.94% 3.570 0.469 85.23% 4.116 0.450 86.02%

KRMS-KLSR 1.127 0.043 99.76% 1.085 0.037 99.79% 1.069 0.033 99.73%
UNIF-LSR 27.075 1.154 70.41% 27.835 0.644 70.08% 28.102 0.507 70.00%
GMS-LSR 16.172 3.216 76.47% 18.815 2.179 76.87% 19.973 2.153 77.56%
LGS-LSR 1.138 0.121 97.12% 1.155 0.185 96.95% 1.126 0.121 96.74%

0.4

UNIF-KLSR 4.494 0.792 60.06% 5.264 0.869 60.03% 5.868 0.654 59.83%
MS-KLSR 4.341 0.699 75.30% 5.055 0.705 76.09% 5.570 0.535 76.84%

KRMS-KLSR 1.132 0.047 99.62% 1.086 0.034 99.61% 1.069 0.041 99.57%
UNIF-LSR 27.739 0.657 60.06% 28.178 0.528 60.03% 28.280 0.468 59.83%
GMS-LSR 20.541 2.332 67.39% 22.434 1.816 68.01% 22.913 1.351 69.14%
LGS-LSR 1.328 0.287 95.03% 1.275 0.192 94.83% 1.273 0.176 94.46%

demonstrate severe degradation, leading to a relatively large AMSE values and a relatively low PSR
values, which confirms the necessity of robust subsampling. Thus, the proposed KRMS-KLSR
method retains stable performance with increasing contamination levels and larger subsample sizes.
To save space, Experiment 2 for nonlinear regression model are moved to Appendix D.

6 CONCLUSION

Corrupted observations from outliers, measurement errors, or multi-source heterogeneity are widely
encountered in biomedicine, environmental science, and economics. Traditional statistical inference
often faces huge challenges such as computational inefficiency and sensitivity to contamination.
Subsampling has emerged as a powerful strategy to select representative subsets while discard-
ing contaminated points. However, existing methods like score-based or low-gradient subsampling
mainly focus on parametric models and perform poorly under high contamination.

To address these issues, we propose a KRMS method for nonparametric regression with contam-
inated data. Our key innovation is to define subsampling probability as the ratio of the absolute
residual to the kernel norm of covariates, which dynamically downweights outliers while preserving
clean data. Unlike conventional methods, the proposed approach explicitly accounts for both the
predictive error and the geometric structure of the data in a RKHS, ensuring robustness even under
severe contamination. Theoretical guarantees, including consistency and asymptotic normality and
generalization bounds under RKHS regularization, are established under some conditions.

Empirical results demonstrate KRMS’s superiority in high-contamination settings, with stable per-
formance across simulations and real-data applications. While the method currently focuses on con-
tinuous, fully observed responses, future work will extend it to classification, distributed streaming
data, missing data, and high- or ultrahigh-dimensional optimization via deep learning approaches.

REPRODUCIBILITY STATEMENT

Detailed explanations on Tables 1–9 are given in Appendix D. We also attach our codes to facilitate
the reproduction of our experiments.
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A CHATGPT USAGE

During the preparation of this manuscript, we used ChatGPT (GPT-4) solely for the purpose of
polishing language and syntax. The tool was employed exclusively for language refinement and was
not used to generate any scientific content, ideas, experimental designs, or data interpretations.

B MAIN TOOLS FOR THEORETICAL RESULTS

B.1 MAIN TOOLS FOR VALIDITY OF SUBSAMPLING

We explicitly quantify the robustness of the proposed method by analyzing the stationary distribution
of the generated Markov chain. We assume the contaminated dataset D̃ is an i.i.d. realization of the
contaminated distribution P = (1 − θ)F + θQ, with density p(z̃). To ensure technical rigor, we
introduce the following regularity assumption.
Assumption 1 (Non-vanishing Score). There exists a constant δ > 0 such that the residual kernel-
norm score satisfies w(z̃, α) ≥ δ almost surely for all z̃ ∈ supp(P). Although Algorithm 1 op-
erates on a finite dataset D̃ (the empirical measure), for our theoretical analysis, we consider its
population-level counterpart where proposals are drawn from the underlying contaminated distri-
bution P . This allows us to characterize the distributional robustness of the method.

First, we identify the exact form of the stationary distribution generated by Algorithm 1. Note that
drawing a candidate uniformly from the dataset D̃ is empirically equivalent to drawing a proposal
from the distribution P .
Lemma 1 (Stationary Distribution). The Markov chain generated by Algorithm 1, utilizing the
contaminated density p(z̃∗) as the independent proposal distribution and acceptance probability
min{1, w(z̃, α)/w(z̃∗, α)}, converges to a unique stationary distribution P ′ with density:

p′(z̃) =
1

Z

p(z̃)

w(z̃, α)
,

where Z =
∫
[p(z̃)/w(z̃, α)]dz̃ is the normalizing constant.
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Proof of Lemma 1. The Algorithm 1 utilizes an Independent Metropolis-Hastings sampler. The pro-
posal distribution is the contaminated distribution p(z̃∗). The transition kernel is

T (z̃ → z̃∗) = p(z̃∗)min

{
1,

w(z̃, α)

w(z̃∗, α)

}
+ (1− r(z̃))δz̃(z̃

∗).

To verify p′(z̃) ∝ p(z̃)/w(z̃, α) is the stationary density, we check the detailed balance condition:
p′(z̃)T (z̃ → z̃∗) = p′(z̃∗)T (z̃∗ → z̃). Substituting the expressions, we obtain

LHS =
1

Z

p(z̃)

w(z̃, α)
· p(z̃∗) ·min

{
1,

w(z̃, α)

w(z̃∗, α)

}
=

p(z̃)p(z̃
∗)

Z
· 1

w(z̃, α)
min

{
1,

w(z̃, α)

w(z̃∗, α)

}
=

p(z̃)p(z̃∗)

Z
min

{
1

w(z̃, α)
,

1

w(z̃∗, α)

}
.

By the symmetry of the RHS, we obtain

RHS =
p(z̃∗)p(z̃)

Z
min

{
1

w(z̃∗, α)
,

1

w(z̃, α)

}
.

Since LHS = RHS, detailed balance holds.

To ensure the condition SQ < SF holds, we provide a geometric justification based on the properties
of RKHS.
Proposition 1 (Outlier Incoherence). Let f̂λ be the pilot estimator minimizing RD̃(f) + λ∥f∥2K .
Assume the target function f0 has a bounded RKHS norm ∥f0∥K ≤ R, while the outliers are
incoherent with the kernel structure such that fitting them requires a function norm ∥g∥K ≫ R. If λ
is sufficiently large, then for any isolated outlier ẑout and clean point z, we have w(ẑ, α) ≫ w(z, α),
which implies SQ < SF .

Proof of Proposition 1. Consider the pilot estimator f̂λ. By the Representer Theorem we have
f̂λ(·) =

∑
j cjK(x̃j , ·). The objective function penalizes both the fitting error and the RKHS norm

∥f∥2K . For an outlier (x̂, ŷ) that deviates from the smooth manifold of f0 by a distance ∆, forcing the
estimator to fit this point (i.e., reducing residual to 0) would require adding a sharp “spike” function.
Such a function possesses a large RKHS norm, leading to a significant increase in the penalty term
λ∥f∥2K . Since λ is chosen to be large (promoting smoothness), the optimization favors minimizing
the penalty over fitting the outlier. Consequently, the residual |ŷ − f̂λ(x̂)| remains proportional to
∆ (large), whereas inliers are well-approximated with small residuals. Thus, w(ẑ, α) ≫ w(z, α),
which implies SQ < SF .

Remark 3. (Remark on Pilot Estimator.) One might concern that the pilot estimator (using squared
loss) could interpolate outliers, vanishing their residuals. However, although the squared-error
loss is generally non-robust, the constraint imposed by a large regularization parameter λ in the
pilot phase acts as a global smoothness prior. This prevents the function from interpolating sparse,
high-magnitude outliers, thereby ensuring w(ẑ, α) remains large.

B.2 MAIN TOOLS FOR ASYMPTOTIC PROPERTIES OF ESTIMATOR

Note that HK is an RKHS, by the Riesz representing theorem, functions in HK satisfy the reproduc-
ing property: ⟨K (x, ·) , f(·)⟩HK

= f(x) for all f ∈ HK and x ∈ X. Following Mercer (1909), a
reproducing kernel K(·, ·) can be expressed as K(xi,xj) =

∑∞
k=1 λkϕk(xi)ϕk(xj), where λk’s are

the eigenvalues of K(·, ·), and ϕk(·)’s are the corresponding eigenfunctions, forming a sequence of
orthogonal basis functions in L2(X) with respect to the inner product: ⟨ϕi, ϕj⟩HK

= δij/λi, where
δij is the Kronecker delta. The RKHS can alternatively be defined in terms of these eigenvalues and
eigenfunctions:

HK =

{
f(x) =

∞∑
k=1

fkϕk(x) :

∞∑
k=1

f2
k

λk
< ∞

}
,

13
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where fk =
∫
X f(x)ϕk(x)dx. This spectral representation facilitates theoretical analysis, praticu-

larly in studying the asymptotic behaviour of estimator derived from RKHS (Zeng & Xia, 2019).
To study the asymptotic performance of estimator, Lin & Brown (2004) introduced two RKHSs: an
infinite order Sobolev space with periodic functions

S∞
ω[a,b] =

{
f ∈ L2(a, b) : f is (b− a)− periodic with
∞∑

m=0

ω2m

m!2m

∫ b

a

[
f (m)(t)

]2
dt < ∞

}
,

and an m-th order Sobolev space with periodic functions

Sm
[a,b] =

{
f ∈ L2(a, b) : f is (b− a)− periodic with∫ b

a

[f(t)]2 +
[
f (m)(t)

]2
dt < ∞

}
.

Zeng & Xia (2019) introduced the symmetric periodic Gaussian kernel

Hω(t, s) = Kω,−π,π(s, t) +Kω,−π,π(s,−t),

where Kω,−π,π(s, t) =
∑∞

k=−∞ K0
ω(t− s− 2kπ, 0) is the periodic Gaussian kernel with period

2π, and

K0
ω(t, s) =

1√
2πω

e−(s−t)2/ω2

,

is the well-known Gaussian reproducing kernel function. Let H∞
ω[−π,π] be the RKHS corresponding

to Hω(t, s), which is an infinite order Sobolev space with symmetric functions. This RKHS consists
of symmetric functions on [−π, π], and is a subspace of infinite order Sobolev space.

Following Zeng & Xia (2019), H∞
ω[−π,π] can be written as

H∞
ω[−π,π] =

{
g : g(t) =

∞∑
k=0

gkξk(t),

∞∑
k=0

g2k
λk,ω

< ∞

}
=
{
g : g(−t) = g(t), g ∈ S∞

ω[−π,π]

}
,

where λk,ω = exp(−k2ω2/2), ξ0(t) = π−1/2, ξk(t) =
√
2/π cos(kt). Also, the m-th order

Sobolev space with symmetric functions can be expressed as

Hm
[−π,π] =

{
g : g(t) =

∞∑
k=0

gkξk(t),
∞∑
k=0

g2k
ρk

< ∞

}
=
{
g : g(−t) = g(t), g ∈ Sm

[−π,π]

}
.

where ρ0 = 1 and ρk = k2m + 1. Specifically, in the considered RKHS, every function can be
expanded orthogonally in the cosine basis, where each coefficient gk must be scaled by the reciprocal
of its corresponding eigenvalue to ensure finiteness of the induced norm.

In order to study the asymptotic performance of estimator, we need some conditions, which are
displayed in the main tex, and we now explain them. Condition 1 is used to ensure that every point
in the support set has a specific probability density and is bounded. This guarantees the convergence
of the integral and has been utilized in Zeng & Xia (2019). Condition 2 is a standard assumption
in classical regression models. Condition 3 postulates a high degree of smoothness for the target
function fP′ , typically implying that it is infinitely differentiable on the domain [−π, π]. Condition
4 quantifies the smoothness of the target function fP′ by postulating that it belongs to the m-th order
Sobolev space Hm, meaning that the function and its derivatives up to order m are square-integrable.
To facilitate theoretical analysis, we standardize our symmetric periodic Gaussian kernel as

H̃ω(t, s) =
Hω(t, s)√
f(t)f(s)

,

14
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which is simply denoted as Hω(t, s). Denote ∥f∥2Hω
= ⟨f, f⟩Hω

. For asymptotic analysis, we
define the following norms and inner products (Zeng & Xia, 2019):

∥f∥0 =
[
Ep′
{
f2(x̃)

}] 1
2 =

[∫ π

0

f2(t)p′(t)dt

] 1
2

,

∥f∥λ =
(
∥f∥20 + λ∥f∥2H

) 1
2 ,

⟨f1, f2⟩0 =
1

4

(
∥f1 + f2∥20 − ∥f1 − f2∥20

)
,

⟨f1, f2⟩λ = ⟨f1, f2⟩0 + λ ⟨f1, f2⟩Hω
.

B.3 MAIN TOOLS FOR GENERALIZATION BOUND

Note that

RS(f) =
1

n

n∑
i=1

{f(x̃i)− ỹi}2,= arg min
f∈Hω

{RS(f) + λJ(f)}. (4)

To bound the excess risk of (4) for u.e.M.c. samples, similarly to Gong et al. (2015), we first define
the optimal regularization error D(λ) as

D(λ) = inf
f∈HK

{
RF (f)−RF (f0) + λ∥f∥2K

}
,

which depicts the approximation ability of the hypothesis space HK relative to the optimal mapping
f0. Thus, we the following relationship

fλ = arg min
f∈HK

{
RF (f)−RF (f0) + λ∥f∥2K

}
,

respectively. Thus, following Gong et al. (2015), the approximation ability of the target function f0
can be characterized with exponent 0 < q ≤ 1 satisfying

D(λ) ≤ cqλ
q (5)

for some constant cq and any λ > 0. This inequality ensures that the learning algorithm based on
the RKHS and regularization methods can approximate the target function at a convergence rate
determined by the exponent q.

To bound the excess risk, we consider a new error decomposition for the excess risk.
Proposition 2. Let fS,λ be the estimator defined in (4) based on the contaminated sample S =
{z̃i = (x̃i, ỹi)}ni=1, where x̃i = (x̃i1, . . . , x̃ip)

⊤ ∈ X’s are drawn from the mixture distribution
P ′ = (1 − θ′)F + θ′Q, where F is the true distribution and Q is the contaminated distribution.
Similarly, let fD,λ be the estimator defined as fD,λ = argminf∈H {RD(f) + λJ(f)}, computed
from the uncontaminated sample D = {zi = (xi, yi)}ni=1, where xi = (xi1, . . . , xip)

⊤ ∈ X drawn
exclusively from F with regularization parameter λ > 0. Thus, we have

RF (fS,λ)−RF (f0) ≤ S(D,S, λ) +A(D,S) +D(λ),

where S(D,S, λ) = {RF (fS,λ)−RD(fS,λ)} + {RD(fλ)−RF (fλ)}, A(D,S) = RD(fS,λ) −
RD(fD,λ), and D(λ) =

{
RF (fλ)−RF (f0) + λ∥fλ∥2K

}
. Here S(D,S, λ), A(D,S) and D(λ)

denote the sample error, contamination error and regularization error, respectively.

The covering number provides a natural measure of complexity for hypothesis spaces, quantifying
their capacity through metric entropy. For its definition, we refer the reader to Gong et al. (2015).
Extensive results exist on covering number bounds (Zhou, 2002; Zhang, 2002). Of particular in-
terest is the RKHS ball: Bς = {f ∈ H1 : ∥f∥ ≤ ς} ⊂ C(X) whose covering numbers are well
studied. We denote N (ϵ) = N (B1, ϵ) for the unit ball case. Following Samson (2000), we measure
variable dependence via the operator norm ∥Γ∥ of the covariance matrix Γ. This leads to our key
decomposition of sample error:

S(D,S, λ) = [RF (fS,λ)−RD(fS,λ)] + [RD(fλ)−RF (fλ)]

= {[RF (fS,λ)−RF (f0)]− [RD(fS,λ)−RD(f0)]}
+ {[RD(fλ)−RD(f0)]− [RF (fλ)−RF (f0)]}

= S1(D,S, λ) + S2(D, λ).

Based on this decomposition, we obtain the following propositions.
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Proposition 3. For HK with polynomial complexity exponent s > 0 and any 0 < δ < 1, with
probability at least 1− δ,

S1(D,S, λ) ≤1

2
{RF (fS,λ)−RF (f0)}

+
14336M2 ∥Γ∥2 ln(1/δ)

n

+

(
14336M2 ∥Γ∥2 cs(64MR)s

n

) 1
1+s

.

Proposition 4. If ∥K∥∞ ≤ κ, thus, for any 0 < δ < 1, with probability at least 1− δ,

S2(D, λ) ≤ 1

2
D(λ) +

56 ∥Γ∥2 (κD(λ)/λ+ 3M)
2
ln(1/δ)

n
.

Proposition 5. For contamination proportion θ′ ∈ [0, 1/2) and any 0 < δ < 1, with probability at
least 1− δ,

A(D,S) ≤ 24M2θ′ +
896 ∥Γ∥2 M2 ln(2/δ)

n
θ′.

By Propositions 2–5, we can establish the bound of the excess risk based on regularization regression
for u.e.M.c. samples.

C PROOFS OF THEORETICAL RESULTS

C.1 PROOF OF VALIDITY OF SUBSAMPLING

Proof of Theorem 1. To prove that the Markov chain is uniformly ergodic, we will demonstrate that
it satisfies three conditions: (i) Finite State Space, (ii) Irreducible, (iii) Aperiodic for a given α (e.g.,
α̂ ). For a Markov chain on a finite state space, these three conditions are sufficient for uniform
ergodicity (Levin & Peres, 2017).

(i) Finite State Space. The state space S of the Markov chain corresponds to the sample set in the
given dataset D̃ = {z̃1, . . . , z̃n}. With n samples in D̃, the state space has finite cardinality |S| = n.

(ii) Irreducibility: Let z̃i and z̃j ∈ S be two arbitrary states. To establish irreducibility, it suffices to
show that the one-step transition probability Pr (z̃t+1 = z̃j | z̃t = z̃i) is positive for all i, j. Within
the ’while’ loop in Algorithm 1, a candidate point z̃j is drawn randomly from D̃, the probability of
proposing z̃j is exactly 1/n > 0. This candidate is accepted with probability

p∗a = min

{
1,

w (z̃i, α)

w (z̃j , α)

}
Since all importance scores w(·, α) are positive, the acceptance probability is bounded away from
zero. The product of these positive probabilities ensures P (z̃t+1 = z̃j | z̃t = z̃i) > 0. Hence, the
states constitute an irreducible Markov chain.

(iii) Aperiodicity: To establish aperiodicity, it suffices to prove that the self-transition probability
Pr (z̃t+1 = z̃i | z̃t = z̃i) is strictly positive for any state z̃i ∈ S. When the chain is in state z̃i, a
candidate z̃∗ = z̃i is drawn uniformly from D̃ with probability 1/n. Since the acceptance probability
for this candidate is

p∗a = min

{
1,

w (z̃i, α)

w (z̃i, α)

}
= 1,

the transition is always accepted. Hence, the self-transition probability is bounded below by 1/n >
0 , which implies that the Markov chain is aperiodic.

The Markov chain defined by Algorithm 1 operates on a finite state space S and satisfies irreducibil-
ity, aperiodicity, and uniformly ergodicity. By the fundamental theorem of Markov chains, these
properties guarantee existence of a unique stationary distribution P ′ on S, and geometric conver-
gence in total variation:

∥µt − P ′∥TV ≤ Mγt
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for some positive constants M > 0 and 0 < γ < 1, where µt denotes the distribution at time t. This
completes the proof of theorem.

Proof of Theorem 2. From Lemma 1, the stationary density is p′(z̃) = 1
Z p(z̃)/w(z̃, α). By p(z̃) =

(1− θ)f(z̃) + θq(z̃), the normalizing constant Z can be written as

Z = (1− θ)

∫
f(z)

w(z, α)
dz + θ

∫
q(z)

w(z, α)
dz = (1− θ)SF + θSQ.

The total probability mass assigned to the contamination distribution Q in the stationary distribution
is

θ′ =

∫
1

Z

θq(z̃)

w(z̃, α)
dz̃ =

θ

Z
SQ =

θSQ

(1− θ)SF + θSQ
.

The condition for contamination reduction θ′ < θ simplifies to

θSQ

(1− θ)SF + θSQ
< θ ⇐⇒ SQ < (1− θ)SF + θSQ (since Z > 0, θ > 0)

⇐⇒ (1− θ)SQ < (1− θ)SF

⇐⇒ SQ < SF .

C.2 PROOF OF ASYMPTOTIC PROPERTIES

Lemma 2. Suppose that Condition 1 hold. If the tuning parameter λ satisfies (− lnλ)
1
2 /(nω) =

o(1), and ω is fixed or changes with n, we have

∥fS,λ − fP′,λ∥20 = Op

(
∥f̃ − fP′,λ∥20

)
.

Proof of Lemma 2. Note that Snλ(f) = − 2
n

∑n
i=1 (ỹi − f (x̃i))Hωx̃i

+ 2λf , and DSnλ(f)∆f =
2
n

∑n
i=1 ∆f (x̃i)Hωx̃i

+ 2λ∆f . Then, we have

Snλ(fS,λ)− Snλ(fP′,λ) =
2

n

n∑
i=1

{fS,λ (x̃i)− fP′,λ (x̃i)}Hωx̃i
+ 2λ(fS,λ − fP′,λ)

= DSnλ(fP′,λ)(fS,λ − fP′,λ).

By the definition of f̃ : f̃ − fP′,λ = −DS−1
λ (fP′,λ)Sn,λ(fP′,λ), we obtain Snλ(fP′,λ) =

DSλ(fP′,λ)(fP′,λ−f̃). Since fS,λ is the optimal solution of RS(f)+λJ(f), we have Snλ(fS,λ) = 0
and

DSλ(fP′,λ)(fS,λ − f̃) = DSλ(fP′,λ)(fS,λ − fP′,λ) +DSλ(fP′,λ)(fP′,λ − f̃)

= DSλ(fP′,λ)(fS,λ − fP′,λ)−DSnλ(fP′,λ)(fS,λ − fP′,λ).

Combining the above equations leads to
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Ep′∥fS,λ − f̃∥20 = Ep′

{∥∥∥∥(DSλ(fP′,λ)
)−1[

DSλ(fP′,λ)(fS,λ − fP′,λ)

−DSnλ(fP′,λ)(fS,λ − fP′,λ)
]∥∥∥∥2

0

}
= Ep′

{ ∞∑
k=0

〈(
DSλ(fP′,λ)

)−1[
DSλ(fP′,λ)(fS,λ − fP′,λ)

−DSnλ(fP′,λ)(fS,λ − fP′,λ)
]
, ϕk

〉2

0

}
= Ep′

{ ∞∑
k=0

(
1 +

λ

λk

)−2〈(
DSλ(fP′,λ)

)−1[
DSλ(fP′,λ)(fS,λ − fP′,λ)

−DSnλ(fP′,λ)(fS,λ − fP′,λ)
]
, ϕk

〉2

λ

}
=

1

4
Ep′

{ ∞∑
k=0

(
1 +

λ

λk

)−2〈
DSλ(fP′,λ)(fS,λ − fP′,λ)

−DSnλ(fP′,λ)(fS,λ − fP′,λ), ϕk

〉2

Hω

}
=

1

4

∞∑
k=0

(
1 +

λ

λk

)−2

Ep′

{[
2

n

n∑
i=1

(fS,λ(x̃i)− fP′,λ(x̃i))ϕk(x̃i)

− 2Ep′(fS,λ(x̃)− fP′,λ(x̃))ϕk(x̃)

]2}
.

Let Wk(x̃) = (fS,λ(x̃)− fP′,λ(x̃))ϕk(x̃), µk = Ep′ [Wk(x̃)], Wk(x̃i) =

{fS,λ(x̃i)− fP′,λ(x̃i)}ϕk(x̃i), and Wn,k = 1
n

∑n
i=1 Wk(x̃i). Thus, we have

Ep′

∥∥∥fS,λ − f̃
∥∥∥2
0
=

∞∑
k=0

(
1 +

λ

λk

)−2

Ep′


[
1

n

n∑
i=1

Wk(x̃i)− Ep′ [Wk(x̃)]

]2
=

∞∑
k=0

(
1 +

λ

λk

)−2

Ep′
[
(µk −Wn,k)

2
]
=

∞∑
k=0

(
1 +

λ

λk

)−2

Var(Wn,k).

Note that {x̃i}ni=1 is a u.e.M.c sample. Uniform ergodicity of the Markov chain is equivalent to
uniform ϕ-mixing with a geometric rate (Jones, 2004), i.e., there exist constants Cϕ > 0 and Fϕ ∈
[0, 1) such that ϕ(n) ≤ CϕFn

ϕ for every n ≥ 1. Since {Wk (x̃i)}ni=1 is stationary under P ′, we have

Var(Wn,k) =
1

n2

n∑
i=1

n∑
j=1

Cov(Wk(x̃i),Wk(x̃j))

=
1

n2

(
nγW (0) + 2

n−1∑
h=1

(n− h)γW (h)

)

=
1

n
γW (0) +

2

n

n−1∑
h=1

(
1− h

n

)
γW (h),

where γW (h) = Cov(Wk(x̃i),Wk(x̃i+h)) and γW (0) = Var(Wk(x̃1)) = Ep′{(Wk(x̃1) − µk)
2}.

By the ϕ-mixing covariance inequality (Doukhan, 1995), we obtain |γW (h)| ≤ 2∥Wk(x̃)∥22
√

ϕ(n).
Due to

∑
n

√
ϕ(n) < ∞, we have Var(Wn,k) ≤ 1

nC1∥Wk(x̃)∥22 = C1

n Ep′ [W 2
k (x̃)]. Thus, we
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obtain

Ep′

∥∥∥fS,λ − f̃
∥∥∥2
0
=

∞∑
k=0

(
1 +

λ

λk

)−2

Var(Wn,k) ≤
C1

n

∞∑
k=0

(
1 +

λ

λk

)−2

Ep′ [W 2
k (x̃)]

=
C1

n

∞∑
k=0

(
1 +

λ

λk

)−2

Ep′ [(fS,λ(x̃)− fP′,λ(x̃))ϕk(x̃)]
2

≤ C2

n
∥fS,λ − fP′,λ∥20

∞∑
k=0

(
1 +

λ

λk

)−2

≤ C2(− lnλ)
1
2

nω
∥fS,λ − fP′,λ∥20

= o
(
∥fS,λ − fP′,λ∥20

)
.

The second inequality holds since ϕk(x̃) is bounded for any k. The third inequality is given by
Lemma 3.3 of Zeng (2019). Combining the above equations yields

∥f̃ − fP′,λ∥20 ≥ ∥fS,λ − fP′,λ∥20 − ∥fS,λ − f̃∥20 = (1− op(1)) ∥fS,λ − fP′,λ∥20.

Thus, we obtain ∥fS,λ − fP′,λ∥20 = Op

(
∥f̃ − fP′,λ∥20

)
.

Lemma 3. Suppose that Condition 1 hold. If the tuning parameters λ and ω satisfy λ = o(1) and

(− lnλ)
1
2 /(nω) = o(1), respectively, we have ∥f̃ − fP′,λ∥20 = Op

(
(− lnλ)

1
2 /(nω)

)
.

Proof of Lemma 3. Since Sλ(fP′,λ) = 0, similarly to the proof of Lemma 2, we obtain

Ep′ ⟨Snλ(fP′,λ), ϕk⟩2Hω
= Ep′ ⟨Snλ(fP′,λ)− Sλ(fP′,λ), ϕk⟩2Hω

= Ep′

{
2

n

n∑
i=1

(ỹi − fP′,λ (x̃i))ϕk (x̃i)− 2Ep′ (ỹ − fP′,λ(x̃)ϕk(x̃))

}2

= 4Var

(
1

n

n∑
i=1

(ỹi − fP′,λ(x̃i))ϕk(x̃i)

)

≤ 4C1

n
Ep′ [(ỹ − fP′,λ(x̃))ϕk(x̃)]

2

=
4C1

n
Ep′ [(ϵ+ fP′(x̃)− fP′,λ(x̃))ϕk(x̃)]

2

=
4C1

n
σ2Ep′ϕ2

k +
4C1

n
Ep′ [(fP′(x̃)− fP′,λ(x̃))ϕk(x̃)]

2
.
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By proof of Lemma 2, we have

Ep′∥f̃ − fP′,λ∥20 = Ep′

∥∥∥(DSλ(fP′,λ))
−1

Snλ(fP′,λ)
∥∥∥2
0

= Ep′

{ ∞∑
k=0

〈
(DSλ(fP′,λ))

−1
Snλ(fP′,λ), ϕk

〉2
0

}

=
1

4
Ep′


∞∑
k=0

(
1 +

λ

λk

)−2
〈(

1

2
DSλ(fP′,λ)

)−1

Snλ(fP′,λ), ϕk

〉2

λ


=

1

4
Ep′

{ ∞∑
k=0

(
1 +

λ

λk

)−2

⟨Snλ(fP′,λ), ϕk⟩2Hω

}

≤ C

n

∞∑
k=0

(
1 +

λ

λk

)−2

+
1

n

∞∑
k=0

(
1 +

λ

λk

)−2

Ep′

[
(fP′(x̃)− fP′,λ(x̃))

2
ϕk(x̃)

2
]

=
C

n

∞∑
k=0

(
1 +

λ

λk

)−2

+
C ′ ∥fP′ − fP′,λ∥20

n

∞∑
k=0

(
1 +

λ

λk

)−2

= O

(
(− lnλ)

1
2

nω

)
+O

(
λ(− lnλ)

1
2

nω

)
= O

(
(− lnλ)

1
2

nω

)
.

Proof of Theorem 3. We adopt the commonly used technique in studying consistency like Zeng
& Xia (2019). Different from Zeng & Xia (2019), we consider a u.e.M.c samples rather than
i.i.d samples. Let fP′(x) =

∑∞
k=0 fP′,kϕk(x), f(x) =

∑∞
k=0 fkϕk(x) and fP′,λ(x) =∑∞

k=0 fP′,λ,kϕk(x). It follows from Theorem 2 of Zeng & Xia (2019) that

RP′,λ(f) = Ep′
[
(ỹ − f(x̃))2

]
+ λJ(f)

= Ep′

[
(ϵ+ fP′(x̃)− f(x̃))

2
]
+ λJ(f)

= σ2 +

∞∑
k=0

(fk − fP′,k)
2
+ λ

∞∑
k=0

f2
k

λk
.

As fP′,λ is the minimizer of RP′,λ(f), we have fP′,λ,k = fP′,kλk/(λ + λk). Combining the
equations yields

∥fP′,λ − fP′∥20 =

∞∑
k=0

λ2

(λ+ λk)
2 f

2
P′,k =

∞∑
k=0

λ2λk

(λ+ λk)
2

f2
P′,k

λk

≤ sup
k

λ2λk

(λ+ λk)
2 J (fP′)

≤ λ2 sup
x>0

x(
x

1
2 + λx− 1

2

)2 J (fP′)

=
λ

4
J (fP′) = O(λ).

By Lemma 2 and Lemma 3, we have

∥fS,λ − fP′,λ∥20 = Op

(
(− lnλ)

1
2

nω

)
,

It follows that

∥fS,λ − fP′∥20 = Op(λ) +Op

(
(− lnλ)

1
2

nω

)
.
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When ω is fixed, we choose λ ∼ (− lnn)
1
2 /n, yielding λ = o(1) and (− lnλ)

1
2 /n = o(1) as

n → ∞. When Assumptions of Lemmas 2-3 hold, we have

∥fS,λ − fP′∥20 = Op(λ) +Op

(
(− lnλ)

1
2

nω

)
= Op

(
(lnn)

1
2

n

)
.

Proof of Theorem 4. Following the proof of Theorem 3, we can show

Ep′∥fS,λ − fP′,λ∥20 = O

(
(− lnλ)

1
2

nω

)
.

Thus, we consider fP′,λ − fP′ . Since fP′ ∈ Hm
[−π,π], we get fP′ =

∑∞
k=0 fP′,kϕk(x) with∑∞

k=0 f
2
P′,k/Fk < ∞. Similarly to the proof of Theorem 3, we can show fP′,λ,k = fP′,kλk/λ+λk.

Thus, we obtain

∥fP′,λ − fP′∥20 =

∞∑
k=0

λ2

(λ+ λk)
2 f

2
P′,k =

∞∑
k=0

λ2Fk

(λ+ λk)
2

f2
P′,k

Fk

≤ C sup
k

λ2Fk

(λ+ λk)
2

≤ C sup
s>0

λ2
(
s2m + 1

)−1(
λ+ e−

s2ω2

2

)2 .
Now we find the maximum value of q(x) = λ2

(
x2m + 1

)−1
/
(
λ+ e−

x2α2

2

)2
with x > 0. On

the boundary, q(0) = O
(
λ2
)

and q(∞) = 0. For the inner points, it follows from q′(x) = 0

that ω2
(
x2 + x−(2m−2)

)
= m

(
1 + λe

α2ω2

2

)
whose solution is denoted as x̂. Since q′(x) > 0

as λ → 0, we have x̂ → ∞ as λ → 0. As a result, we obtain ω2x̂2 ∼ λe
α2ω2

2 . Then, we have
ω2x̂2 ∼ − lnλ, and q(x̂) = O

(
ω2m

(− lnλ)m

)
. When λ = o(1), we have λ2 = o

(
ω2m/(− lnλ)m

)
.

Thus, we obtain

sup
s>0

λ2
(
s2m + 1

)−1(
λ+ e−

x2ω2

2

)2 = O

(
ω2m

(− lnλ)m

)
.

It follows from Ep′∥fS,λ − fP′,λ∥20 = O

(
(− lnλ)

1
2

nω

)
, and (− lnλ)

1
2 /ω ∼ n

1
2m+1 that

∥fS,λ − fP′∥20 = Op

(
n− 2m

2m+1

)
.

Proof of Theorem 5. Note that for any f(x) =
∑∞

k=0 fkϕk(x), we have

∥f∥2λ = ⟨f, f⟩2λ = ∥f∥20 + λ∥f∥2Hω

=
∑∞

k=0

(
1 + λ

λk

)
f2
k =

∑∞
k=0

(
1 + λ

λk

)−1

⟨f, ϕk⟩2λ .
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Then, we obtain

Ep′

∥∥∥fS,λ − fP′ + (DSλ (fP′))
−1

Snλ (fP′)
∥∥∥2
λ

=Ep′

{
∥ (DSλ (fP′))

−1
[DSλ (fP′) (fS,λ − fP′)−DSnλ (fP′) (fS,λ − fP′)] ∥2λ

}
=Ep′

{ ∞∑
k=0

(
1 +

λ

λk

)−1 (
(DSλ (fP′))

−1
[DSλ (fP′) (fS,λ − fP′)

−DSnλ (fP′) (fS,λ − fP′)] , ϕk)
2
λ

}
=
1

4
Ep′

{ ∞∑
k=0

(
1 +

λ

λk

)−1

⟨DSλ (fP′) (fS,λ − fP′)−DSnλ (fP′) (fS,λ − fP′) , ϕk)
2
Hω

}

=

∞∑
k=0

(
1 +

λ

λk

)−1

Var

[
1

n

n∑
i=1

(fS,λ(x̃i)− fP′(x̃i))ϕk(x̃i)

]

≤C1

n

∞∑
k=0

(
1 +

λ

λk

)−1

Ep′

[
(fS,λ(x̃)− fP′(x̃))

2
ϕk(x̃)

2
]

≤C2

n
∥fS,λ(x̃)− fP′(x̃)∥20

∞∑
k=0

(
1 +

λ

λk

)−1

=O

(
lnn

n2

)
.

Proof of Theorem 6. From Theorem 5, we have the FBR:

fS,λ − fP′ = − (DSλ (fP′))
−1

Snλ (fP′) + ∆′,

where ∥∆′∥2λ = Op(
lnn
n2 ). For a fixed x̃0, f(x̃0) = ⟨f,Rλx̃0

⟩λ (Zeng, 2019). Then, we have

fS,λ(x̃0)− fP′(x̃0) = −
〈
(DSλ (fP′))

−1
Snλ (fP′) , Rλx̃0

〉
λ
+ ⟨∆′, Rλx̃0

⟩λ.

The second term (remainder) can be bounded using Cauchy-Schwarz in the ⟨·, ·⟩λ inner product
space, i.e.,

|⟨∆′, Rλx̃0
⟩λ| ≤ ∥∆′∥λ∥Rλx̃0

∥λ,
It follows from Lemma 3.1 of Zeng (2019) that Rλx̃0

= ( 12DSλ(fP′))−1Hωx̃0
. Using the identity

⟨( 12DSλ(fP′))−1f1, f2⟩λ = ⟨f1, f2⟩Hω and ⟨ϕk, ϕj⟩Hω = δkj/λk yields

∥Rλx̃0
∥2λ = ⟨Rλx̃0

, Rλx̃0
⟩λ = ⟨(1

2
DSλ(fP′))−1Hωx̃0

, Rλx̃0
⟩λ

= ⟨Hωx̃0
, Rλx̃0

⟩Hω
=

〈 ∞∑
k=0

λkϕk(x̃0)ϕk(·),
∞∑
j=0

(1 +
λ

λj
)−1ϕj(x̃0)ϕj(·)

〉
Hω

=

∞∑
k=0

∞∑
j=0

λkϕk(x̃0)(1 +
λ

λj
)−1ϕj(x̃0)

δkj
λk

=

∞∑
k=0

(1 +
λ

λk
)−1ϕ2

k(x̃0) = O(
(lnn)

1
2

ω
).

Now bound the remainder term, scaled by the normalization factor. Thus, we have∣∣∣∣√ n

(lnn)1/2
⟨∆′, Rλx̃0

⟩λ
∣∣∣∣ ≤√ n

(lnn)1/2
∥∆′∥λ∥Rλx̃0

∥λ

=

√
n

(lnn)1/2
Op

(√
lnn

n2

)
O

(√
(lnn)1/2

ω

)
= op(1).
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By Slutsky’s theorem, the asymptotic distribution of
√

n
(lnn)1/2

(fS,λ(x̃0)− fP′(x̃0)) is the same as

that of

−
√

n

(lnn)1/2

〈
(DSλ (fP′))

−1
Snλ (fP′) , Rλx̃0

〉
λ
,

which implies that we only analyze the leading term

−
√
n/(lnn)1/2

〈
(DSλ (fP′))

−1
Snλ (fP′) , Rλx̃0

〉
λ
.

Using the property ⟨(DSλ(fP′))−1f1, f2⟩λ = ⟨ 12f1, f2⟩Hω , we obtain

−
〈
(DSλ (fP′))

−1
Snλ (fP′) , Rλx̃0

〉
λ
= −

〈
1

2
Snλ (fP′) , Rλx̃0

〉
Hω

= −

〈
− 1

n

n∑
i=1

ϵiHωx̃i
+ λfP′ , Rλx̃0

〉
Hω

=
1

n

n∑
i=1

ϵi⟨Hωx̃i
, Rλx̃0

⟩Hω − λ⟨fP′ , Rλx̃0
⟩Hω

.

For the first term, it follows from Hωx̃i
(·) =

∑
k λkϕk(x̃i)ϕk(·) and Rλx̃0

(·) =
∑

j(1 +
λ
λj
)−1ϕj(x̃0)ϕj(·) that

⟨Hωx̃i
, Rλx̃0

⟩Hω
=
∑
k,j

λkϕk(x̃i)(1 +
λ

λj
)−1ϕj(x̃0)⟨ϕk, ϕj⟩Hω

=
∑
k,j

λkϕk(x̃i)(1 +
λ

λj
)−1ϕj(x̃0)

δkj
λk

=
∑
k

(1 +
λ

λk
)−1ϕk(x̃i)ϕk(x̃0)

= Rλ(x̃i, x̃0).

Then, we obtain 1
n

∑n
i=1 ϵi⟨Hωx̃i

, Rλx̃0
⟩Hω = 1

n

∑n
i=1 ϵiRλ(x̃i, x̃0).

For the second term λ⟨fP′ , Rλx̃0
⟩Hω , it follows from fP′(·) =

∑
k fP′,kϕk(·) that

λ⟨fP′ , Rλx̃0
⟩Hω

= λ
∑
k,j

fP′,k(1 +
λ

λj
)−1ϕj(x̃0)⟨ϕk, ϕj⟩Hω

= λ
∑
k,j

fP′,k(1 +
λ

λj
)−1ϕj(x̃0)

δkj
λk

=
∑
k

λ

λk
fP′,k(1 +

λ

λk
)−1ϕk(x̃0)

=
∑
k

λ

λ+ λk
fP′,kϕk(x̃0).

The leading term is

1

n

n∑
i=1

ϵiRλ(x̃i, x̃0)−
∑
k

λ

λ+ λk
fP′,kϕk(x̃0),
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and the asymptotic distribution is√
n

(lnn)1/2

(
fS,λ(x̃0)− fP′(x̃0)−

[
−
∑
k

λ

λ+ λk
fP′,kϕk(x̃0)

])

=

√
n

(lnn)1/2

(
fS,λ(x̃0)−

[∑
k

fP′,kϕk(x̃0)−
∑
k

λ

λ+ λk
fP′,kϕk(x̃0)

])

=

√
n

(lnn)1/2

(
fS,λ(x̃0)−

∑
k

λk

λ+ λk
fP′,kϕk(x̃0)

)

=

√
n

(lnn)1/2
(fS,λ(x̃0)− f∗(x̃0)) .

Therefore, the asymptotic distribution is determined by the term involving the sum of errors:

Tn :=

√
n

(lnn)1/2

(
1

n

n∑
i=1

ϵiRλ(x̃i, x̃0)

)
=

1√
n(lnn)1/2

n∑
i=1

ϵiRλ(x̃i, x̃0).

Consider the sequence Vi = ϵiRλ(x̃i, x̃0), which is a stationary sequence under P ′ and is ϕ-mixing
with Ep′(Vi) = 0. It follows from the central limit theorem for ϕ-mixing sequences (Jones, 2004)

that if
∑√

ϕ(n) < ∞ and E(V 2
0 ) < ∞, 1√

n

∑n
i=1 Vi

d−→ N (0, σ2
LTV ), where σ2

LTV = Var(V0) +

2
∑∞

j=1 Ep′(V0Vj) is the long-term variance. Thus, we have

lim
n→∞

Var(Tn) = lim
n→∞

1

(lnn)1/2
Var

(
1√
n

n∑
i=1

Vi

)
,

Cov(V0, Vj) = Ep′(V0Vj) = δ0jσ
2Ep′{Rλ(x̃0, x̃)

2}

lim
n→∞

Var

(
1√
n

n∑
i=1

Vi

)
= σ2

LTV

=

∞∑
j=−∞

Cov(V0, Vj) = Cov(V0, V0)

= σ2∥Rλx̃0
∥20

= σ2
∑
k

(
1 +

λ

λk

)−2

ϕk(x̃0)
2.

Hence, the asymptotic variance of Tn is

lim
n→∞

Var(Tn) = lim
n→∞

σ2

(lnn)1/2

∑
k

(
1 +

λ

λk

)−2

ϕk(x̃0)
2.

Combining the FBR approximation and the central limit thorem for the leading term leads to√
n

(lnn)
1
2

{fS,λ (x̃0)− f⋆ (x̃0)}
d−→ N

(
0, σ2

x̃0

)
,

where σ2
x̃0

= limn→∞ σ2(lnn)−
1
2

∑∞
k=0 (1 + λ/λk)

−2
ϕ2
k (x̃0).
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Proof of Theorem 7. By the proof of Theorem 6, we obtain

Ep′{∥fS,λ − fP′ + (DSλ (fP′))
−1

Snλ (fP′) ∥2λ}

=

∞∑
k=0

(
1 +

λ

λk

)−1

Var

{
1

n

n∑
i=1

(fS,λ (x̃i)− fP′,0 (x̃i))ϕk (x̃i)

}

≤ C2

n
∥fS,λ(x̃)− fP′,0(x̃)∥20

∞∑
k=0

(
1 +

λ

λk

)−1

= O(
1

n
)O(n− 2m

2m+1 )O

(
(− lnλ)1/2

ω

)
= O

(
n− 4m

2m+1

)
.

Similarly to proof of Theorem 6, we have∣∣∣n m
2m+1 ⟨∆′, Rλx̃0

⟩λ
∣∣∣ ≤ n

m
2m+1 ∥∆′∥λ∥Rλx̃0

∥λ,

where

∥∆′∥λ =

√
Op(n

− 4m
2m+1 ) = Op(n

− 2m
2m+1 ),

∥Rλx̃0
∥2λ =

∑
k

(1 +
λ

λk
)−1ϕ2

k(x̃0) = O(
(− lnλ)1/2

ω
) = O(n

1
2m+1 ),

∥Rλx̃0
∥λ = O(

√
n

1
2m+1 ) = O(n

1
2(2m+1) ).

Thus, we have

n
m

2m+1Op(n
− 2m

2m+1 )O(n
1

2(2m+1) ) = Op

(
n

m
2m+1−

2m
2m+1+

1
2(2m+1)

)
= Op

(
n

−2m+1/2
2m+1

)
= op(1).

For leading term

T ′
n := n

m
2m+1

(
1

n

n∑
i=1

ϵiRλ(x̃i, x̃0)

)
=

n
m

2m+1

n

n∑
i=1

Vi = n− m+1
2m+1

n∑
i=1

Vi,

where Vi = ϵiRλ(x̃i, x̃0), its variance is

Var(T ′
n) = Var

(
n− m+1

2m+1

n∑
i=1

Vi

)
= n

1
2m+1 Var

(
1√
n

n∑
i=1

Vi

)
,

and the limitation of Var(T ′
n) is given by

lim
n→∞

Var (T ′
n) = lim

n→∞

σ2

(n
1

2m+1 )

∑
k

(
1 +

λ

λk

)−2

ϕk (x̃0)
2
.

Then, by the Markov chain’s central limit theorem and Slutsky’s theorem, we obtain

n
m

2m+1 {fS,λ (x̃0)− f⋆ (x̃0)}
d−→ N

(
0, σ̃2

x̃0

)
.

C.3 PROOF OF GENERALIZATION BOUND

Based on Lemma 3 of Li et al. (2017), we can obtain the following Lemma for u.e.M.c. samples.
Lemma 4. For any bounded measurable functions f and u.e.M.c. samples z̃1, · · · , z̃n, we assume
that there exists a constant C satisfying 0 ≤ f(z) ≤ C, ∀z̃i ∈ z̃. Thus for any ε > 0, we have

Pr

{∣∣∣∣∣ 1n
∑n

i=1 f (zi)− E(f)√
(E(f) + ε)

∣∣∣∣∣ ≥ √
ε

}
≤ 2 exp

{
−nε

56C ∥Γ∥2

}
, (6)

Pr

{
1
n

∑n
i=1 f (zi)− E(f)√
(E(f) + ε)

≥
√
ε

}
≤ exp

{
−nε

56C ∥Γ∥2

}
, (7)

where ∥Γ∥ =
√
2/
(
1− β

1/2n1

0

)
, and E(f) is the expectation of function f .
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Proof of Lemma 4. Taking ε =
√
ε{E(f) + ε} in Lemma 3 of (Li et al., 2017) leads to

P

{
1
n

∑n
i=1 f (zi)− E(f)√
(E(f) + ε)

≥
√
ε

}
≤ exp

{
−n(ε2 + εE(f))

56C ∥Γ∥2 E(f)

}

= exp

{
−nε

56C ∥Γ∥2

(
ε

E(f)
+ 1

)}

≤ exp

{
−nε

56C ∥Γ∥2

}
.

Proof of Proposition 2. According to the definition of excess risk, we have

RF (fS,λ)−RF (f0) ≤ RF (fS,λ)−RF (f0) + λ∥fD,λ∥2K
= {RF (fS,λ)−RD(fS,λ)}+ {RD(fλ)−RF (fλ)}
+RD(fS,λ)−RD(fD,λ) +

{
RD(fD,λ) + λ∥fD,λ∥2K

}
−
{
RD(fλ) + λ∥fλ∥2K

}
+RF (fλ)−RF (f0) + λ∥fλ∥2K ,

S(D,S, λ) = [RF (fS,λ)−RD(fS,λ)] + [RD(fλ)−RF (fλ)] ,

A(D,S) = RD(fS,λ)−RD(fD,λ),

H(D, λ) =
[
RD(fD,λ) + λ∥fD,λ∥2K

]
−
[
RD(fλ) + λ∥fλ∥2K

]
,

D(λ) = RF (fλ)−RF (f0) + λ∥fλ∥2K .

The definition of fD,λ implies that H(D, λ) is at most zero. Hence, we obtain

RF (fS,λ)−RF (f0) ≤ S(D,S, λ) +A(D,S) +D(λ),

where S(D,S, λ), A(D,S) and D(λ) denote the sample error, contamination error and regulariza-
tion error, respectively.

Proof of Proposition 3. We utilize the idea of ER minimizer and probability inequality to bound
this term by means of a covering number. For R > 0, we define FR as the set of functions
FR :=

{
(f(x)− y)

2 − (f0(x)− y)
2
: f0 ∈ BR

}
. Each function g ∈ FR has the form g(z) =

(fS,λ(x)− y)2 − (f0(x)− y)
2 with f ∈ BR. Hence, we obtain E(g) = RF (fS,λ)−RF (f0) ≥ 0,

1
n

∑n
i=1 g (zi) = RD(fS,λ)−RD(f0), and

g(z) = {fS,λ(x)− f0(x)} {(fS,λ(x)− y) + (f0(x)− y)} .

Since |fS,λ(x)| ≤ M and |f0(x)| ≤ M , it is easily shown that |g(z)| ≤
∣∣(fS,λ(x)− y)2

∣∣ +∣∣∣(f0(x)− y)
2
∣∣∣ ≤ 8M2, and ∥g(z)∥∞ ≤ 8M2. By Lemma 3 of Li et al. (2017), for any ε > 0, we

have

Pr

{
sup
f∈BR

[RF (fS,λ)−RF (f0)]− [RD(fS,λ)−RD(f0)]√
RF (fS,λ)−RF (f0) + ε

≥ 4
√
ε

}

= Pr

{
sup
g∈FR

E(g)− 1
n

∑n
i=1 g (zi)√

E(g) + ε
≥ 4

√
ε

}

≤ N (FR, ε) exp

{
−εn

448M2 ∥Γ∥2

}
. (8)

For any f1, f2 ∈ BR, we have

|g1(z)− g2(z)| =
∣∣∣(f1(x)− y)

2 − (f2(x)− y)
2
∣∣∣ ≤ 4M |f1(x)− f2(x)| .
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Thus, for any ε > 0, an ε
4MR -covering of B1 provides an ε-covering of FR, i.e.,

N (FR, ε) ≤ N
(
BR,

ε

4M

)
≤ N

(
B1,

ε

4MR

)
. (9)

Generally, H1 has polynomial complexity exponent s > 0 if there is some constant cs such that

log (N (H1, ε)) ≤ csε
−s,∀ε > 0. (10)

Combining inequality (8) and inequality (10) leads to

Pr

 sup
f∈BR

[RF (fS,λ)−RF (f0)]− [RD(fS,λ)−RD(f0)]√
RF (fS,λ)−RF (f0) +

1
16ε

≥
√
ε


= Pr

 sup
g∈FR

E(g)− 1
n

∑n
i=1 g (zi)√

E(g) + 1
16ε

≥
√
ε


≤ N

(
FR,

1

16
ε

)
exp

{
−εn

7168M2 ∥Γ∥2

}

≤ N
(
B1,

ε

64MR

)
exp

{
−εn

7168M2 ∥Γ∥2

}
.

Taking

δ = N
(
B1,

ε

64MR

)
exp

{
−εn

7168M2 ∥Γ∥2

}
,

leads to

ln δ = lnN
(
B1,

ε

64MR

)
− εn

7168M2 ∥Γ∥2
≤ cs

(
64MR

ε

)s

− εn

7168M2 ∥Γ∥2
,

which yields
εn

7168M2 ∥Γ∥2
− cs

(
64MR

ε

)s

− ln

(
1

δ

)
≤ 0.

It follows that

εs+1 −
7168M2 ∥Γ∥2 ln( 1δ )

n
· εs − 7168M2 ∥Γ∥2 cs(64MR)s

n
≤ 0.

By Lemma 7 of Cucker & Smale (2002), we have

ε∗ ≤ max

14336M2 ∥Γ∥2 ln( 1δ )
n

,

(
14336M2 ∥Γ∥2 cs(64MR)s

n

) 1
1+s


≤

14336M2 ∥Γ∥2 ln( 1δ )
n

+

(
14336M2 ∥Γ∥2 cs(64MR)s

n

) 1
1+s

.

It follows that:

Pr

 [RF (fS,λ)−RF (f0)]− [RD(fS,λ)−RD(f0)]√
RF (fS,λ)−RF (f0) +

1
16ε

∗
≤

√
ε∗

 ≥ 1− δ,

Pr

{
S1(D,S, λ) ≤

√
ε∗
√

RF (fS,λ)−RF (f0) + ε∗
}

≥ 1− δ.

By Young’s Inequality, we obtain
√
ε∗
√
RF (fS,λ)−RF (f0) + ε∗ ≤ 1

2
{RF (fS,λ)−RF (f0)}+ ε∗.
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Thus, for any δ > 0, with confidence at least 1− δ,

S1(D,S, λ) ≤ 1

2
[RF (fS,λ)−RF (f0)] +

14336M2 ∥Γ∥2 ln( 1δ )
n

+

(
14336M2 ∥Γ∥2 cs(64MR)s

n

) 1
1+s

.

Proof of Proposition 4. By the definition of fλ, we obtain ∥fλ∥ ≤ D(λ)/λ. Also, according to the
condition of K, we have ∥fλ∥∞ ≤ κ ∥fλ∥ ≤ κD(λ)

λ . Taking

V = (fλ(x)− y)
2 − (f0(x)− y)

2
= (fλ(x)− f0(x)){(fλ(x)− y) + (f0(x)− y)}

yields

|V | = |(fλ(x)− f0(x)){(fλ(x)− y) + (f0(x)− y)}|
≤ {|fλ(x)|+ |f0(x)|} {|fλ(x)|+ |f0(x)|+ |2y|}

≤
(
κD(λ)

λ
+M

)(
κD(λ)

λ
+ 3M

)
≤
(
κD(λ)

λ
+ 3M

)2

.

By Lemma 4, we have

Pr

{
1
n

∑n
i=1 V (zi)− E(V )√
(E(V ) + ε)

≥
√
ε

}
≤ exp

 −nε

56
(

κD(λ)
λ + 3M

)2
∥Γ∥2

 .

Thus, for any ε > 0, we obtain

Pr

{
(RD(fλ)−RD(f0))− (RF (fλ)−RF (f0))√

(RF (fλ)−RF (f0)) + ε
≥

√
ε

}
≤ exp

 −nε

56
(

κD(λ)
λ + 3M

)2
∥Γ∥2

 .

Taking

δ = exp

 −nε

56
(

κD(λ)
λ + 3M

)2
∥Γ∥2

 , ε =
56 ∥Γ∥2

(
κD(λ)

λ + 3M
)2

ln( 1δ )

n
.

It follows from the inequality 2
√
ab ≤ a + b ∀a, b ≥ 0 that for any 0 < δ < 1, with confidence at

least 1− δ, we have

S2(S, λ) ≤
1

2
[RF (fλ)−RF (f0)] +

56 ∥Γ∥2
(

κD(λ)
λ + 3M

)2
ln( 1δ )

n

≤ 1

2
D(λ) +

56 ∥Γ∥2
(

κD(λ)
λ + 3M

)2
ln( 1δ )

n
. (11)

Proof of Proposition 5. We assume that the sample set M = {ẑi = (x̂i, ŷi) : i = 1, . . . , n} is
generated from distribution Q. Then, we obtain

A(D,S) = RD(fS,λ)−RD(fD,λ) (12)
= [RD(fS,λ)−RS(fS,λ)] + [RS(fS,λ)−RS(fD,λ)] + [RS(fD,λ)−RD(fD,λ)] . (13)
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Obviously, the second term RS(fS,λ)−RS(fD,λ) ≤ 0, which yields

A(D,S) ≤ {RD(fS,λ)−RS(fS,λ)}+ {RS(fD,λ)−RD(fD,λ)} .

For the first item of (13), we have

RD(fS,λ)−RS(fS,λ) = {RD(fS,λ)−RS(fS,λ)} − {RF (fS,λ)−RP′(fS,λ)}
+ {RF (fS,λ)−RP′(fS,λ)}

= θ′ [{RD(fS,λ)−RM(fS,λ)} − {RF (fS,λ)−RQ(fS,λ)}]
+ {RF (fS,λ)−RP′(fS,λ)}

≤ θ′ |RD(fS,λ)−RF (fS,λ)|+ θ′ |RQ(fS,λ)−RM(fS,λ)|
+ |RF (fS,λ)−RP′(fS,λ)| .

Set random variable ζ = (fS,λ(x)− y)2, leading to |ζ| ≤ 4M2. By lemma 4, we have

Pr

{
|RD(fS,λ)−RF (fS,λ)|√

(RF (fS,λ) + ε)
≥

√
ε

}
≤ 2 exp

{
−nε

224M2 ∥Γ∥2

}
.

Taking

δ = 2 exp

{
−nε

224M2 ∥Γ∥2

}
yields

ε =
224 ∥Γ∥2 M2 ln( 2δ )

n
.

Thus, for any 0 < δ < 1, with confidence at least 1− δ,

|RD(fS,λ)−RF (fS,λ)| ≤ 2M2 +
224 ∥Γ∥2 M2 ln( 2δ )

n
, (14)

Similarly, we obtain

|RQ(fS,λ)−RM(fS,λ)| ≤ 2M2 +
224 ∥Γ∥2 M2 ln( 2δ )

n
. (15)

|RF (fS,λ)−RP′(fS,λ)| =
∣∣∣∣∫

Z
(fS,λ(x)− y)2d(F − P ′)

∣∣∣∣
≤ 2 sup

(x,y)∈Z
(fS,λ(x)− y)2∥F − P ′∥TV

≤ 8M2∥F − P ′∥TV

≤ 8M2θ′. (16)

Thus, combining (14)-(16), for any 0 < δ < 1, with confidence at least 1− δ,

RD(fS,λ)−RS(fS,λ) ≤ 12M2θ′ +
448 ∥Γ∥2 M2 ln( 2δ )

n
θ′.

Similarly, we obtain

RS(fD,λ)−RD(fD,λ) ≤ 12M2θ′ +
448 ∥Γ∥2 M2 ln( 2δ )

n
θ′.

Thus, we have

A(D,S) ≤ 24M2θ′ +
896 ∥Γ∥2 M2 ln( 2δ )

n
θ′
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Proof of Theorem 8. By Propositions 2–5, we obtain the following inequality that holds with prob-
ability at least 1− δ:

RF (fS,λ)−RF (f0) ≤2

14336M2 ∥Γ∥2 ln( 1δ )
n

+

(
14336M2 ∥Γ∥2 cs(64MR)s

n

) 1
1+s


+ 3D(λ) +

112 ∥Γ∥2
(

κD(λ)
λ + 3M

)2
ln( 1δ )

n

+ 48M2θ′ +
1792 ∥Γ∥2 M2 ln( 2δ )

n
θ′

≤ 48M2θ′ + C2 log(
2

δ
)

[
λq +

λ2q−2

n
+

(
1

n

) 1
1+s

+
1

n

]
.

By the choice of λ, we can be easily shown that

λ2q−2

n
≤ λq,

(
1

n

) 1
1+s

≤ λq,
1

n
≤ λq.

Taking ϑ1 = min
{

1
2−q ,

1
(1+s)q ,

1
q

}
yields the desired result. The result establishes the asymptotic

property of the excess risk: RF (fS,λ) − RF (f0) → 48M2θ′ as n → ∞, demonstrating that the
KRMS estimator achieves consistency up to the contamination level θ′. Through careful algorithm
design that minimizes θ′, the residual term 48M2θ′ becomes negligible when θ′ is sufficiently small.
Consequently, as n → ∞ and θ′ → 0, the excess error RF (fS,λ) − RF (f0) → 0, we obtain the
consistency of the estimator. Moreover, the result provides an explicit learning rate of O

(
n−ϑ1q

)
.

Notably, as s → 0 and θ′ → 0, this convergence rate approaches O
(
n−1

)
, recovering the optimal

convergence rate of the regularized least square Li et al. (2017).

D EXPERIMENTS

D.1 THE RESULTS OF EXPERIMENT 1 IN SIMULATION STUDIES

The remaining resultes of Experiment 1 in simulation studies are presented in Table 2–3.

D.2 THE RESULTS OF EXPERIMENT 2 IN SIMULATION STUDIES

Expreiment 2 (Nonlinear model). In this experiment, we generate dataset {(xi, yi)}Ni=1 from the
following nonlinear regression: yi = 2 exp(−xi1) + 3 sin(πxi2) + 2x2

i3 + 3xi4 + ϵi, where ϵi’s
are independently drawn from the standard normal distribution, and xi1, . . . , xi4 are independently
sampled from the uniform distribution U(0, 1). The contaminated observations are created with
contaminated data mechanism given in Experiment 1 for θ ∈ {0.1, 0.2, 0.3, 0.4}. To generate con-
taminated data, we consider three cases for specifying Wi and Oi: (M1) (Background Noise):
Wij ∼ U(−10, 10) and Oi ∼ N (0, 5); (M2) (Negative contamination with centered design):
Wij ∼ N (−5, 10) and Oi ∼ N (0, 5); (M3) (Mixed design): Wij ∼ 0.5N (−10, 5) + 0.5N (10, 5)
and Oi ∼ N (0, 10). For comparison, we evaluate a baseline method, KRMS-Linear, which applies
the same residual-based subsampling as the proposed KRMS-RKHS but differs only in its use of the
linear kernel K(x̃j , x̃i) = x̃⊤

j x̃i within the Euclidean space to compute w(z̃, α) in Equation (3).
The corresponding results for (M1)–(M3) are given in Tables 4–6, respectively.

By Tables 4–6, we have the following findings. First, the proposed KRMS-KLSR method out-
performs others for all scenarios in that it consistently has the smallest AMSE and SD values re-
gardless of contaminated schemes, contamination proportions, and subsample sizes, and maintains
near-perfect PSR values (almost 100%), demonstrating exceptional robustness in identifying un-
contaminated observations. Second, exception for contaminated scheme M3 together with low θ
(e.g., θ = 0.1), MS-KLSR and UNIF-KLSR show marginally better AMSE, and KRMS-KLSR
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Table 2: Performance comparison of KRMS and five competing subsampling methods for corrupted
mechanism M2 in Experiment 1

n = 500 n = 1000 n = 1500

θ Method AMSE SD PSR AMSE SD PSR AMSE SD PSR

0.1

UNIF-KLSR 1.257 0.091 89.95% 1.193 0.061 89.96% 1.167 0.051 90.10%
MS-KLSR 1.151 0.055 97.34% 1.110 0.043 96.99% 1.096 0.039 97.09%

KRMS-KLSR 1.142 0.045 99.22% 1.089 0.037 99.26% 1.066 0.036 99.26%
UNIF-LSR 4.199 0.986 89.95% 4.229 0.684 89.96% 4.125 0.516 90.10%
GMS-LSR 1.519 0.240 96.74% 1.466 0.173 96.70% 1.438 0.119 96.88%
LGS-LSR 1.303 0.144 98.98% 1.207 0.093 98.94% 1.147 0.060 98.93%

0.2

UNIF-KLSR 1.450 0.131 80.03% 1.389 0.078 79.97% 1.387 0.070 79.88%
MS-KLSR 1.250 0.078 93.02% 1.221 0.055 92.89% 1.229 0.051 92.95%

KRMS-KLSR 1.171 0.048 98.01% 1.106 0.046 98.26% 1.083 0.035 98.26%
UNIF-LSR 8.677 1.101 80.03% 8.840 0.941 79.97% 9.006 0.680 79.88%
GMS-LSR 3.079 0.648 88.21% 3.047 0.566 88.69% 3.074 0.446 88.73%
LGS-LSR 1.348 0.188 97.60% 1.308 0.161 97.48% 1.240 0.100 97.44%

0.3

UNIF-KLSR 1.778 0.193 70.15% 1.744 0.133 69.79% 1.700 0.119 70.09%
MS-KLSR 1.463 0.130 87.09% 1.437 0.094 87.17% 1.422 0.080 87.75%

KRMS-KLSR 1.209 0.074 96.70% 1.128 0.048 96.63% 1.115 0.036 96.80%
UNIF-LSR 12.826 1.411 70.15% 13.187 0.768 69.79% 13.242 0.648 70.09%
GMS-LSR 6.696 1.218 77.12% 7.034 0.861 77.36% 6.918 0.704 78.16%
LGS-LSR 1.499 0.305 95.80% 1.462 0.219 95.50% 1.425 0.133 95.26%

0.4

UNIF-KLSR 2.290 0.249 60.37% 2.196 0.190 60.19% 2.188 0.177 60.13%
MS-KLSR 1.806 0.179 79.15% 1.753 0.140 80.19% 1.763 0.131 80.85%

KRMS-KLSR 1.255 0.093 94.31% 1.185 0.056 94.42% 1.163 0.051 94.79%
UNIF-LSR 16.373 1.309 60.37% 16.604 0.890 60.19% 16.66 0.740 60.13%
GMS-LSR 11.193 1.208 64.90% 11.426 0.808 66.01% 11.561 0.714 66.83%
LGS-LSR 1.961 0.598 92.33% 2.041 0.385 91.39% 2.027 0.379 90.81%

Table 3: Performance comparison of KRMS and five competing subsampling methods for corrupted
mechanism M3 in Experiment 1

n = 500 n = 1000 n = 1500

θ Method AMSE SD PSR AMSE SD PSR AMSE SD PSR

0.1

UNIF-KLSR 3.596 0.337 90.10% 3.693 0.162 90.04% 3.712 0.118 90.12%
MS-KLSR 3.213 0.459 96.66% 3.518 0.233 96.73% 3.573 0.181 97.25%

KRMS-KLSR 1.117 0.043 99.78% 1.086 0.036 99.76% 1.076 0.034 99.71%
UNIF-LSR 28.159 1.042 90.10% 28.461 0.461 90.04% 28.498 0.391 90.12%
GMS-LSR 11.08 5.483 95.04% 14.301 5.22 95.07% 17.638 4.482 95.34%
LGS-LSR 1.031 0.093 99.48% 1.029 0.057 99.44% 1.034 0.066 99.47%

0.2

UNIF-KLSR 4.141 0.264 79.67% 4.234 0.218 80.07% 4.335 0.212 80.02%
MS-KLSR 3.993 0.227 91.74% 4.096 0.193 92.27% 4.163 0.183 93.12%

KRMS-KLSR 1.129 0.041 99.39% 1.079 0.036 99.42% 1.063 0.035 99.38%
UNIF-LSR 28.515 0.417 79.67% 28.485 0.382 80.07% 28.48 0.463 80.02%
GMS-LSR 20.024 4.049 89.55% 23.360 2.811 89.79% 24.081 2.512 90.14%
LGS-LSR 1.080 0.124 98.80% 1.062 0.107 98.77% 1.069 0.160 98.76%

0.3

UNIF-KLSR 5.124 0.495 69.94% 5.370 0.404 69.92% 5.549 0.316 69.88%
MS-KLSR 4.876 0.383 84.13% 5.073 0.318 85.28% 5.189 0.264 86.31%

KRMS-KLSR 1.125 0.043 99.04% 1.078 0.037 99.00% 1.072 0.036 99.00%
UNIF-LSR 28.405 0.486 69.94% 28.407 0.486 69.92% 28.408 0.486 69.88%
GMS-LSR 24.036 2.644 83.26% 25.839 1.477 83.59% 26.503 1.053 84.12%
LGS-LSR 1.097 0.111 97.98% 1.177 0.318 97.93% 1.148 0.227 97.82%

0.4

UNIF-KLSR 6.665 0.671 60.35% 7.063 0.553 60.36% 7.250 0.413 60.37%
MS-KLSR 6.383 0.580 73.44% 6.669 0.444 74.53% 6.745 0.344 76.32%

KRMS-KLSR 1.133 0.041 98.37% 1.089 0.037 98.42% 1.079 0.036 98.42%
UNIF-LSR 28.618 0.411 60.35% 28.618 0.411 60.36% 28.618 0.411 60.37%
GMS-LSR 26.822 1.159 76.08% 27.265 0.872 76.71% 27.658 0.636 77.65%
LGS-LSR 1.273 0.343 96.59% 1.272 0.278 96.49% 1.291 0.273 96.32%

method still maintains significantly higher PSR values and competitive SD values. This deviation
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likely reflects M3’s milder perturbation effect at low proportion, where random sampling may occa-
sionally succeed. Third, as θ increases, KRMS-KLSR’s AMSE values remain stable, while others
show severe degradation. Fourth, MS-KLSR method outperforms UNIF-KLSR but remains infe-
rior to KRMS-KLSR method. Fifth, a critical limitation of KRMS-Linear is its severe performance
degradation with nonlinear function f0. Empirical evidence from the M1 contamination scheme at
θ = 0.4 shows a PSR of merely 16.69%. This validates the model misspecification bias hypothesis:
the linear estimator’s failure to represent the nonlinear trend causes universally large residuals. Con-
sequently, the residual-based score fails to reliably separate outliers from the model’s own structural
errors, invalidating its discriminative power.

Table 4: Performance comparison of KRMS-KLSR and six competing subsampling methods for
corrupted mechanism M1 in Experiment 2

n = 500 n = 1000 n = 1500

θ Method AMSE SD PSR AMSE SD PSR AMSE SD PSR

0.1

UNIF-KLSR 1.617 0.093 89.94% 1.720 0.117 90.05% 1.821 0.173 90.10%
MS-KLSR 1.526 0.126 96.81% 1.498 0.094 96.77% 1.768 0.087 97.70%

KRMS-KLSR 1.137 0.041 100.00% 1.098 0.036 100.00% 1.087 0.035 100.00%
KRMS-Linear 25.631 0.964 75.58% 25.245 0.900 78.07% 25.055 0.711 79.82%

UNIF-LSR 20.074 2.044 89.94% 20.093 1.330 90.05% 20.241 1.115 90.10%
GMS-LSR 4.981 1.692 97.62% 5.001 0.976 97.62% 4.860 0.856 97.68%
LGS-LSR 2.917 0.156 99.87% 2.947 0.134 99.86% 2.945 0.126 99.85%

0.2

UNIF-KLSR 1.880 0.068 79.90% 1.908 0.063 79.89% 1.955 0.076 80.01%
MS-KLSR 1.839 0.067 88.69% 1.906 0.064 88.41% 1.973 0.123 88.70%

KRMS-KLSR 1.153 0.044 100.00% 1.099 0.038 100.00% 1.091 0.035 100.00%
KRMS-Linear 29.833 0.548 41.96% 29.746 0.547 47.15% 29.708 0.472 51.71%

UNIF-LSR 25.317 1.045 79.90% 25.403 0.802 79.89% 25.472 0.658 80.01%
GMS-LSR 12.806 2.468 91.74% 13.372 2.049 91.75% 13.526 1.489 91.95%
LGS-LSR 3.046 0.238 99.66% 3.051 0.213 99.64% 3.062 0.203 99.58%

0.3

UNIF-KLSR 2.119 0.142 70.31% 2.120 0.090 69.98% 2.134 0.088 70.04%
MS-KLSR 2.071 0.116 79.82% 2.136 0.097 79.99% 2.161 0.090 80.24%

KRMS-KLSR 1.145 0.050 100.00% 1.104 0.041 100.00% 1.101 0.038 100.00%
KRMS-Linear 30.734 0.499 25.19% 30.712 0.450 30.98% 30.732 0.475 36.01%

UNIF-LSR 27.574 0.686 70.31% 27.769 0.558 69.98% 27.76 0.545 70.04%
GMS-LSR 20.876 1.810 83.44% 21.228 1.275 83.98% 21.37 0.922 84.27%
LGS-LSR 3.191 0.418 99.41% 3.171 0.330 99.35% 3.177 0.295 99.26%

0.4

UNIF-KLSR 2.500 0.159 60.04% 2.418 0.121 59.97% 2.407 0.092 60.07%
MS-KLSR 2.443 0.129 69.94% 2.427 0.111 70.94% 2.444 0.098 71.87%

KRMS-KLSR 1.149 0.045 100.00% 1.104 0.042 100.00% 1.106 0.042 100.00%
KRMS-Linear 31.086 0.518 16.69% 31.087 0.483 22.57% 31.084 0.475 27.13%

UNIF-LSR 29.034 0.587 60.04% 29.128 0.471 59.97% 29.056 0.463 60.07%
GMS-LSR 25.317 0.984 74.34% 25.612 0.739 74.69% 25.524 0.654 75.42%
LGS-LSR 3.469 0.577 99.02% 3.665 0.582 98.63% 3.536 0.465 98.60%

To further demonstrate the effectiveness of KRMS-KLSR, we present a visual analysis of its per-
formance. Figure 1 depicts the density distribution of the sampling metric log(w) for clean versus
contaminated samples. The results show a more distinct separation between inliers and outliers
under nonlinear settings, demonstrating that our kernel-induced residual score more effectively dis-
tinguishes anomalies. In contrast, the sampling metric distribution of KRMS-Linear exhibits sub-
stantial overlap, which hinders its ability to filter out contaminated data points during subsampling.
As illustrated in Figure 2, the linear constraints of KRMS-Linear lead to a fitted curve that is severely
distorted by outliers. However, our method accurately captures the underlying nonlinear structure,
resists the influence of outliers, and recovers a smooth curve that aligns well with the true curve.

In conclusion, our method offers two key advantages. First, it excels at capturing nonlinear features,
enabling the separation of data patterns including outliers that are linearly inseparable in the orig-
inal input space by mapping them into a higher-dimensional RKHS. Second, it achieves enhanced
robustness through a more precise assessment of local data structure in the feature space, quantified

by the kernel term
√∑

K (x̃i, x̃j)
2. This facilitates more reliable outlier identification and sup-

pression, leading to consistently stronger statistical performance on complex datasets compared to
linear baselines.
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Table 5: Performance comparison of KRMS-KLSR and six competing subsampling methods for
corrupted mechanism M2 in Experiment 2

n = 500 n = 1000 n = 1500

θ Method AMSE SD PSR AMSE SD PSR AMSE SD PSR

0.1

UNIF-KLSR 1.792 0.075 89.78% 1.809 0.122 89.81% 1.796 0.212 90.09%
MS-KLSR 1.767 0.071 94.88% 1.818 0.069 94.84% 1.863 0.123 94.96%

KRMS-KLSR 1.140 0.044 100.00% 1.092 0.037 100.00% 1.088 0.037 100.00%
KRMS-Linear 29.846 0.547 71.92% 29.721 0.496 75.58% 29.664 0.415 77.34%

UNIF-LSR 27.001 0.899 89.78% 26.966 0.648 89.81% 26.966 0.587 90.09%
GMS-LSR 14.325 3.736 97.05% 14.540 2.587 97.29% 14.854 2.066 97.32%
LGS-LSR 2.875 0.138 99.98% 2.888 0.122 99.98% 2.922 0.130 99.97%

0.2

UNIF-KLSR 1.913 0.069 80.23% 1.919 0.073 80.02% 1.921 0.076 80.02%
MS-KLSR 1.933 0.067 87.20% 1.961 0.076 87.12% 1.971 0.093 87.50%

KRMS-KLSR 1.141 0.042 100.00% 1.104 0.039 100.00% 1.095 0.042 100.00%
KRMS-Linear 31.015 0.485 41.27% 31.004 0.453 46.19% 30.999 0.458 51.25%

UNIF-LSR 29.314 0.532 80.23% 29.444 0.445 80.02% 29.445 0.482 80.02%
GMS-LSR 25.457 1.205 90.18% 25.764 0.847 90.28% 25.869 0.759 90.33%
LGS-LSR 2.964 0.209 99.96% 3.072 0.296 99.92% 2.997 0.254 99.93%

0.3

UNIF-KLSR 2.005 0.096 70.23% 1.979 0.069 69.85% 1.997 0.069 70.01%
MS-KLSR 2.046 0.092 78.97% 2.047 0.078 79.59% 2.073 0.079 80.20%

KRMS-KLSR 1.145 0.043 100.00% 1.105 0.045 100.00% 1.109 0.041 100.00%
KRMS-Linear 31.324 0.428 24.64% 31.314 0.427 31.36% 31.338 0.424 36.16%

UNIF-LSR 30.36 0.493 70.23% 30.324 0.494 69.85% 30.325 0.442 70.0%1
GMS-LSR 28.614 0.587 81.81% 28.552 0.547 82.15% 28.616 0.469 82.52%
LGS-LSR 3.420 0.827 99.88% 3.515 0.709 99.83% 3.507 0.698 99.81%

0.4

UNIF-KLSR 2.086 0.117 60.29% 2.052 0.075 60.19% 2.041 0.076 60.00%
MS-KLSR 2.156 0.108 70.12% 2.151 0.085 71.15% 2.163 0.087 72.16%

KRMS-KLSR 1.148 0.048 100.00% 1.110 0.034 100.00% 1.103 0.037 100.00%
KRMS-Linear 31.374 0.418 16.08% 31.387 0.418 22.33% 31.395 0.402 27.26%

UNIF-LSR 30.687 0.470 60.29% 30.799 0.386 60.19% 30.788 0.443 60.00%
GMS-LSR 29.648 0.483 72.89% 29.767 0.401 73.42% 29.771 0.465 74.41%
LGS-LSR 6.807 4.843 98.86% 6.526 2.817 99.23% 7.526 2.775 98.96%
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Table 6: Performance comparison of KRMS-KLSR and six competing subsampling methods for
corrupted mechanism M3 in Experiment 2

n = 500 n = 1000 n = 1500

θ Method AMSE SD PSR AMSE SD PSR AMSE SD PSR

0.1

UNIF-KLSR 1.087 0.046 89.93% 1.064 0.036 89.90% 1.063 0.035 89.92%
MS-KLSR 1.085 0.040 97.14% 1.058 0.032 97.00% 1.051 0.032 97.04%

KRMS-KLSR 1.142 0.042 99.96% 1.091 0.038 99.96% 1.072 0.029 99.94%
KRMS-Linear 3.773 0.404 93.56% 3.781 0.299 93.90% 3.875 0.315 93.83%

UNIF-LSR 4.489 0.515 89.93% 4.515 0.423 89.90% 4.501 0.362 89.92%
GMS-LSR 3.279 0.218 96.81% 3.246 0.169 96.94% 3.239 0.134 96.94%
LGS-LSR 3.105 0.192 98.27% 3.000 0.124 98.26% 2.957 0.090 98.18%

0.2

UNIF-KLSR 1.276 0.107 80.15% 1.269 0.077 79.86% 1.277 0.066 80.20%
MS-KLSR 1.166 0.059 92.26% 1.149 0.050 92.23% 1.158 0.049 92.30%

KRMS-KLSR 1.146 0.038 99.86% 1.096 0.036 99.89% 1.080 0.035 99.88%
KRMS-Linear 6.982 0.806 80.35% 7.080 0.663 80.86% 7.230 0.588 81.24%

UNIF-LSR 7.103 0.865 80.15% 7.273 0.675 79.86% 7.179 0.541 80.20%
GMS-LSR 3.890 0.363 90.92% 4.029 0.270 90.74% 3.938 0.224 91.15%
LGS-LSR 3.087 0.187 96.11% 3.098 0.173 95.98% 3.028 0.130 95.91%

0.3

UNIF-KLSR 1.605 0.121 69.87% 1.534 0.092 70.04% 1.526 0.088 70.14%
MS-KLSR 1.351 0.085 85.77% 1.333 0.062 86.16% 1.369 0.068 86.23%

KRMS-KLSR 1.145 0.043 99.82% 1.095 0.041 99.81% 1.078 0.039 99.79%
KRMS-Linear 12.433 1.402 61.88% 12.228 0.962 64.13% 12.099 0.911 65.66%

UNIF-LSR 10.294 1.182 69.87% 10.420 0.799 70.04% 10.349 0.676 70.14%
GMS-LSR 5.219 0.607 81.37% 5.241 0.449 81.78% 5.162 0.358 82.38%
LGS-LSR 3.242 0.243 93.29% 3.222 0.188 93.11% 3.212 0.162 92.71%

0.4

UNIF-KLSR 1.807 0.139 60.53% 1.757 0.088 59.98% 1.724 0.074 60.04%
MS-KLSR 1.549 0.118 78.56% 1.579 0.075 79.05% 1.581 0.059 79.70%

KRMS-KLSR 1.147 0.050 99.71% 1.096 0.037 99.72% 1.077 0.034 99.69%
KRMS-Linear 17.919 1.361 44.68% 17.667 1.024 47.61% 17.570 0.927 49.64%

UNIF-LSR 13.681 1.439 60.53% 13.844 0.879 59.98% 13.81 0.705 60.04%
GMS-LSR 7.529 0.839 69.89% 7.523 0.629 70.76% 7.553 0.527 71.67%
LGS-LSR 3.532 0.422 89.19% 3.642 0.370 88.12% 3.595 0.266 87.69%
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Figure 1: Sampling Metric Distributions of KRMS-RKHS and KRMS-Linear methods

Figure 2: Scatter plot and fitted curve of the subsamples of KRMS-RKHS and KRMS-Linear meth-
ods

To validate the scalability regarding data size and dimensionality, we extend the experimental setting
to N = 20, 000 and p = 50 under case M1, with n ∈ {1000, 2000, 3000}. In addition to the five
methods compared earlier, we include a robust nonparametric regression method, Support vector
regression (SVR) (Karatzoglou et al., 2004). The results are shown in Table 7. As shown in Table
7, even with a large sample size and higher dimensionality, the KRMS method maintains its effec-
tiveness and robustness, achieving a PSR of 100% across all the considered contamination levels
(θ ∈ [0.1, 0.4]) and subsample sizes. In terms of estimation accuracy, the AMSE of KRMS remains
stable under contamination (θ > 0) and is comparable to the uncontaminated baseline (θ = 0).
Moreover, KRMS consistently yields lower AMSE values than all benchmark methods, including
SVR.

We also assess the computational complexity of the proposed method with respect to sample size
N and dimensionality p. To ensure a fair comparison, the analysis is limited to kernel-based com-
petitors. As shown in Figures 3and 4, KRMS-KLSR incurs the highest computational cost among
the evaluated methods, which is mainly due to the iterative sampling step required for robust esti-
mation. Empirically, the runtime of KRMS-KLSR scales approximately linearly with N when p is
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fixed. In the most challenging scenario (N = 20, 000, p = 100), the average runtime is about 600
seconds. While computationally more intensive, this trade-off is justified by the significant gains in
robustness and estimation accuracy demonstrated in Table 7.

Table 7: Performance comparison of KRMS-KLSR and six competing methods for corrupted mech-
anism M1 in Experiment 2

n = 1000 n = 2000 n = 3000

θ Method AMSE SD PSR AMSE SD PSR AMSE SD PSR

0

UNIF-KLSR 1.958 0.054 100.00% 1.783 0.054 100.00% 1.745 0.047 100.00%
MS-KLSR 1.996 0.049 100.00% 1.848 0.054 100.00% 1.830 0.050 100.00%

KRMS-KLSR 1.987 0.053 100.00% 1.840 0.057 100.00% 1.808 0.048 100.00%
SVR 1.975 0.059 100.00% 1.786 0.055 100.00% 1.693 0.048 100.00%

UNIF-LSR 2.073 0.058 100.00% 2.001 0.063 100.00% 1.999 0.051 100.00%
GMS-LSR 2.051 0.053 100.00% 1.995 0.060 100.00% 1.994 0.048 100.00%
LGS-LSR 2.052 0.049 100.00% 1.996 0.060 100.00% 1.994 0.050 100.00%

0.1

UNIF-KLSR 2.026 0.060 89.85% 2.820 0.115 90.00% 2.838 0.104 89.96%
MS-KLSR 2.220 0.072 98.63% 2.687 0.090 98.98% 2.702 0.111 98.96%

KRMS-KLSR 1.981 0.061 100.00% 1.852 0.069 100.00% 1.804 0.055 100.00%
SVR 2.013 0.061 89.85% 1.944 0.060 90.00% 1.905 0.057 89.96%

UNIF-LSR 3.806 0.316 89.85% 4.119 0.272 90.00% 4.295 0.242 89.96%
GMS-LSR 2.417 0.135 99.24% 2.578 0.136 99.18% 2.723 0.153 99.10%
LGS-LSR 2.047 0.080 99.86% 2.041 0.083 99.80% 2.046 0.072 99.81%

0.2

UNIF-KLSR 2.116 0.073 80.12% 3.157 0.105 80.23% 3.149 0.093 80.03%
MS-KLSR 2.148 0.091 95.41% 3.135 0.105 96.46% 3.125 0.095 96.58%

KRMS-KLSR 1.994 0.067 100.00% 1.857 0.053 100.00% 1.808 0.051 100.00%
SVR 2.044 0.072 80.12% 1.966 0.056 80.23% 1.937 0.059 80.03%

UNIF-LSR 6.253 0.635 80.12% 6.933 0.521 80.23% 7.173 0.469 80.03%
GMS-LSR 2.960 0.237 97.17% 3.358 0.172 96.80% 3.436 0.138 96.76%
LGS-LSR 2.080 0.080 99.63% 2.142 0.103 99.56% 2.172 0.079 99.48%

0.3

UNIF-KLSR 2.148 0.085 70.09% 3.133 0.119 70.10% 3.308 0.109 70.08%
MS-KLSR 2.303 0.106 86.54% 3.091 0.130 91.76% 3.245 0.110 92.03%

KRMS-KLSR 1.975 0.074 100.00% 1.851 0.060 100.00% 1.807 0.061 100.00%
SVR 2.068 0.084 70.09% 1.970 0.066 70.10% 1.950 0.060 70.08%

UNIF-LSR 9.912 0.754 70.09% 10.514 0.610 70.10% 10.757 0.544 70.08%
GMS-LSR 3.623 0.210 92.40% 3.826 0.225 91.91% 3.859 0.168 91.95%
LGS-LSR 2.133 0.093 99.29% 2.301 0.136 98.96% 2.448 0.154 98.76%

0.4

UNIF-KLSR 2.303 0.101 59.79% 3.062 0.095 60.07% 3.095 0.099 59.89%
MS-KLSR 2.432 0.098 73.42% 3.047 0.141 82.42% 3.137 0.100 83.27%

KRMS-KLSR 1.993 0.083 100.00% 1.839 0.045 100.00% 1.817 0.065 100.00%
SVR 2.141 0.074 59.79% 2.004 0.057 60.07% 1.983 0.064 59.89%

UNIF-LSR 13.929 0.895 59.79% 14.233 0.651 60.07% 14.512 0.447 59.89%
GMS-LSR 4.522 0.384 84.24% 4.859 0.336 83.98% 4.889 0.260 84.20%
LGS-LSR 2.283 0.133 98.73% 2.616 0.133 98.03% 2.772 0.117 97.52%

D.3 REAL EXAMPLES

We illustrate the application of the proposed kernel-based robust Markov subsampling method to
two real-world datasets: the NASDAQ stock dataset with economic indicators and an air quality
dataset.

Example 1. To evaluate the performance of the proposed subsampling method on real-world finan-
cial data, we conduct an empirical analysis using a dataset comprising historical trading informa-
tion from the NASDAQ market. The dataset is sourced from a public repository https://www.
kaggle.com/datasets/sai14karthik/nasdq-dataset and integrates data from ma-
jor financial providers, including Yahoo Finance, Federal Reserve Economic Data (FRED), Alpha
Vantage, and Quandl. It encompasses the period from January 4, 2010 to October 25, 2024, contain-
ing daily open-high-low-close (OHLC) prices, trading volume, and key macroeconomic and market
sentiment indicators for a designated NASDAQ-listed stock. The raw dataset contains a total of
3,914 daily observations. The primary objective of our analysis is to predict the next trading day’s
daily percentage return for this NASDAQ stock. Accordingly, the target variable is taken as the
daily return Rt+1, calculated as Rt+1 = (Pt+1 − Pt)/Pt, where Pt and Pt+1 denote the closing
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Figure 3: Runtime comparison of different methods with varying sample sizes N and dimensions P

Figure 4: Runtime comparison of different methods with varying sample sizes N and dimensions P

prices on trading day t and t + 1, respectively. To construct a predictive model, we filter a set of
predictors based on the established financial economic theory and common practices in empirical
finance. These features are designed to capture diverse aspects of market dynamics and are broadly
categorized as follows.

(A) Historical Market Behavior. We include the daily returns from the five preceding trading days
(i.e., Rt, . . . , Rt−4) to capture short-term momentum effects or potential mean-reversion patterns.
A 5-day moving average (MA5) and a 20-day moving average (MA20) of closing prices are in-
corporated to represent short- and medium-term price trends, respectively. (B) Macroeconomic
Conditions and Market Sentiment. We incorporate daily-frequency macroeconomic indicators and
market sentiment proxies, including the CBOE volatility index (a measure of market risk expecta-
tions), a benchmark interest rate, the Effective Federal Funds Rate, the TED spread, an exchange
rate, and commodity prices of Gold and Oil. These variables are widely recognized in the literature
as external factors that may influence asset prices. After constructing these features, we remove
observations with missing values. The remaining dataset is then divided into a training set (70%
of observations) and a test set (the remaining 30%). We conduct regression analysis to predict the
next-day return Rt+1, and compared the performance of the proposed KRMS-KLSR method with
five competing methods: MS-KLSR, UNIF-KLSR, UNIF-LSR, GMS-LSR, and LGS-LSR. Results
for AMSE and SD values over M = 100 replicates are summarized in Table 8.
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Table 8: AMSE and SD values of six subsampling methods in NASDAQ stock data analysis

n = 500 n = 1000 n = 1500 n = 500 n = 1000 n = 1500
θ Method AMSE SD AMSE SD AMSE SD θ AMSE SD AMSE SD AMSE SD

0.0

UNIF-KLSR 0.016 0.001 0.016 0.001 0.016 0.001

0.2

0.042 0.007 0.039 0.006 0.039 0.005
MS-KLSR 0.016 0.001 0.016 0.001 0.016 0.001 0.021 0.003 0.021 0.002 0.020 0.002

KRMS-KLSR 0.016 0.001 0.016 0.001 0.016 0.001 0.016 0.001 0.016 0.001 0.016 0.001
UNIF-LSR 0.016 0.001 0.016 0.001 0.016 0.001 0.101 0.014 0.093 0.010 0.088 0.008
GMS-LSR 0.016 0.001 0.016 0.001 0.016 0.001 0.079 0.025 0.073 0.016 0.073 0.016
LGS-LSR 0.016 0.001 0.016 0.001 0.016 0.001 0.061 0.029 0.062 0.021 0.063 0.018

0.1

UNIF-KLSR 0.025 0.004 0.024 0.003 0.024 0.003

0.3

0.060 0.011 0.056 0.007 0.055 0.007
MS-KLSR 0.017 0.001 0.017 0.001 0.017 0.001 0.027 0.004 0.026 0.003 0.026 0.003

KRMS-KLSR 0.016 0.001 0.016 0.001 0.016 0.001 0.016 0.001 0.016 0.001 0.016 0.001
UNIF-LSR 0.097 0.020 0.089 0.015 0.101 0.011 0.110 0.018 0.095 0.011 0.092 0.009
GMS-LSR 0.064 0.032 0.062 0.020 0.079 0.017 0.085 0.023 0.080 0.013 0.078 0.011
LGS-LSR 0.045 0.027 0.045 0.020 0.061 0.017 0.066 0.025 0.071 0.019 0.071 0.014

We first evaluate the considered six subsampling methods on the original dataset without artificial
contamination (i.e., contamination proportion θ = 0.0). As shown in Table S7, in this uncontam-
inated scenario, six methods yield nearly identical AMSE values with low SD, indicating that the
original dataset contains minimal extreme outliers. To investigate the robustness of the subsampling
strategies, we artificially corrupt the training data. Specifically, for predictors xk, we replace a pro-
portion θ of observations with random values drawn from wk ∼ U(2, 3); for corresponding response
variable y, we replace its observation with that drawn from Oi ∼ N (1, 3). As an illustration, we
here consider three contamination proportions: θ ∈ {0.1, 0.2, 0.3}, representing mild to severe data
corruption scenarios.

The results under artificial contamination are presented in Table S7. Key findings include that (i) the
proposed KRMS-KLSR method exhibits exceptional robustness, maintaining stable AMSE and SD
values regardless of contamination levels and sample sizes, aligns with its uncontaminated perfor-
mance, demonstrating its strong ability to mitigate contamination effects. (ii) The MS-KLSR method
demonstrates consistent robustness, consistently outperforming the UNIF-KLSR method regardless
of contamination levels and sample sizes, while effective, exhibits slightly less stability compared to
the KRMS-KLSR method. (iii) the LGS-LSR performs best among linear methods. The GMS-LSR
and UNIF-LSR methods suffer from significant performance deterioration under contamination,
yielding higher AMSE values. (iv) The KRMS-KLSR and MS-KLSR methods maintain consistent
performance regardless of sample sizes. Less robust methods show minor AMSE improvements
with larger sample sizes at a high contamination level, but remain inferior to the KRMS-KLSR
method. (v) While all six methods perform similarly on uncontaminated data, contamination sce-
narios clearly show KRMS-KLSR method’s superiority in maintaining both accuracy and stability.

Example 2. To demonstrate the proposed method, we employ the Air Quality dataset, which com-
prises 9358 hourly averaged responses from an array of 5 metal oxide chemical sensors collected
between March 2004 and February 2005. This dataset includes ground truth measurements for car-
bon monoxide (CO), non-methane hydrocarbons (NMHC), benzene, total nitrogen oxides (NOX),
and nitrogen dioxide (NO2), obtained from a co-located certified reference analyzer. Due to the high
proportion of missing values in the raw data, we utilize a preprocessed version of the dataset curated
by “cmertin” https://github.com/cmertin/Machine_Learning to ensure reliability
for modeling.

The dataset is split into training set (70%) and test set (30%). In this example, we focus on predicting
the hourly averaged NO2 concentration (in µg/m3), using the following predictor variables: month,
hour, the five sensor responses (hourly averaged), temperature, relative humidity, and absolute hu-
midity. We assess the proposed KRMS-KLSR method against several competing approaches: (i)
kernel-based subsampling techniques: UNIF-KLSR and MS-KLSR, and (ii) linear regression-based
subsampling techniques: UNIF-LSR, GMS-LSR, and LGS-LSR. Performance metrics: AMSE and
SD values for three subsample sizes as well as four contamination levels are given in Table 9.

Similarly to Example 1, we first evaluate the considered six subampling methods for the original air
quality dataset (i.e., uncontaminated, θ = 0.0). From Table 9, we observe the following findings: (i)
kernel-based subsampling methods usually outperform linear regression-based subsampling models
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Table 9: AMSE and SD values of six subsampling methods in Air Quality data analysis

n = 500 n = 1000 n = 1500 n = 500 n = 1000 n = 1500
θ Method AMSE SD AMSE SD AMSE SD θ AMSE SD AMSE SD AMSE SD

0.0

UNIF-KLSR 0.410 0.011 0.393 0.009 0.386 0.009

0.2

0.499 0.015 0.495 0.012 0.493 0.012
MS-KLSR 0.418 0.014 0.400 0.011 0.395 0.010 0.487 0.014 0.485 0.014 0.485 0.015

KRMS-KLSR 0.443 0.018 0.425 0.014 0.419 0.013 0.444 0.021 0.425 0.012 0.421 0.014
UNIF-LSR 0.472 0.010 0.469 0.010 0.468 0.010 0.573 0.026 0.569 0.020 0.568 0.018
GMS-LSR 0.471 0.011 0.469 0.011 0.468 0.010 0.502 0.016 0.504 0.015 0.504 0.015
LGS-LSR 0.471 0.010 0.469 0.010 0.468 0.010 0.476 0.012 0.476 0.012 0.475 0.012

0.1

UNIF-KLSR 0.475 0.016 0.470 0.012 0.468 0.011

0.3

0.518 0.016 0.514 0.014 0.513 0.013
MS-KLSR 0.456 0.014 0.458 0.014 0.458 0.016 0.506 0.015 0.506 0.015 0.505 0.017

KRMS-KLSR 0.443 0.016 0.425 0.015 0.421 0.013 0.450 0.017 0.455 0.018 0.458 0.017
UNIF-LSR 0.532 0.024 0.528 0.019 0.526 0.017 0.613 0.032 0.609 0.027 0.610 0.023
GMS-LSR 0.489 0.015 0.489 0.014 0.488 0.012 0.518 0.018 0.520 0.016 0.520 0.015
LGS-LSR 0.477 0.012 0.474 0.012 0.474 0.011 0.479 0.011 0.477 0.011 0.477 0.012

in that the former has smaller AMSE values than the latter regardless of sample sizes, and (ii)
UNIF-KLSR method consistently achieves the lowest AMSE values regardless of subsample sizes
in the presence of uncontaminated cases, demonstrating strong performance on uncontaminated
data. The proposed KRMS-KLSR method yields slightly higher AMSE value, likely because its
robustness leads to the exclusion of some informative observations in this contamination-free setting.
These results indicate that UNIF-KLSR method behaves satisfactorily when applied to relatively
uncontaminated datasets.

To assess the performance of the considered six subsampling methods in the presence of contami-
nated data, we artificially introduce outliers into the training dataset by replacing a proportion θ of
observations. The outliers are generated as follows: predictors xk are drawn from the normal dis-
tribution N (−10, 3), and their corresponding responses y from the normal distribution N (−3, 3).
Mirroring Example 1, we consider three contamination levels: θ ∈ {0.1, 0.2, 0.3}. The results for
artificially corrupted datasets are given in Table 9. From Table 9, we have the following key find-
ings. First, the proposed KRMS-KLSR method outperforms other methods in that the former has
smaller AMSE values and the relatively small SD values than the latter regardless of contamina-
tion levels and subsample sizes, while the UNIF-KLSR and MS-KLSR methods perform better than
linear regression-based three subsamplers in that the former consistently has smaller AMSE values
than the latter regardless of contamination levels and subsample sizes. Second, the linear regression-
based LGS-LSR method performs better than the UNIF-LSR and GMS-LSR approaches in terms of
AMSE and SD values regardless of contamination levels and subsample sizes, which perform poorly
under the considered settings. Third, the KRMS-KLSR method demonstrates exceptional stability,
its AMSE values remain nearly unchanged even as contamination level θ increases, closely match-
ing its performance on uncontaminated data (θ = 0). This resilience is further confirmed by its low
SD values, particularly at higher contamination levels θ. Fourth, larger subsample size n generally
enhance or stabilize the performance of all subsampling methods. In summary, the KRMS-KLSR
method demonstrates outstanding robustness to contamination, maintaining near-optimal accuracy
across contamination levels while significantly outperforming competing subsampling methods.

E CONVERGENCE ANALYSIS AND PARAMETER SENSITIVITY ANALYSIS

To address concerns related to the convergence of the iterative optimization (Algorithm 1), the va-
lidity of subsampling, and the sensitivity to hyperparameters, we provide a comprehensive empirical
analysis in this section. These simulation studies complement the theoretical discussion and further
validate the robustness of the KRMS method. In the subsequent subsections, we generate datasets
under case M1 of Experiment 2, with a contamination level of θ = 0.4, and repeat the experiment
100 times.

E.1 CONVERGENCE ANALYSIS OF THE ITERATIVE PROCEDURE

Figure 5 presents a robust evaluation of the iterative KRMS process under heavy data contami-
nation, displaying the mean and 95% Confidence Interval (CI) across iterations (κ). The analysis
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is structured along two independent aspects to simultaneously monitor model stability and perfor-
mance. Figure 5a, which focuses on algorithmic convergence (parameter stability), employs the
Mean Squared Prediction Change (MSPC), defined as

∥∥ŷ(κ) − ŷ(κ−1)
∥∥2
2
/n, as the key metric. Fig-

ure 5b tracks generalization performance via RMSE computed on a clean testset. As shown in Figure
5, both the MSPC and the RMSE drop sharply within the first 3–5 iterations and stabilize thereafter.
This empirical evidence strongly indicates that the proposed recursive updating strategy effectively
corrects the initial pilot estimate α(0), preventing divergence even when the initial sample contains
outliers.

(a) (b)

Figure 5: Convergence diagnosis of the Algorithm 1.

E.2 VALIDATION OF THE SAMPLING MECHANISM

To illustrate the target distribution of our Markov subsampling procedure and demonstrate how
the weights w(z̃, α) effectively down-weight contaminated observations, we visualize the sampling
behavior in both the metric space and the feature space. Figure 6a displays the density distribution
of the sampling metric log(w) for clean versus contaminated subsamples. Figure 6b visualizes the
spatial distribution of the selected subsamples in a two-dimensional feature space, overlaid on the
full contaminated dataset.

(a) Density of Sampling Metric log(w) (b) Feature Space Visualization

Figure 6: Visualization of the Subsampling Mechanism.

Figure 6a demonstrates a clear distinction between the weight distributions of clean and contam-
inated samples. Since the acceptance probability is proportional to 1/w(z̃, α), the algorithm in-
herently favors selecting “clean” data. Furthermore, as depicted in Figure 6b, even under heavy
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contamination, the subsampling algorithm predominantly selects nearly pure “clean” data points
(shown in black). This provides additional evidence that the Markov chain effectively converges to
the “clean” data distribution.

E.3 PARAMETER SENSITIVITY ANALYSIS

We conduct sensitivity analyses on the subsample size n0 and the burn-in period t0. Figure 7a
illustrates that as subsample size increases, the RMSE on the “clean” testset gradually decreases and
eventually stabilizes. This indicates that a moderate number of subsamples is sufficient to achieve
reliable performance, thereby substantially lowering computational cost. Figure 7b shows that the
algorithm’s performance remains highly stable across different burn-in periods. This observation
suggests rapid mixing of the Markov chain, and demonstrates that the method is insensitive to the
specific choice of t0, which simplifies parameter tuning in practice.

(a) Effect of Subsample Size n0 (b) Effect of Burn-in Period t0

Figure 7: Sensitivity Analysis

We assess the performance of KRMS with three alternative kernel functions: the Laplacian kernel
K(x,y) = exp(−|x−y|/σ), the linear kernel, and the polynomial kernel K(x,y) =

(
x⊤y + c

)d
.

As shown in Table 10, while the Gaussian kernel achieves the best overall results, the Laplacian ker-
nel remains competitive. In contrast, non-stationary kernels (linear and polynomial) perform notably
worse. This is likely because non-stationary kernels produce values that depend on the absolute posi-
tion of data points; as a result, outliers with large norms may be incorrectly selected, compromising
robustness. We also investigate sensitivity to the bandwidth parameter σ of the Gaussian kernel.
Figure 8 shows the performance of KRMS across σ = c/p for c ∈ [0.1, 10]. The results indicate
that KRMS remains highly stable over a wide range of c, while the other two methods are noticeably
sensitive to the bandwidth selection. In our experiments, the bandwidth of the Gaussian kernel is
set according to the dimension-dependent rule: σ = 1/p (Chang & Lin, 2011), which reflects the
linear growth of squared Euclidean distances in high-dimensional space. The chosen value (c = 1)
falls within the observed high-performance plateau, confirming that our parameter selection is both
principled and non-arbitrary.
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Table 10: Performance comparison of KRMS with different kernel for corrupted mechanism M1 in
Experiment 2

n = 500 n = 1000 n = 1500

θ Method AMSE SD PSR AMSE SD PSR AMSE SD PSR

0.1

KRMS-Gaussian 1.137 0.041 100.00% 1.098 0.036 100.00% 1.087 0.035 100.00%
KRMS-Laplacian 1.134 0.041 100.00% 1.093 0.039 100.00% 1.085 0.039 100.00%

KRMS-Polynomial 27.276 10.036 50.63% 38.847 12.791 56.42% 46.036 14.027 62.14%
KRMS-Linear 25.631 0.964 75.58% 25.245 0.900 78.07% 25.055 0.711 79.82%

0.2

KRMS-Gaussian 1.153 0.044 100.00% 1.099 0.038 100.00% 1.091 0.035 100.00%
KRMS-Laplacian 1.152 0.046 100.00% 1.104 0.040 100.00% 1.100 0.041 100.00%

KRMS-Polynomial 29.191 22.964 29.15% 40.328 30.571 37.06% 56.794 32.144 44.62%
KRMS-Linear 29.833 0.548 41.96% 29.746 0.547 47.15% 29.708 0.472 51.71%

0.3

KRMS-Gaussian 1.145 0.050 100.00% 1.104 0.041 100.00% 1.101 0.038 100.00%
KRMS-Laplacian 1.135 0.048 100.00% 1.103 0.046 100.00% 1.095 0.042 100.00%

KRMS-Polynomial 19.498 13.403 18.85% 25.048 27.75 26.68% 20.857 27.660 32.96%
KRMS-Linear 30.734 0.499 25.19% 30.712 0.450 30.98% 30.732 0.475 36.01%

0.4

KRMS-Gaussian 1.149 0.045 100.00% 1.104 0.042 100.00% 1.106 0.042 100.00%
KRMS-Laplacian 1.139 0.041 100.00% 1.107 0.033 99.99% 1.104 0.043 100.00%

KRMS-Polynomial 21.616 10.487 11.88% 18.749 12.201 19.05% 19.390 15.188 24.91%
KRMS-Linear 31.086 0.518 16.69% 31.087 0.483 22.57% 31.084 0.475 27.13%

Figure 8: Bandwidth Sensitivity Analysis
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