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ABSTRACT

Large-scale data with contamination are ubiquitous in biomedicine, economics
and social science, but its statistical learning often suffers from computational bot-
tlenecks and robustness. Subsampling offers an efficient solution by sampling a
representative subset of uncorrupted data from full dataset, thereby reducing com-
putational costs while enhancing robustness. Existing subsampling methods, like
leverage- and gradient-based approaches, focus on parametric models and fail un-
der nonparametric models or severe contamination. To address these limitations,
we propose a kernel-based robust Markov subsampling (KRMS) method for non-
parametric regression with contaminated data in reproducing kernel Hilbert space
(RKHS). By dynamically adjusting Markov sampling probabilities based on the
ratio of residuals to kernel norms of predictors, our method simultaneously sup-
presses contaminated observations and prioritizes informative observations, en-
abling robust learning from contaminated datasets. Theoretically, we establish the
asymptotic properties of the estimators, including consistency and asymptotic nor-
mality, and generalization bounds under RKHS regularization, providing the first
unified framework for robust subsampling in nonparametric settings. Simulations
and real-data applications demonstrate KRMS’s superiority over existing meth-
ods, particularly for high contamination levels. Our approach bridges a critical
gap in scalable and robust statistical learning, with broad applicability to large-
scale, non-i.i.d. data.

1 INTRODUCTION

The rapid development of data collection technologies has ushered in an era of unprecedented data
proliferation across nearly all scientific and industrial fields. Data in fields ranging from biomedical
imaging and financial risk analysis to environmental monitoring and social network analytics exhibit
not only massive scale but also increasingly frequent contamination, including outliers, measure-
ment errors, and systematic biases (Fan et al., [2014). While this data deluge offers unprecedented
opportunities for scientific discovery and practical applications, it simultaneously faces critical lim-
itations in conventional statistical learning methods, particularly their inability to scale computa-
tionally with massive datasets and their vulnerability to pervasive data contamination. Traditional
statistical learning approaches, developed for uncontaminated, or smaller-scale data, frequently fail
when applied to the complicated or contaminated data, where contamination is not merely an occa-
sional nuisance but an inherent characteristic. This dual challenge of computational scalability and
statistical learning robustness has emerged as a fundamental bottleneck in the era of big data.

To mitigate these challenges posed by massive datasets, subsampling has emerged as a widely used
strategy. Specifically, by selecting a representative subset of uncontaminated data from the full
dataset with contamination, this subsampling method possesses dual merits: substantial computa-
tional efficiency and potentially improving parameter estimation accuracy. However, the effective-
ness of subsampling hinges critically on its ability to preserve statistical properties of the full dataset,
a non-trivial challenge in practice. Existing solutions to this challenge can be classified as three cat-
egories: (i) optimal design-based approaches (A1 et al., [2021; Wang & Mal 2021)) that minimize
asymptotic variance of parameter estimator for uncontaminated data; (ii) informative subsampling
techniques for the massive data without contamination or with relatively low level of contamination,
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including leverage-based subsampling (Ma et al., 2015} [Rudi et al., 2018), gradient-based subsam-
pling (Zhul[2016)) and influence function-based subsampling (Ting & Brochul[2018]), however, these
methods typically produce biased estimators when applied to highly contaminated data; (iii) robust
subsampling methods for corrupted massive data based on the idea of quantile breakdown point
for linear regression models (Camponovo et al., 2012), robust gradient-based Markov subsampling
(Gong et al.l 2020), and low-gradient subsampling (Jing| |2023). Notably, Markov subsampling
has shown particular promise by adaptively refining parameter estimate through sequential transi-
tions, and self-correcting for contamination via Metropolis-Hastings (MH) rejection scheme while
preserving structural information in the dataset. But existing Markov subsampling methods are
fundamentally constrained to parametric models with contaminated data, leaving it ill-equipped for
nonparametric regression problems where the target is an infinite-dimensional function rather than
finite-dimensional parameters. Three key challenges are encountered in nonparametric regression
models with contaminated data. First, existing subsampling methods fail to properly weight obser-
vations in RKHS, where contamination distorts both local smoothness and global structure. Second,
the “curse of dimensionality” exacerbates contamination effects in high-dimensional function esti-
mation. Third, non-i.i.d. data dependencies, such as those in Markov chains, interact with contami-
nation in ways that linear regression models cannot capture. These limitations become particularly
severe under heavy contamination scenarios like Huber’s e-model, where existing subsamplers fail
to retain the essential topological properties of the target function.

To overcome these challenges, we propose a Kernel-based robust Markov Subsampling (KRMS),
which introduces several key innovations. By mapping the original data to an RKHS, our con-
tamination scoring mechanism combines residual with features similarity to identify contaminated
observations through relative data structure rather than absolute values. This kernel-based approach
enables effective separation of contaminated observations that would be indistinguishable in the
original feature space. The KRMS framework incorporates these scores into a MH sampling pro-
cess that naturally accommodates non-i.i.d. data dependencies while maintaining computational
efficiency. Theoretically, we establish consistency of nonparametric function estimator under mild
regularity conditions, while demonstrating robustness to both contamination and high dimension-
ality. Our approach thus solves what existing methods cannot: simultaneous robustness to severe
contamination, computational scalability, and theoretical soundness for nonparametric regression
with complex dependencies.

Our work has three key contributions to nonparametric regression with contaminated data. First,
we propose a KRMS method in RKHS by dynamically adjusting Markov subsampling probabil-
ities based on the ratio of residuals to kernel norms of predictors, which is the first subsampling
method specifically designed for contaminated data in complex nonparametric regression settings.
Unlike existing approaches limited to parametric models, KRMS adapts to the intrinsic geometry
of function spaces through kernel learning. Second, within the framework of kernel regularized
regression with symmetric periodic Gaussian kernels in Sobolev spaces (Zeng & Xia, [2019), we
establish rigorous theoretical guarantees for the KRMS estimator of nonparametric function. Based
on assumption that the data follow a uniformly ergodic Markov chain (u.e.M.c.), we obtain optimal
consistency rates and asymptotic normality of KRMS estimator, and explicit error bound of excess
risk under contamination. Third, we extend the theoretical framework to characterize the gener-
alization performance of kernel regularized regression in RKHS, providing new insights into the
interaction between subsampling robustness and function space geometry.

The rest of this paper is organized as follows. Section [2] introduces regularized nonparametric
regression model and RKHS. Section 3| details the proposed method. Section [4| presents asymp-
totic properties and generalization bounds for kernel-based regularization regression under Huber
e-contamination for u.e.M.c. samples. Simulation studies are conducted in Section[5} Concluding
remarks are given in Section [§] The proofs of theorems, additional simulations and real examples
analysis are presented in the Appendices [C]and [D] The convergence analysis and parameter sensi-
tivity analysis are presented in the Appendix
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2 PRELIMINARIES

2.1 REGULARIZED NONPARAMETRIC REGRESSION MODEL

Consider learning a continuous function f(x) € H(X) from a dataset D = {z; = (x;,¥;) : ¢ =
1,...,n}, where x; = (2,1, ... 7xip)T € X is the input vector of the i-th individual, y; € Y is the
corresponding observed output, X is a compact subset of R? (p > 2), and H = H(X) is a space of
continuous functions. The relationship between x; and y; is modeled as y; = fo (x;) + €;, where
fo(xi) : RP — R is an unknown target function, and the random noise ¢; satisfies E (¢;) = 0 and

E (€?) = 02, and is independent of x; for i = 1,...,n. The goal is to find a function f(x) : X —
that approx1mates fo well by minimizing the generahzatlon risk: Rf( ) = E{U(f(x),y)} =
f z x),y)dF, where £(f(x),y) is a nonnegative loss function measuring the fitting error when

usmg f (x) to fit the output y, £ = X x ) represents the sample space, F is an unknown joint
distribution of z = (x,y) € Z, E(-) is the expectation taken with respect to distribution function F.
It is difficult to directly compute minimizer of R #(f) due to unknown distribution F involved. To
solve the difficulty, we instead minimize the empirical risk (ER) over a function space H: Rp(f) =
(2n)~t 3" €(f(xi),v:). Throughout this paper, we consider the following squared-error loss:
0(f(x3),y:) = {yi — f(xi)}2. Thus, for the considered squared-error loss, the ER minimizer is

fD:argﬁing(f)—argm%%Z{yl xi)}", (1

which is an approximation of function fy(x). However, when # is highly complex, the optimization
problem (T)) becomes ill-posed and prone to overfitting (Zou et al., 2014). To address this issue, we
restrict the function space H to a RKHS and solve the following regularized optimization problem:

foa =arg Ifrg;; {Ro(f) +AJ(f)}, (2)

where J(f) : H — R, is a penalty functional with J(0) = 0 that controls complexity of f,
and A > 0 is an appropriate regularization parameter depending on the sample size n such that
A = A(n) and lim,,_, o, A(n) = 0 as n — oo. For any estimator fp » of function fy(x), its quality
is measured by its excess risk (i.e., the difference between the Lo expected risks of fp » and fo):

lfox — foHi%:X = Rr(fpx) — Rx (fo), where Fx is the marginal distribution of F on X, and

Lfrx denotes the space of square-integrable functions with respect to the measure Fx.

2.2 REPRODUCING KERNEL HILBERT SPACE

Following |Aronszajn| (1950), an RKHS #H is a Hilbert space of functions where all evaluation func-
tionals are continuous and bounded. To wit, for any f(x) € H and x € X, there exists a positive
constant C such that £, (f) = |f(x)| < C||f|l3, where Ly is the evaluation functional at obser-
vation x, and || - || is the norm on H. A function K (-, ) X x X — R is called a reproduc-
ing kernel (RK) if it is symmetric and positive definite: Z; 1 Z _, a;0;K (x;,%;) > 0 for any
X1,...,Xp, € Xand ay,...,a, € R. By the Moore-Aronszajn Theorem (Aronszajn, [1950), every
symmetric positive definite function K (-, ) uniquely defines an RKHS H  of real-valued functions.
Specifically, H is the closure of the linear span of kernel functions:

HKZ{ ZOZZ X,L, XZ‘EX,QZ'ER},

and the corresponding inner product is defined as (K (x;,-), K (%, ))ux = K (x5, %;).

3 METHODOLOGIES

The optimization problem in Equation (2) yields an efficient estimator of the target function fy when
the dataset D is sampled independently from the true distribution /. However, in many applications,
D often contains contaminated observations due to outliers or adversarial contamination. In such
cases, D is instead generated from Huber’s contamination model (Huber,[1992): P = (1—-60)F+6Q,
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where F is the true (uncontaminated) distribution, Q is an arbitrary contaminating distribution, and
6 € [0,1/2) controls the contamination level. This model captures scenarios where a fraction  of
the data may be arbitrarily contaminated, while the majority 1 — 6 follows the true distribution F.

It is well established that estimators obtained from contaminated datasets can exhibit significant
bias and provide poor approximations of the target function fy. To address this challenge, a natu-
ral strategy involves identifying and sampling uncontaminated observations from the contaminated

dataset D = {Z; = (X;,¥;)}_, to obtain an optimal solution of f for Equation . Therefore,
our objective is to develop an effective subsampling method that is capable of robustly selecting a
representative subset of uncontaminated observations, even in the presence of severe contamination.
Unlike conventional linear regression models, we consider a more general setting where contami-
nated observations reside within a RKHS framework. This approach leverages kernel methods to
map the contaminated data into high-dimensional or infinite-dimensional feature spaces, where con-
taminated observations, which are difficult to distinguish in the original input space, becomes more
separable. Building on this insight, we propose a novel kernel-based robust subsampling method
for nonparametric models. A key advantage of our approach is its reliance on the relative distance
between data points in the kernel-induced feature space, rather than the absolute magnitude-based
criteria typically used in linear regression models. This property enables more reliable identification
of contamination, particularly in complex and nonlinear settings.

For an uncontaminated dataset D, the squared-error loss in the RKHS H i takes the form

2
n

Ro(f) = 54— Zaj (x.%)

=1

The regularized estimator fp = argminyey{Rp(f) + AJ(f)} provides an unbiased estimate of
function fy. When dealing with a contaminated dataset D, the squared-error loss becomes

2
n

Rﬁ(f):%Z Yi — Zaj X])X’L y

i=1

where X; is contaminated input vector, and y; is contaminated output. Here we consider Huber’s
contamination model for contaminated data mechanism, i.e., for input vector X; and output y;, a
proportion # of observations follows the arbitrary contaminating distribution W and O, respec-
tively. Under this mechanism, observations (X;,¥;) are corrupted with probability 6 and remain
uncorrupted with probability 1 — 6. The specific forms of W (e.g., sparse noise, adversarial pertur-
bations) and O (e.g., outliers, multiplicative errors) characterize the nature of the corruption. The
corresponding estimator fz , = argminsey{R5(f) + AJ(f)} is biased when the contamina-
tion level 6 is relatively large, and its computation becomes prohibitively expensive for a relatively
large sample size n. To overcome these challenges, some robust subsampling methods like low-
gradient subsampling (Jing| [2023)), robust gradient-based Markov subsampling (Gong et al., [2020)
and Markov subsampling based on Huber criterion (Gong et al.| (2022) have been proposed. How-
ever, these subsampling methods often yield unstable estimators due to sensitivity to unbalanced
sampling probabilities, loss of important gradient information, poor performance with contaminated
data. To this end, we propose a novel robust kernel-based Markov subsampling method that operates
in the RKHS to better separate contaminated observations, uses modified gradient information for
more reliable sampling, maintains computational efficiency while being robust to contamination.
The method specifically addresses the limitations of existing subsampling approaches by carefully
preserving the geometric structure of the uncontaminated data while downweighting the influence
of contaminated observations in the kernel space.

The gradient of the empirical risk R (f) with respect to the coefficient vector o = (o, ..., ) "

at the i-th observation (X;, y;) is

K(ilail)

1 - n - K(§27§1)
gi(a) = v ZajK(XjaXi) .
j=1 :

K(invii)
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whose norm is given by

1.
lgi ()| = n Y ZO‘J (x;,%:)

which implies that the magnitude of ¢;(«) depends on ¢; = |y; — 2?21 o K (X;,%;)| and d; =

\/ 2?21 K (x;, X;)°. The absolute value of prediction error ¢; measures absolute deviation between
observed and predicted responses, and large values of ¢; indicate poor model fit, potentially signaling
contamination. The quantity d; depicts overall similarity of X; to other observations in the RKHS
Hpx. Generally, large value of d; indicates that X; is closely related to most of other observations
(i.e., exhibiting high similarity), and small value of d; implies that x; deviates considerably from

the majority of the dataset D and can be regarded as a contaminated observation or outlier in feature
space. Based on the preceding argument, we define the residual kernel-norm score as

Ui — 2y oK (%5,%)

Vo K (%, %)"

3)

w(Z;, ) =

A large value of w(Z;, &) can be regarded as a strong indicator of contaminated observation or out-
lier. The score (3) normalizes residuals against the local geometry of H , ensuring robust outlier
detection regardless of the kernel structure. We can regard w(Zz;, «) as a modified version of the low-
gradient subsampling. Similarly to low-gradient subsampling technique, we can utilize w(z;, ) to
assign subsampling probabilities, i.e., m; o< 1/w(Z;, @) is taken as the subsampling probability of
observation z; = (X;, ;) in which the observations with smaller (larger) values of w(Z;, ) are as-
signed larger (smaller) subsampling probabilities. This method is effective for moderate sample size
n, but it faces high computational cost for large sample size n (i.e., large-scale dataset), and sensitiv-
ity to highly contaminated data at small subsampling ratios (Gong et al., [2020). To overcome these
problems, we develop a robust kernel-based Markov subsampling procedure by utilizing w(Z;, &) to
construct transition acceptance probabilities. This approach ensures that the generated subsamples
are uniformly ergodic Markov chain (u.e.M.c.) samples, and maintains robustness while improving
computational efficiency. The detailed procedure is summarized in Algorithm [T}

Remark 1. (i) The probabilities w(Z;, &) in (EI) depend on the parameter vector o = (a1, ..., ap) .

A key challenge in obtaining a high-performance estimator f = fs,a of function fy is the need for
a good initial estimate of o, which is particularly difficult in heavily contaminated data settings. To
address this issue, we employ a recursive updating approach, where o/\") is refined iteratively using
the (k — 1)-th subsample drawn from the contaminated dataset D via the proposed subsampling,
and used to recompute w(Z;, o "~ 1)).

(ii) The choice of subsample size ng balances computational complexity of Algorithm[I|and estima-
tion precision. It should be selected based on available computing resources and desired approxi-
mation accuracy.

(iii) Steps 6 and 9 of Algorithm|[I|can be implemented using some standard subsampling technique,
such as Poisson sampling or replacement sampling.

(iv) Parameter )\ can be determined via leave-one-out cross-validation (LOOCYV) criterion to opti-
mize model performance.

(v) The overall computational complexity of Algorithm 1 is O(Ty(nnop + n3)). The term nngp
arises from evaluating the residual kernel-norm scores across the full dataset, while n3 corresponds
to solving the sub-problem. Crucially, this linear dependence on n represents a substantial improve-
ment over the cubic O(n?p + n3) complexity of standard kernel regression. Additionally, the space
complexity is reduced to O(np + n%), avoiding the O(np + n?) storage required for the full Gram

matrix. Thus, when ng < n, our method offers significant computational and spatial advantages.
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Algorithm 1 Robust Kernel-based Markov Subsampling

1: Initialization: Contaminated data D = {Z; = (X;,%)}/_,, Sk = 0, subsample size no < 7, burn-in
period £o, maximum number of iterations 7o, stopping criterion & (e.g., 0.001).

: Output: f

: Train a pilot estimate o'® for uniformly drawn observations {Z:}7°, from D via o9 =
argming y ;0 {9 — 3270, o K (%, %)+ AJ(f), and set k = 1

4: while 5 < Tp or o™ — "=V ||5 > & do

5 Set v = "V

6:  Randomly draw an observation 1 from D, and compute w(z1, ) via (3) and set S, = S, U 21

7

8

W N

for 2 <t <ng+tyodo
while |S.| < t do

9: Randomly draw a candidate observation z* from D and compute w(z™, &) via
10: Calculate acceptance probability: mo = min {1, w(zt—1, @)/w(z*, o)}

11: Set S, = S, U Z* with probability 7,

12: If Z* is accepted, set z; = 2*

13: end while

14: Set w(Z, o) = w(z*, @)

15:  end for

16:  Denote the last ng observations of S, as {(X7, 7;)}:2,

2
17 Seta(® = argming 379, {g; N ajK(i;,ir)} ()
18: Set f7) (%) = Y1, o\ K (], %)
19: Updatek =k +1

20: end while
21: Return f = S(f)fl)

4 THEORETICAL RESULTS

4.1 VALIDITY OF SUBSAMPLING

We first show that the Markov chain generated by the KRMS Algorithm(I]is uniformly ergodic. This
property ensures convergence to a unique stationary distribution in finite time, which is a crucial
requirement in establishing our subsequent theoretical properties.

Theorem 1. Let & be estimate of parameter vector o obtained with Algorithm Consider the
Markov chain {Z},-, generated by the following process: given the current state Z; together with

the &, a candidate z* is generated by randomly sampling from D and accepted with probability
pe = min{l,w (%, &) /w(2*,&)}. Then, the Markov chain {Zi},- is irreducible and aperiodic

on the finite state space D, and is therefore uniformly ergodic. Its unique stationary distribution P’
has the probability mass function:

- 1/w(z, &) o~

m(Z) = —, VZe D.

Zz’e’ﬁ 1/’UJ(Z/7 Oé) ’

Consequently, the limiting probability of each sample is proportional to the inverse of its kernel
residual score w(z, &).

By Theorem |1} our subsampling algorithm yields a u.e.M.c sample converging to P’, which repre-
sents a “cleaner” version of the initially contaminated distribution P, with a reduced contamination
proportion 0 < 6’ < 6.

Theorem 2. (Contamination Reduction) Let the original distribution be P = (1 — 0)F + 0Q. The
stationary distribution is a mixture P' = (1—0")F' +6'Q’, where the new contamination proportion
is given by:

0So
(1-0)Sxr+ 9597
where Sy = Ex(1/w) and Sg = Eg(1/w) are the expected inverse scores for inliers and outliers,
respectively. Consequently, 0’ < 0 if and only if Sg < Sr.

6 =
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Remark 2. Theorem [2| quantifies the robustness gain. The condition 0 < 0 holds provided
So < Sz, implying that outliers possess larger average residual kernel-norm scores (i.e., Eg(w) >
Ex(w)). This aligns with the intuition of residual-based detection: reweighting inversely to resid-
ual scores effectively downweights contamination. To ensure Sg < Sz, we rely on the geometric
separation in RKHS. Specifically, we assume outliers are incoherent with the kernel structure (see
Proposition[I]in Appendix|B) ).

4.2 ASYMPTOTIC PROPERTIES OF ESTIMATOR

Now we investigate the theoretical properties of the regularized estimator fs » defined in Algo-
rithm [I] Due to the theoretical challenges posed by the standard Gaussian kernel, we employ
instead a symmetric periodic Gaussian kernel (introduced in the Appendix [B). This choice en-
ables analytically tractable approximations, facilitating eigen-decomposition and simultaneous di-
agonalization for asymptotic analysis (Lin & Brown, 2004; Zeng & Xia, [2019). Specifically,
the regularization scheme for regression with symmetric periodic Gaussian kernel is given by
J(f) = Ifl13,, = (f, f)n., where the inner product (f, f)4,, is defined analogously to (f, f) .

The estimator fs » is obtained by minimizing the regularized empirical risk using samples S =
{Zi = (X4, 9:) }1~, drawn from the distribution P’. Define

Re(f) = + S I — T, fon = arg muin {R(f) + M (N},

Rp(f) = / {f(X) —g}y>dP’, fp = arg min Rp(f).
z feH

Condition 1. {X;}? , is a uniformly ergodic Markov chain sample of variable X, exhibiting uni-
formly mixing (¢-mixing) properties. The density function p'(X) of X is supported on [0, 7] and
satisfies the boundedness: 0 < ¢ < p'(X) < C < oo for the positive constants ¢ and C.

Condition 2. {¢;}._, is a sequence of i.i.d. random variables that are independent of X, and satisfy
E(e;) =0and E (€7) = o

Condition 3. fp, € Hchfw ]

Condition 4. fp, € H™

[77"777]'

The explanation of these conditions and the definition of norms and inner products are given in the
Appendix For n-dependent sequences a,, and b,,, the notation a,, ~ b,, means lim,, o an /b, =
¢ € (0,00).

Theorem 3. Suppose that Conditions 1, 2 and 3 hold. If A ~ (In n)% /m asn — oo, the regulariza-
tion estimator fs y satisfies
Inn)z
Ifor— Ferl2 =0, <( ) ) .

Theorem 4. Suppose that Conditions 1, 2 and 4 hold, and w is a constant. If X = o(1) and
(—In )\)%/w ~ MTAF gsm — oo, the regularization estimator fs y satisfies

o = fprlls = Oy (n=775).

Theorems [3] and [4] establish that for an infinitely or finitely smooth mn-th order target function, the
estimation error tends to zero as the sample size approaches infinity provided the regularization
parameter A\ is appropriately chosen, demonstrating the consistency of the estimator. While we
employ the Gaussian kernel to establish logarithmic convergence, our framework accommodates
polynomial-decay kernels (e.g., Sobolev) under Conditions BH4] readily yielding polynomial rates.

To derive the functional Bahadur representation (FBR) of the estimator, a key prerequisite for estab-
lishing its asymptotic theory, we first introduce necessary notation. Let H,,, = H,(t,-). For any
f,Af € H,, define

Saa(F) = =23 (0 = f (%)) Has, + 2,

i=1
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2 o -
DSuA(f)Af = =Y Af (%) Huy, + 2)\Af.
[t '
Let DS\(H)AS = Ey (DS (AL} SA(F) = Ey {Sur()}. Realf) = Re(f) + A (),
Rpa(f) = E{RsA(f)}, fra = arg mingey,, Rp:a(f). Thus, we have fsy — fpr =
(fpra = fpr) + fox = fpoae Denote f = fprx = DSy H(fpra)Sun(frrn)s for = froa =
(fsa =)+ (f = frpa)
Theorem 5. (Functional Bahadur representation) Suppose that Conditions 1, 2 and 3 hold. If
A~ (Inn)z /n = o(1) as n — oo, we have
2 Inn
=0 <n) :

Theorem [5] shows that the estimation error can be accurately approximated by a leading linear ran-
dom term, with the remainder term converging to zero at the high-order rate of O, (ln n/ nQ). Now
we apply this FBR to show pointwise asymptotic normality of estimators in Sobolev spaces.

Theorem 6. Suppose that Conditions 1, 2 and 3 hold. Let fp/(X) = > =, fp 1k¢k(X), where
Froge = Jx FRORR)AX fo(X) = 32720 A fpr kdi(R)/(A+Aw). If A = o(1) and (= In N7 fw ~
nTIT as n — oo, for any Xg € [—m, 7|, there exists a constant 0%0 > 0 such that

[ o = for 4 (DS (f2)} " Sun ()

o? > A\ 2 9 i~ 9
lim Z (1 + /\k> or (Xo) = 0%
k=0

we have
n ~ ~ 1\ d
——— {fsx (o) — fo (o)} = N (0,0%,) .
(Inn)z
Theorem 7. Suppose that Conditions 1, 2 and 4 hold. If X = o(1) and (—In\)? Jw ~ NI as
n — 00, we have

|5 = £ + D82 (1)) ™ S ()| = 0, (n5857).

For any X € [—m, 7], if there exists a constant 53 > 0 such that

0_2 oo )\ —2
lim — Z(HAJ or (Xo) = 62,

n—00 1 2m+1 =0

we have

nTT { fs.x (%o) — fo (%o)} 5 N (0,52,) .

Theorems [6] and [7] establish that for a target function with an infinitely or finite smooth m-th order,
the estimator achieves a fast convergence rate. Moreover, when centered by its oracle-smoothed
counterpart and properly scaled, the estimator’s distribution converges to a normal distribution.

4.3 GENERALIZATION BOUND

To characterize the generalization ability of Algorithm [I] we evaluate the quality via its excess risk
Rr(fs,x) — Rr (fo). In what follows, we discuss non-asymptotic upper bound of the excess risk.
We refine estimation error by exploiting the boundedness of the target function, restricting regression
function to a pregiven interval. To this end, we assume that there exists a constant A/ > 0 such that
lyl < M forany y € Y and |f(x)| < M for any x € X. Given H,, C Hg, let C(X) denote
the space of continuous function on X equipped with the norm: || f||o = supycx |f(x)|. By the
continuity of kernel K (-) and compactness of X, we have k = sup,.cx K (x,x) < oo, which implies
the following key inequality: || f|loc < || f||% for Vf € Hx.

When the sample dataset contains contaminated observations, the traditional error decomposition
approach faces additional challenges. To address this issue, we consider a new error decomposition
for the excess risk: Rz (fs x) — Rx (fo), which is given in Propositions
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Theorem 8. Suppose that S = {Z; = (X;,y:)}~, is a u.e.M.c sample. If D(N) satisfies D(\) <
cgA with A = n~" and 97 = min {1/(2 — q),1/((1 + 8)q), 1/q}, thus, for any 0 < § < 1, with
probability at least 1 — 0,

Rr(fsn) — Rr (fo) < Coln(2/8)n~"19 + 48M°0',

where Cy is a constant independent of n and 0, 0’ is the proportion of contaminated data in the
subsample set after subsampling.

Theorem [§] establishes asymptotic property of the excess risk, and its convergence rate is O(n~1)
asm — oo and 6’ — 0, which is consistent with the known optimal rate for regularized least square
type algorithms|Li et al.| (2017).

5 SIMULATION STUDIES

Simulation studies are conducted to evaluate the finite-sample performance of the proposed KRMS
method for kernel-based regularized least squares regression. Our evaluation focuses on the
method’s robustness under different data contamination scenarios. The simulation design incor-
porates two fundamentally distinct data generating processes: a linear regression and a nonlinear
regression. For each experimental configuration, we generate a training set with N = 10000 ob-
servations and an independent test set with Ny = 2000 observations. The proposed subsam-
pling algorithm is applied to draw subsamples of sizes n € {500,1000,1500}. The entire ex-

periment is repeated M/ = 100 times to ensure statistical reliability. For each replication m, we

compute mean squared error (MSE) for the test set via MSE,,, = ﬁ vaz‘ei‘ (9 — gji)z, where

y; is the predictive value of ;. Our primary performance metric is the average mean squared er-

ror (AMSE) for all replications: AMSE = ﬁ Zf‘le MSE,,. To assess method stability and the
performance of the proposed algorithm, we report the standard deviation (SD) of the MSEs val-
ues among M replications, and the positive screening rate (PSR, %), defined as the proportion of
correctly identified uncontaminated observations in each subsample, respectively. For comparison,
we consider the following five subsampling algorithms: MS-KLSR-Markov sampling with kernel-
based regularized least squares regression (Zou et al., [2014), UNIF-KLSR—uniform subsampling
with kernel-based regularized least squares regression, UNIF-LSR—uniform subsampling for linear
least squares regression, GMS-LSR—gradient-based Markov sampling for linear least squares re-
gression (Gong et al.,|2020), and LGS-LSR—low gradient-based subsampling for linear least squares
regression (Jing, |2023)). To implement kernel-based regression algorithms , we take the Gaussian
kernel K (x,t) = exp{—(x — t)?/4}. The regularization parameter is selected using the LOOCV
strategy.

Experiment 1 (Linear model). Dataset {(x;,y;)}Y, is generated from linear model y; = ;1 +
29 + 3wi3 + 4xi4 + €;, Where x;1, . .., x4 are independently generated from uniform distribu-
tion U(0, 1), and ¢;’s are independently sampled from the standard normal distribution. To create
corrupted observations using the mechanism: for predictors x;, we replace a proportion ¢ of ob-
servations with random values drawn from W; for corresponding response variable y;, we replace
contaminated cases with values drawn from O; for § € {0.1,0.2,0.3,0.4}. We assume that O;
follows the normal distribution A/ (0, 10), inducing significant fluctuations of contaminated observa-
tions, and W; follows the following three distributions: (M1) W;; ~ t(1), (M2) W;; ~ exp(1) and
(M3) W;; ~ F(1,1), where t(1) represents the ¢-distribution with one degree of freedom, exp(1)
denotes standard exponential distribution, F'(-, -) is the F-distribution, and Wi;; is the j-th component
of W, which are designed to investigate robustness to different types of outliers.

Tables (Tables 2] and [3] are given in Appendix [D) indicate that the KRMS-KLSR method out-
performs others in that the former consistently achieves the relatively small AMSE and SD values
and maintains high PSR values for nearly all scenarios. For contamination schemes M1 and M3
together with low values of 6 (e.g., # < 0.2), the LGS-LSR method shows marginally superior
performance over KRMS-KLSR based on AMSE values, but it exhibits lower SD and higher PSR
values, implying poorer stability and reliability compared to KRMS-KLSR. However, under severe
contamination (e.g., > 0.2) or complex outliers (e.g., M2 mechanism), KRMS-KLSR offers con-
siderable improvements: it exhibits only moderate AMSE increases while LGS-LSR suffers from
substantial performance degradation. GMS-LSR demonstrates intermediate performance, bridg-
ing the gap between LGS-LSR and conventional methods. Non-robust methods (e.g., UNIF-LSR)
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Table 1: Performance comparison of KRMS and five competing subsampling methods for corrupted
mechanism M1 in Experiment 1

n = 500 n = 1000 n = 1500

0 Method AMSE SD PSR AMSE SD PSR AMSE SD PSR
UNIF-KLSR 1.605 0.513 90.04% 1.861 0.520 89.92% 2.238 0.526 90.15%
MS-KLSR  1.364 0.324 96.75% 1.500 0.346 96.60% 1.857 0.476 96.76%
KRMS-KLSR 1.118 0.043 99.93% 1.084 0.035 99.94% 1.070 0.033 99.93%
UNIF-LSR  18.175 4.974 90.04% 22.156 3.359 89.92% 23.867 2.799 90.15%
GMS-LSR 2975 1.681 94.38% 4.085 1.760 93.61% 5.076 2.323 93.56%
LGS-LSR  1.032 0.050 99.30% 1.032 0.045 99.26% 1.032 0.081 99.16%
UNIF-KLSR 2.545 0.521 80.02% 2.797 0.507 80.16% 3.225 0.444 80.22%
MS-KLSR  2.133 0.528 91.52% 2.425 0.509 91.57% 2.862 0.437 92.22%
KRMS-KLSR 1.117 0.046 99.89% 1.082 0.035 99.87% 1.074 0.035 99.86%
UNIF-LSR 25266 2.203 80.02% 26.584 1.449 80.16% 27.235 0.844 80.22%
GMS-LSR  9.647 3.397 85.40% 11.755 3.094 85.25% 13.691 2.706 85.55%
LGS-LSR  1.083 0.092 98.42% 1.065 0.083 98.30% 1.068 0.089 98.14%
UNIF-KLSR  3.337 0.702 70.41% 3.859 0.543 70.08% 434 0. 70.00%
MS-KLSR 2981 0.587 84.94% 3.570 0.469 85.23% 4.116 0.450 86.02%
03 KRMS-KLSR 1.127 0.043 99.76% 1.085 0.037 99.79% 1.069 0.033 99.73%
= UNIF-LSR 27.075 1.154 70.41% 27.835 0.644 70.08% 28.102 0.507 70.00%
GMS-LSR  16.172 3.216 76.47% 18.815 2.179 76.87% 19.973 2.153 77.56%
LGS-LSR  1.138 0.121 97.12% 1.155 0.185 96.95% 1.126 0.121 96.74%
UNIF-KLSR 4.494 0.792 60.06% 5.264 0.869 60.03% 5.868 0.654 59.83%
MS-KLSR  4.341 0.699 7530% 5.055 0.705 76.09% 5.570 0.535 76.84%
KRMS-KLSR 1.132 0.047 99.62% 1.086 0.034 99.61% 1.069 0.041 99.57%
UNIF-LSR  27.739 0.657 60.06% 28.178 0.528 60.03% 28.280 0.468 59.83%
GMS-LSR  20.541 2.332 67.39% 22.434 1.816 68.01% 22913 1.351 69.14%
LGS-LSR  1.328 0.287 95.03% 1.275 0.192 94.83% 1.273 0.176 94.46%

0.1

0.2

0.4

demonstrate severe degradation, leading to a relatively large AMSE values and a relatively low PSR
values, which confirms the necessity of robust subsampling. Thus, the proposed KRMS-KLSR
method retains stable performance with increasing contamination levels and larger subsample sizes.
To save space, Experiment 2 for nonlinear regression model are moved to Appendix [D}

6 CONCLUSION

Corrupted observations from outliers, measurement errors, or multi-source heterogeneity are widely
encountered in biomedicine, environmental science, and economics. Traditional statistical inference
often faces huge challenges such as computational inefficiency and sensitivity to contamination.
Subsampling has emerged as a powerful strategy to select representative subsets while discard-
ing contaminated points. However, existing methods like score-based or low-gradient subsampling
mainly focus on parametric models and perform poorly under high contamination.

To address these issues, we propose a KRMS method for nonparametric regression with contam-
inated data. Our key innovation is to define subsampling probability as the ratio of the absolute
residual to the kernel norm of covariates, which dynamically downweights outliers while preserving
clean data. Unlike conventional methods, the proposed approach explicitly accounts for both the
predictive error and the geometric structure of the data in a RKHS, ensuring robustness even under
severe contamination. Theoretical guarantees, including consistency and asymptotic normality and
generalization bounds under RKHS regularization, are established under some conditions.

Empirical results demonstrate KRMS’s superiority in high-contamination settings, with stable per-
formance across simulations and real-data applications. While the method currently focuses on con-
tinuous, fully observed responses, future work will extend it to classification, distributed streaming
data, missing data, and high- or ultrahigh-dimensional optimization via deep learning approaches.

REPRODUCIBILITY STATEMENT

Detailed explanations on Tables[THJ]are given in Appendix [D] We also attach our codes to facilitate
the reproduction of our experiments.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Mingyao Ai, Jun Yu, Huiming Zhang, and HaiYing Wang. Optimal subsampling algorithms for big
data regressions. Statistica Sinica, 31(2):749-772, 2021.

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical
society, 68(3):337-404, 1950.

Lorenzo Camponovo, Olivier Scaillet, and Fabio Trojani. Robust subsampling. Journal of Econo-
metrics, 167:197-210, 2012.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2:27:1-27:27, 2011.

Cucker and Smale. Best choices for regularization parameters in learning theory: On the
bias—variance problem. Foundations of Computational Mathematics, 2(4):413-428, 2002.

Paul Doukhan. Mixing. In Mixing: Properties and Examples, pp. 15-23. Springer, 1995.

Jianging Fan, Fang Han, and Han Liu. Challenges of big data analysis. National Science Review, 1
(2):293-314, 2014.

Tieliang Gong, Bin Zou, and Zongben Xu. Learning with 1;-regularizer based on markov resam-
pling. IEEE Transactions on Cybernetics, 46(5):1189-1201, 2015.

Tieliang Gong, Quanhan Xi, and Chen Xu. Robust gradient-based markov subsampling. In Pro-
ceedings of the AAAI conference on artificial intelligence, volume 34, pp. 4004—4011, 2020.

Tieliang Gong, Yuxin Dong, Hong Chen, Bo Dong, and Chen Li. Markov subsampling based on
huber criterion. IEEE Transactions on Neural Networks and Learning Systems, 35(2):2250-2262,
2022.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodol-
ogy and distribution, pp. 492-518. Springer, 1992.

Kaili Jing. Joint feature screening and subsampling in analysis of massive data. PhD thesis, Uni-
versité d’Ottawa/University of Ottawa, 2023.

Galin L Jones. On the markov chain central limit theorem. Probability Surveys, pp. 299320, 2004.

Alexandros Karatzoglou, Alex Smola, Kurt Hornik, and Achim Zeileis. kernlab: Kernel-Based
Machine Learning Lab, 2004. R package version 0.9-31.

David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathe-
matical Soc., 2017.

Luoqing Li, Weifu Li, Bin Zou, Yulong Wang, Yuan Yan Tang, and Hua Han. Learning with
coefficient-based regularized regression on markov resampling. [EEE Transactions on Neural
Networks and Learning Systems, 29(9):4166-4176, 2017.

Yi Lin and Lawrence D Brown. Statistical properties of the method of regularization with periodic
gaussian reproducing kernel. Annals of Statistics, 32(4):1723-1743, 2004.

Ping Ma, Michael W Mahoney, and Bin Yu. A statistical perspective on algorithmic leveraging. The
Journal of Machine Learning Research, 16(1):861-911, 2015.

James Mercer. Functions of positive and negative type, and their connection with the theory of
integral equations. Philosophical transactions of the royal society of London. Series A, containing
papers of a mathematical or physical character, 209(441-458):415-446, 1909.

A. Rudi, D. Calandriello, L. Carratino, and L. Rosasco. On fast leverage score sampling and optimal
learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 31, pp. 5672-5682. Curran Asso-
ciates, Inc., 2018.

11



Under review as a conference paper at ICLR 2026

Paul Samson. Concentration of measure inequalities for markov chains and ®-mixing processes.
Annals of Probability, 28(1):416-461, 2000.

Daniel Ting and Eric Brochu. Optimal sub-sampling with influence functions. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 31, pp. 3650-3659. Curran Associates, Inc., 2018.

Haiying Wang and Yanyuan Ma. Optimal subsampling for quantile regression in big data.
Biometrika, 108(1):99-112, 2021.

Xianli Zeng. On some nonparametric approaches for detecting variable associations. Ph.D. diss.,
NATIONAL UNIVERSITY OF SINGAPORE, 2019.

Xianli Zeng and Yingcun Xia. Asymptotic distribution for regression in a symmetric periodic gaus-
sian kernel hilbert space. Statistica Sinica, 29(2):1007-1024, 2019.

Tong Zhang. Covering number bounds of certain regularized linear function classes. Journal of
Machine Learning Research, 2:527-550, 2002.

Dingxuan Zhou. The covering number in learning theory. Journal of Complexity, 18(3):739-767,
2002.

Rui Zhu. Gradient-based sampling: an adaptive importance sampling for least-squares. In Proceed-
ings of the 30th International Conference on Neural Information Processing Systems, NIPS’16,
pp. 4059-4067. Curran Associates Inc., 2016.

Bin Zou, Yuan Yan Tang, Zongben Xu, Luoqing Li, Jun Xu, and Yang Lu. The generalization
performance of regularized regression algorithms based on markov sampling. IEEE Transactions
on Cybernetics, 44(9):1497-1507, 2014.

A CHATGPT USAGE

During the preparation of this manuscript, we used ChatGPT (GPT-4) solely for the purpose of
polishing language and syntax. The tool was employed exclusively for language refinement and was
not used to generate any scientific content, ideas, experimental designs, or data interpretations.

B MAIN TOOLS FOR THEORETICAL RESULTS

B.1 MAIN TOOLS FOR VALIDITY OF SUBSAMPLING

We explicitly quantify the robustness of the proposed method by analyzing the stationary distribution
of the generated Markov chain. We assume the contaminated dataset D is an i.i.d. realization of the
contaminated distribution P = (1 — 0)F + 0Q, with density p(Z). To ensure technical rigor, we
introduce the following regularity assumption.

Assumption 1 (Non-vanishing Score). There exists a constant § > 0 such that the residual kernel-
norm score satisfies w(z,a) > § almost surely for all Z € supp(P). Although Algorithm|I| op-
erates on a finite dataset D (the empirical measure), for our theoretical analysis, we consider its
population-level counterpart where proposals are drawn from the underlying contaminated distri-
bution P. This allows us to characterize the distributional robustness of the method.

First, we identify the exact form of the stationary distribution generated by Algorithm [T} Note that
drawing a candidate uniformly from the dataset D is empirically equivalent to drawing a proposal
from the distribution P.

Lemma 1 (Stationary Distribution). The Markov chain generated by Algorithm || utilizing the
contaminated density p(Z*) as the independent proposal distribution and acceptance probability
min{l, w(Z, a)/w(z*, )}, converges to a unique stationary distribution P’ with density:
o1 p()
/ _ =
() Zw(z,a)

where Z = [[p(2)/w(Z, )|dZ is the normalizing constant.

12
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Proof of Lemmal[l] The Algorithm[T]utilizes an Independent Metropolis-Hastings sampler. The pro-
posal distribution is the contaminated distribution p(z*). The transition kernel is

w(z,0) — r(2))0s(5F
S = ),

To verify p/(2) o p(2)/w(Z, ) is the stationary density, we check the detailed balance condition:
P (2)T(z2 — z*) = p/(2*)T(2* — Z). Substituting the expressions, we obtain

LHS = ;wfzizzy) (5 'min{l’m}
_ p(i)g(i ) . min{l’m}

T(z — #*) = p(*) min {1

By the symmetry of the RHS, we obtain

RHS = Wmin{w(;,a)’ w(él,a) }

Since LHS = RHS, detailed balance holds. O

To ensure the condition Sg < Sz holds, we provide a geometric justification based on the properties
of RKHS.

Proposition 1 (Outlier Incoherence). Let fy be the pilot estimator minimizing Ra(f) + Al flI%-
Assume the target function fo has a bounded RKHS norm || fo||x < R, while the outliers are
incoherent with the kernel structure such that fitting them requires a function norm ||g||x > R. If A
is sufficiently large, then for any isolated outlier ., and clean point z, we have w(Z, ) > w(z, av),
which implies Sg < Sr.

Proof of Proposition[l] Consider the pilot estimator fA. By the Representer Theorem we have
() = >_; ¢jK(x;, ). The objective function penalizes both the fitting error and the RKHS norm

|| £1|%. For an outlier (%, ) that deviates from the smooth manifold of f, by a distance A, forcing the
estimator to fit this point (i.e., reducing residual to 0) would require adding a sharp “spike” function.
Such a function possesses a large RKHS norm, leading to a significant increase in the penalty term
Allf|I%. Since X is chosen to be large (promoting smoothness), the optimization favors minimizing
the penalty over fitting the outlier. Consequently, the residual |§ — fx(X)| remains proportional to
A (large), whereas inliers are well-approximated with small residuals. Thus, w(Z, ) > w(z, a),
which implies Sg < Sr.

Remark 3. (Remark on Pilot Estimator.) One might concern that the pilot estimator (using squared
loss) could interpolate outliers, vanishing their residuals. However, although the squared-error
loss is generally non-robust, the constraint imposed by a large regularization parameter \ in the
pilot phase acts as a global smoothness prior. This prevents the function from interpolating sparse,
high-magnitude outliers, thereby ensuring w(Z, o) remains large.

B.2 MAIN TOOLS FOR ASYMPTOTIC PROPERTIES OF ESTIMATOR

Note that H i is an RKHS, by the Riesz representing theorem, functions in H - satisfy the reproduc-
ing property: (K (x,-), f(-))3, = f(x) forall f € Hx and x € X. Following, a
reproducing kernel K (-, -) can be expressed as K (X;, X;) = > pey M@k (X;) P (x;), where \’s are
the eigenvalues of K (-, -), and ¢ (-)’s are the corresponding eigenfunctions, forming a sequence of
orthogonal basis functions in L?(X) with respect to the inner product: (¢;, ®i)pe, = Oij/ i, where
05 is the Kronecker delta. The RKHS can alternatively be defined in terms of these eigenvalues and

eigenfunctions:
> 2
Hi = { Z fredn(x Z /\*k }
k=1 k=1

13
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where fi = [, f(x)¢r(x)dx. This spectral representation facilitates theoretical analysis, praticu-
larly in studying the asymptotic behaviour of estimator derived from RKHS (Zeng & Xial [2019).
To study the asymptotic performance of estimator, [Lin & Brown|(2004) introduced two RKHSs: an
infinite order Sobolev space with periodic functions

S

w

[a,b] = {f € L*(a,b) flS( — a) — periodic with

27n

and an m-th order Sobolev space with periodic functions

Sityy ={f € L*(a,b) : fis (b— a) — periodic with
b 2
[ rer+ o) dt<oo}.

Zeng & Xia (2019) introduced the symmetric periodic Gaussian kernel
Hw (t, 5) = Kw,—ﬂ,ﬂ(sa t) + Kw,—w,ﬂ(57 _t)7

where Ky, —r z(s,t) = > pe_ o KO(t — s — 2k, 0) is the periodic Gaussian kernel with period
27, and

1
KO(1,9) =~ e,

is the well-known Gaussian reproducing kernel function. Let ’HZ‘E_W ] be the RKHS corresponding
to H,,(t, s), which is an infinite order Sobolev space with symmetric functions. This RKHS consists

of symmetric functions on [—, 7], and is a subspace of infinite order Sobolev space.

Following Zeng & Xial (2019), H>7 ] can be written as

w[—m,7]

2
S}T—ﬂ',ﬂ'} = { ngfk — < OO}

k=0 kw
~{g:9(-D=9)9e5% .0}

where A\, = exp(—k%w?/2), &(t) = 77 V/2, &.(t) = /2/mcos(kt). Also, the m-th order
Sobolev space with symmetric functions can be expressed as

Hfm,ﬂ:{ SVET . }

k=0
= {g tg(—t) =g(t),g € S[nzﬂﬂf]} ’

where pg = 1 and pp = k?>™ + 1. Specifically, in the considered RKHS, every function can be
expanded orthogonally in the cosine basis, where each coefficient g, must be scaled by the reciprocal
of its corresponding eigenvalue to ensure finiteness of the induced norm.

In order to study the asymptotic performance of estimator, we need some conditions, which are
displayed in the main tex, and we now explain them. Condition 1 is used to ensure that every point
in the support set has a specific probability density and is bounded. This guarantees the convergence
of the integral and has been utilized in Zeng & Xia (2019). Condition 2 is a standard assumption
in classical regression models. Condition 3 postulates a high degree of smoothness for the target
function fp/, typically implying that it is infinitely differentiable on the domain [—, 7]. Condition
4 quantifies the smoothness of the target function fp, by postulating that it belongs to the m-th order
Sobolev space H™, meaning that the function and its derivatives up to order m are square-integrable.
To facilitate theoretical analysis, we standardize our symmetric periodic Gaussian kernel as

H,(t,s)

Holto) = )

14
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which is simply denoted as H,,(t,s). Denote ||f||3, = (f, f)w.. For asymptotic analysis, we
define the following norms and inner products (Zeng & Xia, 2019):

1o = [ (P61 = | [ 20 ] ,

1£1x = (IF13 + MIFIB)*

(f1, f2)g = i (||f1 + f2H3 —lfi— f2||(2)) ,
(f1, f2)5 = (f1, f2)o + A (f1s f2) gy,

B.3 MAIN TOOLS FOR GENERALIZATION BOUND

Note that
Z{f (%) = i}, = arg yoin {Rs(f) + AJ(f)}. “

To bound the excess risk of @[) for u.e.M.c. samples, similarly to /Gong et al.| (2015)), we first define
the optimal regularization error D(\) as

D) = inf {Rx(f) =R (fo) + AlfIlic}

which depicts the approximation ability of the hypothesis space H g relative to the optimal mapping
fo. Thus, we the following relationship

= al‘gfrél?i{r; {Rr(f) =Rz (fo) + Al fII%}

respectively. Thus, following|Gong et al.[(2015)), the approximation ability of the target function f
can be characterized with exponent 0 < ¢ < 1 satisfying
D(A) < ¢ 5)

for some constant ¢, and any A > 0. This inequality ensures that the learning algorithm based on
the RKHS and regularization methods can approximate the target function at a convergence rate
determined by the exponent q.

To bound the excess risk, we consider a new error decomposition for the excess risk.
Proposition 2. Let fs ) be the estimator defined in (E]) based on the contaminated sample S =
{zl = (il,@)}l 1, Where X; = (:%11, .. i"zp)—'— € X’s are drawn from the mixture distribution

= (1—-0")F + 0'Q, where F is the true distribution and Q is the contaminated distribution.
Szmtlarly, let fp x be the estimator defined as fp x = argmingey {Rp(f) + AJ(f)}, computed

from the uncontaminated sample D = {z; = (x;,y:)}1;, where x; = (z;1,...,2:p) " € X drawn
exclusively from F with regularization parameter A > 0. Thus, we have

where S(D,S,A) = {Rr(fsn) — Ro(fs)} + {Ro(fr) — Rx(f1)} A(D,S) = Ro(fsn) —
Ro(fp,n), and D(A) = {Rx(fr) = Rx (fo) + M fall% }. Here S(D,S,\), A(D,S) and D(X)

denote the sample error, contamination error and regularization error, respectively.

The covering number provides a natural measure of complexity for hypothesis spaces, quantifying
their capacity through metric entropy. For its definition, we refer the reader to |Gong et al| (2015).
Extensive results exist on covering number bounds (Zhou, 2002; Zhang, |2002). Of particular in-
terest is the RKHS ball: B, = {f € H1 : | f]| < s} C C(X) whose covering numbers are well
studied. We denote N (e) = N (B, €) for the unit ball case. Following|Samson| (2000), we measure
variable dependence via the operator norm ||T'|| of the covariance matrix I'. This leads to our key
decomposition of sample error:

S(D,S,A) = [Rr(fsx) = Ro(fs )] + [Ro(fr) — Rf(fA)]
={[Rr(fs.x) = Rr(fo)] = [Ro(fs.x) = Ro(fo)l}
+{[Ro(fx) = Ro(fo)]l = [Rr(fx) = Rr(fo)l}
=81(D,S,\) + S2(D, \).
Based on this decomposition, we obtain the following propositions.
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Proposition 3. For Hy with polynomial complexity exponent s > 0 and any 0 < 6 < 1, with
probability at least 1 — 9,

S1(D,S, \) 5% {R#(fsa) = Rx(fo)}
N 14336 M2 ||T||* In(1/4)

n
_1
N 14336 M2 ||T||* cs(64M R)* \ '**
- )
Proposition 4. If || K ||oo < K, thus, for any 0 < 6 < 1, with probability at least 1 — 6,
1 56 |T)|* («kD(A)/A + 3M)*In(1/6
50,3 < Lp(s) I GO/ A+ 93) 1 8)

Proposition 5. For contamination proportion ¢’ € [0,1/2) and any 0 < § < 1, with probability at
least 1 — 0,
896 ||T||* M2 In(2/6) 5

A(D,S) < 24M?0" +
n

By Propositions[2H5] we can establish the bound of the excess risk based on regularization regression
for u.e.M.c. samples.

C PROOFS OF THEORETICAL RESULTS

C.1 PROOF OF VALIDITY OF SUBSAMPLING

Proof of Theorem|l} To prove that the Markov chain is uniformly ergodic, we will demonstrate that
it satisfies three conditions: (i) Finite State Space, (ii) Irreducible, (iii) Aperiodic for a given « (e.g.,
& ). For a Markov chain on a finite state space, these three conditions are sufficient for uniform
ergodicity (Levin & Peres}, 2017).

(1) Finite State Space. The state space S of the Markov chain corresponds to the sample set in the
given dataset D = {Z1, ..., Z, }. With n samples in D, the state space has finite cardinality |S| = n.

(ii) Irreducibility: Let Z; and Z; € S be two arbitrary states. To establish irreducibility, it suffices to
show that the one-step transition probability Pr (2,11 = Z; | Zx = Z;) is positive for all 7, j. Within
the *while’ loop in Algorithm a candidate point Z; is drawn randomly from D, the probability of
proposing Z; is exactly 1/n > 0. This candidate is accepted with probability

w (Z;, o
pi = min {1, 7(~“ ) }
w (2, a)
Since all importance scores w(-, ) are positive, the acceptance probability is bounded away from
zero. The product of these positive probabilities ensures P (Z:+1 = Z; | Z = Z;) > 0. Hence, the
states constitute an irreducible Markov chain.

(iii) Aperiodicity: To establish aperiodicity, it suffices to prove that the self-transition probability
Pr(Z:41 = Z; | 2+ = Z;) is strictly positive for any state Z; € S. When the chain is in state Z;, a
candidate Z* = Z; is drawn uniformly from D with probability 1/n. Since the acceptance probability

for this candidate is ~
Py = min{l7 W} =1,
w (2, a)
the transition is always accepted. Hence, the self-transition probability is bounded below by 1/n >
0, which implies that the Markov chain is aperiodic.

The Markov chain defined by Algorithm 1 operates on a finite state space S and satisfies irreducibil-
ity, aperiodicity, and uniformly ergodicity. By the fundamental theorem of Markov chains, these
properties guarantee existence of a unique stationary distribution P’ on S, and geometric conver-
gence in total variation:

(|2t — 73,”TV < MVt

16



Under review as a conference paper at ICLR 2026

for some positive constants M/ > 0 and 0 < v < 1, where y; denotes the distribution at time ¢. This
completes the proof of theorem. O

Proof of Theorem[2] From Lemma the stationary density is p’(2) = 4p(2)/w(Z, @). By p(2) =
(1 —0)f(2) + 6q(2), the normalizing constant Z can be written as

22(1_9)/ /) dz+9/ Q(ZL)dZZ(l—e)s;JreSQ.

w(z, a) w(z,

The total probability mass assigned to the contamination distribution Q in the stationary distribution

1S
p_ 1 6g(2) 0 S0
o _/Zw(i,a)dz_ 7%= 1=6)S, 1 054"

The condition for contamination reduction #’ < # simplifies to

0S¢
(1-6)Sr+6Sg

<l <= Sog<(1-0)Sr+0Sg (since Z>0,0>0)

<— (1-60)Sg<(1-0)Sr
= So < Sr.

C.2 PROOF OF ASYMPTOTIC PROPERTIES

Lemma 2. Suppose that Condition 1 hold. If the tuning parameter X satisfies (—In\)2 /(nw) =
o(1), and w is fixed or changes with n, we have

1o = o aly = 0y (IF = foral?) -

Proof of Lemmal[2] Note that S\ (f) = =2 3" | (; — f (X)) Hog, +2Xf, and DS\ (f)Af =

n =1

231 Af(Xi) Hug, +2MAf. Then, we have

Saa(fsn) = Sna(fpra) = %Z s (%) = fprn (i)} Hos, +22(J0 = fPr)
=1
= DS (fpr ) (fsx — fpra)

By the definition of f~2 f — fpa = 7DS;1(f'p/7)\)Sn,)\(f'p/7)\), we obtain Sn)\(fp/7>\) =
DSx(fp2)(fpr a—f). Since fs, is the optimal solution of Rs(f)+AJ(f), we have S,z (fsx) =0
and

DS\(fpr2)(far — ) = DSA(fpra) (fox — frra) + DS(fpr2) (fprx — f)
= DSx(frp2)(fsx — frra) = DSua(fpr A)(fsx — frra)-

Combining the above equations leads to

17



Under review as a conference paper at ICLR 2026

Ey | fsr— fllz = ]Ep’{H (DS,\(fP/,,\))_l {DSA(fP/,A)(fS,A — frr.a)

2

J
e -1

= ]Ep’{ Z <<DSA(fP',A)) [DSA(fP',A)(fS,,\ = fri)

k=0

— DSux(frr2)(fsr — fP',A)}

2
— DSux(fpr ) (fsx — fP',A)} ; ¢k> }

0

{i (1 + )\k> B <(DS/\(f7>’,A))1 {DS/\(JCP',A)(JCS,A — frra)

k=0

Sna(fpr ) (fsx — frr, )}7¢k>i}

-D
{ ( )_2 <DS/\<f7”,x\)(fS,,\ — fpra)
-D

2
Sax(frra)(fsx — f7>/,,\),¢k> }

He

i g: ( )2 Ep’{ [i é (foa(Xi) = fpr A(Xi)) dr(Xi)
28, (o () — Fpra ()6 }

Let Wi(x) = (fsu(X) = fr (X)) or(x
{fsa(Xi) = fra(Xi)} or(X;), and Wiy o = L5370

sz:g(HQ)_g {[}@ (%) m(ﬂr}

oo

- :O <1 + )\1) - Epr [(ik = W) = (1 + ;‘)2 Var(W,, x).

k=0 k

%), = EWEL WiE) =

1
1 Wi (X;). Thus, we have

Note that {X;}?_; is a u.e.M.c sample. Uniform ergodicity of the Markov chain is equivalent to
uniform ¢-mixing with a geometric rate (Jones|, [2004), i.e., there exist constants Cy > 0 and Fy €
[0, 1) such that (n) < CyFy forevery n > 1. Since {W}, (X;)};_, is stationary under P’, we have

Var(W. =3 ZZCOV Wi (%:), Wi (%))

1=1j5=1
1

- <mw<o> +23 - h)w(lz))
h=1

n2

n—1
1 2 h
2w+ 23 (1= 1) )
h=1
where Vw(h) = COV(Wk(ii), Wk(inrh)) and Ww(O) = Var(Wk(il)) = Ep/{(Wk(il) - /’l‘k)2}
By the ¢-mixing covariance inequality (Doukhan, |1995), we obtain |y (h)| < 2||Wk(X) |31/ ¢ (n).

Due to 3, /é(n) < oo, we have Var(W,, 1) < 1C1[|Wi(X)|3 = SEy[W2(X)]. Thus, we

18
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obtain
E, | foa fH2 - ’i 1+ )\k) Var(W, 1) < % go (1 + A) g )
SO (14 ) B s~ ) s
L — k
inmx—f@AOEZ( =
<GB ol

=o0 (Hfs,,\ — frallg) -

The second inequality holds since ¢y (X) is bounded for any k. The third inequality is given by
Lemma 3.3 of |Zeng| (2019). Combining the above equations yields

If = Foalla = fsx — fralld = I1fsx — FlI2 = (1 = 0p(1)) | fs.x — Frrall2.

Thus, we obtain || fs x — fr/ 2 ll3 = O, (||f— f’p/,)\Hg). O

Lemma 3. Suppose that Condition 1 hold. If the tuning parameters X and w satisfy A = o(1) and
(=In\)z/(nw) = o(1), respectively, we have ||f — fp: ]2 = O, ((— In )\)%/(nw)).

Proof of Lemma[3] Since Sx(fp,x) = 0, similarly to the proof of Lemma we obtain

Ep (Spa(fpr,n), ¢k>iw =Ep (Sux(frrx) — Sx(frra)s ¢k>§.¢w

=Ey {Z Z i = fpra (X3)) or (Xi) — 2B (¥ — fpf,x(i)%(i))}

=4 Var (:L Z@i - fP’,A(ii))¢k(§i)>

< R [ ) on(®)P

:ﬁ%[@uﬂﬁfmxmm®F

531 By ]+ T By [ (3) — fpa (R0

19
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By proof of Lemma 2] we have

I%Mf—ﬂxwngp<Dsuﬁmnr%%mﬁnnﬁ

{i}< (DSx(frr,2) nA(fP’,A)»¢k>z}

= iEp' { . ;;) B < (;DS)\(JCP’,A>> h Sua(fpr), ¢k>j}

Z(1+
k=

oo A -2 9
E, Z<1+)\k> <SnA(f7>',A)7¢k>m}
k=0

C & A 1 & AN
Sgkzo 1+>\k> +nl§)<1+/\k>
By [(fp () = fpr(®)? 6n(%)?]

:gi 1+;;)_2+C'||f7>' fP/A||OZ<1+ ) -
_ ((—mA)%) +O<)\(—ln)\)%> :O<(—ln)\)%>.

Proof of Theorem[35] We adopt the commonly used technique in studying consistency like [Zeng
& Xial (2019). Different from [Zeng & Xial (2019), we consider a u.e.M.c samples rather than

ii.d samples. Let fp/ (X) = leio fP’,k(bk (X), f(X) = ZZO:O frow (X) and fp/’)\(x) =
Y oreo P k0K (x). It follows from Theorem 2 of Zeng & Xia|(2019) that

Rpa(f) =Ep [(7 — F(X)?] + AJ(f)
=By [(e+ fp(®) — )] + MI(F)

O

B %) - ) OOLI?
=0 +kzz()(fk k) —|—)\’;}>\k.

As fp/ 5 is the minimizer of Rp: z(f), we have fp/ xr = fprx /(A + Ax). Combining the
equations yields

rn— =S =2 pp =5 XN fr
P~ JPllg = UL ]
O AN =+ M) M
A2\,
<sup ———J (fp
(A M) e
< A2sup i J(fp)

p)
z>0 (x% + )\:c_%)

AT () = 00,
By Lemma[2]and Lemma[3] we have

—In\)z
nmAhM%O&(“)y

nw

1fon — Forl2 = 0,00 + O, CmA”>.

It follows that

nw

20



Under review as a conference paper at ICLR 2026

When w is fixed, we choose A ~ (—Inn)z /n, yielding A = o(1) and (—InA\)z/n = o(1) as
n — co. When Assumptions of Lemmas 2}j3| hold, we have

52 = fo71l; = 0o(N) + 0y (W) -0, (““7”2) |

n

Proof of Theoremd] Following the proof of Theorem 3] we can show

—In\)z
Eyllfonr — frralll = O (‘r”) .

nw

Thus, we consider fpr y — fps. Since fp € Hfﬁmr , we get fpr = Yoo fpredr(x) with
> neo J7 1/ Fr < oc. Similarly to the proof of Theorem 3} we can show fpr x r = fpr x Ak / A+
Thus, we obtain

> )2 X N2E, fR
fra—felll=y ——— 2, =y -k TPk

2
oy VT
k (/\Jr/\k)

2 2m
< Cswp A (s —|—21)

$>0 (>\+6752UJ2)2.

-1

i 2,212
Now we find the maximum value of g(z) = A? (z®™ + 1) by (/\ e 2) with z > 0. On
the boundary, ¢(0) = O (A?) and ¢(c0) = 0

012&1

that w? (22 + 2~Cm=2)) = m (1 + ™2 ) whose solution is denoted as #. Since ¢’(z) > 0

. For the inner points, it follows from ¢'(z) = 0

>

o

as A — 0, we have £ — oo as A — 0. As a result, we obtain w222 ~ \e“ 2. Then, we have
w2m,

w232 ~ —In A, and ¢(2) = O (m> When A = o(1), we have A? = o (w?™/(—InA)™).

Thus, we obtain
)\2 82m+1 -1 w2m
o).

N ~Ina)m

nw

1
It follows from E,/ || fs.x — fpr.alld = O ((_IHA)z ,and (—In /\)%/w ~ n7¥T that

2 __2m
Ifsn = frllo = Oy (n +> _

Proof of Theorem[] Note that for any f(x) = > -, frx®r(x), we have

AR = (£ 03 = 1713+ M 1B B
SR (1+2) 7= (1+2)  (fe03
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Then, we obtain

For + (DS (F)) " Sun ()

=By {11 (DS (fp) ™ DS (Fp) (fox = fpr) = DSun () (for = fr)] I3}
=Eyp {Z (1 + ;;) _ ((DSA (fp) " (DS (fpr) (for — fr)
k=0

—DSnx (fp) (fsx = fr')] a(bk)i}

~1E, {Z (1450) DS\ Ur) (o = ) = DSun () (o = f). miﬂw}

i=1

3 (o) — fre(50) m@)]

Proof of Theorem[6] From Theorem[5] we have the FBR:
Joo = fpr == (DSx (fp) " San (fpr) + 4,
where [|A’[|3 = O, (23*). For a fixed X, f(X0) = (f, R, ,)A (Zeng, 2019). Then, we have
fsa(Xo) = fr(X0) = — <(DS/\ (fp) ™" Sua (fp7) aRA;0>)\ + (A, Rag )a-

The second term (remainder) can be bounded using Cauchy-Schwarz in the (-,-), inner product
space, i.e.,
(A, Rag )al < A A1 Rag, s

It follows from Lemma 3.1 of Zeng (2019) that R, = (%DSA(fp/))’leio. Using the identity
(3DSA(fp ) f1, fa)a = (f1, fo)m., and (bi, d;j)a., = Orj/ Ak yields

1Bagy 13 = (Rasys Ragy ) = (5 DSA () ™l Ry, )
= (Hug, g, <Z Ak (Ro)pr (), > _(1+ ;)_1¢j(§0)¢j(')>

k=0 7=0 He

_Zz)\k¢k><o I+ 5 ) Lo;(x )6k]:

k=0 j=0

—Zl"‘ 1R (x0) = O( )

Now bound the remalnder term, scaled by the normalization factor. Thus, we have

W=

(Inn)

w

n

!
W<A ,R/\;(,)

1AM R, lIx

A < 7(1 e

n Inn (Inn)t/2
) <1nn>1/20’”< n>0< v )

= 0,(1).
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By Slutsky’s theorem, the asymptotic distribution of /W (fsa(Xo) — fpr(Xo)) is the same as
that of

o7 (DS )™ S () )

which implies that we only analyze the leading term
n/(nm)/2 (DS (fpr)™" Sun (fr) B, ) -

Using the property ((DSx(fp/)) " f1, f2)x = (3 f1, f2)2.,. we obtain

(DS ()™ S ) B, ), == (55 () B, )

He

1
- <_ § Ein;(, +)‘f'P’7R)\,~(O>
n P v
n

1
- — > €i(Hoy , Rag )#, — MFpr, Rag, )

i=1

Ho

For the first term, it follows from Hwi() = >k MPr(Xi)Pr(-) and R)\;(O(‘) = Zj(l +
2971, (%) () that
(Hug, > Rog, Z/\k¢k (xi)( 1+ ) L6 (X0) Pk, D5) 1.
k.j

Okj

—Z/\k¢k xi)(1+ )1¢y( )/\k

= Z 1+ k(i) p1.(X0)
= R)\(Xi;XO)~

Then, we obtain = 7" €i(Hus, , Rag ). = Ly eiRA (X4, X0).
For the second term A(fpr, Ry, )., it follows from fp/(-) = > fpr ki (-) that

A fpr, Ry, —Apr/ 1+ )75 (Ro) (Dr, D5) 21,

fApr/ (14 ) (0) 22
sz:rkfpgk(lﬁ‘)\*k)*lm(io)
= zk: ﬁ)\/\kfpak%(io)

The leading term is

P kor(Xo),

1 & . A
;;Q’R)\(Xiaxo) —Z T

k
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and the asymptotic distribution is

n

W (fS,k(;CO) f’P’ XO [ Z
k

fP/,k@i?k(;Co)])

= W (fS)\ XO [Z fP’ kd)k XO Z /\Jr)\ f'p k¢;€(x0)]>

n >\k

i WGS’A&O)_ ,\_|_/\kf7’/,k¢k(§0)>
k

n

(mn)i/2 (fsa(Xo0) — f*(X0)) -

Therefore, the asymptotic distribution is determined by the term involving the sum of errors:

‘T 1 = -
Tn = zR iy = T iR iy .
lnn 1/2 ( ZG A X; XO ) n(lnn)l/2 ;6 >\(X XO)

Consider the sequence V; = €; R (X;, Xo), which is a stationary sequence under P’ and is ¢-mixing
with E, (Vi) = 0. It follows from the central limit theorem for ¢-mixing sequences (Jones, 2004)

that if 3~ \/é(n) < oo and E(V{) < oo, ﬁ Vi 4 N, o2 1), where 02 1y, = Var(Vp) +
2 Zj‘;l E,, (VuV;) is the long-term variance. Thus, we have

1

i Var(Tn) = lsn, 7o iV <f 2 V)

Cov(Vo, V;) = Ep (VoV;) = 60;0°Ep { R (X0,%)*}

. 1« )
Jm Var <\/ﬁ 2 Vi) = otrv

= Z Cov(W, V;) = Cov(Vy, Vo)
j=—00
=0°|| R, 15
-2

= o? Xk: <1 + Ai) dr(X0)2.

Hence, the asymptotic variance of T}, is

. ) o? AN\ 9
nlgigo Var(T,) = nl;n;o Ton)i ; (1 + )\k) or(X0)”.

Combining the FBR approximation and the central limit thorem for the leading term leads to

m{f&,\ (Xo) — f* (Zo)} SN (0,02,),
2

where 02 = limy, 00 02(In1) "2 3570 (1 4+ X/ A) 2 62 (Xo)-
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Proof of Theorem[/] By the proof of Theorem [6] we obtain
Ep{llfox = fpr + (DSx (fp) ™" Sux (F7) IR}

=S (145) e {iz (o (&) — o (R)) @-)}

i=1

1 __2m (_ In )\)1/2
= O — O Sm+1 O \— A
4am
=0 (nfm) )
Similarly to proof of Theorem [6] we have
’n#<A/’R/\’N‘°>’\‘ s n#”A/”AHRA;OH,\a
where
|87 llx =\ Op(n™ %) = Oy (n™ %7),
. (e

1B, 13 = ;(1 50 ek (R) = O

|Rag,llx = OV n7757) = O(n ).
—2m+1/2

1 m 2m 1
nw;nﬁOp(n_zfn%)O(nzuerl)) — Op (n2m+1_2m+1+2(2m+1)) — Op (n ZmF1 ) — Op(l).

) = O(n=51),

Thus, we have

For leading term
S

1 n n 77?4}1 n n

_m__ ~ ~ _mt1

T) :=nmmt - E €;Rx\(Xi,%0) | = " E V; = n~2miI E Vi,
i1 i=1

i=1

where V; = €; R (X;,Xo), its variance is

n n
m1 1
Var(T},) = Var <n_2m++1 ;:1 Vi> = n#m 1 Var <\/ﬁ ;:1 Vi> )

and the limitation of Var(T,) is given by

0'2 A -2 2
lim Var (7)) = lim ——— 14+ — X0)” .
i Var () = Jim T %( L) o)
Then, by the Markov chain’s central limit theorem and Slutsky’s theorem, we obtain

nT {fs ) (Ro) — f* (Ko)} S N (0,62,) .

O
C.3 PROOF OF GENERALIZATION BOUND
Based on Lemma 3 of |Li et al.|(2017), we can obtain the following Lemma for u.e.M.c. samples.
Lemma 4. For any bounded measurable functions f and u.e.M.c. samples z1,- - - , zp, we assume

that there exists a constant C satisfying 0 < f(z) < C,VZ; € Z. Thus for any € > 0, we have

LS ()~ E() ne
Pr{ COED Zﬁ}gexp{%onrn?}’ ©

LS F ) B e
pr{ HEE zﬁ}s p{560f||2}’ Q

where ||T'|| = v/2/ (1 — 3/2"1), and E(f) is the expectation of function f.
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Proof of LemmaM] Taking ¢ = \/e{E(f) + ¢} in Lemma 3 of (Li et al.,|2017) leads to

P { EY S ) B | ﬁ} - { UG 6)) }
ED) +2) 56C [T E(f)

~ox —ne < € +1)
P secr? \E()

<expd

=P 56 mE [

Proof of Proposition 2] According to the definition of excess risk, we have
Rr(fs.0) = Rr (fo) < Rr(fs2) = Rx (fo) + Al foalk
={Rr(fsn) = Ro(fs)} +{Rp(fr) — Rr(f2)}
+Ro(fsx) = Ro(fon) + {Ro(foa) + Al foalk}
—{Ro(fr) + A AlK T+ Re(A) — Rx (fo) + Ml allk,
S(D,S,A) = [Rr(fsn) = Ro(fs )] + [Ro(fx) = Re(/)]
A(D,S) = Ro(fs,x) — Ro(fo,n),
H(D,\) = [Ro(fo.x) + Al foallk] — [Ro(A) + Al A k]
D(A) =Rz (fr) = Rr (fo) + Ml fall%-
The definition of fp » implies that H(D, A) is at most zero. Hence, we obtain
Rr(fsx) —Rr (fo) <S(D,S,\) + A(D,S) + D(N),

where S(D, S, A), A(D,S) and D()) denote the sample error, contamination error and regulariza-
tion error, respectively. O

Proof of Proposition[3| We utilize the idea of ER minimizer and probability inequality to bound
this term by means of a covering number. For R > 0, we define Fr as the set of functions

Fr = {(f(x) —)? = (fox)—9)*: fo € BR}. Each function g € Fp has the form g(z) =

Foa(x) —9)? = (fo(x) — y)* with f € Bg. Hence, we obtain E(g) = Rx(fs.\) — R#(fo) > 0,
%Z —19(z) =Rp(fs,n) — Ro(fo), and

9(2) = {fsa(x) = fo(x)H{(fsa(x) —y) + (fo(x) —y)} .
Since |fS A(X)] < M and |fo(x)] < M, it is easily shown that |g(z)] < |(fg,,\(x) —y)2| +
(fo ’ 2 and ||g(2)]|ee < 8M?2. By Lemma 3 of Li et al.|(2017), for any ¢ > 0, we

A

have

o) s RFEUsA) = Rz (fo)] = [Ro(fsr) — Ro(fo)] -
: {febpa VRF(fs)) —Rx (fo) +¢ = 4\[}

b { wp D=2 X19G) ﬁ}
9€FR

E(g) +¢

SN(-FR,5)QXP{ZM8‘]\_4&;T|L|F2}~ ®)

For any f1, fo € Br, we have

9(2) = 92(2)] = | (1) = 9)? = (2(x) = )’ S AM A1) = fa()].
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R . . . .
Thus, for any € > 0, an TR -covering of B; provides an e-covering of Fpg, i.e.,

€ €
< — )< = .
Generally, 7 has polynomial complexity exponent s > 0 if there is some constant ¢ such that
log (N (Hi,¢e)) < cse™%,Ve > 0. (10)

Combining inequality (8) and inequality leads to

[Rr(fs.2) = Rr(fo)] = [Ro(fsn) = Ro(fo)] Ve

Pr ¢ sup = Ve
feBr \/R]-‘(fS,A) —Rr (fo) + 15¢
E(g) — 157 g(z
=Pr{ sup (g) = Zl:l g (z ) = \/g
9EFR E(9) + 15¢

1 —en
<N | Fp,—c)exp{ ——M
= ( ™16 ) p{7168M2 ||r2}

€ —Een
< - - -\
N (Bl’ 64MR) P { 716802 HI ||2 }

Taking
5 —En
S=N (B, ———=)exp ——— ¢,
( ! 64MR) p{7168M2|F|2}
leads to
c en 64MR\® En
1n6:1n]\/'(B, - SC.;( ) T e—
! 64MR) 7168M2 ||T||? € 7168M2 T
which yields
AMR\*® 1
Lz_cs <6R> —ln <) SO
7168M2 T £ g
It follows that

 T168M2 |T* In(}) o 7168M2 |T||* ¢s(64M R)
n n
By Lemma 7 of |Cucker & Smale|(2002), we have

s
55+1 < 0.

1

14336042 || In(2) (14336M2 g cs(64MR)S> i

e* < max

n n

n

1
_ 1433600 )" In(3) <14336M2 ||F|2cs(64MR)S> e
< I .

It follows that:

pp d [Rr(fsn) =Rz (fo)] — [Ro(fsn) — Ro(fo)] N
VRF(fo) = R (fo) + e*

1-94§

Y

3

Pr {Sl(D,S,)\) < @\/Rf(fgﬁ,\) —Rx(fo)+ery>1—0.

By Young’s Inequality, we obtain

\/;*\/Rf(fm) — Rz (fo) +e* < % {Rz(fsx) = Rz(fo)} +¢.
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Thus, for any § > 0, with confidence at least 1 — 4,

14336 M2 |T))* In(2)
n

S1(D,8,\) < 5 [Re(fsx) — Re(fo)l +

N | =

_1
N (143361”2 I cs<64MR)s>
n

O

Proof of Proposition ] By the definition of f, we obtain || fx|| < D(X)/A. Also, according to the
condition of K, we have || fx|| < & [[fr] < %(’\). Taking

V= (1) =) = (o) = )" = () = oGN) =) + (folx) — )}
yields

VI = 1(/x(x) = foG{(A () = y) + (fo(x) — 9)}
S{\fA(X)HIfo( IS+ [fo)l+ 29[}
)

} (HDA(A) +M) ( A( +3M)
< (“DA(A) +3M>2.
By Lemmad] we have
LYV ()~ E(V) N e
Pr{ e - ﬁ} = o (2o o) e

Thus, for any € > 0, we obtain

P { (Ro(f2) = Ro(fo)) — (Rr(f) ~Rr(fo)) \@} e e
VR=(fr) = R#(fo)) +e¢ 56 (%(A)-F?)M) |T|?
Taking
e e L ) (<52 + 3) tn(})

2
56 (%‘*H?’M) I n

It follows from the inequality 2v/ab < a + b Va, b > 0 that for any 0 < § < 1, with confidence at
least 1 — &, we have

2
56 T (=52 + 30 In(})

§a(8.) < 3 [Rr(fa) — Rr(fo)] + -
56 |T)f* (#2430 In(L
< 5D+ I a ] il (1)

O

Proof of Proposition)] We assume that the sample set M = {%; = (%X;,9;) : @ = 1,...,n} is
generated from distribution Q. Then, we obtain

A(D,S) = Rp(fsx) — Ro(fp,x) (12)
= [Ro(fsn) = Rs(fsn)] + [Rs(fs.n) — Rs(fo,a)] + [Rs(fo,n) — Ro(fpa)]- (13)
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Obviously, the second term Rs(fs x) — Rs(fp,x) < 0, which yields

A(D,S) < {Rp(fsn) — Rs(fs\)} + {Rs(fo,x) = Ro(for)}-
For the first item of (T3), we have
Ro(fsn) = Rs(fsn) = {Rp(fs,n) = Rs(fsa)} —{R#(fsx) — Rp(fsx)}

+{R#7(fs.x) = Rp:(fsA)}

=0 {Ro(fsx) = Rm(fsa)} —{R#(fsn) — Ra(fsa)}]
+{R#7(fs.x) = Rp:(fsA)}

<O |Rp(fsn) — Rr(for)| + 0 [Ro(fsn) — Raa(fsn)l
+R#(fsn) — Rpr(fsn)]-

Set random variable ¢ = (fs A(x) — y)?, leading to |¢| < 4M?. By lemma we have

IRo(fsx) — Rr(fs)l _ -mne
Pr{ (Rr(fs,x) +¢) S \/g} = 2o { 224M2 ||T||? } '

—ne
§=2exp{ ————
p{224M2 ||r||2}

24|02 M2 m(2)
£ n
Thus, for any 0 < ¢ < 1, with confidence at least 1 — 4,

Taking

yields

224 ||T||* M2 1In(2
R (fsn) — Rr(fen)| < 2M? + [l - (6), (14)

Similarly, we obtain

224 ||T||* M2 In(2
IRo(fsn) — Rm(fsn)| < 2M* + IT - n(é). (15)

R (fon) = R (fon)| = \ [ e - p2a(r -2

<2 sup (fsx(x)—y)?IF =Py
(x,y)EZ

< 8M2||.7:— P/”TV
< s\ (16)

Thus, combining (T4)-(T6), for any 0 < § < 1, with confidence at least 1 — 4,

448 |T)2 M2 1n(2)
n

Ro(fsn) — Rs(fsn) < 12M°0" + 6.

Similarly, we obtain

0.

22027 /2
Rs(fp) — Ro(fp.a) < 12M3%60 + 448 |1 nM In(2)

Thus, we have
2

896 |T* M In3) ,
n

A(D,S) < 24M?0' +

29



Under review as a conference paper at ICLR 2026

Proof of Theorem[8] By Propositions ZH5] we obtain the following inequality that holds with prob-
ability at least 1 — 4:

R7(fsx) —RF (fo) <2

n

1
1433602 |IT)* n(3) (14336M2 N cs(64MR)S> o
n

2
112]|7) (@ + 3M) In(1)

+3D(\) + -
1792 ||T||* M? In(2
n
2 A2 1\TE ]
< 48M2G + Coylog(%) [N+ + () + =
0 n n n
By the choice of A\, we can be easily shown that
2¢—2 o=
AnEpSU) (1) <N, L
n n n

Taking ¥; = min {ﬁ, ﬁ’ %} yields the desired result. The result establishes the asymptotic

property of the excess risk: Rx(fsx) — Rx (fo) — 48M?2¢’ as n — oo, demonstrating that the
KRMS estimator achieves consistency up to the contamination level §’. Through careful algorithm
design that minimizes ¢’, the residual term 48 M 260’ becomes negligible when 6 is sufficiently small.
Consequently, as n — oo and 6’ — 0, the excess error Rz (fsx) — Rx(fo) — 0, we obtain the
consistency of the estimator. Moreover, the result provides an explicit learning rate of O (niﬂlq).

Notably, as s — 0 and 8’ — 0, this convergence rate approaches O (n’l), recovering the optimal
convergence rate of the regularized least square Li et al.| (2017).

O

D EXPERIMENTS

D.1 THE RESULTS OF EXPERIMENT 1 IN SIMULATION STUDIES

The remaining resultes of Experiment 1 in simulation studies are presented in Table

D.2 THE RESULTS OF EXPERIMENT 2 IN SIMULATION STUDIES

Expreiment 2 (Nonlinear model). In this experiment, we generate dataset {(x;,;)}Y, from the
following nonlinear regression: y; = 2exp(—w;1) + 3sin(mz;2) + 2% + 374 + €;, where €;’s
are independently drawn from the standard normal distribution, and z;1, . . ., z;4 are independently
sampled from the uniform distribution U(0,1). The contaminated observations are created with
contaminated data mechanism given in Experiment 1 for § € {0.1,0.2,0.3,0.4}. To generate con-
taminated data, we consider three cases for specifying W; and O;: (M1) (Background Noise):
W;; ~ U(-10,10) and O; ~ N(0,5); (M2) (Negative contamination with centered design):
Wij ~ N(=5,10) and O; ~ N(0,5); (M3) (Mixed design): W;; ~ 0.5N(—10,5) + 0.5N (10, 5)
and O; ~ N(0,10). For comparison, we evaluate a baseline method, KRMS-Linear, which applies
the same residual-based subsampling as the proposed KRMS-RKHS but differs only in its use of the
linear kernel K (&;, ;) = if:ﬁl within the Euclidean space to compute w(Z, ) in Equation (3).
The corresponding results for (M1)—(M3) are given in Tables respectively.

By Tables BH6] we have the following findings. First, the proposed KRMS-KLSR method out-
performs others for all scenarios in that it consistently has the smallest AMSE and SD values re-
gardless of contaminated schemes, contamination proportions, and subsample sizes, and maintains
near-perfect PSR values (almost 100%), demonstrating exceptional robustness in identifying un-
contaminated observations. Second, exception for contaminated scheme M3 together with low 6
(e.g., # = 0.1), MS-KLSR and UNIF-KLSR show marginally better AMSE, and KRMS-KLSR

30



Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of KRMS and five competing subsampling methods for corrupted
mechanism M2 in Experiment 1

n = 500

n = 1000

n = 1500

0 Method ~ AMSE SD

PSR AMSE SD

PSR AMSE SD

PSR

UNIF-KLSR
MS-KLSR

0.1 KRMS-KLSR
" UNIF-LSR
GMS-LSR

LGS-LSR

1.257 0.091 89.95%
1.151 0.055 97.34%
1.142 0.045 99.22%
4.199 0.986 89.95%
1.519 0.240 96.74%
1.303 0.144 98.98%

1.193
1.110
1.089
4.229
1.466
1.207

0.061 89.96%
0.043 96.99%
0.037 99.26 %
0.684 89.96%
0.173 96.70%
0.093 98.94%

1.167 0.051 90.10%
1.096 0.039 97.09%
1.066 0.036 99.26 %
4.125 0.516 90.10%
1.438 0.119 96.88%
1.147 0.060 98.93%

UNIF-KLSR
02 MS-KLSR
“ KRMS-KLSR

UNIF-LSR

GMS-LSR

LGS-LSR

1.450 0.131 80.03%
1.250 0.078 93.02%
1.171 0.048 98.01%
8.677 1.101 80.03%
3.079 0.648 88.21%
1.348 0.188 97.60%

1.389
1.221
1.106
8.840
3.047
1.308

0.078 79.97%
0.055 92.89%
0.046 98.26 %
0.941 79.97%
0.566 88.69%
0.161 97.48%

1.387 0.070 79.88%
1.229 0.051 92.95%
1.083 0.035 98.26 %
9.006 0.680 79.88%
3.074 0.446 88.73%
1.240 0.100 97.44%

UNIF-KLSR
03 MS-KLSR
"~ KRMS-KLSR

UNIF-LSR

GMS-LSR

LGS-LSR

1.778 0.193 70.15%
1.463 0.130 87.09%
1.209 0.074 96.70 %
12.826 1.411 70.15%
6.696 1.218 77.12%
1.499 0.305 95.80%

1.744 0.133 69.79%
1.437 0.094 87.17%
1.128 0.048 96.63 %
13.187 0.768 69.79%
7.034 0.861 77.36%

1.462 0.219 95.50%

1.700 0.119 70.09%
1.422 0.080 87.75%
1.115 0.036 96.80 %
13.242 0.648 70.09%
6.918 0.704 78.16%
1.425 0.133 95.26%

UNIF-KLSR
0.4 MS-KLSR
" KRMS-KLSR

UNIF-LSR

GMS-LSR

LGS-LSR

2.290 0.249 60.37%
1.806 0.179 79.15%
1.255 0.093 94.31%
16.373 1.309 60.37%
11.193 1.208 64.90%
1.961 0.598 92.33%

2.196 0.190 60.19%
1.753 0.140 80.19%
1.185 0.056 94.42%
16.604 0.890 60.19%
11.426 0.808 66.01%
2.041 0.385 91.39%

2.188 0.177 60.13%
1.763 0.131 80.85%
1.163 0.051 94.79 %
16.66 0.740 60.13%
11.561 0.714 66.83%
2.027 0.379 90.81%

Table 3: Performance comparison of KRMS and five competing subsampling methods for corrupted
mechanism M3 in Experiment 1

n = 500

n = 1000

n = 1500

0 Method AMSE SD PSR

AMSE SD PSR

AMSE SD PSR

UNIF-KLSR 3.596 0.337 90.10%
MS-KLSR  3.213 0.459 96.66%
01 KRMS-KLSR 1.117 0.043 99.78 %
" UNIF-LSR 28.159 1.042 90.10%
GMS-LSR  11.08 5.483 95.04%

LGS-LSR  1.031 0.093 99.48%

3.693 0.162 90.04%
3.518 0.233 96.73%
1.086 0.036 99.76 %
28.461 0.461 90.04%
14.301 5.22 95.07%
1.029 0.057 99.44%

3.712 0.118 90.12%
3.573 0.181 97.25%
1.076 0.034 99.71%
28.498 0.391 90.12%
17.638 4.482 95.34%
1.034 0.066 99.47%

UNIF-KLSR 4.141 0.264 79.67%
02 MS-KLSR  3.993 0.227 91.74%
"~ KRMS-KLSR 1.129 0.041 99.39%
UNIF-LSR  28.515 0.417 79.67%
GMS-LSR  20.024 4.049 89.55%
LGS-LSR  1.080 0.124 98.80%

4.234 0.218 80.07%
4.096 0.193 92.27%
1.079 0.036 99.42%
28.485 0.382 80.07%
23.360 2.811 89.79%
1.062 0.107 98.77%

4.335 0.212 80.02%
4.163 0.183 93.12%
1.063 0.035 99.38 %
28.48 0.463 80.02%
24.081 2.512 90.14%
1.069 0.160 98.76%

UNIF-KLSR 5.124 0.495 69.94%
03 MS-KLSR  4.876 0.383 84.13%
"~ KRMS-KLSR 1.125 0.043 99.04%
UNIF-LSR  28.405 0.486 69.94%
GMS-LSR  24.036 2.644 83.26%

LGS-LSR  1.097 0.111 97.98%

5.370 0.404 69.92%
5.073 0.318 85.28%
1.078 0.037 99.00 %
28.407 0.486 69.92%
25.839 1.477 83.59%
1.177 0.318 97.93%

5.549 0.316 69.88%
5.189 0.264 86.31%
1.072 0.036 99.00%
28.408 0.486 69.88%
26.503 1.053 84.12%
1.148 0.227 97.82%

UNIF-KLSR  6.665 0.671 60.35%
0.4 MS-KLSR  6.383 0.580 73.44%
"7 KRMS-KLSR 1.133 0.041 98.37%
UNIF-LSR 28.618 0.411 60.35%
GMS-LSR  26.822 1.159 76.08%

LGS-LSR  1.273 0.343 96.59%

7.063 0.553 60.36%
6.669 0.444 74.53%
1.089 0.037 98.42%
28.618 0.411 60.36%
27.265 0.872 76.71%
1.272 0.278 96.49%

7.250 0.413 60.37%
6.745 0.344 76.32%
1.079 0.036 98.42%
28.618 0.411 60.37%
27.658 0.636 77.65%
1.291 0.273 96.32%
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likely reflects M3’s milder perturbation effect at low proportion, where random sampling may occa-
sionally succeed. Third, as 6 increases, KRMS-KLSR’s AMSE values remain stable, while others
show severe degradation. Fourth, MS-KLSR method outperforms UNIF-KLSR but remains infe-
rior to KRMS-KLSR method. Fifth, a critical limitation of KRMS-Linear is its severe performance
degradation with nonlinear function f;. Empirical evidence from the M1 contamination scheme at
6 = 0.4 shows a PSR of merely 16.69%. This validates the model misspecification bias hypothesis:
the linear estimator’s failure to represent the nonlinear trend causes universally large residuals. Con-
sequently, the residual-based score fails to reliably separate outliers from the model’s own structural
errors, invalidating its discriminative power.

Table 4: Performance comparison of KRMS-KLSR and six competing subsampling methods for
corrupted mechanism M1 in Experiment 2

n = 1500

AMSE SD PSR

1.821 0.173 90.10%
1.768 0.087 97.70%
1.087 0.035 100.00%
25.055 0.711 79.82%
20.241 1.115 90.10%
4.860 0.856 97.68%
2.945 0.126 99.85%
1.955 0.076 80.01%
1.973 0.123 88.70%
1.091 0.035 100.00%
29.708 0.472 51.71%
25.472 0.658 80.01%
13.526 1.489 91.95%
3.062 0.203 99.58%
2.134 0.088 70.04%
2.161 0.090 80.24%
1.101 0.038 100.00%
30.732 0.475 36.01%
27.76 0.545 70.04%
21.37 0.922 84.27%
3.177 0.295 99.26%
2.407 0.092 60.07%
2.444 0.098 71.87%
1.106 0.042 100.00%

n = 500

0 Method AMSE SD PSR
UNIF-KLSR 1.617 0.093 89.94%
MS-KLSR  1.526 0.126 96.81%

0.1 KRMS-KLSR 1.137 0.041 100.00%

" KRMS-Linear 25.631 0.964 75.58%
UNIF-LSR 20.074 2.044 89.94%
GMS-LSR 4981 1.692 97.62%
LGS-LSR 2917 0.156 99.87%
UNIF-KLSR 1.880 0.068 79.90%

02 MS-KLSR  1.839 0.067 88.69%

““ KRMS-KLSR 1.153 0.044 100.00 %

KRMS-Linear 29.833 0.548 41.96%
UNIF-LSR 25.317 1.045 79.90%
GMS-LSR 12.806 2.468 91.74%
LGS-LSR  3.046 0.238 99.66%
UNIF-KLSR 2.119 0.142 70.31%

03 MS-KLSR 2.071 0.116 79.82%

"~ KRMS-KLSR 1.145 0.050 100.00 %

KRMS-Linear 30.734 0.499 25.19%
UNIF-LSR 27.574 0.686 70.31%
GMS-LSR 20.876 1.810 83.44%
LGS-LSR  3.191 0.418 99.41%
UNIF-KLSR 2.500 0.159 60.04%

04 MS-KLSR  2.443 0.129 69.94%

" KRMS-KLSR 1.149 0.045 100.00 %

n = 1000

AMSE SD PSR

1.720 0.117 90.05%
1.498 0.094 96.77%
1.098 0.036 100.00%
25.245 0.900 78.07%
20.093 1.330 90.05%
5.001 0.976 97.62%
2.947 0.134 99.86%
1.908 0.063 79.89%
1.906 0.064 88.41%
1.099 0.038 100.00%
29.746 0.547 47.15%
25.403 0.802 79.89%
13.372 2.049 91.75%
3.051 0.213 99.64%
2.120 0.090 69.98%
2.136 0.097 79.99%
1.104 0.041 100.00%
30.712 0.450 30.98%
27.769 0.558 69.98%
21.228 1.275 83.98%
3.171 0.330 99.35%
2418 0.121 59.97%
2427 0.111 70.94%
1.104 0.042 100.00%

KRMS-Linear 31.086 0.518 16.69%
UNIF-LSR  29.034 0.587 60.04%
GMS-LSR  25.317 0.984 74.34%

31.087 0.483 22.57%
29.128 0.471 59.97%
25.612 0.739 74.69%

31.084 0.475 27.13%
29.056 0.463 60.07%
25.524 0.654 75.42%

LGS-LSR  3.469 0.577 99.02% 3.665 0.582 98.63% 3.536 0.465 98.60%

To further demonstrate the effectiveness of KRMS-KLSR, we present a visual analysis of its per-
formance. Figure |I|depicts the density distribution of the sampling metric log(w) for clean versus
contaminated samples. The results show a more distinct separation between inliers and outliers
under nonlinear settings, demonstrating that our kernel-induced residual score more effectively dis-
tinguishes anomalies. In contrast, the sampling metric distribution of KRMS-Linear exhibits sub-
stantial overlap, which hinders its ability to filter out contaminated data points during subsampling.
As illustrated in Figure[2] the linear constraints of KRMS-Linear lead to a fitted curve that is severely
distorted by outliers. However, our method accurately captures the underlying nonlinear structure,
resists the influence of outliers, and recovers a smooth curve that aligns well with the true curve.

In conclusion, our method offers two key advantages. First, it excels at capturing nonlinear features,
enabling the separation of data patterns including outliers that are linearly inseparable in the orig-
inal input space by mapping them into a higher-dimensional RKHS. Second, it achieves enhanced
robustness through a more precise assessment of local data structure in the feature space, quantified

by the kernel term (/> K (#;,#;)°. This facilitates more reliable outlier identification and sup-
pression, leading to consistently stronger statistical performance on complex datasets compared to

linear baselines.
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Table 5: Performance comparison of KRMS-KLSR and six competing subsampling methods for

corrupted mechanism M2 in Experiment 2

n = 500 n = 1000 n = 1500
0 Method AMSE SD PSR AMSE SD PSR AMSE SD PSR
UNIF-KLSR 1.792 0.075 89.78% 1.809 0.122 89.81% 1.796 0.212 90.09%
MS-KLSR  1.767 0.071 94.88% 1.818 0.069 94.84% 1.863 0.123 94.96%

KRMS-KLSR 1.140 0.044 100.00 %
71.92%
89.78%
97.05%
99.98%

01 KRMS-Linear 29.846 0.547

UNIF-LSR  27.001 0.899
GMS-LSR  14.325 3.736
LGS-LSR  2.875 0.138

1.092 0.037 100.00%
29.721 0.496 75.58%
26.966 0.648 89.81%
14.540 2.587 97.29%
2.888 0.122 99.98%

1.088 0.037 100.00%
29.664 0.415 77.34%
26.966 0.587 90.09%
14.854 2.066 97.32%
2.922 0.130 99.97%

UNIF-KLSR 1.913 0.069 80.23%
0.2 MS-KLSR  1.933 0.067 87.20%
" KRMS-KLSR 1.141 0.042 100.00%

KRMS-Linear 31.015 0.485 41.27%

UNIF-LSR  29.314 0.532 80.23%

GMS-LSR  25.457 1.205 90.18%

LGS-LSR  2.964 0.209 99.96%

1.919 0.073 80.02%
1.961 0.076 87.12%
1.104 0.039 100.00%
31.004 0.453 46.19%
29.444 0.445 80.02%
25.764 0.847 90.28%
3.072 0.296 99.92%

1.921 0.076 80.02%
1.971 0.093 87.50%
1.095 0.042 100.00%
30.999 0.458 51.25%
29.445 0.482 80.02%
25.869 0.759 90.33%
2.997 0.254 99.93%

UNIF-KLSR 2.005 0.096 70.23%
03 MS-KLSR  2.046 0.092 78.97%
"~ KRMS-KLSR 1.145 0.043 100.00 %

KRMS-Linear 31.324 0.428 24.64%

UNIF-LSR  30.36 0.493 70.23%

GMS-LSR 28.614 0.587 81.81%

LGS-LSR  3.420 0.827 99.88%

1.979 0.069 69.85%
2.047 0.078 79.59%
1.105 0.045 100.00%
31.314 0.427 31.36%
30.324 0.494 69.85%
28.552 0.547 82.15%
3.515 0.709 99.83%

1.997 0.069 70.01%
2.073 0.079 80.20%
1.109 0.041 100.00%
31.338 0.424 36.16%
30.325 0.442 70.0%1
28.616 0.469 82.52%
3.507 0.698 99.81%

UNIF-KLSR 2.086 0.117 60.29%
04 MS-KLSR  2.156 0.108 70.12%
" KRMS-KLSR 1.148 0.048 100.00%

KRMS-Linear 31.374 0.418 16.08%

UNIF-LSR  30.687 0.470 60.29%

GMS-LSR  29.648 0.483 72.89%

LGS-LSR  6.807 4.843 98.86%

2.052 0.075 60.19%
2.151 0.085 71.15%
1.110 0.034 100.00%
31.387 0.418 22.33%
30.799 0.386 60.19%
29.767 0.401 73.42%
6.526 2.817 99.23%

2.041 0.076 60.00%
2.163 0.087 72.16%
1.103 0.037 100.00%
31.395 0.402 27.26%
30.788 0.443 60.00%
29.771 0.465 74.41%
7.526 2.775 98.96%
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Table 6: Performance comparison of KRMS-KLSR and six competing subsampling methods for
corrupted mechanism M3 in Experiment 2

n = 500 n = 1000 n = 1500

0 Method AMSE SD PSR AMSE SD PSR AMSE SD PSR
UNIF-KLSR 1.087 0.046 89.93% 1.064 0.036 89.90% 1.063 0.035 89.92%
MS-KLSR  1.085 0.040 97.14% 1.058 0.032 97.00% 1.051 0.032 97.04%
01 KRMS-KLSR 1.142 0.042 99.96% 1.091 0.038 99.96% 1.072 0.029 99.94%
" KRMS-Linear 3.773 0.404 93.56% 3.781 0.299 93.90% 3.875 0.315 93.83%
UNIF-LSR  4.489 0.515 89.93% 4.515 0.423 89.90% 4.501 0.362 89.92%
GMS-LSR  3.279 0.218 96.81% 3.246 0.169 96.94% 3.239 0.134 96.94%
LGS-LSR  3.105 0.192 98.27% 3.000 0.124 98.26% 2.957 0.090 98.18%
UNIF-KLSR 1.276 0.107 80.15% 1.269 0.077 79.86% 1.277 0.066 80.20%
0.2 MS-KLSR  1.166 0.059 92.26% 1.149 0.050 92.23% 1.158 0.049 92.30%
"~ KRMS-KLSR 1.146 0.038 99.86% 1.096 0.036 99.89% 1.080 0.035 99.88%
KRMS-Linear 6.982 0.806 80.35% 7.080 0.663 80.86% 7.230 0.588 81.24%
UNIF-LSR  7.103 0.865 80.15% 7.273 0.675 79.86% 7.179 0.541 80.20%
GMS-LSR  3.890 0.363 90.92% 4.029 0.270 90.74% 3.938 0.224 91.15%
LGS-LSR  3.087 0.187 96.11% 3.098 0.173 95.98% 3.028 0.130 95.91%
UNIF-KLSR 1.605 0.121 69.87% 1.534 0.092 70.04% 1.526 0.088 70.14%
03 MS-KLSR  1.351 0.085 85.77% 1.333 0.062 86.16% 1.369 0.068 86.23%
"~ KRMS-KLSR 1.145 0.043 99.82% 1.095 0.041 99.81% 1.078 0.039 99.79%
KRMS-Linear 12.433 1.402 61.88% 12.228 0.962 64.13% 12.099 0.911 65.66%
UNIF-LSR  10.294 1.182 69.87% 10.420 0.799 70.04% 10.349 0.676 70.14%
GMS-LSR  5.219 0.607 81.37% 5.241 0.449 81.78% 5.162 0.358 82.38%
LGS-LSR  3.242 0.243 93.29% 3.222 0.188 93.11% 3.212 0.162 92.71%
UNIF-KLSR 1.807 0.139 60.53% 1.757 0.088 59.98% 1.724 0.074 60.04%
04 MS-KLSR  1.549 0.118 78.56% 1.579 0.075 79.05% 1.581 0.059 79.70%
" KRMS-KLSR 1.147 0.050 99.71% 1.096 0.037 99.72% 1.077 0.034 99.69 %
KRMS-Linear 17.919 1.361 44.68% 17.667 1.024 47.61% 17.570 0.927 49.64%
UNIF-LSR  13.681 1.439 60.53% 13.844 0.879 59.98% 13.81 0.705 60.04%
GMS-LSR  7.529 0.839 69.89% 7.523 0.629 70.76% 7.553 0.527 71.67%
LGS-LSR  3.532 0.422 89.19% 3.642 0.370 88.12% 3.595 0.266 87.69%
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Figure 1: Sampling Metric Distributions of KRMS-RKHS and KRMS-Linear methods
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Figure 2: Scatter plot and fitted curve of the subsamples of KRMS-RKHS and KRMS-Linear meth-
ods

To validate the scalability regarding data size and dimensionality, we extend the experimental setting
to N = 20,000 and p = 50 under case M1, with n € {1000, 2000, 3000}. In addition to the five
methods compared earlier, we include a robust nonparametric regression method, Support vector
regression (SVR) (Karatzoglou et al [2004). The results are shown in Table[7] As shown in Table
[7] even with a large sample size and higher dimensionality, the KRMS method maintains its effec-
tiveness and robustness, achieving a PSR of 100% across all the considered contamination levels
(0 € ]0.1,0.4]) and subsample sizes. In terms of estimation accuracy, the AMSE of KRMS remains
stable under contamination (¢ > 0) and is comparable to the uncontaminated baseline (§ = 0).
Moreover, KRMS consistently yields lower AMSE values than all benchmark methods, including
SVR.

We also assess the computational complexity of the proposed method with respect to sample size
N and dimensionality p. To ensure a fair comparison, the analysis is limited to kernel-based com-
petitors. As shown in Figures Band @} KRMS-KLSR incurs the highest computational cost among
the evaluated methods, which is mainly due to the iterative sampling step required for robust esti-
mation. Empirically, the runtime of KRMS-KLSR scales approximately linearly with N when p is
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fixed. In the most challenging scenario (N = 20,000, p = 100), the average runtime is about 600
seconds. While computationally more intensive, this trade-off is justified by the significant gains in
robustness and estimation accuracy demonstrated in Table[7]

Table 7: Performance comparison of KRMS-KLSR and six competing methods for corrupted mech-
anism M1 in Experiment 2

n = 1000 n = 2000 n = 3000

0 Method AMSE SD PSR AMSE SD PSR AMSE SD PSR
UNIF-KLSR  1.958 0.054 100.00%  1.783 0.054 100.00%  1.745 0.047 100.00%
MS-KLSR 1996 0.049 100.00%  1.848 0.054 100.00%  1.830 0.050 100.00%
KRMS-KLSR 1.987 0.053 100.00%  1.840 0.057 100.00%  1.808 0.048 100.00%
0 SVR 1.975 0.059 100.00%  1.786 0.055 100.00%  1.693 0.048 100.00%
UNIF-LSR  2.073 0.058 100.00%  2.001 0.063 100.00%  1.999 0.051 100.00%
GMS-LSR  2.051 0.053 100.00%  1.995 0.060 100.00%  1.994 0.048 100.00%
LGS-LSR  2.052 0.049 100.00% 1.996 0.060 100.00%  1.994 0.050 100.00%
UNIF-KLSR  2.026 0.060 89.85% 2.820 0.115 90.00% 2.838 0.104 89.96%
MS-KLSR 2220 0.072 98.63% 2.687 0.090 98.98% 2702 0.111 98.96%
KRMS-KLSR 1.981 0.061 100.00% 1.852 0.069 100.00% 1.804 0.055 100.00%
0.1 SVR 2.013 0.061 89.85% 1.944  0.060 90.00% 1.905 0.057 89.96%
UNIF-LSR  3.806 0.316 89.85% 4.119 0272 90.00% 4.295 0.242 89.96%
GMS-LSR 2417 0.135 99.24% 2.578 0.136 99.18% 2723 0.153 99.10%
LGS-LSR  2.047 0.080 99.86% 2.041 0.083 99.80% 2.046 0.072 99.81%
UNIF-KLSR  2.116 0.073 80.12% 3.157 0.105 80.23% 3.149 0.093 80.03%
MS-KLSR  2.148 0.091 95.41% 3.135 0.105 96.46% 3.125 0.095 96.58%
KRMS-KLSR 1.994 0.067 100.00% 1.857 0.053 100.00% 1.808 0.051 100.00%
0.2 SVR 2.044 0.072 80.12% 1.966 0.056 80.23% 1.937 0.059 80.03%
UNIF-LSR  6.253 0.635 80.12% 6.933 0.521 80.23% 7.173 0.469 80.03%
GMS-LSR 2960 0.237 97.17% 3358 0.172 96.80% 3.436 0.138 96.76%
LGS-LSR  2.080 0.080 99.63% 2.142 0.103 99.56% 2.172 0.079 99.48%
UNIF-KLSR  2.148 0.085 70.09% 3.133 0.119 70.10% 3.308 0.109 70.08%
MS-KLSR 2303 0.106 86.54% 3.091 0.130 91.76% 3.245 0.110 92.03%
KRMS-KLSR 1.975 0.074 100.00% 1.851 0.060 100.00% 1.807 0.061 100.00%
0.3 SVR 2.068 0.084 70.09% 1.970 0.066 70.10% 1.950 0.060 70.08%
UNIF-LSR 9912 0.754 70.09%  10.514 0.610 70.10%  10.757 0.544 70.08%
GMS-LSR  3.623 0.210 92.40% 3.826 0.225 9191% 3.859 0.168 91.95%
LGS-LSR  2.133 0.093 99.29% 2301 0.136 98.96% 2448 0.154 98.76%
UNIF-KLSR  2.303 0.101 59.79% 3.062 0.095 60.07% 3.095 0.099 59.89%
MS-KLSR 2432 0.098 73.42% 3.047 0.141 82.42% 3.137 0.100 83.27%
KRMS-KLSR 1.993 0.083 100.00%  1.839 0.045 100.00% 1.817 0.065 100.00%
04 SVR 2.141 0.074 59.79% 2.004 0.057 60.07% 1.983 0.064 59.89%
UNIF-LSR  13.929 0.895 59.79%  14.233 0.651 60.07%  14.512 0.447 59.89%
GMS-LSR  4.522 0.384 84.24% 4.859 0.336 83.98% 4.889 0.260 84.20%
LGS-LSR  2.283 0.133 98.73% 2.616 0.133 98.03% 2772 0.117 97.52%

D.3 REAL EXAMPLES

We illustrate the application of the proposed kernel-based robust Markov subsampling method to
two real-world datasets: the NASDAQ stock dataset with economic indicators and an air quality
dataset.

Example 1. To evaluate the performance of the proposed subsampling method on real-world finan-
cial data, we conduct an empirical analysis using a dataset comprising historical trading informa-
tion from the NASDAQ market. The dataset is sourced from a public repository https://www.
kaggle.com/datasets/saildkarthik/nasdg-dataset and integrates data from ma-
jor financial providers, including Yahoo Finance, Federal Reserve Economic Data (FRED), Alpha
Vantage, and Quandl. It encompasses the period from January 4, 2010 to October 25, 2024, contain-
ing daily open-high-low-close (OHLC) prices, trading volume, and key macroeconomic and market
sentiment indicators for a designated NASDAQ-listed stock. The raw dataset contains a total of
3,914 daily observations. The primary objective of our analysis is to predict the next trading day’s
daily percentage return for this NASDAQ stock. Accordingly, the target variable is taken as the
daily return Ry, calculated as Ry = (Piy1 — P;)/P:, where P; and P;1; denote the closing
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Figure 3: Runtime comparison of different methods with varying sample sizes N and dimensions P
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Figure 4: Runtime comparison of different methods with varying sample sizes N and dimensions P

prices on trading day ¢ and ¢ + 1, respectively. To construct a predictive model, we filter a set of
predictors based on the established financial economic theory and common practices in empirical
finance. These features are designed to capture diverse aspects of market dynamics and are broadly
categorized as follows.

(A) Historical Market Behavior. We include the daily returns from the five preceding trading days
(i.e., R:, ..., Ri—4) to capture short-term momentum effects or potential mean-reversion patterns.
A 5-day moving average (MAs5) and a 20-day moving average (MAs) of closing prices are in-
corporated to represent short- and medium-term price trends, respectively. (B) Macroeconomic
Conditions and Market Sentiment. We incorporate daily-frequency macroeconomic indicators and
market sentiment proxies, including the CBOE volatility index (a measure of market risk expecta-
tions), a benchmark interest rate, the Effective Federal Funds Rate, the TED spread, an exchange
rate, and commodity prices of Gold and Oil. These variables are widely recognized in the literature
as external factors that may influence asset prices. After constructing these features, we remove
observations with missing values. The remaining dataset is then divided into a training set (70%
of observations) and a test set (the remaining 30%). We conduct regression analysis to predict the
next-day return R, 1, and compared the performance of the proposed KRMS-KLSR method with
five competing methods: MS-KLSR, UNIF-KLSR, UNIF-LSR, GMS-LSR, and LGS-LSR. Results
for AMSE and SD values over M = 100 replicates are summarized in Table[§]
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Table 8: AMSE and SD values of six subsampling methods in NASDAQ stock data analysis

n = 500 n = 1000 n = 1500 n = 500 n = 1000 n = 1500

0 Method AMSE SD AMSE SD AMSE SD 6 AMSE SD AMSE SD AMSE SD

UNIF-KLSR 0.016 0.001 0.016 0.001 0.016 0.001 0.042 0.007 0.039 0.006 0.039 0.005
MS-KLSR 0.016 0.001 0.016 0.001 0.016 0.001 0.021 0.003 0.021 0.002 0.020 0.002
00 KRMS-KLSR 0.016 0.001 0.016 0.001 0.016 0.001 02 0.016 0.001 0.016 0.001 0.016 0.001
" UNIF-LSR 0.016 0.001 0.016 0.001 0.016 0.001 ~~ 0.101 0.014 0.093 0.010 0.088 0.008
GMS-LSR  0.016 0.001 0.016 0.001 0.016 0.001 0.079 0.025 0.073 0.016 0.073 0.016

LGS-LSR  0.016 0.001 0.016 0.001 0.016 0.001 0.061 0.029 0.062 0.021 0.063 0.018

UNIF-KLSR 0.025 0.004 0.024 0.003 0.024 0.003 0.060 0.011 0.056 0.007 0.055 0.007
MS-KLSR 0.017 0.001 0.017 0.001 0.017 0.001 0.027 0.004 0.026 0.003 0.026 0.003
01 KRMS-KLSR 0.016 0.001 0.016 0.001 0.016 0.001 03 0.016 0.001 0.016 0.001 0.016 0.001
" UNIF-LSR 0.097 0.020 0.089 0.015 0.101 0.011 ™ 0.110 0.018 0.095 0.011 0.092 0.009
GMS-LSR  0.064 0.032 0.062 0.020 0.079 0.017 0.085 0.023 0.080 0.013 0.078 0.011

LGS-LSR  0.045 0.027 0.045 0.020 0.061 0.017 0.066 0.025 0.071 0.019 0.071 0.014

We first evaluate the considered six subsampling methods on the original dataset without artificial
contamination (i.e., contamination proportion § = 0.0). As shown in Table S7, in this uncontam-
inated scenario, six methods yield nearly identical AMSE values with low SD, indicating that the
original dataset contains minimal extreme outliers. To investigate the robustness of the subsampling
strategies, we artificially corrupt the training data. Specifically, for predictors xj, we replace a pro-
portion 6 of observations with random values drawn from wy, ~ U (2, 3); for corresponding response
variable y, we replace its observation with that drawn from O; ~ N (1,3). As an illustration, we
here consider three contamination proportions: 6 € {0.1,0.2, 0.3}, representing mild to severe data
corruption scenarios.

The results under artificial contamination are presented in Table S7. Key findings include that (i) the
proposed KRMS-KLSR method exhibits exceptional robustness, maintaining stable AMSE and SD
values regardless of contamination levels and sample sizes, aligns with its uncontaminated perfor-
mance, demonstrating its strong ability to mitigate contamination effects. (i) The MS-KLSR method
demonstrates consistent robustness, consistently outperforming the UNIF-KLSR method regardless
of contamination levels and sample sizes, while effective, exhibits slightly less stability compared to
the KRMS-KLSR method. (iii) the LGS-LSR performs best among linear methods. The GMS-LSR
and UNIF-LSR methods suffer from significant performance deterioration under contamination,
yielding higher AMSE values. (iv) The KRMS-KLSR and MS-KLSR methods maintain consistent
performance regardless of sample sizes. Less robust methods show minor AMSE improvements
with larger sample sizes at a high contamination level, but remain inferior to the KRMS-KLSR
method. (v) While all six methods perform similarly on uncontaminated data, contamination sce-
narios clearly show KRMS-KLSR method’s superiority in maintaining both accuracy and stability.

Example 2. To demonstrate the proposed method, we employ the Air Quality dataset, which com-
prises 9358 hourly averaged responses from an array of 5 metal oxide chemical sensors collected
between March 2004 and February 2005. This dataset includes ground truth measurements for car-
bon monoxide (CO), non-methane hydrocarbons (NMHC), benzene, total nitrogen oxides (NOX),
and nitrogen dioxide (NO-), obtained from a co-located certified reference analyzer. Due to the high
proportion of missing values in the raw data, we utilize a preprocessed version of the dataset curated
by “cmertin” https://github.com/cmertin/Machine_Learning to ensure reliability
for modeling.

The dataset is split into training set (70%) and test set (30%). In this example, we focus on predicting
the hourly averaged NO, concentration (in 1g/m?), using the following predictor variables: month,
hour, the five sensor responses (hourly averaged), temperature, relative humidity, and absolute hu-
midity. We assess the proposed KRMS-KLSR method against several competing approaches: (i)
kernel-based subsampling techniques: UNIF-KLSR and MS-KLSR, and (ii) linear regression-based
subsampling techniques: UNIF-LSR, GMS-LSR, and LGS-LSR. Performance metrics: AMSE and
SD values for three subsample sizes as well as four contamination levels are given in Table 9]

Similarly to Example 1, we first evaluate the considered six subampling methods for the original air
quality dataset (i.e., uncontaminated, § = 0.0). From Table[9] we observe the following findings: (i)
kernel-based subsampling methods usually outperform linear regression-based subsampling models
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Table 9: AMSE and SD values of six subsampling methods in Air Quality data analysis

n = 500 n = 1000 n = 1500 n = 500 n = 1000 n = 1500

0 Method AMSE SD AMSE SD AMSE SD 6 AMSE SD AMSE SD AMSE SD

UNIF-KLSR 0.410 0.011 0.393 0.009 0.386 0.009 0.499 0.015 0.495 0.012 0.493 0.012
MS-KLSR 0.418 0.014 0.400 0.011 0.395 0.010 0.487 0.014 0.485 0.014 0.485 0.015
OOKRMS-KLSR 0.443 0.018 0.425 0.014 0.419 0.013 02 0.444 0.021 0.425 0.012 0.421 0.014
" UNIF-LSR 0.472 0.010 0.469 0.010 0.468 0.010 ~~ 0.573 0.026 0.569 0.020 0.568 0.018
GMS-LSR 0471 0.011 0.469 0.011 0.468 0.010 0.502 0.016 0.504 0.015 0.504 0.015

LGS-LSR  0.471 0.010 0.469 0.010 0.468 0.010 0.476 0.012 0.476 0.012 0.475 0.012

UNIF-KLSR 0.475 0.016 0.470 0.012 0.468 0.011 0.518 0.016 0.514 0.014 0.513 0.013
MS-KLSR 0.456 0.014 0.458 0.014 0.458 0.016 0.506 0.015 0.506 0.015 0.505 0.017
01 KRMS-KLSR 0.443 0.016 0.425 0.015 0.421 0.013 03 0.450 0.017 0.455 0.018 0.458 0.017
" UNIF-LSR 0.532 0.024 0.528 0.019 0.526 0.017 ™ 0.613 0.032 0.609 0.027 0.610 0.023
GMS-LSR  0.489 0.015 0.489 0.014 0.488 0.012 0.518 0.018 0.520 0.016 0.520 0.015

LGS-LSR 0477 0.012 0.474 0.012 0.474 0.011 0.479 0.011 0.477 0.011 0.477 0.012

in that the former has smaller AMSE values than the latter regardless of sample sizes, and (ii)
UNIF-KLSR method consistently achieves the lowest AMSE values regardless of subsample sizes
in the presence of uncontaminated cases, demonstrating strong performance on uncontaminated
data. The proposed KRMS-KLSR method yields slightly higher AMSE value, likely because its
robustness leads to the exclusion of some informative observations in this contamination-free setting.
These results indicate that UNIF-KLSR method behaves satisfactorily when applied to relatively
uncontaminated datasets.

To assess the performance of the considered six subsampling methods in the presence of contami-
nated data, we artificially introduce outliers into the training dataset by replacing a proportion 6 of
observations. The outliers are generated as follows: predictors x are drawn from the normal dis-
tribution N'(—10, 3), and their corresponding responses y from the normal distribution N/ (—3, 3).
Mirroring Example 1, we consider three contamination levels: § € {0.1,0.2,0.3}. The results for
artificially corrupted datasets are given in Table [9} From Table[9} we have the following key find-
ings. First, the proposed KRMS-KLSR method outperforms other methods in that the former has
smaller AMSE values and the relatively small SD values than the latter regardless of contamina-
tion levels and subsample sizes, while the UNIF-KLSR and MS-KLSR methods perform better than
linear regression-based three subsamplers in that the former consistently has smaller AMSE values
than the latter regardless of contamination levels and subsample sizes. Second, the linear regression-
based LGS-LSR method performs better than the UNIF-LSR and GMS-LSR approaches in terms of
AMSE and SD values regardless of contamination levels and subsample sizes, which perform poorly
under the considered settings. Third, the KRMS-KLSR method demonstrates exceptional stability,
its AMSE values remain nearly unchanged even as contamination level € increases, closely match-
ing its performance on uncontaminated data (§ = 0). This resilience is further confirmed by its low
SD values, particularly at higher contamination levels 6. Fourth, larger subsample size n generally
enhance or stabilize the performance of all subsampling methods. In summary, the KRMS-KLSR
method demonstrates outstanding robustness to contamination, maintaining near-optimal accuracy
across contamination levels while significantly outperforming competing subsampling methods.

E CONVERGENCE ANALYSIS AND PARAMETER SENSITIVITY ANALYSIS

To address concerns related to the convergence of the iterative optimization (Algorithm [T), the va-
lidity of subsampling, and the sensitivity to hyperparameters, we provide a comprehensive empirical
analysis in this section. These simulation studies complement the theoretical discussion and further
validate the robustness of the KRMS method. In the subsequent subsections, we generate datasets
under case M1 of Experiment 2, with a contamination level of § = 0.4, and repeat the experiment
100 times.

E.1 CONVERGENCE ANALYSIS OF THE ITERATIVE PROCEDURE

Figure [5] presents a robust evaluation of the iterative KRMS process under heavy data contami-
nation, displaying the mean and 95% Confidence Interval (CI) across iterations (x). The analysis
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is structured along two independent aspects to simultaneously monitor model stability and perfor-
mance. Figure [5a] which focuses on algorithmic convergence (parameter stability), employs the
Mean Squared Prediction Change (MSPC), defined as Hy(@ — =D ||§ /n, as the key metric. Fig-
ure[Sbtracks generalization performance via RMSE computed on a clean testset. As shown in Figure
(5] both the MSPC and the RMSE drop sharply within the first 3-5 iterations and stabilize thereafter.
This empirical evidence strongly indicates that the proposed recursive updating strategy effectively

corrects the initial pilot estimate o(°), preventing divergence even when the initial sample contains
outliers.

Algorithmic Convergence Generalization Performance
(Parameter Stability) (RMSE on Clean Test Set)
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Figure 5: Convergence diagnosis of the Algorithm

E.2 VALIDATION OF THE SAMPLING MECHANISM

To illustrate the target distribution of our Markov subsampling procedure and demonstrate how
the weights w(Z, «) effectively down-weight contaminated observations, we visualize the sampling
behavior in both the metric space and the feature space. Figure [6a]displays the density distribution
of the sampling metric log(w) for clean versus contaminated subsamples. Figure visualizes the
spatial distribution of the selected subsamples in a two-dimensional feature space, overlaid on the
full contaminated dataset.
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Figure 6: Visualization of the Subsampling Mechanism.

Figure [6a] demonstrates a clear distinction between the weight distributions of clean and contam-
inated samples. Since the acceptance probability is proportional to 1/w(Z, «), the algorithm in-
herently favors selecting “clean” data. Furthermore, as depicted in Figure [6b] even under heavy
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contamination, the subsampling algorithm predominantly selects nearly pure “clean” data points
(shown in black). This provides additional evidence that the Markov chain effectively converges to
the “clean” data distribution.

E.3 PARAMETER SENSITIVITY ANALYSIS

We conduct sensitivity analyses on the subsample size ny and the burn-in period to. Figure [7a]
illustrates that as subsample size increases, the RMSE on the “clean” testset gradually decreases and
eventually stabilizes. This indicates that a moderate number of subsamples is sufficient to achieve
reliable performance, thereby substantially lowering computational cost. Figure [7b] shows that the
algorithm’s performance remains highly stable across different burn-in periods. This observation
suggests rapid mixing of the Markov chain, and demonstrates that the method is insensitive to the
specific choice of t(, which simplifies parameter tuning in practice.
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Figure 7: Sensitivity Analysis

We assess the performance of KRMS with three alternative kernel functions: the Laplacian kernel

K(x,y) = exp(—|z—1y|/o), the linear kernel, and the polynomial kernel K (z,y) = (z 'y + c)d.
As shown in Tablem while the Gaussian kernel achieves the best overall results, the Laplacian ker-
nel remains competitive. In contrast, non-stationary kernels (linear and polynomial) perform notably
worse. This is likely because non-stationary kernels produce values that depend on the absolute posi-
tion of data points; as a result, outliers with large norms may be incorrectly selected, compromising
robustness. We also investigate sensitivity to the bandwidth parameter o of the Gaussian kernel.
Figure [8| shows the performance of KRMS across o = ¢/p for ¢ € [0.1,10]. The results indicate
that KRMS remains highly stable over a wide range of ¢, while the other two methods are noticeably
sensitive to the bandwidth selection. In our experiments, the bandwidth of the Gaussian kernel is
set according to the dimension-dependent rule: o = 1/p (Chang & Linl 2011), which reflects the
linear growth of squared Euclidean distances in high-dimensional space. The chosen value (¢ = 1)
falls within the observed high-performance plateau, confirming that our parameter selection is both
principled and non-arbitrary.
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n = 1500

Experiment 2
n = 500 n = 1000
Method AMSE SD PSR AMSE SD PSR AMSE SD PSR
1.137  0.041 100.00%  1.098 0.036 100.00% 1.087 0.035 100.00%
1.093 0.039 100.00% 1.085 0.039 100.00%
46.036 14.027 62.14%
79.82%

(%
KRMS-Gaussian
1.134 0.041 100.00%
38.847 12.791 56.42%
25.245 0900 78.07%  25.055 0.711
1.091 0.035 100.00%

01 KRMS-Laplacian
* KRMS-Polynomial 27.276 10.036 50.63%
KRMS-Linear  25.631 0.964 75.58%
KRMS-Gaussian  1.153  0.044 100.00%  1.099 0.038 100.00%

02 KRMS-Laplacian 1.152 0.046 100.00% 1.104 0.040 100.00% 1.100 0.041 100.00%
"~ KRMS-Polynomial 29.191 22.964 29.15%  40.328 30.571 37.06%  56.794 32.144 44.62%
KRMS-Linear  29.833 0.548 41.96%  29.746 0.547 47.15%  29.708 0472 51.71%
KRMS-Gaussian ~ 1.145  0.050 100.00%  1.104 0.041 100.00% 1.101 0.038 100.00%

03 KRMS-Laplacian 1.135 0.048 100.00% 1.103 0.046 100.00% 1.095 0.042 100.00%
"~ KRMS-Polynomial 19.498 13.403 18.85%  25.048 27.75 26.68%  20.857 27.660 32.96%
KRMS-Linear  30.734 0.499 25.19% 30.712 0.450 30.98% 30.732 0.475 36.01%

1.149 0.045 100.00% 1.104 0.042 100.00% 1.106 0.042 100.00%

1.107 0.033 99.99% 1.104 0.043 100.00%

19.05%  19.390 15.188 24.91%

31.084 0475 27.13%

Table 10: Performance comparison of KRMS with different kernel for corrupted mechanism M1 in

KRMS-Gaussian
04 KRMS-Laplacian 1.139 0.041 100.00%
" KRMS-Polynomial 21.616 10.487 11.88% 18.749 12.201
KRMS-Linear  31.086 0.518 16.69%  31.087 0.483 22.57%
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Figure 8: Bandwidth Sensitivity Analysis
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