

000 KERNEL-BASED ROBUST MARKOV SUBSAMPLING 001 FOR REGULARIZED NONPARAMETRIC REGRESSION 002 WITH CONTAMINATED DATA 003

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Large-scale data with contamination are ubiquitous in biomedicine, economics
014 and social science, but its statistical learning often suffers from computational bot-
015 tlenecks and robustness. Subsampling offers an efficient solution by sampling a
016 representative subset of uncorrupted data from full dataset, thereby reducing com-
017 putational costs while enhancing robustness. Existing subsampling methods, like
018 leverage- and gradient-based approaches, focus on parametric models and fail un-
019 der nonparametric models or severe contamination. To address these limitations,
020 we propose a kernel-based robust Markov subsampling (KRMS) method for non-
021 parametric regression with contaminated data in reproducing kernel Hilbert space
022 (RKHS). By dynamically adjusting Markov sampling probabilities based on the
023 ratio of residuals to kernel norms of predictors, our method simultaneously sup-
024 presses contaminated observations and prioritizes informative observations, en-
025 abling robust learning from contaminated datasets. Theoretically, we establish the
026 asymptotic properties of the estimators, including consistency and asymptotic nor-
027 mality, and generalization bounds under RKHS regularization, providing the first
028 unified framework for robust subsampling in nonparametric settings. Simulations
029 and real-data applications demonstrate KRMS’s superiority over existing meth-
030 ods, particularly for high contamination levels. Our approach bridges a critical
031 gap in scalable and robust statistical learning, with broad applicability to large-
032 scale, non-i.i.d. data.

033 1 INTRODUCTION

035 The rapid development of data collection technologies has ushered in an era of unprecedented data
036 proliferation across nearly all scientific and industrial fields. Data in fields ranging from biomedical
037 imaging and financial risk analysis to environmental monitoring and social network analytics exhibit
038 not only massive scale but also increasingly frequent contamination, including outliers, measure-
039 ment errors, and systematic biases (Fan et al., 2014). While this data deluge offers unprecedented
040 opportunities for scientific discovery and practical applications, it simultaneously faces critical lim-
041 itations in conventional statistical learning methods, particularly their inability to scale computa-
042 tionally with massive datasets and their vulnerability to pervasive data contamination. Traditional
043 statistical learning approaches, developed for uncontaminated, or smaller-scale data, frequently fail
044 when applied to the complicated or contaminated data, where contamination is not merely an occa-
045 sional nuisance but an inherent characteristic. This dual challenge of computational scalability and
046 statistical learning robustness has emerged as a fundamental bottleneck in the era of big data.

047 To mitigate these challenges posed by massive datasets, subsampling has emerged as a widely used
048 strategy. Specifically, by selecting a representative subset of uncontaminated data from the full
049 dataset with contamination, this subsampling method possesses dual merits: substantial computa-
050 tional efficiency and potentially improving parameter estimation accuracy. However, the effective-
051 ness of subsampling hinges critically on its ability to preserve statistical properties of the full dataset,
052 a non-trivial challenge in practice. Existing solutions to this challenge can be classified as three cat-
053 egories: (i) optimal design-based approaches (Ai et al., 2021; Wang & Ma, 2021) that minimize
asymptotic variance of parameter estimator for uncontaminated data; (ii) informative subsampling
techniques for the massive data without contamination or with relatively low level of contamination,

054 including leverage-based subsampling (Ma et al., 2015; Rudi et al., 2018), gradient-based subsam-
 055 pling (Zhu, 2016) and influence function-based subsampling (Ting & Brochu, 2018), however, these
 056 methods typically produce biased estimators when applied to highly contaminated data; (iii) robust
 057 subsampling methods for corrupted massive data based on the idea of quantile breakdown point
 058 for linear regression models (Caponovo et al., 2012), robust gradient-based Markov subsampling
 059 (Gong et al., 2020), and low-gradient subsampling (Jing, 2023). Notably, Markov subsampling
 060 has shown particular promise by adaptively refining parameter estimate through sequential transi-
 061 tions, and self-correcting for contamination via Metropolis-Hastings (MH) rejection scheme while
 062 preserving structural information in the dataset. But existing Markov subsampling methods are
 063 fundamentally constrained to parametric models with contaminated data, leaving it ill-equipped for
 064 nonparametric regression problems where the target is an infinite-dimensional function rather than
 065 finite-dimensional parameters. Three key challenges are encountered in nonparametric regression
 066 models with contaminated data. First, existing subsampling methods fail to properly weight obser-
 067 vations in RKHS, where contamination distorts both local smoothness and global structure. Second,
 068 the “curse of dimensionality” exacerbates contamination effects in high-dimensional function esti-
 069 mation. Third, non-i.i.d. data dependencies, such as those in Markov chains, interact with contami-
 070 nation in ways that linear regression models cannot capture. These limitations become particularly
 071 severe under heavy contamination scenarios like Huber’s ε -model, where existing subsamplers fail
 072 to retain the essential topological properties of the target function.

073 To overcome these challenges, we propose a Kernel-based robust Markov Subsampling (KRMS),
 074 which introduces several key innovations. By mapping the original data to an RKHS, our con-
 075 tamination scoring mechanism combines residual with features similarity to identify contaminated
 076 observations through relative data structure rather than absolute values. This kernel-based approach
 077 enables effective separation of contaminated observations that would be indistinguishable in the
 078 original feature space. The KRMS framework incorporates these scores into a MH sampling pro-
 079 cess that naturally accommodates non-i.i.d. data dependencies while maintaining computational
 080 efficiency. Theoretically, we establish consistency of nonparametric function estimator under mild
 081 regularity conditions, while demonstrating robustness to both contamination and high dimen-
 082 sionality. Our approach thus solves what existing methods cannot: simultaneous robustness to severe
 083 contamination, computational scalability, and theoretical soundness for nonparametric regression
 084 with complex dependencies.

085 Our work has three key contributions to nonparametric regression with contaminated data. First,
 086 we propose a KRMS method in RKHS by dynamically adjusting Markov subsampling probabili-
 087 ties based on the ratio of residuals to kernel norms of predictors, which is the first subsampling
 088 method specifically designed for contaminated data in complex nonparametric regression settings.
 089 Unlike existing approaches limited to parametric models, KRMS adapts to the intrinsic geometry
 090 of function spaces through kernel learning. Second, within the framework of kernel regularized
 091 regression with symmetric periodic Gaussian kernels in Sobolev spaces (Zeng & Xia, 2019), we
 092 establish rigorous theoretical guarantees for the KRMS estimator of nonparametric function. Based
 093 on assumption that the data follow a uniformly ergodic Markov chain (u.e.M.c.), we obtain optimal
 094 consistency rates and asymptotic normality of KRMS estimator, and explicit error bound of excess
 095 risk under contamination. Third, we extend the theoretical framework to characterize the gener-
 096 alization performance of kernel regularized regression in RKHS, providing new insights into the
 097 interaction between subsampling robustness and function space geometry.

098 The rest of this paper is organized as follows. Section 2 introduces regularized nonparametric
 099 regression model and RKHS. Section 3 details the proposed method. Section 4 presents asymp-
 100 totic properties and generalization bounds for kernel-based regularization regression under Huber
 101 ε -contamination for u.e.M.c. samples. Simulation studies are conducted in Section 5. Concluding
 102 remarks are given in Section 6. The proofs of theorems, additional simulations and real examples
 103 analysis are presented in the Appendices C and D. [The convergence analysis and parameter sensi-](#)
 104 [tivity analysis are presented in the Appendix E.](#)

105
 106
 107

108

2 PRELIMINARIES

109

2.1 REGULARIZED NONPARAMETRIC REGRESSION MODEL

110 Consider learning a continuous function $f(\mathbf{x}) \in \mathcal{H}(\mathbb{X})$ from a dataset $\mathcal{D} = \{z_i = (\mathbf{x}_i, y_i) : i = 1, \dots, n\}$, where $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^\top \in \mathbb{X}$ is the input vector of the i -th individual, $y_i \in \mathcal{Y}$ is the corresponding observed output, \mathbb{X} is a compact subset of \mathbb{R}^p ($p \geq 2$), and $\mathcal{H} = \mathcal{H}(\mathbb{X})$ is a space of continuous functions. The relationship between \mathbf{x}_i and y_i is modeled as $y_i = f_0(\mathbf{x}_i) + \epsilon_i$, where $f_0(\mathbf{x}_i) : \mathbb{R}^p \rightarrow \mathbb{R}$ is an unknown target function, and the random noise ϵ_i satisfies $\mathbb{E}(\epsilon_i) = 0$ and $\mathbb{E}(\epsilon_i^2) = \sigma^2$, and is independent of \mathbf{x}_i for $i = 1, \dots, n$. The goal is to find a function $f(\mathbf{x}) : \mathbb{X} \rightarrow \mathcal{Y}$ that approximates f_0 well by minimizing the generalization risk: $\mathcal{R}_{\mathcal{F}}(f) = \mathbb{E}\{\ell(f(\mathbf{x}), y)\} = \int_{\mathcal{Z}} \ell(f(\mathbf{x}), y) d\mathcal{F}$, where $\ell(f(\mathbf{x}), y)$ is a nonnegative loss function measuring the fitting error when using $f(\mathbf{x})$ to fit the output y , $\mathcal{Z} = \mathbb{X} \times \mathcal{Y}$ represents the sample space, \mathcal{F} is an unknown joint distribution of $z = (\mathbf{x}, y) \in \mathcal{Z}$, $\mathbb{E}(\cdot)$ is the expectation taken with respect to distribution function \mathcal{F} . It is difficult to directly compute minimizer of $\mathcal{R}_{\mathcal{F}}(f)$ due to unknown distribution \mathcal{F} involved. To solve the difficulty, we instead minimize the empirical risk (ER) over a function space \mathcal{H} : $\mathcal{R}_{\mathcal{D}}(f) = (2n)^{-1} \sum_{i=1}^n \ell(f(\mathbf{x}_i), y_i)$. Throughout this paper, we consider the following squared-error loss: $\ell(f(\mathbf{x}_i), y_i) = \{y_i - f(\mathbf{x}_i)\}^2$. Thus, for the considered squared-error loss, the ER minimizer is

$$126 \quad f_{\mathcal{D}} = \arg \min_{f \in \mathcal{H}} \mathcal{R}_{\mathcal{D}}(f) = \arg \min_{f \in \mathcal{H}} \frac{1}{2n} \sum_{i=1}^n \{y_i - f(\mathbf{x}_i)\}^2, \quad (1)$$

127 which is an approximation of function $f_0(\mathbf{x})$. However, when \mathcal{H} is highly complex, the optimization problem (1) becomes ill-posed and prone to overfitting (Zou et al., 2014). To address this issue, we 128 restrict the function space \mathcal{H} to a RKHS and solve the following regularized optimization problem:

$$129 \quad f_{\mathcal{D}, \lambda} = \arg \min_{f \in \mathcal{H}} \{\mathcal{R}_{\mathcal{D}}(f) + \lambda J(f)\}, \quad (2)$$

130 where $J(f) : \mathcal{H} \rightarrow \mathbb{R}_+$ is a penalty functional with $J(0) = 0$ that controls complexity of f , 131 and $\lambda > 0$ is an appropriate regularization parameter depending on the sample size n such that 132 $\lambda = \lambda(n)$ and $\lim_{n \rightarrow \infty} \lambda(n) = 0$ as $n \rightarrow \infty$. For any estimator $f_{\mathcal{D}, \lambda}$ of function $f_0(\mathbf{x})$, its quality 133 is measured by its excess risk (i.e., the difference between the L_2 expected risks of $f_{\mathcal{D}, \lambda}$ and f_0): 134 $\|f_{\mathcal{D}, \lambda} - f_0\|_{L_{\mathcal{F}_{\mathbb{X}}}^2}^2 = \mathcal{R}_{\mathcal{F}}(f_{\mathcal{D}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0)$, where $\mathcal{F}_{\mathbb{X}}$ is the marginal distribution of \mathcal{F} on \mathbb{X} , and 135 $L_{\mathcal{F}_{\mathbb{X}}}^2$ denotes the space of square-integrable functions with respect to the measure $\mathcal{F}_{\mathbb{X}}$. 136

137

2.2 REPRODUCING KERNEL HILBERT SPACE

138 Following Aronszajn (1950), an RKHS \mathcal{H} is a Hilbert space of functions where all evaluation 139 functionals are continuous and bounded. To wit, for any $f(\mathbf{x}) \in \mathcal{H}$ and $\mathbf{x} \in \mathbb{X}$, there exists a positive 140 constant C such that $\mathcal{L}_{\mathbf{x}}(f) = |f(\mathbf{x})| \leq C\|f\|_{\mathcal{H}}$, where $\mathcal{L}_{\mathbf{x}}$ is the evaluation functional at obser- 141 vation \mathbf{x} , and $\|\cdot\|_{\mathcal{H}}$ is the norm on \mathcal{H} . A function $K(\cdot, \cdot) : \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R}$ is called a repro- 142 ducing kernel (RK) if it is symmetric and positive definite: $\sum_{i=1}^n \sum_{j=1}^n a_i a_j K(\mathbf{x}_i, \mathbf{x}_j) \geq 0$ for any 143 $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{X}$ and $a_1, \dots, a_n \in \mathbb{R}$. By the Moore-Aronszajn Theorem (Aronszajn, 1950), every 144 symmetric positive definite function $K(\cdot, \cdot)$ uniquely defines an RKHS \mathcal{H}_K of real-valued functions. 145 Specifically, \mathcal{H} is the closure of the linear span of kernel functions:

$$146 \quad \mathcal{H}_K = \left\{ f(\cdot) = \sum_{i=1}^n \alpha_i K(\mathbf{x}_i, \cdot) : \mathbf{x}_i \in \mathbb{X}, \alpha_i \in \mathbb{R} \right\},$$

147 and the corresponding inner product is defined as $\langle K(\mathbf{x}_i, \cdot), K(\mathbf{x}_j, \cdot) \rangle_{\mathcal{H}_K} = K(\mathbf{x}_i, \mathbf{x}_j)$. 148

149

3 METHODOLOGIES

150 The optimization problem in Equation (2) yields an efficient estimator of the target function f_0 when 151 the dataset \mathcal{D} is sampled independently from the true distribution \mathcal{F} . However, in many applications, 152 \mathcal{D} often contains contaminated observations due to outliers or adversarial contamination. In such 153 cases, \mathcal{D} is instead generated from Huber's contamination model (Huber, 1992): $\mathcal{P} = (1-\theta)\mathcal{F} + \theta\mathcal{Q}$, 154

162 where \mathcal{F} is the true (uncontaminated) distribution, \mathcal{Q} is an arbitrary contaminating distribution, and
 163 $\theta \in [0, 1/2]$ controls the contamination level. This model captures scenarios where a fraction θ of
 164 the data may be arbitrarily contaminated, while the majority $1 - \theta$ follows the true distribution \mathcal{F} .
 165

166 It is well established that estimators obtained from contaminated datasets can exhibit significant
 167 bias and provide poor approximations of the target function f_0 . To address this challenge, a natural
 168 strategy involves identifying and sampling uncontaminated observations from the contaminated
 169 dataset $\tilde{\mathcal{D}} = \{\tilde{z}_i = (\tilde{\mathbf{x}}_i, \tilde{y}_i)\}_{i=1}^n$ to obtain an optimal solution of f for Equation (2). Therefore,
 170 our objective is to develop an effective subsampling method that is capable of robustly selecting a
 171 representative subset of uncontaminated observations, even in the presence of severe contamination.
 172 Unlike conventional linear regression models, we consider a more general setting where contaminated
 173 observations reside within a RKHS framework. This approach leverages kernel methods to
 174 map the contaminated data into high-dimensional or infinite-dimensional feature spaces, where con-
 175 taminated observations, which are difficult to distinguish in the original input space, becomes more
 176 separable. Building on this insight, we propose a novel kernel-based robust subsampling method
 177 for nonparametric models. A key advantage of our approach is its reliance on the relative distance
 178 between data points in the kernel-induced feature space, rather than the absolute magnitude-based
 179 criteria typically used in linear regression models. This property enables more reliable identification
 of contamination, particularly in complex and nonlinear settings.
 180

For an uncontaminated dataset \mathcal{D} , the squared-error loss in the RKHS \mathcal{H}_K takes the form

$$\mathcal{R}_{\mathcal{D}}(f) = \frac{1}{2n} \sum_{i=1}^n \left\{ y_i - \sum_{j=1}^n \alpha_j K(\mathbf{x}_j, \mathbf{x}_i) \right\}^2.$$

The regularized estimator $f_{\mathcal{D}, \lambda} = \arg \min_{f \in \mathcal{H}} \{\mathcal{R}_{\mathcal{D}}(f) + \lambda J(f)\}$ provides an unbiased estimate of
 185 function f_0 . When dealing with a contaminated dataset $\tilde{\mathcal{D}}$, the squared-error loss becomes
 186

$$\mathcal{R}_{\tilde{\mathcal{D}}}(f) = \frac{1}{2n} \sum_{i=1}^n \left\{ y_i - \sum_{j=1}^n \alpha_j K(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_i) \right\}^2,$$

187 where $\tilde{\mathbf{x}}_i$ is contaminated input vector, and \tilde{y}_i is contaminated output. Here we consider Huber's
 188 contamination model for contaminated data mechanism, i.e., for input vector $\tilde{\mathbf{x}}_i$ and output \tilde{y}_i , a
 189 proportion θ of observations follows the arbitrary contaminating distribution \mathbf{W} and \mathbf{O} , respec-
 190 tively. Under this mechanism, observations $(\tilde{\mathbf{x}}_i, \tilde{y}_i)$ are corrupted with probability θ and remain
 191 uncorrupted with probability $1 - \theta$. The specific forms of \mathbf{W} (e.g., sparse noise, adversarial pertur-
 192 bations) and \mathbf{O} (e.g., outliers, multiplicative errors) characterize the nature of the corruption. The
 193 corresponding estimator $f_{\tilde{\mathcal{D}}, \lambda} = \arg \min_{f \in \mathcal{H}} \{\mathcal{R}_{\tilde{\mathcal{D}}}(f) + \lambda J(f)\}$ is biased when the contam-
 194 ination level θ is relatively large, and its computation becomes prohibitively expensive for a relatively
 195 large sample size n . To overcome these challenges, some robust subsampling methods like low-
 196 gradient subsampling (Jing, 2023), robust gradient-based Markov subsampling (Gong et al., 2020)
 197 and Markov subsampling based on Huber criterion Gong et al. (2022) have been proposed. How-
 198 ever, these subsampling methods often yield unstable estimators due to sensitivity to unbalanced
 199 sampling probabilities, loss of important gradient information, poor performance with contaminated
 200 data. To this end, we propose a novel robust kernel-based Markov subsampling method that operates
 201 in the RKHS to better separate contaminated observations, uses modified gradient information for
 202 more reliable sampling, maintains computational efficiency while being robust to contamination.
 203 The method specifically addresses the limitations of existing subsampling approaches by carefully
 204 preserving the geometric structure of the uncontaminated data while downweighting the influence
 205 of contaminated observations in the kernel space.
 206

207 The gradient of the empirical risk $\mathcal{R}_{\tilde{\mathcal{D}}}(f)$ with respect to the coefficient vector $\alpha = (\alpha_1, \dots, \alpha_n)^\top$
 208 at the i -th observation $(\tilde{\mathbf{x}}_i, \tilde{y}_i)$ is
 209

$$g_i(\alpha) = -\frac{1}{n} \left(\tilde{y}_i - \sum_{j=1}^n \alpha_j K(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_i) \right) \begin{bmatrix} K(\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_i) \\ K(\tilde{\mathbf{x}}_2, \tilde{\mathbf{x}}_i) \\ \vdots \\ K(\tilde{\mathbf{x}}_n, \tilde{\mathbf{x}}_i) \end{bmatrix}$$

216 whose norm is given by
 217

$$218 \quad \|g_i(\alpha)\| = \frac{1}{n} \left| \tilde{y}_i - \sum_{j=1}^n \alpha_j K(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_i) \right| \sqrt{\sum_{j=1}^n K(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_i)^2},$$

$$219 \quad 220 \quad 221$$

222 which implies that the magnitude of $g_i(\alpha)$ depends on $\tilde{e}_i = \left| \tilde{y}_i - \sum_{j=1}^n \alpha_j K(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_i) \right|$ and $\tilde{d}_i =$
 223 $\sqrt{\sum_{j=1}^n K(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_i)^2}$. The absolute value of prediction error \tilde{e}_i measures absolute deviation between
 224 observed and predicted responses, and large values of \tilde{e}_i indicate poor model fit, potentially signaling
 225 contamination. The quantity \tilde{d}_i depicts overall similarity of $\tilde{\mathbf{x}}_i$ to other observations in the RKHS
 226 \mathcal{H}_K . Generally, large value of \tilde{d}_i indicates that $\tilde{\mathbf{x}}_i$ is closely related to most of other observations
 227 (i.e., exhibiting high similarity), and small value of \tilde{d}_i implies that $\tilde{\mathbf{x}}_i$ deviates considerably from
 228 the majority of the dataset $\tilde{\mathcal{D}}$ and can be regarded as a contaminated observation or outlier in feature
 229 space. Based on the preceding argument, we define the residual kernel-norm score as
 230

$$233 \quad w(\tilde{z}_i, \alpha) = \frac{\left| \tilde{y}_i - \sum_{j=1}^n \alpha_j K(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_i) \right|}{\sqrt{\sum_{j=1}^n K(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_i)^2}}. \quad (3)$$

$$234 \quad 235 \quad 236$$

237 A large value of $w(\tilde{z}_i, \alpha)$ can be regarded as a strong indicator of contaminated observation or outlier.
 238 The score (3) normalizes residuals against the local geometry of \mathcal{H}_K , ensuring robust outlier
 239 detection regardless of the kernel structure. We can regard $w(\tilde{z}_i, \alpha)$ as a modified version of the low-
 240 gradient subsampling. Similarly to low-gradient subsampling technique, we can utilize $w(\tilde{z}_i, \alpha)$ to
 241 assign subsampling probabilities, i.e., $\pi_i \propto 1/w(\tilde{z}_i, \alpha)$ is taken as the subsampling probability of
 242 observation $\tilde{z}_i = (\tilde{\mathbf{x}}_i, \tilde{y}_i)$ in which the observations with smaller (larger) values of $w(\tilde{z}_i, \alpha)$ are as-
 243 signed larger (smaller) subsampling probabilities. This method is effective for moderate sample size
 244 n , but it faces high computational cost for large sample size n (i.e., large-scale dataset), and sensitivity
 245 to highly contaminated data at small subsampling ratios (Gong et al., 2020). To overcome these
 246 problems, we develop a robust kernel-based Markov subsampling procedure by utilizing $w(\tilde{z}_i, \alpha)$ to
 247 construct transition acceptance probabilities. This approach ensures that the generated subsamples
 248 are uniformly ergodic Markov chain (u.e.M.c.) samples, and maintains robustness while improving
 249 computational efficiency. The detailed procedure is summarized in Algorithm 1.

250 **Remark 1.** (i) The probabilities $w(\tilde{z}_i, \alpha)$ in (3) depend on the parameter vector $\alpha = (\alpha_1, \dots, \alpha_n)^\top$.
 251 A key challenge in obtaining a high-performance estimator $\hat{f} = f_{\mathbb{S}, \lambda}$ of function f_0 is the need for
 252 a good initial estimate of α , which is particularly difficult in heavily contaminated data settings. To
 253 address this issue, we employ a recursive updating approach, where $\alpha^{(\kappa)}$ is refined iteratively using
 254 the $(\kappa - 1)$ -th subsample drawn from the contaminated dataset $\tilde{\mathcal{D}}$ via the proposed subsampling,
 255 and used to recompute $w(\tilde{z}_i, \alpha^{(\kappa-1)})$.

256 (ii) The choice of subsample size n_0 balances computational complexity of Algorithm 1 and estima-
 257 tion precision. It should be selected based on available computing resources and desired approxi-
 258 mation accuracy.

259 (iii) Steps 6 and 9 of Algorithm 1 can be implemented using some standard subsampling technique,
 260 such as Poisson sampling or replacement sampling.

262 (iv) Parameter λ can be determined via leave-one-out cross-validation (LOOCV) criterion to opti-
 263 mize model performance.

264 (v) The overall computational complexity of Algorithm 1 is $\mathcal{O}(T_0(nn_0p + n_0^3))$. The term nn_0p
 265 arises from evaluating the residual kernel-norm scores across the full dataset, while n_0^3 corresponds
 266 to solving the sub-problem. Crucially, this linear dependence on n represents a substantial improve-
 267 ment over the cubic $\mathcal{O}(n^2p + n^3)$ complexity of standard kernel regression. Additionally, the space
 268 complexity is reduced to $\mathcal{O}(np + n_0^2)$, avoiding the $\mathcal{O}(np + n^2)$ storage required for the full Gram
 269 matrix. Thus, when $n_0 \ll n$, our method offers significant computational and spatial advantages.

270 **Algorithm 1** Robust Kernel-based Markov Subsampling

271 1: **Initialization:** Contaminated data $\tilde{\mathcal{D}} = \{\tilde{z}_i = (\tilde{\mathbf{x}}_i, \tilde{y}_i)\}_{i=1}^n$, $\mathbb{S}_\kappa = \emptyset$, subsample size $n_0 < n$, burn-in
 272 period t_0 , maximum number of iterations T_0 , stopping criterion ξ_0 (e.g., 0.001).

273 2: **Output:** \hat{f}

274 3: Train a pilot estimate $\alpha^{(0)}$ for uniformly drawn observations $\{\tilde{z}_i\}_{i=1}^{n_0}$ from $\tilde{\mathcal{D}}$ via $\alpha^{(0)} = \arg \min_{\alpha} \sum_{i=1}^{n_0} \{\tilde{y}_i - \sum_{j=1}^{n_0} \alpha_j K(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_i)\}^2 + \lambda J(f)$, and set $\kappa = 1$

275 4: **while** $\kappa \leq T_0$ or $\|\alpha^{(\kappa)} - \alpha^{(\kappa-1)}\|_2 \geq \xi_0$ **do**

276 5: Set $\alpha = \alpha^{(\kappa-1)}$

277 6: Randomly draw an observation \tilde{z}_1 from $\tilde{\mathcal{D}}$, and compute $w(\tilde{z}_1, \alpha)$ via (3) and set $\mathbb{S}_\kappa = \mathbb{S}_\kappa \cup \tilde{z}_1$

278 7: **for** $2 \leq t \leq n_0 + t_0$ **do**

279 8: **while** $|\mathbb{S}_\kappa| < t$ **do**

280 9: Randomly draw a candidate observation \tilde{z}^* from $\tilde{\mathcal{D}}$ and compute $w(\tilde{z}^*, \alpha)$ via (3)

281 10: Calculate acceptance probability: $\pi_\alpha = \min\{1, w(\tilde{z}_{t-1}, \alpha)/w(\tilde{z}^*, \alpha)\}$

282 11: Set $\mathbb{S}_\kappa = \mathbb{S}_\kappa \cup \tilde{z}^*$ with probability π_α

283 12: If \tilde{z}^* is accepted, set $\tilde{z}_t = \tilde{z}^*$

284 13: **end while**

285 14: Set $w(\tilde{z}_t, \alpha) = w(\tilde{z}^*, \alpha)$

286 15: **end for**

287 16: Denote the last n_0 observations of \mathbb{S}_κ as $\{(\tilde{\mathbf{x}}_i^*, \tilde{y}_i^*)\}_{i=1}^{n_0}$

288 17: Set $\alpha^{(\kappa)} = \arg \min_{\alpha} \sum_{i=1}^{n_0} \left\{ \tilde{y}_i^* - \sum_{j=1}^{n_0} \alpha_j K(\tilde{\mathbf{x}}_j^*, \tilde{\mathbf{x}}_i^*) \right\}^2 + \lambda J(f)$

289 18: Set $f_{\mathbb{S}, \lambda}^{(\kappa)}(\tilde{\mathbf{x}}) = \sum_{j=1}^{n_0} \alpha_j^{(\kappa)} K(\tilde{\mathbf{x}}_j^*, \tilde{\mathbf{x}})$

290 19: Update $\kappa = \kappa + 1$

291 20: **end while**

292 21: Return $\hat{f} = f_{\mathbb{S}, \lambda}^{(\kappa+1)}$

294 4 THEORETICAL RESULTS

296 4.1 VALIDITY OF SUBSAMPLING

299 We first show that the Markov chain generated by the KRMS Algorithm 1 is uniformly ergodic. This
 300 property ensures convergence to a unique stationary distribution in finite time, which is a crucial
 301 requirement in establishing our subsequent theoretical properties.

302 **Theorem 1.** *Let $\hat{\alpha}$ be estimate of parameter vector α obtained with Algorithm 1. Consider the*
 303 *Markov chain $\{\tilde{z}_t\}_{t \geq 0}$ generated by the following process: given the current state \tilde{z}_t together with*
 304 *the $\hat{\alpha}$, a candidate \tilde{z}^* is generated by randomly sampling from $\tilde{\mathcal{D}}$ and accepted with probability*
 305 *$p_a^* = \min\{1, w(\tilde{z}_t, \hat{\alpha})/w(\tilde{z}^*, \hat{\alpha})\}$. Then, the Markov chain $\{\tilde{z}_t\}_{t \geq 0}$ is irreducible and aperiodic*
 306 *on the finite state space $\tilde{\mathcal{D}}$, and is therefore uniformly ergodic. Its unique stationary distribution \mathcal{P}'*
 307 *has the probability mass function:*

$$\pi(\tilde{z}) = \frac{1/w(\tilde{z}, \hat{\alpha})}{\sum_{z' \in \tilde{\mathcal{D}}} 1/w(z', \hat{\alpha})}, \quad \forall \tilde{z} \in \tilde{\mathcal{D}}.$$

311 *Consequently, the limiting probability of each sample is proportional to the inverse of its kernel*
 312 *residual score $w(\tilde{z}, \hat{\alpha})$.*

313 By Theorem 1, our subsampling algorithm yields a u.e.M.c sample converging to \mathcal{P}' , which repre-
 314 sents a “cleaner” version of the initially contaminated distribution \mathcal{P} , with a reduced contamination
 315 proportion $0 \leq \theta' < \theta$.

317 **Theorem 2. (Contamination Reduction)** *Let the original distribution be $\mathcal{P} = (1 - \theta)\mathcal{F} + \theta\mathcal{Q}$. The*
 318 *stationary distribution is a mixture $\mathcal{P}' = (1 - \theta')\mathcal{F}' + \theta'\mathcal{Q}'$, where the new contamination proportion*
 319 *is given by:*

$$\theta' = \frac{\theta S_{\mathcal{Q}}}{(1 - \theta)S_{\mathcal{F}} + \theta S_{\mathcal{Q}}},$$

323 *where $S_{\mathcal{F}} = \mathbb{E}_{\mathcal{F}}(1/w)$ and $S_{\mathcal{Q}} = \mathbb{E}_{\mathcal{Q}}(1/w)$ are the expected inverse scores for inliers and outliers,*
respectively. Consequently, $\theta' < \theta$ if and only if $S_{\mathcal{Q}} < S_{\mathcal{F}}$.

324

325

Remark 2. *Theorem 2 quantifies the robustness gain. The condition $\theta' < \theta$ holds provided $S_Q < S_F$, implying that outliers possess larger average residual kernel-norm scores (i.e., $\mathbb{E}_Q(w) > \mathbb{E}_F(w)$). This aligns with the intuition of residual-based detection: reweighting inversely to residual scores effectively downweights contamination. To ensure $S_Q < S_F$, we rely on the geometric separation in RKHS. Specifically, we assume outliers are incoherent with the kernel structure (see Proposition 1 in Appendix B).*

331

332

4.2 ASYMPTOTIC PROPERTIES OF ESTIMATOR

333

Now we investigate the theoretical properties of the regularized estimator $f_{\mathbb{S},\lambda}$ defined in Algorithm 1. Due to the theoretical challenges posed by the standard Gaussian kernel, we employ instead a symmetric periodic Gaussian kernel (introduced in the Appendix B). This choice enables analytically tractable approximations, facilitating eigen-decomposition and simultaneous diagonalization for asymptotic analysis (Lin & Brown, 2004; Zeng & Xia, 2019). Specifically, the regularization scheme for regression with symmetric periodic Gaussian kernel is given by $J(f) = \|f\|_{\mathcal{H}_\omega}^2 = \langle f, f \rangle_{\mathcal{H}_\omega}$, where the inner product $\langle f, f \rangle_{\mathcal{H}_\omega}$ is defined analogously to $\langle f, f \rangle_{\mathcal{H}_K}$.

341

342

The estimator $f_{\mathbb{S},\lambda}$ is obtained by minimizing the regularized empirical risk using samples $\mathbb{S} = \{\tilde{z}_i = (\tilde{\mathbf{x}}_i, \tilde{y}_i)\}_{i=1}^n$ drawn from the distribution \mathcal{P}' . Define

343

344

345

$$\begin{aligned} \mathcal{R}_{\mathbb{S}}(f) &= \frac{1}{n} \sum_{i=1}^n \{f(\tilde{\mathbf{x}}_i) - \tilde{y}_i\}^2, \quad f_{\mathbb{S},\lambda} = \arg \min_{f \in \mathcal{H}_\omega} \{\mathcal{R}_{\mathbb{S}}(f) + \lambda J(f)\}, \\ \mathcal{R}_{\mathcal{P}'}(f) &= \int_{\mathcal{Z}} \{f(\tilde{\mathbf{x}}) - \tilde{y}\}^2 d\mathcal{P}', \quad f_{\mathcal{P}'} = \arg \min_{f \in \mathcal{H}_\omega} \mathcal{R}_{\mathcal{P}'}(f). \end{aligned}$$

346

347

Condition 1. $\{\tilde{\mathbf{x}}_i\}_{i=1}^n$ is a uniformly ergodic Markov chain sample of variable $\tilde{\mathbf{x}}$, exhibiting uniformly mixing (ϕ -mixing) properties. The density function $p'(\tilde{\mathbf{x}})$ of $\tilde{\mathbf{x}}$ is supported on $[0, \pi]$ and satisfies the boundedness: $0 < c \leq p'(\tilde{\mathbf{x}}) \leq C < \infty$ for the positive constants c and C .

348

349

Condition 2. $\{\epsilon_i\}_{i=1}^n$ is a sequence of i.i.d. random variables that are independent of $\tilde{\mathbf{x}}$, and satisfy $\mathbb{E}(\epsilon_i) = 0$ and $\mathbb{E}(\epsilon_i^2) = \sigma^2$.

350

Condition 3. $f_{\mathcal{P}'} \in \mathcal{H}_{\omega[-\pi, \pi]}^\infty$.

351

Condition 4. $f_{\mathcal{P}'} \in \mathcal{H}_{[-\pi, \pi]}^m$.

352

353

The explanation of these conditions and the definition of norms and inner products are given in the Appendix B. For n -dependent sequences a_n and b_n , the notation $a_n \sim b_n$ means $\lim_{n \rightarrow \infty} a_n/b_n = c \in (0, \infty)$.

354

355

Theorem 3. Suppose that Conditions 1, 2 and 3 hold. If $\lambda \sim (\ln n)^{\frac{1}{2}}/n$ as $n \rightarrow \infty$, the regularization estimator $f_{\mathbb{S},\lambda}$ satisfies

356

357

358

$$\|f_{\mathbb{S},\lambda} - f_{\mathcal{P}'}\|_0^2 = O_p \left(\frac{(\ln n)^{\frac{1}{2}}}{n} \right).$$

359

360

Theorem 4. Suppose that Conditions 1, 2 and 4 hold, and ω is a constant. If $\lambda = o(1)$ and $(-\ln \lambda)^{\frac{1}{2}}/\omega \sim n^{\frac{1}{2m+1}}$ as $n \rightarrow \infty$, the regularization estimator $f_{\mathbb{S},\lambda}$ satisfies

361

362

363

$$\|f_{\mathbb{S},\lambda} - f_{\mathcal{P}'}\|_0^2 = O_p \left(n^{-\frac{2m}{2m+1}} \right).$$

364

365

Theorems 3 and 4 establish that for an infinitely or finitely smooth m -th order target function, the estimation error tends to zero as the sample size approaches infinity provided the regularization parameter λ is appropriately chosen, demonstrating the consistency of the estimator. While we employ the Gaussian kernel to establish logarithmic convergence, our framework accommodates polynomial-decay kernels (e.g., Sobolev) under Conditions 3–4, readily yielding polynomial rates.

366

367

To derive the functional Bahadur representation (FBR) of the estimator, a key prerequisite for establishing its asymptotic theory, we first introduce necessary notation. Let $H_{\omega_t} = H_\omega(t, \cdot)$. For any $f, \Delta f \in \mathcal{H}_\omega$, define

368

369

370

371

372

373

374

375

376

377

$$S_{n\lambda}(f) = -\frac{2}{n} \sum_{i=1}^n (\tilde{y}_i - f(\tilde{\mathbf{x}}_i)) H_{\omega_{\tilde{\mathbf{x}}_i}} + 2\lambda f,$$

$$DS_{n\lambda}(f)\Delta f = \frac{2}{n} \sum_{i=1}^n \Delta f(\tilde{\mathbf{x}}_i) H_{\omega_{\tilde{\mathbf{x}}_i}} + 2\lambda \Delta f.$$

Let $DS_{\lambda}(f)\Delta f = \mathbb{E}_{p'}\{DS_{n\lambda}(f)\Delta f\}$, $S_{\lambda}(f) = \mathbb{E}_{p'}\{S_{n\lambda}(f)\}$, $\mathcal{R}_{\mathbb{S},\lambda}(f) = \mathcal{R}_{\mathbb{S}}(f) + \lambda J(f)$, $\mathcal{R}_{p',\lambda}(f) = \mathbb{E}\{\mathcal{R}_{\mathbb{S},\lambda}(f)\}$, $f_{p',\lambda} = \arg \min_{f \in \mathcal{H}_{\omega}} \mathcal{R}_{p',\lambda}(f)$. Thus, we have $f_{\mathbb{S},\lambda} - f_{p'} = (f_{p',\lambda} - f_{p'}) + f_{\mathbb{S},\lambda} - f_{p',\lambda}$. Denote $\tilde{f} = f_{p',\lambda} - DS_{\lambda}^{-1}(f_{p',\lambda})S_{n\lambda}(f_{p',\lambda})$, $f_{\mathbb{S},\lambda} - f_{p',\lambda} = (f_{\mathbb{S},\lambda} - \tilde{f}) + (\tilde{f} - f_{p',\lambda})$.

Theorem 5. (Functional Bahadur representation) Suppose that Conditions 1, 2 and 3 hold. If $\lambda \sim (\ln n)^{\frac{1}{2}}/n = o(1)$ as $n \rightarrow \infty$, we have

$$\left\| f_{\mathbb{S},\lambda} - f_{p'} + \{DS_{\lambda}(f_{p'})\}^{-1} S_{n\lambda}(f_{p'}) \right\|_{\lambda}^2 = O_p\left(\frac{\ln n}{n^2}\right).$$

Theorem 5 shows that the estimation error can be accurately approximated by a leading linear random term, with the remainder term converging to zero at the high-order rate of $O_p(\ln n/n^2)$. Now we apply this FBR to show pointwise asymptotic normality of estimators in Sobolev spaces.

Theorem 6. Suppose that Conditions 1, 2 and 3 hold. Let $f_{p'}(\tilde{\mathbf{x}}) = \sum_{k=0}^{\infty} f_{p',k} \phi_k(\tilde{\mathbf{x}})$, where $f_{p',k} = \int_{\mathbb{X}} f(\tilde{\mathbf{x}}) \phi_k(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}}$, $f_0(\tilde{\mathbf{x}}) = \sum_{k=0}^{\infty} \lambda_k f_{p',k} \phi_k(\tilde{\mathbf{x}})/(\lambda + \lambda_k)$. If $\lambda = o(1)$ and $(-\ln \lambda)^{\frac{1}{2}}/\omega \sim n^{\frac{1}{2m+1}}$ as $n \rightarrow \infty$, for any $\tilde{\mathbf{x}}_0 \in [-\pi, \pi]$, there exists a constant $\sigma_{\tilde{\mathbf{x}}_0}^2 > 0$ such that

$$\lim_{n \rightarrow \infty} \frac{\sigma^2}{(\ln n)^{\frac{1}{2}}} \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} \phi_k^2(\tilde{\mathbf{x}}_0) = \sigma_{\tilde{\mathbf{x}}_0}^2,$$

we have

$$\sqrt{\frac{n}{(\ln n)^{\frac{1}{2}}}} \{f_{\mathbb{S},\lambda}(\tilde{\mathbf{x}}_0) - f_0(\tilde{\mathbf{x}}_0)\} \xrightarrow{d} \mathcal{N}(0, \sigma_{\tilde{\mathbf{x}}_0}^2),$$

Theorem 7. Suppose that Conditions 1, 2 and 4 hold. If $\lambda = o(1)$ and $(-\ln \lambda)^{\frac{1}{2}}/\omega \sim n^{\frac{1}{2m+1}}$ as $n \rightarrow \infty$, we have

$$\left\| f_{\mathbb{S},\lambda} - f_{p'} + \{DS_{\lambda}(f_{p'})\}^{-1} S_{n\lambda}(f_{p'}) \right\|_{\lambda}^2 = O_p\left(n^{-\frac{4m}{2m+1}}\right).$$

For any $\tilde{\mathbf{x}}_0 \in [-\pi, \pi]$, if there exists a constant $\tilde{\sigma}_{\tilde{\mathbf{x}}_0}^2 > 0$ such that

$$\lim_{n \rightarrow \infty} \frac{\sigma^2}{n^{\frac{1}{2m+1}}} \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} \phi_k^2(\tilde{\mathbf{x}}_0) = \tilde{\sigma}_{\tilde{\mathbf{x}}_0}^2,$$

we have

$$n^{\frac{m}{2m+1}} \{f_{\mathbb{S},\lambda}(\tilde{\mathbf{x}}_0) - f_0(\tilde{\mathbf{x}}_0)\} \xrightarrow{d} \mathcal{N}(0, \tilde{\sigma}_{\tilde{\mathbf{x}}_0}^2).$$

Theorems 6 and 7 establish that for a target function with an infinitely or finite smooth m -th order, the estimator achieves a fast convergence rate. Moreover, when centered by its oracle-smoothed counterpart and properly scaled, the estimator's distribution converges to a normal distribution.

4.3 GENERALIZATION BOUND

To characterize the generalization ability of Algorithm 1, we evaluate the quality via its excess risk $\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{F}}(f_0)$. In what follows, we discuss non-asymptotic upper bound of the excess risk. We refine estimation error by exploiting the boundedness of the target function, restricting regression function to a pre-given interval. To this end, we assume that there exists a constant $M > 0$ such that $|y| \leq M$ for any $y \in \mathcal{Y}$ and $|f(\mathbf{x})| \leq M$ for any $\mathbf{x} \in \mathbb{X}$. Given $\mathcal{H}_{\omega} \subset \mathcal{H}_K$, let $C(\mathbb{X})$ denote the space of continuous function on \mathbb{X} equipped with the norm: $\|f\|_{\infty} = \sup_{\mathbf{x} \in \mathbb{X}} |f(\mathbf{x})|$. By the continuity of kernel $K(\cdot)$ and compactness of \mathbb{X} , we have $\kappa = \sup_{\mathbf{x} \in \mathbb{X}} K(\mathbf{x}, \mathbf{x}) < \infty$, which implies the following key inequality: $\|f\|_{\infty} \leq \kappa \|f\|_K^2$ for $\forall f \in \mathcal{H}_K$.

When the sample dataset contains contaminated observations, the traditional error decomposition approach faces additional challenges. To address this issue, we consider a new error decomposition for the excess risk: $\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{F}}(f_0)$, which is given in Propositions 2–5.

432 **Theorem 8.** Suppose that $\mathbb{S} = \{\tilde{z}_i = (\tilde{\mathbf{x}}_i, \tilde{y}_i)\}_{i=1}^n$ is a u.e.M.c sample. If $\mathcal{D}(\lambda)$ satisfies $\mathcal{D}(\lambda) \leq$
 433 $c_q \lambda^q$ with $\lambda = n^{-\vartheta_1}$ and $\vartheta_1 = \min\{1/(2-q), 1/((1+s)q), 1/q\}$, thus, for any $0 < \delta < 1$, with
 434 probability at least $1 - \delta$,

$$435 \quad 436 \quad \mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) \leq C_2 \ln(2/\delta) n^{-\vartheta_1 q} + 48M^2 \theta',$$

437 where C_2 is a constant independent of n and δ , θ' is the proportion of contaminated data in the
 438 subsample set after subsampling.

439 Theorem 8 establishes asymptotic property of the excess risk, and its convergence rate is $\mathcal{O}(n^{-1})$
 440 as $n \rightarrow \infty$ and $\theta' \rightarrow 0$, which is consistent with the known optimal rate for regularized least square
 441 type algorithms Li et al. (2017).

443 5 SIMULATION STUDIES

444 Simulation studies are conducted to evaluate the finite-sample performance of the proposed KRMS
 445 method for kernel-based regularized least squares regression. Our evaluation focuses on the
 446 method's robustness under different data contamination scenarios. The simulation design incor-
 447 porates two fundamentally distinct data generating processes: a linear regression and a nonlinear
 448 regression. For each experimental configuration, we generate a training set with $N = 10000$ ob-
 449 servations and an independent test set with $N_{\text{test}} = 2000$ observations. The proposed subsam-
 450 pling algorithm is applied to draw subsamples of sizes $n \in \{500, 1000, 1500\}$. The entire ex-
 451 periment is repeated $M = 100$ times to ensure statistical reliability. For each replication m , we
 452 compute mean squared error (MSE) for the test set via $\text{MSE}_m = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (\tilde{y}_i - \hat{y}_i)^2$, where
 453 \hat{y}_i is the predictive value of \tilde{y}_i . Our primary performance metric is the average mean squared er-
 454 rror (AMSE) for all replications: $\text{AMSE} = \frac{1}{M} \sum_{m=1}^M \text{MSE}_m$. To assess method stability and the
 455 performance of the proposed algorithm, we report the standard deviation (SD) of the MSEs val-
 456 ues among M replications, and the positive screening rate (PSR, %), defined as the proportion of
 457 correctly identified uncontaminated observations in each subsample, respectively. For comparison,
 458 we consider the following five subsampling algorithms: MS-KLSR–Markov sampling with kernel-
 459 based regularized least squares regression (Zou et al., 2014), UNIF-KLSR–uniform subsampling
 460 with kernel-based regularized least squares regression, UNIF-LSR–uniform subsampling for linear
 461 least squares regression, GMS-LSR–gradient-based Markov sampling for linear least squares re-
 462 gression (Gong et al., 2020), and LGS-LSR–low gradient-based subsampling for linear least squares
 463 regression (Jing, 2023). To implement kernel-based regression algorithms, we take the Gaussian
 464 kernel $K(x, t) = \exp\{-(x - t)^2/4\}$. The regularization parameter is selected using the LOOCV
 465 strategy.

466 **Experiment 1** (Linear model). Dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$ is generated from linear model $y_i = x_{i1} +$
 467 $2x_{i2} + 3x_{i3} + 4x_{i4} + \epsilon_i$, where x_{i1}, \dots, x_{i4} are independently generated from uniform distri-
 468 bution $U(0, 1)$, and ϵ_i 's are independently sampled from the standard normal distribution. To create
 469 corrupted observations using the mechanism: for predictors \mathbf{x}_i , we replace a proportion θ of ob-
 470 servations with random values drawn from \mathbf{W}_i ; for corresponding response variable y_i , we replace
 471 contaminated cases with values drawn from O_i for $\theta \in \{0.1, 0.2, 0.3, 0.4\}$. We assume that O_i
 472 follows the normal distribution $\mathcal{N}(0, 10)$, inducing significant fluctuations of contaminated observa-
 473 tions, and \mathbf{W}_i follows the following three distributions: (M1) $W_{ij} \sim t(1)$, (M2) $W_{ij} \sim \exp(1)$ and
 474 (M3) $W_{ij} \sim F(1, 1)$, where $t(1)$ represents the t -distribution with one degree of freedom, $\exp(1)$
 475 denotes standard exponential distribution, $F(\cdot, \cdot)$ is the F-distribution, and W_{ij} is the j -th component
 476 of \mathbf{W}_i , which are designed to investigate robustness to different types of outliers.

477 Tables 1–3 (Tables 2 and 3 are given in Appendix D) indicate that the KRMS-KLSR method out-
 478 performs others in that the former consistently achieves the relatively small AMSE and SD values
 479 and maintains high PSR values for nearly all scenarios. For contamination schemes M1 and M3
 480 together with low values of θ (e.g., $\theta \leq 0.2$), the LGS-LSR method shows marginally superior
 481 performance over KRMS-KLSR based on AMSE values, but it exhibits lower SD and higher PSR
 482 values, implying poorer stability and reliability compared to KRMS-KLSR. However, under severe
 483 contamination (e.g., $\theta > 0.2$) or complex outliers (e.g., M2 mechanism), KRMS-KLSR offers con-
 484 siderable improvements: it exhibits only moderate AMSE increases while LGS-LSR suffers from
 485 substantial performance degradation. GMS-LSR demonstrates intermediate performance, bridg-
 ing the gap between LGS-LSR and conventional methods. Non-robust methods (e.g., UNIF-LSR)

486
487 Table 1: Performance comparison of KRMS and five competing subsampling methods for corrupted
488 mechanism M1 in Experiment 1

θ	Method	$n = 500$			$n = 1000$			$n = 1500$		
		AMSE	SD	PSR	AMSE	SD	PSR	AMSE	SD	PSR
0.1	UNIF-KLSR	1.605	0.513	90.04%	1.861	0.520	89.92%	2.238	0.526	90.15%
	MS-KLSR	1.364	0.324	96.75%	1.500	0.346	96.60%	1.857	0.476	96.76%
	KRMS-KLSR	1.118	0.043	99.93%	1.084	0.035	99.94%	1.070	0.033	99.93%
	UNIF-LSR	18.175	4.974	90.04%	22.156	3.359	89.92%	23.867	2.799	90.15%
	GMS-LSR	2.975	1.681	94.38%	4.085	1.760	93.61%	5.076	2.323	93.56%
	LGS-LSR	1.032	0.050	99.30%	1.032	0.045	99.26%	1.032	0.081	99.16%
0.2	UNIF-KLSR	2.545	0.521	80.02%	2.797	0.507	80.16%	3.225	0.444	80.22%
	MS-KLSR	2.133	0.528	91.52%	2.425	0.509	91.57%	2.862	0.437	92.22%
	KRMS-KLSR	1.117	0.046	99.89%	1.082	0.035	99.87%	1.074	0.035	99.86%
	UNIF-LSR	25.266	2.203	80.02%	26.584	1.449	80.16%	27.235	0.844	80.22%
	GMS-LSR	9.647	3.397	85.40%	11.755	3.094	85.25%	13.691	2.706	85.55%
	LGS-LSR	1.083	0.092	98.42%	1.065	0.083	98.30%	1.068	0.089	98.14%
0.3	UNIF-KLSR	3.337	0.702	70.41%	3.859	0.543	70.08%	4.434	0.556	70.00%
	MS-KLSR	2.981	0.587	84.94%	3.570	0.469	85.23%	4.116	0.450	86.02%
	KRMS-KLSR	1.127	0.043	99.76%	1.085	0.037	99.79%	1.069	0.033	99.73%
	UNIF-LSR	27.075	1.154	70.41%	27.835	0.644	70.08%	28.102	0.507	70.00%
	GMS-LSR	16.172	3.216	76.47%	18.815	2.179	76.87%	19.973	2.153	77.56%
	LGS-LSR	1.138	0.121	97.12%	1.155	0.185	96.95%	1.126	0.121	96.74%
0.4	UNIF-KLSR	4.494	0.792	60.06%	5.264	0.869	60.03%	5.868	0.654	59.83%
	MS-KLSR	4.341	0.699	75.30%	5.055	0.705	76.09%	5.570	0.535	76.84%
	KRMS-KLSR	1.132	0.047	99.62%	1.086	0.034	99.61%	1.069	0.041	99.57%
	UNIF-LSR	27.739	0.657	60.06%	28.178	0.528	60.03%	28.280	0.468	59.83%
	GMS-LSR	20.541	2.332	67.39%	22.434	1.816	68.01%	22.913	1.351	69.14%
	LGS-LSR	1.328	0.287	95.03%	1.275	0.192	94.83%	1.273	0.176	94.46%

509
510 demonstrate severe degradation, leading to a relatively large AMSE values and a relatively low PSR
511 values, which confirms the necessity of robust subsampling. Thus, the proposed KRMS-KLSR
512 method retains stable performance with increasing contamination levels and larger subsample sizes.
513 To save space, Experiment 2 for nonlinear regression model are moved to Appendix D.

516 6 CONCLUSION

517
518 Corrupted observations from outliers, measurement errors, or multi-source heterogeneity are widely
519 encountered in biomedicine, environmental science, and economics. Traditional statistical inference
520 often faces huge challenges such as computational inefficiency and sensitivity to contamination.
521 Subsampling has emerged as a powerful strategy to select representative subsets while discarding
522 contaminated points. However, existing methods like score-based or low-gradient subsampling
523 mainly focus on parametric models and perform poorly under high contamination.

524
525 To address these issues, we propose a KRMS method for nonparametric regression with contam-
526 inated data. Our key innovation is to define subsampling probability as the ratio of the absolute
527 residual to the kernel norm of covariates, which dynamically downweights outliers while preserving
528 clean data. Unlike conventional methods, the proposed approach explicitly accounts for both the
529 predictive error and the geometric structure of the data in a RKHS, ensuring robustness even under
530 severe contamination. Theoretical guarantees, including consistency and asymptotic normality and
531 generalization bounds under RKHS regularization, are established under some conditions.

532
533 Empirical results demonstrate KRMS’s superiority in high-contamination settings, with stable per-
534 formance across simulations and real-data applications. While the method currently focuses on con-
535 tinuous, fully observed responses, future work will extend it to classification, distributed streaming
536 data, missing data, and high- or ultrahigh-dimensional optimization via deep learning approaches.

537 REPRODUCIBILITY STATEMENT

538
539 Detailed explanations on Tables 1–9 are given in Appendix D. We also attach our codes to facilitate
the reproduction of our experiments.

540 REFERENCES
541

542 Mingyao Ai, Jun Yu, Huiming Zhang, and HaiYing Wang. Optimal subsampling algorithms for big
543 data regressions. *Statistica Sinica*, 31(2):749–772, 2021.

544 Nachman Aronszajn. Theory of reproducing kernels. *Transactions of the American mathematical
545 society*, 68(3):337–404, 1950.

546 Lorenzo Camponovo, Olivier Scaillet, and Fabio Trojani. Robust subsampling. *Journal of Econo-
547 metrics*, 167:197–210, 2012.

548 Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. *ACM Trans.
549 Intell. Syst. Technol.*, 2:27:1–27:27, 2011.

550 Cucker and Smale. Best choices for regularization parameters in learning theory: On the
551 bias—variance problem. *Foundations of Computational Mathematics*, 2(4):413–428, 2002.

552 Paul Doukhan. Mixing. In *Mixing: Properties and Examples*, pp. 15–23. Springer, 1995.

553 Jianqing Fan, Fang Han, and Han Liu. Challenges of big data analysis. *National Science Review*, 1
554 (2):293–314, 2014.

555 Tieliang Gong, Bin Zou, and Zongben Xu. Learning with l_1 -regularizer based on markov resam-
556 pling. *IEEE Transactions on Cybernetics*, 46(5):1189–1201, 2015.

557 Tieliang Gong, Quanhuan Xi, and Chen Xu. Robust gradient-based markov subsampling. In *Pro-
558 ceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 4004–4011, 2020.

559 Tieliang Gong, Yuxin Dong, Hong Chen, Bo Dong, and Chen Li. Markov subsampling based on
560 huber criterion. *IEEE Transactions on Neural Networks and Learning Systems*, 35(2):2250–2262,
561 2022.

562 Peter J Huber. Robust estimation of a location parameter. In *Breakthroughs in statistics: Methodol-
563 ogy and distribution*, pp. 492–518. Springer, 1992.

564 Kaili Jing. *Joint feature screening and subsampling in analysis of massive data*. PhD thesis, Uni-
565 versité d’Ottawa/University of Ottawa, 2023.

566 Galin L Jones. On the markov chain central limit theorem. *Probability Surveys*, pp. 299–320, 2004.

567 Alexandros Karatzoglou, Alex Smola, Kurt Hornik, and Achim Zeileis. *kernlab: Kernel-Based
568 Machine Learning Lab*, 2004. R package version 0.9-31.

569 David A Levin and Yuval Peres. *Markov chains and mixing times*, volume 107. American Mathe-
570 matical Soc., 2017.

571 Luoqing Li, Weifu Li, Bin Zou, Yulong Wang, Yuan Yan Tang, and Hua Han. Learning with
572 coefficient-based regularized regression on markov resampling. *IEEE Transactions on Neural
573 Networks and Learning Systems*, 29(9):4166–4176, 2017.

574 Yi Lin and Lawrence D Brown. Statistical properties of the method of regularization with periodic
575 gaussian reproducing kernel. *Annals of Statistics*, 32(4):1723–1743, 2004.

576 Ping Ma, Michael W Mahoney, and Bin Yu. A statistical perspective on algorithmic leveraging. *The
577 Journal of Machine Learning Research*, 16(1):861–911, 2015.

578 James Mercer. Functions of positive and negative type, and their connection with the theory of
579 integral equations. *Philosophical transactions of the royal society of London. Series A, containing
580 papers of a mathematical or physical character*, 209(441–458):415–446, 1909.

581 A. Rudi, D. Calandriello, L. Carratino, and L. Rosasco. On fast leverage score sampling and optimal
582 learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
583 (eds.), *Advances in Neural Information Processing Systems 31*, pp. 5672–5682. Curran Asso-
584 ciates, Inc., 2018.

594 Paul Samson. Concentration of measure inequalities for markov chains and Φ -mixing processes.
 595 *Annals of Probability*, 28(1):416–461, 2000.
 596

597 Daniel Ting and Eric Brochu. Optimal sub-sampling with influence functions. In S. Bengio, H. Wal-
 598 lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural*
 599 *Information Processing Systems 31*, pp. 3650–3659. Curran Associates, Inc., 2018.

600 Haiying Wang and Yanyuan Ma. Optimal subsampling for quantile regression in big data.
 601 *Biometrika*, 108(1):99–112, 2021.

602 Xianli Zeng. *On some nonparametric approaches for detecting variable associations*. Ph.D. diss.,
 603 NATIONAL UNIVERSITY OF SINGAPORE, 2019.

604 Xianli Zeng and Yingcun Xia. Asymptotic distribution for regression in a symmetric periodic gaus-
 605 sian kernel hilbert space. *Statistica Sinica*, 29(2):1007–1024, 2019.

606 Tong Zhang. Covering number bounds of certain regularized linear function classes. *Journal of*
 607 *Machine Learning Research*, 2:527–550, 2002.

608 Dingxuan Zhou. The covering number in learning theory. *Journal of Complexity*, 18(3):739–767,
 609 2002.

610 Rui Zhu. Gradient-based sampling: an adaptive importance sampling for least-squares. In *Proceed-
 611 ings of the 30th International Conference on Neural Information Processing Systems*, NIPS’16,
 612 pp. 4059–4067. Curran Associates Inc., 2016.

613 Bin Zou, Yuan Yan Tang, Zongben Xu, Luoqing Li, Jun Xu, and Yang Lu. The generalization
 614 performance of regularized regression algorithms based on markov sampling. *IEEE Transactions*
 615 *on Cybernetics*, 44(9):1497–1507, 2014.

616 A CHATGPT USAGE

617 During the preparation of this manuscript, we used ChatGPT (GPT-4) solely for the purpose of
 618 polishing language and syntax. The tool was employed exclusively for language refinement and was
 619 not used to generate any scientific content, ideas, experimental designs, or data interpretations.

620 B MAIN TOOLS FOR THEORETICAL RESULTS

621 B.1 MAIN TOOLS FOR VALIDITY OF SUBSAMPLING

622 We explicitly quantify the robustness of the proposed method by analyzing the stationary distribution
 623 of the generated Markov chain. We assume the contaminated dataset $\tilde{\mathcal{D}}$ is an i.i.d. realization of the
 624 contaminated distribution $\mathcal{P} = (1 - \theta)\mathcal{F} + \theta\mathcal{Q}$, with density $p(\tilde{z})$. To ensure technical rigor, we
 625 introduce the following regularity assumption.

626 **Assumption 1** (Non-vanishing Score). *There exists a constant $\delta > 0$ such that the residual kernel-
 627 norm score satisfies $w(\tilde{z}, \alpha) \geq \delta$ almost surely for all $\tilde{z} \in \text{supp}(\mathcal{P})$. Although Algorithm 1 op-
 628 erates on a finite dataset $\tilde{\mathcal{D}}$ (the empirical measure), for our theoretical analysis, we consider its
 629 population-level counterpart where proposals are drawn from the underlying contaminated distri-
 630 bution \mathcal{P} . This allows us to characterize the distributional robustness of the method.*

631 First, we identify the exact form of the stationary distribution generated by Algorithm 1. Note that
 632 drawing a candidate uniformly from the dataset $\tilde{\mathcal{D}}$ is empirically equivalent to drawing a proposal
 633 from the distribution \mathcal{P} .

634 **Lemma 1** (Stationary Distribution). *The Markov chain generated by Algorithm 1, utilizing the
 635 contaminated density $p(\tilde{z}^*)$ as the independent proposal distribution and acceptance probability
 636 $\min\{1, w(\tilde{z}, \alpha)/w(\tilde{z}^*, \alpha)\}$, converges to a unique stationary distribution \mathcal{P}' with density:*

$$637 \quad p'(\tilde{z}) = \frac{1}{Z} \frac{p(\tilde{z})}{w(\tilde{z}, \alpha)},$$

638 where $Z = \int [p(\tilde{z})/w(\tilde{z}, \alpha)] d\tilde{z}$ is the normalizing constant.

648 *Proof of Lemma 1.* The Algorithm 1 utilizes an Independent Metropolis-Hastings sampler. The pro-
 649 posal distribution is the contaminated distribution $p(\tilde{z}^*)$. The transition kernel is
 650

$$651 \quad T(\tilde{z} \rightarrow \tilde{z}^*) = p(\tilde{z}^*) \min \left\{ 1, \frac{w(\tilde{z}, \alpha)}{w(\tilde{z}^*, \alpha)} \right\} + (1 - r(\tilde{z}))\delta_{\tilde{z}}(\tilde{z}^*).$$

653 To verify $p'(\tilde{z}) \propto p(\tilde{z})/w(\tilde{z}, \alpha)$ is the stationary density, we check the detailed balance condition:
 654 $p'(\tilde{z})T(\tilde{z} \rightarrow \tilde{z}^*) = p'(\tilde{z}^*)T(\tilde{z}^* \rightarrow \tilde{z})$. Substituting the expressions, we obtain
 655

$$\begin{aligned} 656 \quad \text{LHS} &= \frac{1}{Z} \frac{p(\tilde{z})}{w(\tilde{z}, \alpha)} \cdot p(\tilde{z}^*) \cdot \min \left\{ 1, \frac{w(\tilde{z}, \alpha)}{w(\tilde{z}^*, \alpha)} \right\} \\ 657 \\ 658 &= \frac{p(\tilde{z})p(\tilde{z}^*)}{Z} \cdot \frac{1}{w(\tilde{z}, \alpha)} \min \left\{ 1, \frac{w(\tilde{z}, \alpha)}{w(\tilde{z}^*, \alpha)} \right\} \\ 659 \\ 660 &= \frac{p(\tilde{z})p(\tilde{z}^*)}{Z} \min \left\{ \frac{1}{w(\tilde{z}, \alpha)}, \frac{1}{w(\tilde{z}^*, \alpha)} \right\}. \\ 661 \\ 662 \end{aligned}$$

663 By the symmetry of the RHS, we obtain

$$664 \quad \text{RHS} = \frac{p(\tilde{z}^*)p(\tilde{z})}{Z} \min \left\{ \frac{1}{w(\tilde{z}^*, \alpha)}, \frac{1}{w(\tilde{z}, \alpha)} \right\}.$$

665 Since $\text{LHS} = \text{RHS}$, detailed balance holds. \square
 666

668 To ensure the condition $S_{\mathcal{Q}} < S_{\mathcal{F}}$ holds, we provide a geometric justification based on the properties
 669 of RKHS.
 670

671 **Proposition 1** (Outlier Incoherence). *Let \hat{f}_λ be the pilot estimator minimizing $\mathcal{R}_{\tilde{\mathcal{D}}}(f) + \lambda\|f\|_K^2$.
 672 Assume the target function f_0 has a bounded RKHS norm $\|f_0\|_K \leq R$, while the outliers are
 673 incoherent with the kernel structure such that fitting them requires a function norm $\|g\|_K \gg R$. If λ
 674 is sufficiently large, then for any isolated outlier \hat{z}_{out} and clean point z , we have $w(\hat{z}, \alpha) \gg w(z, \alpha)$,
 675 which implies $S_{\mathcal{Q}} < S_{\mathcal{F}}$.*

676 *Proof of Proposition 1.* Consider the pilot estimator \hat{f}_λ . By the Representer Theorem we have
 677 $\hat{f}_\lambda(\cdot) = \sum_j c_j K(\tilde{x}_j, \cdot)$. The objective function penalizes both the fitting error and the RKHS norm
 678 $\|f\|_K^2$. For an outlier (\hat{x}, \hat{y}) that deviates from the smooth manifold of f_0 by a distance Δ , forcing the
 679 estimator to fit this point (i.e., reducing residual to 0) would require adding a sharp “spike” function.
 680 Such a function possesses a large RKHS norm, leading to a significant increase in the penalty term
 681 $\lambda\|f\|_K^2$. Since λ is chosen to be large (promoting smoothness), the optimization favors minimizing
 682 the penalty over fitting the outlier. Consequently, the residual $|\hat{y} - \hat{f}_\lambda(\hat{x})|$ remains proportional to
 683 Δ (large), whereas inliers are well-approximated with small residuals. Thus, $w(\hat{z}, \alpha) \gg w(z, \alpha)$,
 684 which implies $S_{\mathcal{Q}} < S_{\mathcal{F}}$. \square
 685

686 **Remark 3.** (Remark on Pilot Estimator.) One might concern that the pilot estimator (using squared
 687 loss) could interpolate outliers, vanishing their residuals. However, although the squared-error
 688 loss is generally non-robust, the constraint imposed by a large regularization parameter λ in the
 689 pilot phase acts as a global smoothness prior. This prevents the function from interpolating sparse,
 690 high-magnitude outliers, thereby ensuring $w(\hat{z}, \alpha)$ remains large.

691 B.2 MAIN TOOLS FOR ASYMPTOTIC PROPERTIES OF ESTIMATOR

693 Note that \mathcal{H}_K is an RKHS, by the Riesz representing theorem, functions in \mathcal{H}_K satisfy the reproducing
 694 property: $\langle K(\mathbf{x}, \cdot), f(\cdot) \rangle_{\mathcal{H}_K} = f(\mathbf{x})$ for all $f \in \mathcal{H}_K$ and $\mathbf{x} \in \mathbb{X}$. Following Mercer (1909), a
 695 reproducing kernel $K(\cdot, \cdot)$ can be expressed as $K(\mathbf{x}_i, \mathbf{x}_j) = \sum_{k=1}^{\infty} \lambda_k \phi_k(\mathbf{x}_i) \phi_k(\mathbf{x}_j)$, where λ_k ’s are
 696 the eigenvalues of $K(\cdot, \cdot)$, and $\phi_k(\cdot)$ ’s are the corresponding eigenfunctions, forming a sequence of
 697 orthogonal basis functions in $L^2(\mathbb{X})$ with respect to the inner product: $\langle \phi_i, \phi_j \rangle_{\mathcal{H}_K} = \delta_{ij}/\lambda_i$, where
 698 δ_{ij} is the Kronecker delta. The RKHS can alternatively be defined in terms of these eigenvalues and
 699 eigenfunctions:

$$700 \quad \mathcal{H}_K = \left\{ f(\mathbf{x}) = \sum_{k=1}^{\infty} f_k \phi_k(\mathbf{x}) : \sum_{k=1}^{\infty} \frac{f_k^2}{\lambda_k} < \infty \right\},$$

702 where $f_k = \int_{\mathbb{X}} f(\mathbf{x})\phi_k(\mathbf{x})d\mathbf{x}$. This spectral representation facilitates theoretical analysis, particularly in studying the asymptotic behaviour of estimator derived from RKHS (Zeng & Xia, 2019).
 703 To study the asymptotic performance of estimator, Lin & Brown (2004) introduced two RKHSs: an
 704 infinite order Sobolev space with periodic functions
 705

$$706 \quad \mathcal{S}_{\omega[a,b]}^{\infty} = \left\{ f \in L^2(a,b) : f \text{ is } (b-a) - \text{periodic with} \right. \\ 707 \quad \left. \sum_{m=0}^{\infty} \frac{\omega^{2m}}{m!2^m} \int_a^b [f^{(m)}(t)]^2 dt < \infty \right\},$$

711 and an m -th order Sobolev space with periodic functions
 712

$$713 \quad \mathcal{S}_{[a,b]}^m = \left\{ f \in L^2(a,b) : f \text{ is } (b-a) - \text{periodic with} \right. \\ 714 \quad \left. \int_a^b [f(t)]^2 + [f^{(m)}(t)]^2 dt < \infty \right\}.$$

717 Zeng & Xia (2019) introduced the symmetric periodic Gaussian kernel
 718

$$719 \quad H_{\omega}(t, s) = K_{\omega, -\pi, \pi}(s, t) + K_{\omega, -\pi, \pi}(s, -t),$$

720 where $K_{\omega, -\pi, \pi}(s, t) = \sum_{k=-\infty}^{\infty} K_{\omega}^0(t - s - 2k\pi, 0)$ is the periodic Gaussian kernel with period
 721 2π , and
 722

$$723 \quad K_{\omega}^0(t, s) = \frac{1}{\sqrt{2\pi\omega}} e^{-(s-t)^2/\omega^2},$$

724 is the well-known Gaussian reproducing kernel function. Let $\mathcal{H}_{\omega[-\pi, \pi]}^{\infty}$ be the RKHS corresponding
 725 to $H_{\omega}(t, s)$, which is an infinite order Sobolev space with symmetric functions. This RKHS consists
 726 of symmetric functions on $[-\pi, \pi]$, and is a subspace of infinite order Sobolev space.
 727

728 Following Zeng & Xia (2019), $\mathcal{H}_{\omega[-\pi, \pi]}^{\infty}$ can be written as
 729

$$730 \quad \mathcal{H}_{\omega[-\pi, \pi]}^{\infty} = \left\{ g : g(t) = \sum_{k=0}^{\infty} g_k \xi_k(t), \sum_{k=0}^{\infty} \frac{g_k^2}{\lambda_{k,\omega}} < \infty \right\} \\ 731 \quad = \left\{ g : g(-t) = g(t), g \in \mathcal{S}_{\omega[-\pi, \pi]}^{\infty} \right\},$$

735 where $\lambda_{k,\omega} = \exp(-k^2\omega^2/2)$, $\xi_0(t) = \pi^{-1/2}$, $\xi_k(t) = \sqrt{2/\pi} \cos(kt)$. Also, the m -th order
 736 Sobolev space with symmetric functions can be expressed as
 737

$$738 \quad \mathcal{H}_{[-\pi, \pi]}^m = \left\{ g : g(t) = \sum_{k=0}^{\infty} g_k \xi_k(t), \sum_{k=0}^{\infty} \frac{g_k^2}{\rho_k} < \infty \right\} \\ 739 \quad = \left\{ g : g(-t) = g(t), g \in \mathcal{S}_{[-\pi, \pi]}^m \right\}.$$

742 where $\rho_0 = 1$ and $\rho_k = k^{2m} + 1$. Specifically, in the considered RKHS, every function can be
 743 expanded orthogonally in the cosine basis, where each coefficient g_k must be scaled by the reciprocal
 744 of its corresponding eigenvalue to ensure finiteness of the induced norm.
 745

746 In order to study the asymptotic performance of estimator, we need some conditions, which are
 747 displayed in the main tex, and we now explain them. Condition 1 is used to ensure that every point
 748 in the support set has a specific probability density and is bounded. This guarantees the convergence
 749 of the integral and has been utilized in Zeng & Xia (2019). Condition 2 is a standard assumption
 750 in classical regression models. Condition 3 postulates a high degree of smoothness for the target
 751 function $f_{\mathcal{P}'}$, typically implying that it is infinitely differentiable on the domain $[-\pi, \pi]$. Condition
 752 4 quantifies the smoothness of the target function $f_{\mathcal{P}'}$ by postulating that it belongs to the m -th order
 753 Sobolev space \mathcal{H}^m , meaning that the function and its derivatives up to order m are square-integrable.
 754 To facilitate theoretical analysis, we standardize our symmetric periodic Gaussian kernel as
 755

$$\tilde{H}_{\omega}(t, s) = \frac{H_{\omega}(t, s)}{\sqrt{f(t)f(s)}},$$

which is simply denoted as $H_\omega(t, s)$. Denote $\|f\|_{H_\omega}^2 = \langle f, f \rangle_{H_\omega}$. For asymptotic analysis, we define the following norms and inner products (Zeng & Xia, 2019):

$$\begin{aligned} \|f\|_0 &= [\mathbb{E}_{p'} \{f^2(\tilde{\mathbf{x}})\}]^{\frac{1}{2}} = \left[\int_0^\pi f^2(t)p'(t)dt \right]^{\frac{1}{2}}, \\ \|f\|_\lambda &= (\|f\|_0^2 + \lambda\|f\|_{H_\omega}^2)^{\frac{1}{2}}, \\ \langle f_1, f_2 \rangle_0 &= \frac{1}{4} (\|f_1 + f_2\|_0^2 - \|f_1 - f_2\|_0^2), \\ \langle f_1, f_2 \rangle_\lambda &= \langle f_1, f_2 \rangle_0 + \lambda \langle f_1, f_2 \rangle_{H_\omega}. \end{aligned}$$

B.3 MAIN TOOLS FOR GENERALIZATION BOUND

Note that

$$\mathcal{R}_S(f) = \frac{1}{n} \sum_{i=1}^n \{f(\tilde{\mathbf{x}}_i) - \tilde{y}_i\}^2, = \arg \min_{f \in \mathcal{H}_\omega} \{\mathcal{R}_S(f) + \lambda J(f)\}. \quad (4)$$

To bound the excess risk of (4) for u.e.M.c. samples, similarly to Gong et al. (2015), we first define the optimal regularization error $\mathcal{D}(\lambda)$ as

$$\mathcal{D}(\lambda) = \inf_{f \in \mathcal{H}_K} \{\mathcal{R}_F(f) - \mathcal{R}_F(f_0) + \lambda\|f\|_K^2\},$$

which depicts the approximation ability of the hypothesis space \mathcal{H}_K relative to the optimal mapping f_0 . Thus, we the following relationship

$$f_\lambda = \arg \min_{f \in \mathcal{H}_K} \{\mathcal{R}_F(f) - \mathcal{R}_F(f_0) + \lambda\|f\|_K^2\},$$

respectively. Thus, following Gong et al. (2015), the approximation ability of the target function f_0 can be characterized with exponent $0 < q \leq 1$ satisfying

$$\mathcal{D}(\lambda) \leq c_q \lambda^q \quad (5)$$

for some constant c_q and any $\lambda > 0$. This inequality ensures that the learning algorithm based on the RKHS and regularization methods can approximate the target function at a convergence rate determined by the exponent q .

To bound the excess risk, we consider a new error decomposition for the excess risk.

Proposition 2. Let $f_{S,\lambda}$ be the estimator defined in (4) based on the contaminated sample $S = \{\tilde{z}_i = (\tilde{\mathbf{x}}_i, \tilde{y}_i)\}_{i=1}^n$, where $\tilde{\mathbf{x}}_i = (\tilde{x}_{i1}, \dots, \tilde{x}_{ip})^\top \in \mathbb{X}$'s are drawn from the mixture distribution $\mathcal{P}' = (1 - \theta')\mathcal{F} + \theta'\mathcal{Q}$, where \mathcal{F} is the true distribution and \mathcal{Q} is the contaminated distribution. Similarly, let $f_{D,\lambda}$ be the estimator defined as $f_{D,\lambda} = \arg \min_{f \in \mathcal{H}} \{\mathcal{R}_D(f) + \lambda J(f)\}$, computed from the uncontaminated sample $D = \{z_i = (\mathbf{x}_i, y_i)\}_{i=1}^n$, where $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^\top \in \mathbb{X}$ drawn exclusively from \mathcal{F} with regularization parameter $\lambda > 0$. Thus, we have

$$\mathcal{R}_F(f_{S,\lambda}) - \mathcal{R}_F(f_0) \leq \mathcal{S}(D, S, \lambda) + \mathcal{A}(D, S) + \mathcal{D}(\lambda),$$

where $\mathcal{S}(D, S, \lambda) = \{\mathcal{R}_F(f_{S,\lambda}) - \mathcal{R}_D(f_{S,\lambda})\} + \{\mathcal{R}_D(f_\lambda) - \mathcal{R}_F(f_\lambda)\}$, $\mathcal{A}(D, S) = \mathcal{R}_D(f_{S,\lambda}) - \mathcal{R}_D(f_{D,\lambda})$, and $\mathcal{D}(\lambda) = \{\mathcal{R}_F(f_\lambda) - \mathcal{R}_F(f_0) + \lambda\|f_\lambda\|_K^2\}$. Here $\mathcal{S}(D, S, \lambda)$, $\mathcal{A}(D, S)$ and $\mathcal{D}(\lambda)$ denote the sample error, contamination error and regularization error, respectively.

The covering number provides a natural measure of complexity for hypothesis spaces, quantifying their capacity through metric entropy. For its definition, we refer the reader to Gong et al. (2015). Extensive results exist on covering number bounds (Zhou, 2002; Zhang, 2002). Of particular interest is the RKHS ball: $\mathcal{B}_\varsigma = \{f \in \mathcal{H}_1 : \|f\| \leq \varsigma\} \subset C(\mathbb{X})$ whose covering numbers are well studied. We denote $\mathcal{N}(\epsilon) = \mathcal{N}(\mathcal{B}_1, \epsilon)$ for the unit ball case. Following Samson (2000), we measure variable dependence via the operator norm $\|\Gamma\|$ of the covariance matrix Γ . This leads to our key decomposition of sample error:

$$\begin{aligned} \mathcal{S}(D, S, \lambda) &= [\mathcal{R}_F(f_{S,\lambda}) - \mathcal{R}_D(f_{S,\lambda})] + [\mathcal{R}_D(f_\lambda) - \mathcal{R}_F(f_\lambda)] \\ &= \{[\mathcal{R}_F(f_{S,\lambda}) - \mathcal{R}_F(f_0)] - [\mathcal{R}_D(f_{S,\lambda}) - \mathcal{R}_D(f_0)]\} \\ &\quad + \{[\mathcal{R}_D(f_\lambda) - \mathcal{R}_D(f_0)] - [\mathcal{R}_F(f_\lambda) - \mathcal{R}_F(f_0)]\} \\ &= \mathcal{S}_1(D, S, \lambda) + \mathcal{S}_2(D, \lambda). \end{aligned}$$

Based on this decomposition, we obtain the following propositions.

810
811 **Proposition 3.** For \mathcal{H}_K with polynomial complexity exponent $s > 0$ and any $0 < \delta < 1$, with
812 probability at least $1 - \delta$,

$$813 \quad \mathcal{S}_1(\mathcal{D}, \mathbb{S}, \lambda) \leq \frac{1}{2} \{ \mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) \} \\ 814 \quad + \frac{14336M^2 \|\Gamma\|^2 \ln(1/\delta)}{n} \\ 815 \quad + \left(\frac{14336M^2 \|\Gamma\|^2 c_s(64MR)^s}{n} \right)^{\frac{1}{1+s}}. \\ 816 \\ 817 \\ 818 \\ 819$$

820 **Proposition 4.** If $\|K\|_\infty \leq \kappa$, thus, for any $0 < \delta < 1$, with probability at least $1 - \delta$,

$$821 \quad \mathcal{S}_2(\mathcal{D}, \lambda) \leq \frac{1}{2} \mathcal{D}(\lambda) + \frac{56 \|\Gamma\|^2 (\kappa \mathcal{D}(\lambda)/\lambda + 3M)^2 \ln(1/\delta)}{n}. \\ 822 \\ 823$$

824 **Proposition 5.** For contamination proportion $\theta' \in [0, 1/2)$ and any $0 < \delta < 1$, with probability at
825 least $1 - \delta$,

$$826 \quad \mathcal{A}(\mathcal{D}, \mathbb{S}) \leq 24M^2 \theta' + \frac{896 \|\Gamma\|^2 M^2 \ln(2/\delta)}{n} \theta'. \\ 827$$

828 By Propositions 2–5, we can establish the bound of the excess risk based on regularization regression
829 for u.e.M.c. samples.

830 C PROOFS OF THEORETICAL RESULTS

831 C.1 PROOF OF VALIDITY OF SUBSAMPLING

832 *Proof of Theorem 1.* To prove that the Markov chain is uniformly ergodic, we will demonstrate that
833 it satisfies three conditions: (i) Finite State Space, (ii) Irreducible, (iii) Aperiodic for a given α (e.g.,
834 $\hat{\alpha}$). For a Markov chain on a finite state space, these three conditions are sufficient for uniform
835 ergodicity (Levin & Peres, 2017).

836 (i) Finite State Space. The state space \mathcal{S} of the Markov chain corresponds to the sample set in the
837 given dataset $\tilde{\mathcal{D}} = \{\tilde{z}_1, \dots, \tilde{z}_n\}$. With n samples in $\tilde{\mathcal{D}}$, the state space has finite cardinality $|\mathcal{S}| = n$.

838 (ii) Irreducibility: Let \tilde{z}_i and $\tilde{z}_j \in \mathcal{S}$ be two arbitrary states. To establish irreducibility, it suffices to
839 show that the one-step transition probability $\Pr(\tilde{z}_{t+1} = \tilde{z}_j | \tilde{z}_t = \tilde{z}_i)$ is positive for all i, j . Within
840 the 'while' loop in Algorithm 1, a candidate point \tilde{z}_j is drawn randomly from $\tilde{\mathcal{D}}$, the probability of
841 proposing \tilde{z}_j is exactly $1/n > 0$. This candidate is accepted with probability

$$842 \quad p_a^* = \min \left\{ 1, \frac{w(\tilde{z}_i, \alpha)}{w(\tilde{z}_j, \alpha)} \right\}$$

843 Since all importance scores $w(\cdot, \alpha)$ are positive, the acceptance probability is bounded away from
844 zero. The product of these positive probabilities ensures $P(\tilde{z}_{t+1} = \tilde{z}_j | \tilde{z}_t = \tilde{z}_i) > 0$. Hence, the
845 states constitute an irreducible Markov chain.

846 (iii) Aperiodicity: To establish aperiodicity, it suffices to prove that the self-transition probability
847 $\Pr(\tilde{z}_{t+1} = \tilde{z}_i | \tilde{z}_t = \tilde{z}_i)$ is strictly positive for any state $\tilde{z}_i \in \mathcal{S}$. When the chain is in state \tilde{z}_i , a
848 candidate $\tilde{z}^* = \tilde{z}_i$ is drawn uniformly from $\tilde{\mathcal{D}}$ with probability $1/n$. Since the acceptance probability
849 for this candidate is

$$850 \quad p_a^* = \min \left\{ 1, \frac{w(\tilde{z}_i, \alpha)}{w(\tilde{z}_i, \alpha)} \right\} = 1,$$

851 the transition is always accepted. Hence, the self-transition probability is bounded below by $1/n >$
852 0 , which implies that the Markov chain is aperiodic.

853 The Markov chain defined by Algorithm 1 operates on a finite state space \mathcal{S} and satisfies irreducibility,
854 aperiodicity, and uniformly ergodicity. By the fundamental theorem of Markov chains, these
855 properties guarantee existence of a unique stationary distribution \mathcal{P}' on \mathcal{S} , and geometric conver-
856 gence in total variation:

$$857 \quad \|\mu_t - \mathcal{P}'\|_{\text{TV}} \leq M\gamma^t$$

864 for some positive constants $M > 0$ and $0 < \gamma < 1$, where μ_t denotes the distribution at time t . This
 865 completes the proof of theorem. \square
 866

867
 868
 869
 870
 871
 872 *Proof of Theorem 2.* From Lemma 1, the stationary density is $p'(\tilde{z}) = \frac{1}{Z}p(\tilde{z})/w(\tilde{z}, \alpha)$. By $p(\tilde{z}) =$
 873 $(1 - \theta)f(\tilde{z}) + \theta q(\tilde{z})$, the normalizing constant Z can be written as

$$874 \quad Z = (1 - \theta) \int \frac{f(z)}{w(z, \alpha)} dz + \theta \int \frac{q(z)}{w(z, \alpha)} dz = (1 - \theta)S_{\mathcal{F}} + \theta S_{\mathcal{Q}}.$$

875 The total probability mass assigned to the contamination distribution \mathcal{Q} in the stationary distribution
 876 is
 877

$$878 \quad \theta' = \int \frac{1}{Z} \frac{\theta q(\tilde{z})}{w(\tilde{z}, \alpha)} d\tilde{z} = \frac{\theta}{Z} S_{\mathcal{Q}} = \frac{\theta S_{\mathcal{Q}}}{(1 - \theta)S_{\mathcal{F}} + \theta S_{\mathcal{Q}}}.$$

879 The condition for contamination reduction $\theta' < \theta$ simplifies to
 880

$$881 \quad \frac{\theta S_{\mathcal{Q}}}{(1 - \theta)S_{\mathcal{F}} + \theta S_{\mathcal{Q}}} < \theta \iff S_{\mathcal{Q}} < (1 - \theta)S_{\mathcal{F}} + \theta S_{\mathcal{Q}} \quad (\text{since } Z > 0, \theta > 0)$$

$$882 \quad \iff (1 - \theta)S_{\mathcal{Q}} < (1 - \theta)S_{\mathcal{F}}$$

$$883 \quad \iff S_{\mathcal{Q}} < S_{\mathcal{F}}.$$

884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894

C.2 PROOF OF ASYMPTOTIC PROPERTIES

895
 896 **Lemma 2.** Suppose that Condition 1 hold. If the tuning parameter λ satisfies $(-\ln \lambda)^{\frac{1}{2}}/(n\omega) =$
 897 $o(1)$, and ω is fixed or changes with n , we have

$$898 \quad \|f_{\mathcal{S}, \lambda} - f_{\mathcal{P}', \lambda}\|_0^2 = O_p \left(\|\tilde{f} - f_{\mathcal{P}', \lambda}\|_0^2 \right).$$

901
 902
 903 *Proof of Lemma 2.* Note that $S_{n\lambda}(f) = -\frac{2}{n} \sum_{i=1}^n (\tilde{y}_i - f(\tilde{\mathbf{x}}_i)) H_{\omega_{\tilde{\mathbf{x}}_i}} + 2\lambda f$, and $DS_{n\lambda}(f)\Delta f =$
 904 $\frac{2}{n} \sum_{i=1}^n \Delta f(\tilde{\mathbf{x}}_i) H_{\omega_{\tilde{\mathbf{x}}_i}} + 2\lambda \Delta f$. Then, we have
 905

$$906 \quad S_{n\lambda}(f_{\mathcal{S}, \lambda}) - S_{n\lambda}(f_{\mathcal{P}', \lambda}) = \frac{2}{n} \sum_{i=1}^n \{f_{\mathcal{S}, \lambda}(\tilde{\mathbf{x}}_i) - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}}_i)\} H_{\omega_{\tilde{\mathbf{x}}_i}} + 2\lambda(f_{\mathcal{S}, \lambda} - f_{\mathcal{P}', \lambda})$$

$$907 \quad = DS_{n\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathcal{S}, \lambda} - f_{\mathcal{P}', \lambda}).$$

910 By the definition of \tilde{f} : $\tilde{f} - f_{\mathcal{P}', \lambda} = -DS_{\lambda}^{-1}(f_{\mathcal{P}', \lambda})S_{n\lambda}(f_{\mathcal{P}', \lambda})$, we obtain $S_{n\lambda}(f_{\mathcal{P}', \lambda}) =$
 911 $DS_{\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathcal{P}', \lambda} - \tilde{f})$. Since $f_{\mathcal{S}, \lambda}$ is the optimal solution of $\mathcal{R}_{\mathcal{S}}(f) + \lambda J(f)$, we have $S_{n\lambda}(f_{\mathcal{S}, \lambda}) = 0$
 912 and
 913

$$914 \quad DS_{\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathcal{S}, \lambda} - \tilde{f}) = DS_{\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathcal{S}, \lambda} - f_{\mathcal{P}', \lambda}) + DS_{\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathcal{P}', \lambda} - \tilde{f})$$

$$915 \quad = DS_{\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathcal{S}, \lambda} - f_{\mathcal{P}', \lambda}) - DS_{n\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathcal{S}, \lambda} - f_{\mathcal{P}', \lambda}).$$

916 Combining the above equations leads to
 917

$$\begin{aligned}
& \mathbb{E}_{p'} \|f_{\mathbb{S}, \lambda} - \tilde{f}\|_0^2 = \mathbb{E}_{p'} \left\{ \left\| \left(DS_{\lambda}(f_{\mathcal{P}', \lambda}) \right)^{-1} \left[DS_{\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}) \right. \right. \right. \\
& \quad \left. \left. \left. - DS_{n\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}) \right] \right\|_0^2 \right\} \\
& = \mathbb{E}_{p'} \left\{ \sum_{k=0}^{\infty} \left\langle \left(DS_{\lambda}(f_{\mathcal{P}', \lambda}) \right)^{-1} \left[DS_{\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}) \right. \right. \right. \\
& \quad \left. \left. \left. - DS_{n\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}) \right], \phi_k \right\rangle_0^2 \right\} \\
& = \mathbb{E}_{p'} \left\{ \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-2} \left\langle \left(DS_{\lambda}(f_{\mathcal{P}', \lambda}) \right)^{-1} \left[DS_{\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}) \right. \right. \right. \\
& \quad \left. \left. \left. - DS_{n\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}) \right], \phi_k \right\rangle_{\lambda}^2 \right\} \\
& = \frac{1}{4} \mathbb{E}_{p'} \left\{ \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-2} \left\langle DS_{\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}) \right. \right. \\
& \quad \left. \left. - DS_{n\lambda}(f_{\mathcal{P}', \lambda})(f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}), \phi_k \right\rangle_{\mathcal{H}_{\omega}}^2 \right\} \\
& = \frac{1}{4} \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-2} \mathbb{E}_{p'} \left\{ \left[\frac{2}{n} \sum_{i=1}^n (f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}_i) - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}}_i)) \phi_k(\tilde{\mathbf{x}}_i) \right. \right. \\
& \quad \left. \left. - 2\mathbb{E}_{p'}(f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}) - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}})) \phi_k(\tilde{\mathbf{x}}) \right]^2 \right\}.
\end{aligned}$$

Let $W_k(\tilde{\mathbf{x}}) = (f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}) - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}})) \phi_k(\tilde{\mathbf{x}})$, $\mu_k = \mathbb{E}_{p'}[W_k(\tilde{\mathbf{x}})]$, $W_k(\tilde{\mathbf{x}}_i) = \{f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}_i) - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}}_i)\} \phi_k(\tilde{\mathbf{x}}_i)$, and $\bar{W}_{n,k} = \frac{1}{n} \sum_{i=1}^n W_k(\tilde{\mathbf{x}}_i)$. Thus, we have

$$\begin{aligned}
\mathbb{E}_{p'} \|f_{\mathbb{S}, \lambda} - \tilde{f}\|_0^2 &= \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-2} \mathbb{E}_{p'} \left\{ \left[\frac{1}{n} \sum_{i=1}^n W_k(\tilde{\mathbf{x}}_i) - \mathbb{E}_{p'}[W_k(\tilde{\mathbf{x}})] \right]^2 \right\} \\
&= \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-2} \mathbb{E}_{p'} [(\mu_k - \bar{W}_{n,k})^2] = \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-2} \text{Var}(\bar{W}_{n,k}).
\end{aligned}$$

Note that $\{\tilde{\mathbf{x}}_i\}_{i=1}^n$ is a u.e.M.c sample. Uniform ergodicity of the Markov chain is equivalent to uniform ϕ -mixing with a geometric rate (Jones, 2004), i.e., there exist constants $C_{\phi} > 0$ and $\mathcal{F}_{\phi} \in [0, 1)$ such that $\phi(n) \leq C_{\phi} \mathcal{F}_{\phi}^n$ for every $n \geq 1$. Since $\{W_k(\tilde{\mathbf{x}}_i)\}_{i=1}^n$ is stationary under \mathcal{P}' , we have

$$\begin{aligned}
\text{Var}(\bar{W}_{n,k}) &= \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \text{Cov}(W_k(\tilde{\mathbf{x}}_i), W_k(\tilde{\mathbf{x}}_j)) \\
&= \frac{1}{n^2} \left(n\gamma_W(0) + 2 \sum_{h=1}^{n-1} (n-h)\gamma_W(h) \right) \\
&= \frac{1}{n}\gamma_W(0) + \frac{2}{n} \sum_{h=1}^{n-1} \left(1 - \frac{h}{n} \right) \gamma_W(h),
\end{aligned}$$

where $\gamma_W(h) = \text{Cov}(W_k(\tilde{\mathbf{x}}_i), W_k(\tilde{\mathbf{x}}_{i+h}))$ and $\gamma_W(0) = \text{Var}(W_k(\tilde{\mathbf{x}}_1)) = \mathbb{E}_{p'}\{(W_k(\tilde{\mathbf{x}}_1) - \mu_k)^2\}$. By the ϕ -mixing covariance inequality (Doukhan, 1995), we obtain $|\gamma_W(h)| \leq 2\|W_k(\tilde{\mathbf{x}})\|_2^2 \sqrt{\phi(n)}$. Due to $\sum_n \sqrt{\phi(n)} < \infty$, we have $\text{Var}(\bar{W}_{n,k}) \leq \frac{1}{n} C_1 \|W_k(\tilde{\mathbf{x}})\|_2^2 = \frac{C_1}{n} \mathbb{E}_{p'}[W_k^2(\tilde{\mathbf{x}})]$. Thus, we

972 obtain

973

974

$$\begin{aligned}
 975 \quad \mathbb{E}_{p'} \|f_{\mathbb{S}, \lambda} - \tilde{f}\|_0^2 &= \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} \text{Var}(\bar{W}_{n,k}) \leq \frac{C_1}{n} \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} \mathbb{E}_{p'} [W_k^2(\tilde{\mathbf{x}})] \\
 976 \quad &= \frac{C_1}{n} \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} \mathbb{E}_{p'} [(f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}) - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}})) \phi_k(\tilde{\mathbf{x}})]^2 \\
 977 \quad &\leq \frac{C_2}{n} \|f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}\|_0^2 \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} \\
 978 \quad &\leq \frac{C_2(-\ln \lambda)^{\frac{1}{2}}}{n\omega} \|f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}\|_0^2 \\
 979 \quad &= o(\|f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}\|_0^2).
 \end{aligned}$$

980

981

982

983

984

985

986

987

988

989

990

The second inequality holds since $\phi_k(\tilde{\mathbf{x}})$ is bounded for any k . The third inequality is given by Lemma 3.3 of Zeng (2019). Combining the above equations yields

991

992

993

$$\|\tilde{f} - f_{\mathcal{P}', \lambda}\|_0^2 \geq \|f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}\|_0^2 - \|f_{\mathbb{S}, \lambda} - \tilde{f}\|_0^2 = (1 - o_p(1)) \|f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}\|_0^2.$$

994

995

996

Thus, we obtain $\|f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}\|_0^2 = O_p(\|\tilde{f} - f_{\mathcal{P}', \lambda}\|_0^2)$. □

997

998

999

1000

1001

1002

1003

1004

Lemma 3. Suppose that Condition 1 hold. If the tuning parameters λ and ω satisfy $\lambda = o(1)$ and $(-\ln \lambda)^{\frac{1}{2}}/(n\omega) = o(1)$, respectively, we have $\|\tilde{f} - f_{\mathcal{P}', \lambda}\|_0^2 = O_p((-\ln \lambda)^{\frac{1}{2}}/(n\omega))$.

1005

1006

1007

1008

1009

1010

Proof of Lemma 3. Since $S_\lambda(f_{\mathcal{P}', \lambda}) = 0$, similarly to the proof of Lemma 2, we obtain

1011

1012

1013

1014

$$\begin{aligned}
 1015 \quad \mathbb{E}_{p'} \langle S_{n\lambda}(f_{\mathcal{P}', \lambda}), \phi_k \rangle_{\mathcal{H}_\omega}^2 &= \mathbb{E}_{p'} \langle S_{n\lambda}(f_{\mathcal{P}', \lambda}) - S_\lambda(f_{\mathcal{P}', \lambda}), \phi_k \rangle_{\mathcal{H}_\omega}^2 \\
 1016 \quad &= \mathbb{E}_{p'} \left\{ \frac{2}{n} \sum_{i=1}^n (\tilde{y}_i - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}}_i)) \phi_k(\tilde{\mathbf{x}}_i) - 2\mathbb{E}_{p'} (\tilde{y} - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}})) \phi_k(\tilde{\mathbf{x}}) \right\}^2 \\
 1017 \quad &= 4 \text{Var} \left(\frac{1}{n} \sum_{i=1}^n (\tilde{y}_i - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}}_i)) \phi_k(\tilde{\mathbf{x}}_i) \right) \\
 1018 \quad &\leq \frac{4C_1}{n} \mathbb{E}_{p'} [(\tilde{y} - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}})) \phi_k(\tilde{\mathbf{x}})]^2 \\
 1019 \quad &= \frac{4C_1}{n} \mathbb{E}_{p'} [(\epsilon + f_{\mathcal{P}'}(\tilde{\mathbf{x}}) - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}})) \phi_k(\tilde{\mathbf{x}})]^2 \\
 1020 \quad &= \frac{4C_1}{n} \sigma^2 \mathbb{E}_{p'} \phi_k^2 + \frac{4C_1}{n} \mathbb{E}_{p'} [(f_{\mathcal{P}'}(\tilde{\mathbf{x}}) - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}})) \phi_k(\tilde{\mathbf{x}})]^2.
 \end{aligned}$$

1021

1022

1023

1024

1025

1026 By proof of Lemma 2, we have
 1027

$$\begin{aligned}
 1028 \mathbb{E}_{p'} \|\tilde{f} - f_{\mathcal{P}', \lambda}\|_0^2 &= \mathbb{E}_{p'} \left\| (DS_\lambda(f_{\mathcal{P}', \lambda}))^{-1} S_{n\lambda}(f_{\mathcal{P}', \lambda}) \right\|_0^2 \\
 1029 &= \mathbb{E}_{p'} \left\{ \sum_{k=0}^{\infty} \left\langle (DS_\lambda(f_{\mathcal{P}', \lambda}))^{-1} S_{n\lambda}(f_{\mathcal{P}', \lambda}), \phi_k \right\rangle_0^2 \right\} \\
 1030 &= \frac{1}{4} \mathbb{E}_{p'} \left\{ \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} \left\langle \left(\frac{1}{2} DS_\lambda(f_{\mathcal{P}', \lambda})\right)^{-1} S_{n\lambda}(f_{\mathcal{P}', \lambda}), \phi_k \right\rangle_\lambda^2 \right\} \\
 1031 &= \frac{1}{4} \mathbb{E}_{p'} \left\{ \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} \langle S_{n\lambda}(f_{\mathcal{P}', \lambda}), \phi_k \rangle_{\mathcal{H}_\omega}^2 \right\} \\
 1032 &\leq \frac{C}{n} \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} + \frac{1}{n} \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} \\
 1033 &\quad \mathbb{E}_{p'} \left[(f_{\mathcal{P}'}(\tilde{\mathbf{x}}) - f_{\mathcal{P}', \lambda}(\tilde{\mathbf{x}}))^2 \phi_k(\tilde{\mathbf{x}})^2 \right] \\
 1034 &= \frac{C}{n} \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} + \frac{C' \|f_{\mathcal{P}'} - f_{\mathcal{P}', \lambda}\|_0^2}{n} \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} \\
 1035 &= O\left(\frac{(-\ln \lambda)^{\frac{1}{2}}}{n\omega}\right) + O\left(\frac{\lambda(-\ln \lambda)^{\frac{1}{2}}}{n\omega}\right) = O\left(\frac{(-\ln \lambda)^{\frac{1}{2}}}{n\omega}\right).
 \end{aligned}$$

1049

□

1050

1051 *Proof of Theorem 3.* We adopt the commonly used technique in studying consistency like Zeng
 1052 & Xia (2019). Different from Zeng & Xia (2019), we consider a u.e.M.c samples rather than
 1053 i.i.d samples. Let $f_{\mathcal{P}'}(\mathbf{x}) = \sum_{k=0}^{\infty} f_{\mathcal{P}', k} \phi_k(\mathbf{x})$, $f(\mathbf{x}) = \sum_{k=0}^{\infty} f_k \phi_k(\mathbf{x})$ and $f_{\mathcal{P}', \lambda}(\mathbf{x}) =$
 1054 $\sum_{k=0}^{\infty} f_{\mathcal{P}', \lambda, k} \phi_k(\mathbf{x})$. It follows from Theorem 2 of Zeng & Xia (2019) that

$$\begin{aligned}
 1055 \mathcal{R}_{\mathcal{P}', \lambda}(f) &= \mathbb{E}_{p'} [(\tilde{y} - f(\tilde{\mathbf{x}}))^2] + \lambda J(f) \\
 1056 &= \mathbb{E}_{p'} [(\epsilon + f_{\mathcal{P}'}(\tilde{\mathbf{x}}) - f(\tilde{\mathbf{x}}))^2] + \lambda J(f) \\
 1057 &= \sigma^2 + \sum_{k=0}^{\infty} (f_k - f_{\mathcal{P}', k})^2 + \lambda \sum_{k=0}^{\infty} \frac{f_k^2}{\lambda_k}.
 \end{aligned}$$

1061 As $f_{\mathcal{P}', \lambda}$ is the minimizer of $\mathcal{R}_{\mathcal{P}', \lambda}(f)$, we have $f_{\mathcal{P}', \lambda, k} = f_{\mathcal{P}', k} \lambda_k / (\lambda + \lambda_k)$. Combining the
 1062 equations yields

$$\begin{aligned}
 1063 \|f_{\mathcal{P}', \lambda} - f_{\mathcal{P}'}\|_0^2 &= \sum_{k=0}^{\infty} \frac{\lambda^2}{(\lambda + \lambda_k)^2} f_{\mathcal{P}', k}^2 = \sum_{k=0}^{\infty} \frac{\lambda^2 \lambda_k}{(\lambda + \lambda_k)^2} \frac{f_{\mathcal{P}', k}^2}{\lambda_k} \\
 1064 &\leq \sup_k \frac{\lambda^2 \lambda_k}{(\lambda + \lambda_k)^2} J(f_{\mathcal{P}'}) \\
 1065 &\leq \lambda^2 \sup_{x>0} \frac{x}{(x^{\frac{1}{2}} + \lambda x^{-\frac{1}{2}})^2} J(f_{\mathcal{P}'}) \\
 1066 &= \frac{\lambda}{4} J(f_{\mathcal{P}'}) = O(\lambda).
 \end{aligned}$$

1073

By Lemma 2 and Lemma 3, we have

$$1074 \|f_{\mathbb{S}, \lambda} - f_{\mathcal{P}', \lambda}\|_0^2 = O_p\left(\frac{(-\ln \lambda)^{\frac{1}{2}}}{n\omega}\right),$$

1075

It follows that

$$1076 \|f_{\mathbb{S}, \lambda} - f_{\mathcal{P}'}\|_0^2 = O_p(\lambda) + O_p\left(\frac{(-\ln \lambda)^{\frac{1}{2}}}{n\omega}\right).$$

1080 When ω is fixed, we choose $\lambda \sim (-\ln n)^{\frac{1}{2}}/n$, yielding $\lambda = o(1)$ and $(-\ln \lambda)^{\frac{1}{2}}/n = o(1)$ as
 1081 $n \rightarrow \infty$. When Assumptions of Lemmas 2-3 hold, we have
 1082

$$1083 \quad \|f_{\mathbb{S},\lambda} - f_{\mathcal{P}'}\|_0^2 = O_p(\lambda) + O_p\left(\frac{(-\ln \lambda)^{\frac{1}{2}}}{n\omega}\right) = O_p\left(\frac{(\ln n)^{\frac{1}{2}}}{n}\right).$$

□

1086
 1087
 1088
 1089
 1090 *Proof of Theorem 4.* Following the proof of Theorem 3, we can show

$$1092 \quad \mathbb{E}_{p'}\|f_{\mathbb{S},\lambda} - f_{\mathcal{P}',\lambda}\|_0^2 = O\left(\frac{(-\ln \lambda)^{\frac{1}{2}}}{n\omega}\right).$$

1095 Thus, we consider $f_{\mathcal{P}',\lambda} - f_{\mathcal{P}'}$. Since $f_{\mathcal{P}'} \in \mathcal{H}_{[-\pi,\pi]}^m$, we get $f_{\mathcal{P}'} = \sum_{k=0}^{\infty} f_{\mathcal{P}',k} \phi_k(\mathbf{x})$ with
 1096 $\sum_{k=0}^{\infty} f_{\mathcal{P}',k}^2 / \mathcal{F}_k < \infty$. Similarly to the proof of Theorem 3, we can show $f_{\mathcal{P}',\lambda,k} = f_{\mathcal{P}',k} \lambda_k / \lambda + \lambda_k$.
 1097 Thus, we obtain
 1098

$$1099 \quad \|f_{\mathcal{P}',\lambda} - f_{\mathcal{P}'}\|_0^2 = \sum_{k=0}^{\infty} \frac{\lambda^2}{(\lambda + \lambda_k)^2} f_{\mathcal{P}',k}^2 = \sum_{k=0}^{\infty} \frac{\lambda^2 \mathcal{F}_k}{(\lambda + \lambda_k)^2} \frac{f_{\mathcal{P}',k}^2}{\mathcal{F}_k}$$

$$1100 \quad \leq C \sup_k \frac{\lambda^2 \mathcal{F}_k}{(\lambda + \lambda_k)^2}$$

$$1101 \quad \leq C \sup_{s>0} \frac{\lambda^2 (s^{2m} + 1)^{-1}}{\left(\lambda + e^{-\frac{s^2 \omega^2}{2}}\right)^2}.$$

1102 Now we find the maximum value of $q(x) = \lambda^2 (x^{2m} + 1)^{-1} / \left(\lambda + e^{-\frac{x^2 \omega^2}{2}}\right)^2$ with $x > 0$. On
 1103 the boundary, $q(0) = O(\lambda^2)$ and $q(\infty) = 0$. For the inner points, it follows from $q'(x) = 0$
 1104 that $\omega^2 (x^2 + x^{-(2m-2)}) = m \left(1 + \lambda e^{\frac{\omega^2 \omega^2}{2}}\right)$ whose solution is denoted as \hat{x} . Since $q'(x) > 0$
 1105 as $\lambda \rightarrow 0$, we have $\hat{x} \rightarrow \infty$ as $\lambda \rightarrow 0$. As a result, we obtain $\omega^2 \hat{x}^2 \sim \lambda e^{\frac{\omega^2 \omega^2}{2}}$. Then, we have
 1106 $\omega^2 \hat{x}^2 \sim -\ln \lambda$, and $q(\hat{x}) = O\left(\frac{\omega^{2m}}{(-\ln \lambda)^m}\right)$. When $\lambda = o(1)$, we have $\lambda^2 = o(\omega^{2m}/(-\ln \lambda)^m)$.
 1107 Thus, we obtain
 1108

$$1117 \quad \sup_{s>0} \frac{\lambda^2 (s^{2m} + 1)^{-1}}{\left(\lambda + e^{-\frac{s^2 \omega^2}{2}}\right)^2} = O\left(\frac{\omega^{2m}}{(-\ln \lambda)^m}\right).$$

1119 It follows from $\mathbb{E}_{p'}\|f_{\mathbb{S},\lambda} - f_{\mathcal{P}',\lambda}\|_0^2 = O\left(\frac{(-\ln \lambda)^{\frac{1}{2}}}{n\omega}\right)$, and $(-\ln \lambda)^{\frac{1}{2}}/\omega \sim n^{\frac{1}{2m+1}}$ that
 1120

$$1124 \quad \|f_{\mathbb{S},\lambda} - f_{\mathcal{P}'}\|_0^2 = O_p\left(n^{-\frac{2m}{2m+1}}\right).$$

□

1125
 1126
 1127
 1128
 1129
 1130 *Proof of Theorem 5.* Note that for any $f(\mathbf{x}) = \sum_{k=0}^{\infty} f_k \phi_k(\mathbf{x})$, we have
 1131

$$1132 \quad \|f\|_{\lambda}^2 = \langle f, f \rangle_{\lambda}^2 = \|f\|_0^2 + \lambda \|f\|_{\mathcal{H}\omega}^2$$

$$1133 \quad = \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right) f_k^2 = \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k}\right)^{-1} \langle f, \phi_k \rangle_{\lambda}^2.$$

1134 Then, we obtain

$$\begin{aligned}
 & \mathbb{E}_{p'} \left\| f_{\mathbb{S}, \lambda} - f_{\mathcal{P}'} + (DS_{\lambda}(f_{\mathcal{P}'}))^{-1} S_{n\lambda}(f_{\mathcal{P}'}) \right\|_{\lambda}^2 \\
 &= \mathbb{E}_{p'} \left\{ \| (DS_{\lambda}(f_{\mathcal{P}'}))^{-1} [DS_{\lambda}(f_{\mathcal{P}'}) (f_{\mathbb{S}, \lambda} - f_{\mathcal{P}'}) - DS_{n\lambda}(f_{\mathcal{P}'}) (f_{\mathbb{S}, \lambda} - f_{\mathcal{P}'})] \|_{\lambda}^2 \right\} \\
 &= \mathbb{E}_{p'} \left\{ \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-1} \left((DS_{\lambda}(f_{\mathcal{P}'}))^{-1} [DS_{\lambda}(f_{\mathcal{P}'}) (f_{\mathbb{S}, \lambda} - f_{\mathcal{P}'}) \right. \right. \\
 &\quad \left. \left. - DS_{n\lambda}(f_{\mathcal{P}'}) (f_{\mathbb{S}, \lambda} - f_{\mathcal{P}'})] , \phi_k \right)_{\lambda}^2 \right\} \\
 &= \frac{1}{4} \mathbb{E}_{p'} \left\{ \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-1} \langle DS_{\lambda}(f_{\mathcal{P}'}) (f_{\mathbb{S}, \lambda} - f_{\mathcal{P}'}) - DS_{n\lambda}(f_{\mathcal{P}'}) (f_{\mathbb{S}, \lambda} - f_{\mathcal{P}'}) , \phi_k \rangle_{\mathcal{H}_{\omega}}^2 \right\} \\
 &= \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-1} \text{Var} \left[\frac{1}{n} \sum_{i=1}^n (f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}_i) - f_{\mathcal{P}'}(\tilde{\mathbf{x}}_i)) \phi_k(\tilde{\mathbf{x}}_i) \right] \\
 &\leq \frac{C_1}{n} \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-1} \mathbb{E}_{p'} \left[(f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}) - f_{\mathcal{P}'}(\tilde{\mathbf{x}}))^2 \phi_k(\tilde{\mathbf{x}})^2 \right] \\
 &\leq \frac{C_2}{n} \|f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}) - f_{\mathcal{P}'}(\tilde{\mathbf{x}})\|_0^2 \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-1} \\
 &= O \left(\frac{\ln n}{n^2} \right).
 \end{aligned}$$

□

1159 *Proof of Theorem 6.* From Theorem 5, we have the FBR:

$$f_{\mathbb{S}, \lambda} - f_{\mathcal{P}'} = -(DS_{\lambda}(f_{\mathcal{P}'}))^{-1} S_{n\lambda}(f_{\mathcal{P}'}) + \Delta',$$

1160 where $\|\Delta'\|_{\lambda}^2 = O_p(\frac{\ln n}{n^2})$. For a fixed $\tilde{\mathbf{x}}_0$, $f(\tilde{\mathbf{x}}_0) = \langle f, R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\lambda}$ (Zeng, 2019). Then, we have

$$f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}_0) - f_{\mathcal{P}'}(\tilde{\mathbf{x}}_0) = - \left\langle (DS_{\lambda}(f_{\mathcal{P}'}))^{-1} S_{n\lambda}(f_{\mathcal{P}'}) , R_{\lambda_{\tilde{\mathbf{x}}_0}} \right\rangle_{\lambda} + \langle \Delta' , R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\lambda}.$$

1161 The second term (remainder) can be bounded using Cauchy-Schwarz in the $\langle \cdot, \cdot \rangle_{\lambda}$ inner product space, i.e.,

$$|\langle \Delta' , R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\lambda}| \leq \|\Delta'\|_{\lambda} \|R_{\lambda_{\tilde{\mathbf{x}}_0}}\|_{\lambda},$$

1162 It follows from Lemma 3.1 of Zeng (2019) that $R_{\lambda_{\tilde{\mathbf{x}}_0}} = (\frac{1}{2} DS_{\lambda}(f_{\mathcal{P}'}))^{-1} H_{\omega_{\tilde{\mathbf{x}}_0}}$. Using the identity $\langle (\frac{1}{2} DS_{\lambda}(f_{\mathcal{P}'}))^{-1} f_1, f_2 \rangle_{\lambda} = \langle f_1, f_2 \rangle_{\mathcal{H}_{\omega}}$ and $\langle \phi_k, \phi_j \rangle_{\mathcal{H}_{\omega}} = \delta_{kj}/\lambda_k$ yields

$$\begin{aligned}
 \|R_{\lambda_{\tilde{\mathbf{x}}_0}}\|_{\lambda}^2 &= \langle R_{\lambda_{\tilde{\mathbf{x}}_0}}, R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\lambda} = \left\langle \left(\frac{1}{2} DS_{\lambda}(f_{\mathcal{P}'}) \right)^{-1} H_{\omega_{\tilde{\mathbf{x}}_0}}, R_{\lambda_{\tilde{\mathbf{x}}_0} \rangle_{\lambda}} \right\rangle_{\lambda} \\
 &= \langle H_{\omega_{\tilde{\mathbf{x}}_0}}, R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\mathcal{H}_{\omega}} = \left\langle \sum_{k=0}^{\infty} \lambda_k \phi_k(\tilde{\mathbf{x}}_0) \phi_k(\cdot), \sum_{j=0}^{\infty} (1 + \frac{\lambda}{\lambda_j})^{-1} \phi_j(\tilde{\mathbf{x}}_0) \phi_j(\cdot) \right\rangle_{\mathcal{H}_{\omega}} \\
 &= \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \lambda_k \phi_k(\tilde{\mathbf{x}}_0) (1 + \frac{\lambda}{\lambda_j})^{-1} \phi_j(\tilde{\mathbf{x}}_0) \frac{\delta_{kj}}{\lambda_k} \\
 &= \sum_{k=0}^{\infty} (1 + \frac{\lambda}{\lambda_k})^{-1} \phi_k^2(\tilde{\mathbf{x}}_0) = O\left(\frac{(\ln n)^{\frac{1}{2}}}{\omega}\right).
 \end{aligned}$$

1163 Now bound the remainder term, scaled by the normalization factor. Thus, we have

$$\begin{aligned}
 \left| \sqrt{\frac{n}{(\ln n)^{1/2}}} \langle \Delta' , R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\lambda} \right| &\leq \sqrt{\frac{n}{(\ln n)^{1/2}}} \|\Delta'\|_{\lambda} \|R_{\lambda_{\tilde{\mathbf{x}}_0}}\|_{\lambda} \\
 &= \sqrt{\frac{n}{(\ln n)^{1/2}}} O_p \left(\sqrt{\frac{\ln n}{n^2}} \right) O \left(\sqrt{\frac{(\ln n)^{1/2}}{\omega}} \right) \\
 &= o_p(1).
 \end{aligned}$$

1188 By Slutsky's theorem, the asymptotic distribution of $\sqrt{\frac{n}{(\ln n)^{1/2}}}(f_{\mathbb{S},\lambda}(\tilde{\mathbf{x}}_0) - f_{\mathcal{P}'}(\tilde{\mathbf{x}}_0))$ is the same as
 1189 that of
 1190

$$1191 - \sqrt{\frac{n}{(\ln n)^{1/2}}} \left\langle (DS_\lambda(f_{\mathcal{P}'}))^{-1} S_{n\lambda}(f_{\mathcal{P}'}) , R_{\lambda_{\tilde{\mathbf{x}}_0}} \right\rangle_\lambda,$$

1194 which implies that we only analyze the leading term
 1195

$$1196 - \sqrt{n/(\ln n)^{1/2}} \left\langle (DS_\lambda(f_{\mathcal{P}'}))^{-1} S_{n\lambda}(f_{\mathcal{P}'}) , R_{\lambda_{\tilde{\mathbf{x}}_0}} \right\rangle_\lambda.$$

1199 Using the property $\langle (DS_\lambda(f_{\mathcal{P}'}))^{-1} f_1, f_2 \rangle_\lambda = \langle \frac{1}{2} f_1, f_2 \rangle_{\mathcal{H}_\omega}$, we obtain
 1200

$$1201 - \left\langle (DS_\lambda(f_{\mathcal{P}'}))^{-1} S_{n\lambda}(f_{\mathcal{P}'}) , R_{\lambda_{\tilde{\mathbf{x}}_0}} \right\rangle_\lambda = - \left\langle \frac{1}{2} S_{n\lambda}(f_{\mathcal{P}'}) , R_{\lambda_{\tilde{\mathbf{x}}_0}} \right\rangle_{\mathcal{H}_\omega} \\ 1202 = - \left\langle -\frac{1}{n} \sum_{i=1}^n \epsilon_i H_{\omega_{\tilde{\mathbf{x}}_i}} + \lambda f_{\mathcal{P}'}, R_{\lambda_{\tilde{\mathbf{x}}_0}} \right\rangle_{\mathcal{H}_\omega} \\ 1203 = \frac{1}{n} \sum_{i=1}^n \epsilon_i \langle H_{\omega_{\tilde{\mathbf{x}}_i}}, R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\mathcal{H}_\omega} - \lambda \langle f_{\mathcal{P}'}, R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\mathcal{H}_\omega}.$$

1204 For the first term, it follows from $H_{\omega_{\tilde{\mathbf{x}}_i}}(\cdot) = \sum_k \lambda_k \phi_k(\tilde{\mathbf{x}}_i) \phi_k(\cdot)$ and $R_{\lambda_{\tilde{\mathbf{x}}_0}}(\cdot) = \sum_j (1 +$
 1205 $\frac{\lambda}{\lambda_j})^{-1} \phi_j(\tilde{\mathbf{x}}_0) \phi_j(\cdot)$ that
 1206

$$1207 \langle H_{\omega_{\tilde{\mathbf{x}}_i}}, R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\mathcal{H}_\omega} = \sum_{k,j} \lambda_k \phi_k(\tilde{\mathbf{x}}_i) (1 + \frac{\lambda}{\lambda_j})^{-1} \phi_j(\tilde{\mathbf{x}}_0) \langle \phi_k, \phi_j \rangle_{\mathcal{H}_\omega} \\ 1208 = \sum_{k,j} \lambda_k \phi_k(\tilde{\mathbf{x}}_i) (1 + \frac{\lambda}{\lambda_j})^{-1} \phi_j(\tilde{\mathbf{x}}_0) \frac{\delta_{kj}}{\lambda_k} \\ 1209 = \sum_k (1 + \frac{\lambda}{\lambda_k})^{-1} \phi_k(\tilde{\mathbf{x}}_i) \phi_k(\tilde{\mathbf{x}}_0) \\ 1210 = R_\lambda(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_0).$$

1211 Then, we obtain $\frac{1}{n} \sum_{i=1}^n \epsilon_i \langle H_{\omega_{\tilde{\mathbf{x}}_i}}, R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\mathcal{H}_\omega} = \frac{1}{n} \sum_{i=1}^n \epsilon_i R_\lambda(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_0)$.
 1212

1213 For the second term $\lambda \langle f_{\mathcal{P}'}, R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\mathcal{H}_\omega}$, it follows from $f_{\mathcal{P}'}(\cdot) = \sum_k f_{\mathcal{P}'_k} \phi_k(\cdot)$ that
 1214

$$1215 \lambda \langle f_{\mathcal{P}'}, R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\mathcal{H}_\omega} = \lambda \sum_{k,j} f_{\mathcal{P}'_k} (1 + \frac{\lambda}{\lambda_j})^{-1} \phi_j(\tilde{\mathbf{x}}_0) \langle \phi_k, \phi_j \rangle_{\mathcal{H}_\omega} \\ 1216 = \lambda \sum_{k,j} f_{\mathcal{P}'_k} (1 + \frac{\lambda}{\lambda_j})^{-1} \phi_j(\tilde{\mathbf{x}}_0) \frac{\delta_{kj}}{\lambda_k} \\ 1217 = \sum_k \frac{\lambda}{\lambda_k} f_{\mathcal{P}'_k} (1 + \frac{\lambda}{\lambda_k})^{-1} \phi_k(\tilde{\mathbf{x}}_0) \\ 1218 = \sum_k \frac{\lambda}{\lambda + \lambda_k} f_{\mathcal{P}'_k} \phi_k(\tilde{\mathbf{x}}_0).$$

1219 The leading term is
 1220

$$1221 \frac{1}{n} \sum_{i=1}^n \epsilon_i R_\lambda(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_0) - \sum_k \frac{\lambda}{\lambda + \lambda_k} f_{\mathcal{P}'_k} \phi_k(\tilde{\mathbf{x}}_0),$$

1242 and the asymptotic distribution is
 1243

$$\begin{aligned}
 1244 & \sqrt{\frac{n}{(\ln n)^{1/2}}} \left(f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}_0) - f_{\mathcal{P}'}(\tilde{\mathbf{x}}_0) - \left[-\sum_k \frac{\lambda}{\lambda + \lambda_k} f_{\mathcal{P}', k} \phi_k(\tilde{\mathbf{x}}_0) \right] \right) \\
 1245 & = \sqrt{\frac{n}{(\ln n)^{1/2}}} \left(f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}_0) - \left[\sum_k f_{\mathcal{P}', k} \phi_k(\tilde{\mathbf{x}}_0) - \sum_k \frac{\lambda}{\lambda + \lambda_k} f_{\mathcal{P}', k} \phi_k(\tilde{\mathbf{x}}_0) \right] \right) \\
 1246 & = \sqrt{\frac{n}{(\ln n)^{1/2}}} \left(f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}_0) - \sum_k \frac{\lambda_k}{\lambda + \lambda_k} f_{\mathcal{P}', k} \phi_k(\tilde{\mathbf{x}}_0) \right) \\
 1247 & = \sqrt{\frac{n}{(\ln n)^{1/2}}} (f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}_0) - f^*(\tilde{\mathbf{x}}_0)).
 \end{aligned}$$

1248 Therefore, the asymptotic distribution is determined by the term involving the sum of errors:
 1249

$$1250 \quad T_n := \sqrt{\frac{n}{(\ln n)^{1/2}}} \left(\frac{1}{n} \sum_{i=1}^n \epsilon_i R_\lambda(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_0) \right) = \frac{1}{\sqrt{n}(\ln n)^{1/2}} \sum_{i=1}^n \epsilon_i R_\lambda(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_0).$$

1251 Consider the sequence $V_i = \epsilon_i R_\lambda(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_0)$, which is a stationary sequence under \mathcal{P}' and is ϕ -mixing
 1252 with $\mathbb{E}_{p'}(V_i) = 0$. It follows from the central limit theorem for ϕ -mixing sequences (Jones, 2004)
 1253 that if $\sum \sqrt{\phi(n)} < \infty$ and $\mathbb{E}(V_0^2) < \infty$, $\frac{1}{\sqrt{n}} \sum_{i=1}^n V_i \xrightarrow{d} \mathcal{N}(0, \sigma_{LTB}^2)$, where $\sigma_{LTB}^2 = \text{Var}(V_0) +$
 1254 $2 \sum_{j=1}^{\infty} \mathbb{E}_{p'}(V_0 V_j)$ is the long-term variance. Thus, we have
 1255

$$1256 \quad \lim_{n \rightarrow \infty} \text{Var}(T_n) = \lim_{n \rightarrow \infty} \frac{1}{(\ln n)^{1/2}} \text{Var} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n V_i \right),$$

$$1257 \quad \text{Cov}(V_0, V_j) = \mathbb{E}_{p'}(V_0 V_j) = \delta_{0j} \sigma^2 \mathbb{E}_{p'}\{R_\lambda(\tilde{\mathbf{x}}_0, \tilde{\mathbf{x}})^2\}$$

$$\begin{aligned}
 1258 & \lim_{n \rightarrow \infty} \text{Var} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n V_i \right) = \sigma_{LTB}^2 \\
 1259 & = \sum_{j=-\infty}^{\infty} \text{Cov}(V_0, V_j) = \text{Cov}(V_0, V_0) \\
 1260 & = \sigma^2 \|R_{\lambda_{\tilde{\mathbf{x}}_0}}\|_0^2 \\
 1261 & = \sigma^2 \sum_k \left(1 + \frac{\lambda}{\lambda_k} \right)^{-2} \phi_k(\tilde{\mathbf{x}}_0)^2.
 \end{aligned}$$

1262 Hence, the asymptotic variance of T_n is
 1263

$$1264 \quad \lim_{n \rightarrow \infty} \text{Var}(T_n) = \lim_{n \rightarrow \infty} \frac{\sigma^2}{(\ln n)^{1/2}} \sum_k \left(1 + \frac{\lambda}{\lambda_k} \right)^{-2} \phi_k(\tilde{\mathbf{x}}_0)^2.$$

1265 Combining the FBR approximation and the central limit theorem for the leading term leads to
 1266

$$1267 \quad \sqrt{\frac{n}{(\ln n)^{1/2}}} \{f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}_0) - f^*(\tilde{\mathbf{x}}_0)\} \xrightarrow{d} \mathcal{N}(0, \sigma_{\tilde{\mathbf{x}}_0}^2),$$

1268 where $\sigma_{\tilde{\mathbf{x}}_0}^2 = \lim_{n \rightarrow \infty} \sigma^2 (\ln n)^{-1/2} \sum_{k=0}^{\infty} (1 + \lambda/\lambda_k)^{-2} \phi_k^2(\tilde{\mathbf{x}}_0)$.
 1269

□

1296 *Proof of Theorem 7.* By the proof of Theorem 6, we obtain
 1297

$$\begin{aligned}
 & \mathbb{E}_{p'} \{ \| f_{\mathbb{S}, \lambda} - f_{\mathcal{P}'} + (DS_{\lambda}(f_{\mathcal{P}'}))^{-1} S_{n\lambda}(f_{\mathcal{P}'}) \|_{\lambda}^2 \} \\
 &= \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-1} \text{Var} \left\{ \frac{1}{n} \sum_{i=1}^n (f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}_i) - f_{\mathcal{P}', 0}(\tilde{\mathbf{x}}_i)) \phi_k(\tilde{\mathbf{x}}_i) \right\} \\
 &\leq \frac{C_2}{n} \| f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}) - f_{\mathcal{P}', 0}(\tilde{\mathbf{x}}) \|_0^2 \sum_{k=0}^{\infty} \left(1 + \frac{\lambda}{\lambda_k} \right)^{-1} \\
 &= O\left(\frac{1}{n}\right) O(n^{-\frac{2m}{2m+1}}) O\left(\frac{(-\ln \lambda)^{1/2}}{\omega}\right) \\
 &= O\left(n^{-\frac{4m}{2m+1}}\right).
 \end{aligned}$$

1309 Similarly to proof of Theorem 6, we have
 1310

$$|n^{\frac{m}{2m+1}} \langle \Delta', R_{\lambda_{\tilde{\mathbf{x}}_0}} \rangle_{\lambda}| \leq n^{\frac{m}{2m+1}} \|\Delta'\|_{\lambda} \|R_{\lambda_{\tilde{\mathbf{x}}_0}}\|_{\lambda},$$

1312 where

$$\begin{aligned}
 \|\Delta'\|_{\lambda} &= \sqrt{O_p(n^{-\frac{4m}{2m+1}})} = O_p(n^{-\frac{2m}{2m+1}}), \\
 \|R_{\lambda_{\tilde{\mathbf{x}}_0}}\|_{\lambda}^2 &= \sum_k (1 + \frac{\lambda}{\lambda_k})^{-1} \phi_k^2(\tilde{\mathbf{x}}_0) = O\left(\frac{(-\ln \lambda)^{1/2}}{\omega}\right) = O(n^{\frac{1}{2m+1}}), \\
 \|R_{\lambda_{\tilde{\mathbf{x}}_0}}\|_{\lambda} &= O(\sqrt{n^{\frac{1}{2m+1}}}) = O(n^{\frac{1}{2(2m+1)}}).
 \end{aligned}$$

1319 Thus, we have
 1320

$$n^{\frac{m}{2m+1}} O_p(n^{-\frac{2m}{2m+1}}) O(n^{\frac{1}{2(2m+1)}}) = O_p\left(n^{\frac{m}{2m+1} - \frac{2m}{2m+1} + \frac{1}{2(2m+1)}}\right) = O_p\left(n^{\frac{-2m+1/2}{2m+1}}\right) = o_p(1).$$

1322 For leading term

$$T'_n := n^{\frac{m}{2m+1}} \left(\frac{1}{n} \sum_{i=1}^n \epsilon_i R_{\lambda}(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_0) \right) = \frac{n^{\frac{m}{2m+1}}}{n} \sum_{i=1}^n V_i = n^{-\frac{m+1}{2m+1}} \sum_{i=1}^n V_i,$$

1326 where $V_i = \epsilon_i R_{\lambda}(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_0)$, its variance is
 1327

$$\text{Var}(T'_n) = \text{Var}\left(n^{-\frac{m+1}{2m+1}} \sum_{i=1}^n V_i\right) = n^{\frac{1}{2m+1}} \text{Var}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^n V_i\right),$$

1330 and the limitation of $\text{Var}(T'_n)$ is given by
 1331

$$\lim_{n \rightarrow \infty} \text{Var}(T'_n) = \lim_{n \rightarrow \infty} \frac{\sigma^2}{(n^{\frac{1}{2m+1}})} \sum_k \left(1 + \frac{\lambda}{\lambda_k}\right)^{-2} \phi_k(\tilde{\mathbf{x}}_0)^2.$$

1334 Then, by the Markov chain's central limit theorem and Slutsky's theorem, we obtain
 1335

$$n^{\frac{m}{2m+1}} \{f_{\mathbb{S}, \lambda}(\tilde{\mathbf{x}}_0) - f^*(\tilde{\mathbf{x}}_0)\} \xrightarrow{d} \mathcal{N}(0, \tilde{\sigma}_{\tilde{\mathbf{x}}_0}^2).$$

□

1338 C.3 PROOF OF GENERALIZATION BOUND

1340 Based on Lemma 3 of Li et al. (2017), we can obtain the following Lemma for u.e.M.c. samples.
 1341

1342 **Lemma 4.** For any bounded measurable functions f and u.e.M.c. samples $\tilde{z}_1, \dots, \tilde{z}_n$, we assume
 1343 that there exists a constant C satisfying $0 \leq f(z) \leq C, \forall z \in \tilde{z}$. Thus for any $\varepsilon > 0$, we have
 1344

$$\Pr \left\{ \left| \frac{\frac{1}{n} \sum_{i=1}^n f(z_i) - \mathbb{E}(f)}{\sqrt{(\mathbb{E}(f) + \varepsilon)}} \right| \geq \sqrt{\varepsilon} \right\} \leq 2 \exp \left\{ \frac{-n\varepsilon}{56C \|\Gamma\|^2} \right\}, \quad (6)$$

$$\Pr \left\{ \frac{\frac{1}{n} \sum_{i=1}^n f(z_i) - \mathbb{E}(f)}{\sqrt{(\mathbb{E}(f) + \varepsilon)}} \geq \sqrt{\varepsilon} \right\} \leq \exp \left\{ \frac{-n\varepsilon}{56C \|\Gamma\|^2} \right\}, \quad (7)$$

1349 where $\|\Gamma\| = \sqrt{2}/(1 - \beta_0^{1/2n_1})$, and $\mathbb{E}(f)$ is the expectation of function f .

1350 *Proof of Lemma 4.* Taking $\varepsilon = \sqrt{\varepsilon\{\mathbb{E}(f) + \varepsilon\}}$ in Lemma 3 of (Li et al., 2017) leads to
 1351

$$\begin{aligned}
 1352 \quad P \left\{ \frac{\frac{1}{n} \sum_{i=1}^n f(z_i) - \mathbb{E}(f)}{\sqrt{(\mathbb{E}(f) + \varepsilon)}} \geq \sqrt{\varepsilon} \right\} &\leq \exp \left\{ \frac{-n(\varepsilon^2 + \varepsilon E(f))}{56C \|\Gamma\|^2 \mathbb{E}(f)} \right\} \\
 1353 \quad &= \exp \left\{ \frac{-n\varepsilon}{56C \|\Gamma\|^2} \left(\frac{\varepsilon}{\mathbb{E}(f)} + 1 \right) \right\} \\
 1354 \quad &\leq \exp \left\{ \frac{-n\varepsilon}{56C \|\Gamma\|^2} \right\}.
 \end{aligned}$$

1355

1356

1357

1358

1359

1360

1361

1362

1363 *Proof of Proposition 2.* According to the definition of excess risk, we have

$$\begin{aligned}
 1364 \quad \mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) &\leq \mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) + \lambda \|f_{\mathcal{D}, \lambda}\|_K^2 \\
 1365 \quad &= \{\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{D}}(f_{\mathbb{S}, \lambda})\} + \{\mathcal{R}_{\mathcal{D}}(f_{\lambda}) - \mathcal{R}_{\mathcal{F}}(f_{\lambda})\} \\
 1366 \quad &\quad + \mathcal{R}_{\mathcal{D}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{D}}(f_{\mathcal{D}, \lambda}) + \{\mathcal{R}_{\mathcal{D}}(f_{\mathcal{D}, \lambda}) + \lambda \|f_{\mathcal{D}, \lambda}\|_K^2\} \\
 1367 \quad &\quad - \{\mathcal{R}_{\mathcal{D}}(f_{\lambda}) + \lambda \|f_{\lambda}\|_K^2\} + \mathcal{R}_{\mathcal{F}}(f_{\lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) + \lambda \|f_{\lambda}\|_K^2, \\
 1368 \quad \mathcal{S}(\mathcal{D}, \mathbb{S}, \lambda) &= [\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{D}}(f_{\mathbb{S}, \lambda})] + [\mathcal{R}_{\mathcal{D}}(f_{\lambda}) - \mathcal{R}_{\mathcal{F}}(f_{\lambda})], \\
 1369 \quad \mathcal{A}(\mathcal{D}, \mathbb{S}) &= \mathcal{R}_{\mathcal{D}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{D}}(f_{\mathcal{D}, \lambda}), \\
 1370 \quad \mathcal{H}(\mathcal{D}, \lambda) &= [\mathcal{R}_{\mathcal{D}}(f_{\mathcal{D}, \lambda}) + \lambda \|f_{\mathcal{D}, \lambda}\|_K^2] - [\mathcal{R}_{\mathcal{D}}(f_{\lambda}) + \lambda \|f_{\lambda}\|_K^2], \\
 1371 \quad \mathcal{D}(\lambda) &= \mathcal{R}_{\mathcal{F}}(f_{\lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) + \lambda \|f_{\lambda}\|_K^2.
 \end{aligned}$$

1372 The definition of $f_{\mathcal{D}, \lambda}$ implies that $\mathcal{H}(\mathcal{D}, \lambda)$ is at most zero. Hence, we obtain
 1373

$$\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) \leq \mathcal{S}(\mathcal{D}, \mathbb{S}, \lambda) + \mathcal{A}(\mathcal{D}, \mathbb{S}) + \mathcal{D}(\lambda),$$

1374 where $\mathcal{S}(\mathcal{D}, \mathbb{S}, \lambda)$, $\mathcal{A}(\mathcal{D}, \mathbb{S})$ and $\mathcal{D}(\lambda)$ denote the sample error, contamination error and regularization error, respectively. \square
 1375

1376 *Proof of Proposition 3.* We utilize the idea of ER minimizer and probability inequality to bound
 1377 this term by means of a covering number. For $R > 0$, we define \mathcal{F}_R as the set of functions
 1378 $\mathcal{F}_R := \{(f(\mathbf{x}) - y)^2 - (f_0(\mathbf{x}) - y)^2 : f_0 \in \mathcal{B}_R\}$. Each function $g \in \mathcal{F}_R$ has the form $g(z) =$
 1379 $(f_{\mathbb{S}, \lambda}(\mathbf{x}) - y)^2 - (f_0(\mathbf{x}) - y)^2$ with $f \in \mathcal{B}_R$. Hence, we obtain $\mathbb{E}(g) = \mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) \geq 0$,
 1380 $\frac{1}{n} \sum_{i=1}^n g(z_i) = \mathcal{R}_{\mathcal{D}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{D}}(f_0)$, and

$$g(z) = \{f_{\mathbb{S}, \lambda}(\mathbf{x}) - f_0(\mathbf{x})\} \{(f_{\mathbb{S}, \lambda}(\mathbf{x}) - y) + (f_0(\mathbf{x}) - y)\}.$$

1381 Since $|f_{\mathbb{S}, \lambda}(\mathbf{x})| \leq M$ and $|f_0(\mathbf{x})| \leq M$, it is easily shown that $|g(z)| \leq |(f_{\mathbb{S}, \lambda}(\mathbf{x}) - y)^2| +$
 1382 $|(f_0(\mathbf{x}) - y)^2| \leq 8M^2$, and $\|g(z)\|_{\infty} \leq 8M^2$. By Lemma 3 of Li et al. (2017), for any $\varepsilon > 0$, we
 1383 have

$$\begin{aligned}
 1384 \quad \Pr \left\{ \sup_{f \in \mathcal{B}_R} \frac{[\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0)] - [\mathcal{R}_{\mathcal{D}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{D}}(f_0)]}{\sqrt{\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) + \varepsilon}} \geq 4\sqrt{\varepsilon} \right\} \\
 1385 \quad = \Pr \left\{ \sup_{g \in \mathcal{F}_R} \frac{\mathbb{E}(g) - \frac{1}{n} \sum_{i=1}^n g(z_i)}{\sqrt{\mathbb{E}(g) + \varepsilon}} \geq 4\sqrt{\varepsilon} \right\} \\
 1386 \quad \leq \mathcal{N}(\mathcal{F}_R, \varepsilon) \exp \left\{ \frac{-\varepsilon n}{448M^2 \|\Gamma\|^2} \right\}.
 \end{aligned} \tag{8}$$

1387 For any $f_1, f_2 \in \mathcal{B}_R$, we have
 1388

$$|g_1(z) - g_2(z)| = \left| (f_1(\mathbf{x}) - y)^2 - (f_2(\mathbf{x}) - y)^2 \right| \leq 4M |f_1(\mathbf{x}) - f_2(\mathbf{x})|.$$

1404 Thus, for any $\varepsilon > 0$, an $\frac{\varepsilon}{4MR}$ -covering of \mathcal{B}_1 provides an ε -covering of \mathcal{F}_R , i.e.,
 1405

$$1406 \mathcal{N}(\mathcal{F}_R, \varepsilon) \leq \mathcal{N}\left(\mathcal{B}_R, \frac{\varepsilon}{4M}\right) \leq \mathcal{N}\left(\mathcal{B}_1, \frac{\varepsilon}{4MR}\right). \quad (9)$$

1408 Generally, \mathcal{H}_1 has polynomial complexity exponent $s > 0$ if there is some constant c_s such that
 1409

$$1410 \log(\mathcal{N}(\mathcal{H}_1, \varepsilon)) \leq c_s \varepsilon^{-s}, \forall \varepsilon > 0. \quad (10)$$

1411 Combining inequality (8) and inequality (10) leads to

$$\begin{aligned} 1412 \Pr & \left\{ \sup_{f \in \mathcal{B}_R} \frac{[\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0)] - [\mathcal{R}_{\mathcal{D}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{D}}(f_0)]}{\sqrt{\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) + \frac{1}{16}\varepsilon}} \geq \sqrt{\varepsilon} \right\} \\ 1413 &= \Pr \left\{ \sup_{g \in \mathcal{F}_R} \frac{\mathbb{E}(g) - \frac{1}{n} \sum_{i=1}^n g(z_i)}{\sqrt{\mathbb{E}(g) + \frac{1}{16}\varepsilon}} \geq \sqrt{\varepsilon} \right\} \\ 1414 &\leq \mathcal{N}\left(\mathcal{F}_R, \frac{1}{16}\varepsilon\right) \exp \left\{ \frac{-\varepsilon n}{7168M^2 \|\Gamma\|^2} \right\} \\ 1415 &\leq \mathcal{N}\left(\mathcal{B}_1, \frac{\varepsilon}{64MR}\right) \exp \left\{ \frac{-\varepsilon n}{7168M^2 \|\Gamma\|^2} \right\}. \end{aligned}$$

1425 Taking

$$1426 \delta = \mathcal{N}\left(\mathcal{B}_1, \frac{\varepsilon}{64MR}\right) \exp \left\{ \frac{-\varepsilon n}{7168M^2 \|\Gamma\|^2} \right\},$$

1429 leads to

$$1430 \ln \delta = \ln \mathcal{N}\left(\mathcal{B}_1, \frac{\varepsilon}{64MR}\right) - \frac{\varepsilon n}{7168M^2 \|\Gamma\|^2} \leq c_s \left(\frac{64MR}{\varepsilon} \right)^s - \frac{\varepsilon n}{7168M^2 \|\Gamma\|^2},$$

1433 which yields

$$1434 \frac{\varepsilon n}{7168M^2 \|\Gamma\|^2} - c_s \left(\frac{64MR}{\varepsilon} \right)^s - \ln \left(\frac{1}{\delta} \right) \leq 0.$$

1436 It follows that

$$1438 \varepsilon^{s+1} - \frac{7168M^2 \|\Gamma\|^2 \ln(\frac{1}{\delta})}{n} \cdot \varepsilon^s - \frac{7168M^2 \|\Gamma\|^2 c_s (64MR)^s}{n} \leq 0.$$

1440 By Lemma 7 of Cucker & Smale (2002), we have

$$\begin{aligned} 1441 \varepsilon^* &\leq \max \left\{ \frac{14336M^2 \|\Gamma\|^2 \ln(\frac{1}{\delta})}{n}, \left(\frac{14336M^2 \|\Gamma\|^2 c_s (64MR)^s}{n} \right)^{\frac{1}{1+s}} \right\} \\ 1442 &\leq \frac{14336M^2 \|\Gamma\|^2 \ln(\frac{1}{\delta})}{n} + \left(\frac{14336M^2 \|\Gamma\|^2 c_s (64MR)^s}{n} \right)^{\frac{1}{1+s}}. \end{aligned}$$

1448 It follows that:

$$\begin{aligned} 1449 \Pr & \left\{ \frac{[\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0)] - [\mathcal{R}_{\mathcal{D}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{D}}(f_0)]}{\sqrt{\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) + \frac{1}{16}\varepsilon^*}} \leq \sqrt{\varepsilon^*} \right\} \geq 1 - \delta, \\ 1450 & \Pr \left\{ \mathcal{S}_1(\mathcal{D}, \mathbb{S}, \lambda) \leq \sqrt{\varepsilon^*} \sqrt{\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) + \varepsilon^*} \right\} \geq 1 - \delta. \end{aligned}$$

1456 By Young's Inequality, we obtain

$$1457 \sqrt{\varepsilon^*} \sqrt{\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) + \varepsilon^*} \leq \frac{1}{2} \{ \mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) \} + \varepsilon^*.$$

1458 Thus, for any $\delta > 0$, with confidence at least $1 - \delta$,

$$\begin{aligned} 1460 \quad \mathcal{S}_1(\mathcal{D}, \mathbb{S}, \lambda) &\leq \frac{1}{2} [\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0)] + \frac{14336M^2 \|\Gamma\|^2 \ln(\frac{1}{\delta})}{n} \\ 1461 \quad &+ \left(\frac{14336M^2 \|\Gamma\|^2 c_s (64MR)^s}{n} \right)^{\frac{1}{1+s}}. \end{aligned}$$

□

1467 *Proof of Proposition 4.* By the definition of f_λ , we obtain $\|f_\lambda\| \leq \mathcal{D}(\lambda)/\lambda$. Also, according to the
1468 condition of K , we have $\|f_\lambda\|_\infty \leq \kappa \|f_\lambda\| \leq \frac{\kappa \mathcal{D}(\lambda)}{\lambda}$. Taking
1469

$$1470 \quad V = (f_\lambda(\mathbf{x}) - y)^2 - (f_0(\mathbf{x}) - y)^2 = (f_\lambda(\mathbf{x}) - f_0(\mathbf{x}))\{(f_\lambda(\mathbf{x}) - y) + (f_0(\mathbf{x}) - y)\}$$

1471 yields

$$\begin{aligned} 1473 \quad |V| &= |(f_\lambda(\mathbf{x}) - f_0(\mathbf{x}))\{(f_\lambda(\mathbf{x}) - y) + (f_0(\mathbf{x}) - y)\}| \\ 1474 \quad &\leq \{|f_\lambda(\mathbf{x})| + |f_0(\mathbf{x})|\} \{|f_\lambda(\mathbf{x})| + |f_0(\mathbf{x})| + |2y|\} \\ 1475 \quad &\leq \left(\frac{\kappa \mathcal{D}(\lambda)}{\lambda} + M \right) \left(\frac{\kappa \mathcal{D}(\lambda)}{\lambda} + 3M \right) \\ 1476 \quad &\leq \left(\frac{\kappa \mathcal{D}(\lambda)}{\lambda} + 3M \right)^2. \end{aligned}$$

1478 By Lemma 4, we have
1480

$$1482 \quad \Pr \left\{ \frac{\frac{1}{n} \sum_{i=1}^n V(z_i) - \mathbb{E}(V)}{\sqrt{(\mathbb{E}(V) + \varepsilon)}} \geq \sqrt{\varepsilon} \right\} \leq \exp \left\{ \frac{-n\varepsilon}{56 \left(\frac{\kappa \mathcal{D}(\lambda)}{\lambda} + 3M \right)^2 \|\Gamma\|^2} \right\}.$$

1486 Thus, for any $\varepsilon > 0$, we obtain
1487

$$1488 \quad \Pr \left\{ \frac{(\mathcal{R}_{\mathcal{D}}(f_\lambda) - \mathcal{R}_{\mathcal{D}}(f_0)) - (\mathcal{R}_{\mathcal{F}}(f_\lambda) - \mathcal{R}_{\mathcal{F}}(f_0))}{\sqrt{(\mathcal{R}_{\mathcal{F}}(f_\lambda) - \mathcal{R}_{\mathcal{F}}(f_0)) + \varepsilon}} \geq \sqrt{\varepsilon} \right\} \leq \exp \left\{ \frac{-n\varepsilon}{56 \left(\frac{\kappa \mathcal{D}(\lambda)}{\lambda} + 3M \right)^2 \|\Gamma\|^2} \right\}.$$

1491 Taking
1492

$$1493 \quad \delta = \exp \left\{ \frac{-n\varepsilon}{56 \left(\frac{\kappa \mathcal{D}(\lambda)}{\lambda} + 3M \right)^2 \|\Gamma\|^2} \right\}, \quad \varepsilon = \frac{56 \|\Gamma\|^2 \left(\frac{\kappa \mathcal{D}(\lambda)}{\lambda} + 3M \right)^2 \ln(\frac{1}{\delta})}{n}.$$

1497 It follows from the inequality $2\sqrt{ab} \leq a + b \forall a, b \geq 0$ that for any $0 < \delta < 1$, with confidence at
1498 least $1 - \delta$, we have
1499

$$\begin{aligned} 1500 \quad \mathcal{S}_2(\mathbb{S}, \lambda) &\leq \frac{1}{2} [\mathcal{R}_{\mathcal{F}}(f_\lambda) - \mathcal{R}_{\mathcal{F}}(f_0)] + \frac{56 \|\Gamma\|^2 \left(\frac{\kappa \mathcal{D}(\lambda)}{\lambda} + 3M \right)^2 \ln(\frac{1}{\delta})}{n} \\ 1501 \quad &\leq \frac{1}{2} \mathcal{D}(\lambda) + \frac{56 \|\Gamma\|^2 \left(\frac{\kappa \mathcal{D}(\lambda)}{\lambda} + 3M \right)^2 \ln(\frac{1}{\delta})}{n}. \end{aligned} \tag{11}$$

□

1508 *Proof of Proposition 5.* We assume that the sample set $\mathcal{M} = \{\hat{z}_i = (\hat{\mathbf{x}}_i, \hat{y}_i) : i = 1, \dots, n\}$ is
1509 generated from distribution \mathcal{Q} . Then, we obtain

$$1510 \quad \mathcal{A}(\mathcal{D}, \mathbb{S}) = \mathcal{R}_{\mathcal{D}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{D}}(f_{\mathcal{D}, \lambda}) \tag{12}$$

$$1511 \quad = [\mathcal{R}_{\mathcal{D}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathbb{S}}(f_{\mathbb{S}, \lambda})] + [\mathcal{R}_{\mathbb{S}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{S}}(f_{\mathcal{D}, \lambda})] + [\mathcal{R}_{\mathcal{S}}(f_{\mathcal{D}, \lambda}) - \mathcal{R}_{\mathcal{D}}(f_{\mathcal{D}, \lambda})]. \tag{13}$$

1512 Obviously, the second term $\mathcal{R}_{\mathbb{S}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathbb{S}}(f_{\mathcal{D},\lambda}) \leq 0$, which yields
 1513

$$1514 \mathcal{A}(\mathcal{D}, \mathbb{S}) \leq \{\mathcal{R}_{\mathcal{D}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathbb{S}}(f_{\mathbb{S},\lambda})\} + \{\mathcal{R}_{\mathbb{S}}(f_{\mathcal{D},\lambda}) - \mathcal{R}_{\mathcal{D}}(f_{\mathcal{D},\lambda})\}.$$

1515 For the first item of (13), we have
 1516

$$\begin{aligned} 1517 \mathcal{R}_{\mathcal{D}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathbb{S}}(f_{\mathbb{S},\lambda}) &= \{\mathcal{R}_{\mathcal{D}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathbb{S}}(f_{\mathbb{S},\lambda})\} - \{\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{P}'}(f_{\mathbb{S},\lambda})\} \\ 1518 &\quad + \{\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{P}'}(f_{\mathbb{S},\lambda})\} \\ 1519 &= \theta' [\{\mathcal{R}_{\mathcal{D}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{M}}(f_{\mathbb{S},\lambda})\} - \{\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{Q}}(f_{\mathbb{S},\lambda})\}] \\ 1520 &\quad + \{\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{P}'}(f_{\mathbb{S},\lambda})\} \\ 1521 &\leq \theta' |\mathcal{R}_{\mathcal{D}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda})| + \theta' |\mathcal{R}_{\mathcal{Q}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{M}}(f_{\mathbb{S},\lambda})| \\ 1522 &\quad + |\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{P}'}(f_{\mathbb{S},\lambda})|. \\ 1523 \end{aligned}$$

1524 Set random variable $\zeta = (f_{\mathbb{S},\lambda}(\mathbf{x}) - y)^2$, leading to $|\zeta| \leq 4M^2$. By lemma 4, we have
 1525

$$1526 \Pr \left\{ \frac{|\mathcal{R}_{\mathcal{D}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda})|}{\sqrt{(\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda}) + \varepsilon)}} \geq \sqrt{\varepsilon} \right\} \leq 2 \exp \left\{ \frac{-n\varepsilon}{224M^2 \|\Gamma\|^2} \right\}.$$

1529 Taking

$$1531 \delta = 2 \exp \left\{ \frac{-n\varepsilon}{224M^2 \|\Gamma\|^2} \right\}$$

1533 yields

$$1535 \varepsilon = \frac{224 \|\Gamma\|^2 M^2 \ln(\frac{2}{\delta})}{n}.$$

1537 Thus, for any $0 < \delta < 1$, with confidence at least $1 - \delta$,
 1538

$$1539 |\mathcal{R}_{\mathcal{D}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda})| \leq 2M^2 + \frac{224 \|\Gamma\|^2 M^2 \ln(\frac{2}{\delta})}{n}, \quad (14)$$

1541 Similarly, we obtain
 1542

$$1543 |\mathcal{R}_{\mathcal{Q}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{M}}(f_{\mathbb{S},\lambda})| \leq 2M^2 + \frac{224 \|\Gamma\|^2 M^2 \ln(\frac{2}{\delta})}{n}. \quad (15)$$

$$\begin{aligned} 1546 |\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathcal{P}'}(f_{\mathbb{S},\lambda})| &= \left| \int_{\mathcal{Z}} (f_{\mathbb{S},\lambda}(\mathbf{x}) - y)^2 d(\mathcal{F} - \mathcal{P}') \right| \\ 1547 &\leq 2 \sup_{(\mathbf{x}, y) \in \mathcal{Z}} (f_{\mathbb{S},\lambda}(\mathbf{x}) - y)^2 \|\mathcal{F} - \mathcal{P}'\|_{\text{TV}} \\ 1548 &\leq 8M^2 \|\mathcal{F} - \mathcal{P}'\|_{\text{TV}} \\ 1549 &\leq 8M^2 \theta'. \\ 1550 \end{aligned} \quad (16)$$

1553 Thus, combining (14)-(16), for any $0 < \delta < 1$, with confidence at least $1 - \delta$,
 1554

$$1555 \mathcal{R}_{\mathcal{D}}(f_{\mathbb{S},\lambda}) - \mathcal{R}_{\mathbb{S}}(f_{\mathbb{S},\lambda}) \leq 12M^2 \theta' + \frac{448 \|\Gamma\|^2 M^2 \ln(\frac{2}{\delta})}{n} \theta'.$$

1558 Similarly, we obtain
 1559

$$1560 \mathcal{R}_{\mathbb{S}}(f_{\mathcal{D},\lambda}) - \mathcal{R}_{\mathcal{D}}(f_{\mathcal{D},\lambda}) \leq 12M^2 \theta' + \frac{448 \|\Gamma\|^2 M^2 \ln(\frac{2}{\delta})}{n} \theta'.$$

1562 Thus, we have
 1563

$$1564 \mathcal{A}(\mathcal{D}, \mathbb{S}) \leq 24M^2 \theta' + \frac{896 \|\Gamma\|^2 M^2 \ln(\frac{2}{\delta})}{n} \theta'$$

1565 \square

1566 *Proof of Theorem 8.* By Propositions 2–5, we obtain the following inequality that holds with prob-
 1567 ability at least $1 - \delta$:

$$\begin{aligned}
 1569 \quad \mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) &\leq 2 \left\{ \frac{14336M^2 \|\Gamma\|^2 \ln(\frac{1}{\delta})}{n} + \left(\frac{14336M^2 \|\Gamma\|^2 c_s (64MR)^s}{n} \right)^{\frac{1}{1+s}} \right\} \\
 1570 &\quad + 3\mathcal{D}(\lambda) + \frac{112 \|\Gamma\|^2 \left(\frac{\kappa\mathcal{D}(\lambda)}{\lambda} + 3M \right)^2 \ln(\frac{1}{\delta})}{n} \\
 1571 &\quad + 48M^2\theta' + \frac{1792 \|\Gamma\|^2 M^2 \ln(\frac{2}{\delta})}{n} \theta' \\
 1572 &\leq 48M^2\theta' + C_2 \log(\frac{2}{\delta}) \left[\lambda^q + \frac{\lambda^{2q-2}}{n} + \left(\frac{1}{n} \right)^{\frac{1}{1+s}} + \frac{1}{n} \right].
 \end{aligned}$$

1580 By the choice of λ , we can be easily shown that

$$\frac{\lambda^{2q-2}}{n} \leq \lambda^q, \quad \left(\frac{1}{n} \right)^{\frac{1}{1+s}} \leq \lambda^q, \quad \frac{1}{n} \leq \lambda^q.$$

1585 Taking $\vartheta_1 = \min \left\{ \frac{1}{2-q}, \frac{1}{(1+s)q}, \frac{1}{q} \right\}$ yields the desired result. The result establishes the asymptotic
 1586 property of the excess risk: $\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) \rightarrow 48M^2\theta'$ as $n \rightarrow \infty$, demonstrating that the
 1587 KRMS estimator achieves consistency up to the contamination level θ' . Through careful algorithm
 1588 design that minimizes θ' , the residual term $48M^2\theta'$ becomes negligible when θ' is sufficiently small.
 1589 Consequently, as $n \rightarrow \infty$ and $\theta' \rightarrow 0$, the excess error $\mathcal{R}_{\mathcal{F}}(f_{\mathbb{S}, \lambda}) - \mathcal{R}_{\mathcal{F}}(f_0) \rightarrow 0$, we obtain the
 1590 consistency of the estimator. Moreover, the result provides an explicit learning rate of $O(n^{-\vartheta_1 q})$.
 1591 Notably, as $s \rightarrow 0$ and $\theta' \rightarrow 0$, this convergence rate approaches $O(n^{-1})$, recovering the optimal
 1592 convergence rate of the regularized least square Li et al. (2017).

□

1595 D EXPERIMENTS

1598 D.1 THE RESULTS OF EXPERIMENT 1 IN SIMULATION STUDIES

1600 The remaining results of Experiment 1 in simulation studies are presented in Table 2–3.

1602 D.2 THE RESULTS OF EXPERIMENT 2 IN SIMULATION STUDIES

1603 **Experiment 2** (Nonlinear model). In this experiment, we generate dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$ from the
 1604 following nonlinear regression: $y_i = 2 \exp(-x_{i1}) + 3 \sin(\pi x_{i2}) + 2x_{i3}^2 + 3x_{i4} + \epsilon_i$, where ϵ_i 's
 1605 are independently drawn from the standard normal distribution, and x_{i1}, \dots, x_{i4} are independently
 1606 sampled from the uniform distribution $U(0, 1)$. The contaminated observations are created with
 1607 contaminated data mechanism given in Experiment 1 for $\theta \in \{0.1, 0.2, 0.3, 0.4\}$. To generate con-
 1608 taminated data, we consider three cases for specifying \mathbf{W}_i and O_i : (M1) (Background Noise):
 1609 $W_{ij} \sim U(-10, 10)$ and $O_i \sim \mathcal{N}(0, 5)$; (M2) (Negative contamination with centered design):
 1610 $W_{ij} \sim \mathcal{N}(-5, 10)$ and $O_i \sim \mathcal{N}(0, 5)$; (M3) (Mixed design): $W_{ij} \sim 0.5\mathcal{N}(-10, 5) + 0.5\mathcal{N}(10, 5)$
 1611 and $O_i \sim \mathcal{N}(0, 10)$. For comparison, we evaluate a baseline method, KRMS-Linear, which applies
 1612 the same residual-based subsampling as the proposed KRMS-RKHS but differs only in its use of the
 1613 linear kernel $K(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_i) = \tilde{\mathbf{x}}_j^\top \tilde{\mathbf{x}}_i$ within the Euclidean space to compute $w(\tilde{z}, \alpha)$ in Equation (3).
 1614 The corresponding results for (M1)–(M3) are given in Tables 4–6, respectively.

1615 By Tables 4–6, we have the following findings. First, the proposed KRMS-KLSR method out-
 1616 performs others for all scenarios in that it consistently has the smallest AMSE and SD values re-
 1617 gardless of contaminated schemes, contamination proportions, and subsample sizes, and maintains
 1618 near-perfect PSR values (almost 100%), demonstrating exceptional robustness in identifying un-
 1619 contaminated observations. Second, exception for contaminated scheme M3 together with low θ
 (e.g., $\theta = 0.1$), MS-KLSR and UNIF-KLSR show marginally better AMSE, and KRMS-KLSR

1620 Table 2: Performance comparison of KRMS and five competing subsampling methods for corrupted
 1621 mechanism M2 in Experiment 1

θ	Method	$n = 500$			$n = 1000$			$n = 1500$		
		AMSE	SD	PSR	AMSE	SD	PSR	AMSE	SD	PSR
0.1	UNIF-KLSR	1.257	0.091	89.95%	1.193	0.061	89.96%	1.167	0.051	90.10%
	MS-KLSR	1.151	0.055	97.34%	1.110	0.043	96.99%	1.096	0.039	97.09%
	KRMS-KLSR	1.142	0.045	99.22%	1.089	0.037	99.26%	1.066	0.036	99.26%
	UNIF-LSR	4.199	0.986	89.95%	4.229	0.684	89.96%	4.125	0.516	90.10%
	GMS-LSR	1.519	0.240	96.74%	1.466	0.173	96.70%	1.438	0.119	96.88%
	LGS-LSR	1.303	0.144	98.98%	1.207	0.093	98.94%	1.147	0.060	98.93%
0.2	UNIF-KLSR	1.450	0.131	80.03%	1.389	0.078	79.97%	1.387	0.070	79.88%
	MS-KLSR	1.250	0.078	93.02%	1.221	0.055	92.89%	1.229	0.051	92.95%
	KRMS-KLSR	1.171	0.048	98.01%	1.106	0.046	98.26%	1.083	0.035	98.26%
	UNIF-LSR	8.677	1.101	80.03%	8.840	0.941	79.97%	9.006	0.680	79.88%
	GMS-LSR	3.079	0.648	88.21%	3.047	0.566	88.69%	3.074	0.446	88.73%
	LGS-LSR	1.348	0.188	97.60%	1.308	0.161	97.48%	1.240	0.100	97.44%
0.3	UNIF-KLSR	1.778	0.193	70.15%	1.744	0.133	69.79%	1.700	0.119	70.09%
	MS-KLSR	1.463	0.130	87.09%	1.437	0.094	87.17%	1.422	0.080	87.75%
	KRMS-KLSR	1.209	0.074	96.70%	1.128	0.048	96.63%	1.115	0.036	96.80%
	UNIF-LSR	12.826	1.411	70.15%	13.187	0.768	69.79%	13.242	0.648	70.09%
	GMS-LSR	6.696	1.218	77.12%	7.034	0.861	77.36%	6.918	0.704	78.16%
	LGS-LSR	1.499	0.305	95.80%	1.462	0.219	95.50%	1.425	0.133	95.26%
0.4	UNIF-KLSR	2.290	0.249	60.37%	2.196	0.190	60.19%	2.188	0.177	60.13%
	MS-KLSR	1.806	0.179	79.15%	1.753	0.140	80.19%	1.763	0.131	80.85%
	KRMS-KLSR	1.255	0.093	94.31%	1.185	0.056	94.42%	1.163	0.051	94.79%
	UNIF-LSR	16.373	1.309	60.37%	16.604	0.890	60.19%	16.66	0.740	60.13%
	GMS-LSR	11.193	1.208	64.90%	11.426	0.808	66.01%	11.561	0.714	66.83%
	LGS-LSR	1.961	0.598	92.33%	2.041	0.385	91.39%	2.027	0.379	90.81%

1646 Table 3: Performance comparison of KRMS and five competing subsampling methods for corrupted
 1647 mechanism M3 in Experiment 1

θ	Method	$n = 500$			$n = 1000$			$n = 1500$		
		AMSE	SD	PSR	AMSE	SD	PSR	AMSE	SD	PSR
0.1	UNIF-KLSR	3.596	0.337	90.10%	3.693	0.162	90.04%	3.712	0.118	90.12%
	MS-KLSR	3.213	0.459	96.66%	3.518	0.233	96.73%	3.573	0.181	97.25%
	KRMS-KLSR	1.117	0.043	99.78%	1.086	0.036	99.76%	1.076	0.034	99.71%
	UNIF-LSR	28.159	1.042	90.10%	28.461	0.461	90.04%	28.498	0.391	90.12%
	GMS-LSR	11.08	5.483	95.04%	14.301	5.22	95.07%	17.638	4.482	95.34%
	LGS-LSR	1.031	0.093	99.48%	1.029	0.057	99.44%	1.034	0.066	99.47%
0.2	UNIF-KLSR	4.141	0.264	79.67%	4.234	0.218	80.07%	4.335	0.212	80.02%
	MS-KLSR	3.993	0.227	91.74%	4.096	0.193	92.27%	4.163	0.183	93.12%
	KRMS-KLSR	1.129	0.041	99.39%	1.079	0.036	99.42%	1.063	0.035	99.38%
	UNIF-LSR	28.515	0.417	79.67%	28.485	0.382	80.07%	28.48	0.463	80.02%
	GMS-LSR	20.024	4.049	89.55%	23.360	2.811	89.79%	24.081	2.512	90.14%
	LGS-LSR	1.080	0.124	98.80%	1.062	0.107	98.77%	1.069	0.160	98.76%
0.3	UNIF-KLSR	5.124	0.495	69.94%	5.370	0.404	69.92%	5.549	0.316	69.88%
	MS-KLSR	4.876	0.383	84.13%	5.073	0.318	85.28%	5.189	0.264	86.31%
	KRMS-KLSR	1.125	0.043	99.04%	1.078	0.037	99.00%	1.072	0.036	99.00%
	UNIF-LSR	28.405	0.486	69.94%	28.407	0.486	69.92%	28.408	0.486	69.88%
	GMS-LSR	24.036	2.644	83.26%	25.839	1.477	83.59%	26.503	1.053	84.12%
	LGS-LSR	1.097	0.111	97.98%	1.177	0.318	97.93%	1.148	0.227	97.82%
0.4	UNIF-KLSR	6.665	0.671	60.35%	7.063	0.553	60.36%	7.250	0.413	60.37%
	MS-KLSR	6.383	0.580	73.44%	6.669	0.444	74.53%	6.745	0.344	76.32%
	KRMS-KLSR	1.133	0.041	98.37%	1.089	0.037	98.42%	1.079	0.036	98.42%
	UNIF-LSR	28.618	0.411	60.35%	28.618	0.411	60.36%	28.618	0.411	60.37%
	GMS-LSR	26.822	1.159	76.08%	27.265	0.872	76.71%	27.658	0.636	77.65%
	LGS-LSR	1.273	0.343	96.59%	1.272	0.278	96.49%	1.291	0.273	96.32%

1672 method still maintains significantly higher PSR values and competitive SD values. This deviation
 1673

likely reflects M3’s milder perturbation effect at low proportion, where random sampling may occasionally succeed. Third, as θ increases, KRMS-KLSR’s AMSE values remain stable, while others show severe degradation. Fourth, MS-KLSR method outperforms UNIF-KLSR but remains inferior to KRMS-KLSR method. **Fifth, a critical limitation of KRMS-Linear is its severe performance degradation with nonlinear function f_0 .** Empirical evidence from the M1 contamination scheme at $\theta = 0.4$ shows a PSR of merely 16.69%. This validates the model misspecification bias hypothesis: the linear estimator’s failure to represent the nonlinear trend causes universally large residuals. Consequently, the residual-based score fails to reliably separate outliers from the model’s own structural errors, invalidating its discriminative power.

Table 4: Performance comparison of KRMS-KLSR and six competing subsampling methods for corrupted mechanism M1 in Experiment 2

θ	Method	$n = 500$			$n = 1000$			$n = 1500$		
		AMSE	SD	PSR	AMSE	SD	PSR	AMSE	SD	PSR
0.1	UNIF-KLSR	1.617	0.093	89.94%	1.720	0.117	90.05%	1.821	0.173	90.10%
	MS-KLSR	1.526	0.126	96.81%	1.498	0.094	96.77%	1.768	0.087	97.70%
	KRMS-KLSR	1.137	0.041	100.00%	1.098	0.036	100.00%	1.087	0.035	100.00%
	KRMS-Linear	25.631	0.964	75.58%	25.245	0.900	78.07%	25.055	0.711	79.82%
	UNIF-LSR	20.074	2.044	89.94%	20.093	1.330	90.05%	20.241	1.115	90.10%
	GMS-LSR	4.981	1.692	97.62%	5.001	0.976	97.62%	4.860	0.856	97.68%
	LGS-LSR	2.917	0.156	99.87%	2.947	0.134	99.86%	2.945	0.126	99.85%
0.2	UNIF-KLSR	1.880	0.068	79.90%	1.908	0.063	79.89%	1.955	0.076	80.01%
	MS-KLSR	1.839	0.067	88.69%	1.906	0.064	88.41%	1.973	0.123	88.70%
	KRMS-KLSR	1.153	0.044	100.00%	1.099	0.038	100.00%	1.091	0.035	100.00%
	KRMS-Linear	29.833	0.548	41.96%	29.746	0.547	47.15%	29.708	0.472	51.71%
	UNIF-LSR	25.317	1.045	79.90%	25.403	0.802	79.89%	25.472	0.658	80.01%
	GMS-LSR	12.806	2.468	91.74%	13.372	2.049	91.75%	13.526	1.489	91.95%
	LGS-LSR	3.046	0.238	99.66%	3.051	0.213	99.64%	3.062	0.203	99.58%
0.3	UNIF-KLSR	2.119	0.142	70.31%	2.120	0.090	69.98%	2.134	0.088	70.04%
	MS-KLSR	2.071	0.116	79.82%	2.136	0.097	79.99%	2.161	0.090	80.24%
	KRMS-KLSR	1.145	0.050	100.00%	1.104	0.041	100.00%	1.101	0.038	100.00%
	KRMS-Linear	30.734	0.499	25.19%	30.712	0.450	30.98%	30.732	0.475	36.01%
	UNIF-LSR	27.574	0.686	70.31%	27.769	0.558	69.98%	27.76	0.545	70.04%
	GMS-LSR	20.876	1.810	83.44%	21.228	1.275	83.98%	21.37	0.922	84.27%
	LGS-LSR	3.191	0.418	99.41%	3.171	0.330	99.35%	3.177	0.295	99.26%
0.4	UNIF-KLSR	2.500	0.159	60.04%	2.418	0.121	59.97%	2.407	0.092	60.07%
	MS-KLSR	2.443	0.129	69.94%	2.427	0.111	70.94%	2.444	0.098	71.87%
	KRMS-KLSR	1.149	0.045	100.00%	1.104	0.042	100.00%	1.106	0.042	100.00%
	KRMS-Linear	31.086	0.518	16.69%	31.087	0.483	22.57%	31.084	0.475	27.13%
	UNIF-LSR	29.034	0.587	60.04%	29.128	0.471	59.97%	29.056	0.463	60.07%
	GMS-LSR	25.317	0.984	74.34%	25.612	0.739	74.69%	25.524	0.654	75.42%
	LGS-LSR	3.469	0.577	99.02%	3.665	0.582	98.63%	3.536	0.465	98.60%

To further demonstrate the effectiveness of KRMS-KLSR, we present a visual analysis of its performance. Figure 1 depicts the density distribution of the sampling metric $\log(w)$ for clean versus contaminated samples. The results show a more distinct separation between inliers and outliers under nonlinear settings, demonstrating that our kernel-induced residual score more effectively distinguishes anomalies. In contrast, the sampling metric distribution of KRMS-Linear exhibits substantial overlap, which hinders its ability to filter out contaminated data points during subsampling. As illustrated in Figure 2, the linear constraints of KRMS-Linear lead to a fitted curve that is severely distorted by outliers. However, our method accurately captures the underlying nonlinear structure, resists the influence of outliers, and recovers a smooth curve that aligns well with the true curve.

In conclusion, our method offers two key advantages. First, it excels at capturing nonlinear features, enabling the separation of data patterns including outliers that are linearly inseparable in the original input space by mapping them into a higher-dimensional RKHS. Second, it achieves enhanced robustness through a more precise assessment of local data structure in the feature space, quantified by the kernel term $\sqrt{\sum K(\tilde{x}_i, \tilde{x}_j)^2}$. This facilitates more reliable outlier identification and suppression, leading to consistently stronger statistical performance on complex datasets compared to linear baselines.

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740

1741 Table 5: Performance comparison of KRMS-KLSR and six competing subsampling methods for
 1742 corrupted mechanism M2 in Experiment 2

1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

θ	Method	$n = 500$			$n = 1000$			$n = 1500$		
		AMSE	SD	PSR	AMSE	SD	PSR	AMSE	SD	PSR
0.1	UNIF-KLSR	1.792	0.075	89.78%	1.809	0.122	89.81%	1.796	0.212	90.09%
	MS-KLSR	1.767	0.071	94.88%	1.818	0.069	94.84%	1.863	0.123	94.96%
	KRMS-KLSR	1.140	0.044	100.00%	1.092	0.037	100.00%	1.088	0.037	100.00%
	KRMS-Linear	29.846	0.547	71.92%	29.721	0.496	75.58%	29.664	0.415	77.34%
	UNIF-LSR	27.001	0.899	89.78%	26.966	0.648	89.81%	26.966	0.587	90.09%
	GMS-LSR	14.325	3.736	97.05%	14.540	2.587	97.29%	14.854	2.066	97.32%
0.2	LGS-LSR	2.875	0.138	99.98%	2.888	0.122	99.98%	2.922	0.130	99.97%
	UNIF-KLSR	1.913	0.069	80.23%	1.919	0.073	80.02%	1.921	0.076	80.02%
	MS-KLSR	1.933	0.067	87.20%	1.961	0.076	87.12%	1.971	0.093	87.50%
	KRMS-KLSR	1.141	0.042	100.00%	1.104	0.039	100.00%	1.095	0.042	100.00%
	KRMS-Linear	31.015	0.485	41.27%	31.004	0.453	46.19%	30.999	0.458	51.25%
	UNIF-LSR	29.314	0.532	80.23%	29.444	0.445	80.02%	29.445	0.482	80.02%
0.3	GMS-LSR	25.457	1.205	90.18%	25.764	0.847	90.28%	25.869	0.759	90.33%
	LGS-LSR	2.964	0.209	99.96%	3.072	0.296	99.92%	2.997	0.254	99.93%
	UNIF-KLSR	2.005	0.096	70.23%	1.979	0.069	69.85%	1.997	0.069	70.01%
	MS-KLSR	2.046	0.092	78.97%	2.047	0.078	79.59%	2.073	0.079	80.20%
	KRMS-KLSR	1.145	0.043	100.00%	1.105	0.045	100.00%	1.109	0.041	100.00%
	KRMS-Linear	31.324	0.428	24.64%	31.314	0.427	31.36%	31.338	0.424	36.16%
0.4	UNIF-LSR	30.36	0.493	70.23%	30.324	0.494	69.85%	30.325	0.442	70.01%
	GMS-LSR	28.614	0.587	81.81%	28.552	0.547	82.15%	28.616	0.469	82.52%
	LGS-LSR	3.420	0.827	99.88%	3.515	0.709	99.83%	3.507	0.698	99.81%
	UNIF-KLSR	2.086	0.117	60.29%	2.052	0.075	60.19%	2.041	0.076	60.00%
	MS-KLSR	2.156	0.108	70.12%	2.151	0.085	71.15%	2.163	0.087	72.16%
	KRMS-KLSR	1.148	0.048	100.00%	1.110	0.034	100.00%	1.103	0.037	100.00%
0.5	KRMS-Linear	31.374	0.418	16.08%	31.387	0.418	22.33%	31.395	0.402	27.26%
	UNIF-LSR	30.687	0.470	60.29%	30.799	0.386	60.19%	30.788	0.443	60.00%
	GMS-LSR	29.648	0.483	72.89%	29.767	0.401	73.42%	29.771	0.465	74.41%
	LGS-LSR	6.807	4.843	98.86%	6.526	2.817	99.23%	7.526	2.775	98.96%

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794

1795 Table 6: Performance comparison of KRMS-KLSR and six competing subsampling methods for
 1796 corrupted mechanism M3 in Experiment 2

1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823

θ	Method	$n = 500$			$n = 1000$			$n = 1500$		
		AMSE	SD	PSR	AMSE	SD	PSR	AMSE	SD	PSR
0.1	UNIF-KLSR	1.087	0.046	89.93%	1.064	0.036	89.90%	1.063	0.035	89.92%
	MS-KLSR	1.085	0.040	97.14%	1.058	0.032	97.00%	1.051	0.032	97.04%
	KRMS-KLSR	1.142	0.042	99.96%	1.091	0.038	99.96%	1.072	0.029	99.94%
	KRMS-Linear	3.773	0.404	93.56%	3.781	0.299	93.90%	3.875	0.315	93.83%
	UNIF-LSR	4.489	0.515	89.93%	4.515	0.423	89.90%	4.501	0.362	89.92%
	GMS-LSR	3.279	0.218	96.81%	3.246	0.169	96.94%	3.239	0.134	96.94%
0.2	LGS-LSR	3.105	0.192	98.27%	3.000	0.124	98.26%	2.957	0.090	98.18%
	UNIF-KLSR	1.276	0.107	80.15%	1.269	0.077	79.86%	1.277	0.066	80.20%
	MS-KLSR	1.166	0.059	92.26%	1.149	0.050	92.23%	1.158	0.049	92.30%
	KRMS-KLSR	1.146	0.038	99.86%	1.096	0.036	99.89%	1.080	0.035	99.88%
	KRMS-Linear	6.982	0.806	80.35%	7.080	0.663	80.86%	7.230	0.588	81.24%
	UNIF-LSR	7.103	0.865	80.15%	7.273	0.675	79.86%	7.179	0.541	80.20%
0.3	GMS-LSR	3.890	0.363	90.92%	4.029	0.270	90.74%	3.938	0.224	91.15%
	LGS-LSR	3.087	0.187	96.11%	3.098	0.173	95.98%	3.028	0.130	95.91%
	UNIF-KLSR	1.605	0.121	69.87%	1.534	0.092	70.04%	1.526	0.088	70.14%
	MS-KLSR	1.351	0.085	85.77%	1.333	0.062	86.16%	1.369	0.068	86.23%
	KRMS-KLSR	1.145	0.043	99.82%	1.095	0.041	99.81%	1.078	0.039	99.79%
	KRMS-Linear	12.433	1.402	61.88%	12.228	0.962	64.13%	12.099	0.911	65.66%
0.4	UNIF-LSR	10.294	1.182	69.87%	10.420	0.799	70.04%	10.349	0.676	70.14%
	GMS-LSR	5.219	0.607	81.37%	5.241	0.449	81.78%	5.162	0.358	82.38%
	LGS-LSR	3.242	0.243	93.29%	3.222	0.188	93.11%	3.212	0.162	92.71%
	UNIF-KLSR	1.807	0.139	60.53%	1.757	0.088	59.98%	1.724	0.074	60.04%
	MS-KLSR	1.549	0.118	78.56%	1.579	0.075	79.05%	1.581	0.059	79.70%
	KRMS-KLSR	1.147	0.050	99.71%	1.096	0.037	99.72%	1.077	0.034	99.69%
1824	KRMS-Linear	17.919	1.361	44.68%	17.667	1.024	47.61%	17.570	0.927	49.64%
	UNIF-LSR	13.681	1.439	60.53%	13.844	0.879	59.98%	13.81	0.705	60.04%
	GMS-LSR	7.529	0.839	69.89%	7.523	0.629	70.76%	7.553	0.527	71.67%
	LGS-LSR	3.532	0.422	89.19%	3.642	0.370	88.12%	3.595	0.266	87.69%

1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

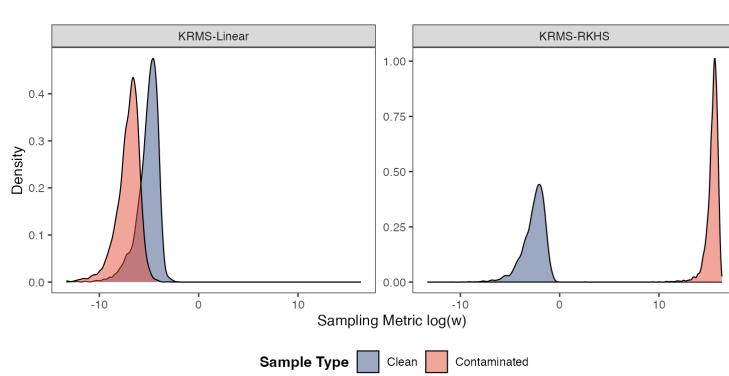


Figure 1: Sampling Metric Distributions of KRMS-RKHS and KRMS-Linear methods

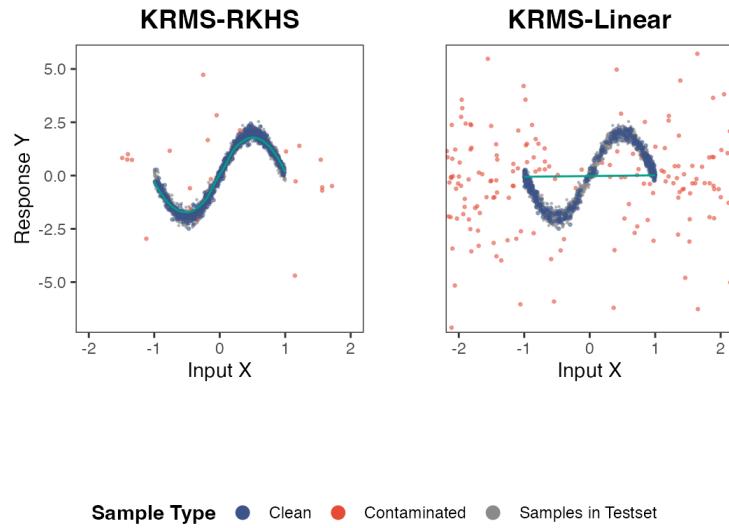


Figure 2: Scatter plot and fitted curve of the subsamples of KRMS-RKHS and KRMS-Linear methods

To validate the scalability regarding data size and dimensionality, we extend the experimental setting to $N = 20,000$ and $p = 50$ under case M1, with $n \in \{1000, 2000, 3000\}$. In addition to the five methods compared earlier, we include a robust nonparametric regression method, Support vector regression (SVR) (Karatzoglou et al., 2004). The results are shown in Table 7. As shown in Table 7, even with a large sample size and higher dimensionality, the KRMS method maintains its effectiveness and robustness, achieving a PSR of 100% across all the considered contamination levels ($\theta \in [0.1, 0.4]$) and subsample sizes. In terms of estimation accuracy, the AMSE of KRMS remains stable under contamination ($\theta > 0$) and is comparable to the uncontaminated baseline ($\theta = 0$). Moreover, KRMS consistently yields lower AMSE values than all benchmark methods, including SVR.

We also assess the computational complexity of the proposed method with respect to sample size N and dimensionality p . To ensure a fair comparison, the analysis is limited to kernel-based competitors. As shown in Figures 3 and 4, KRMS-KLSR incurs the highest computational cost among the evaluated methods, which is mainly due to the iterative sampling step required for robust estimation. Empirically, the runtime of KRMS-KLSR scales approximately linearly with N when p is

fixed. In the most challenging scenario ($N = 20,000, p = 100$), the average runtime is about 600 seconds. While computationally more intensive, this trade-off is justified by the significant gains in robustness and estimation accuracy demonstrated in Table 7.

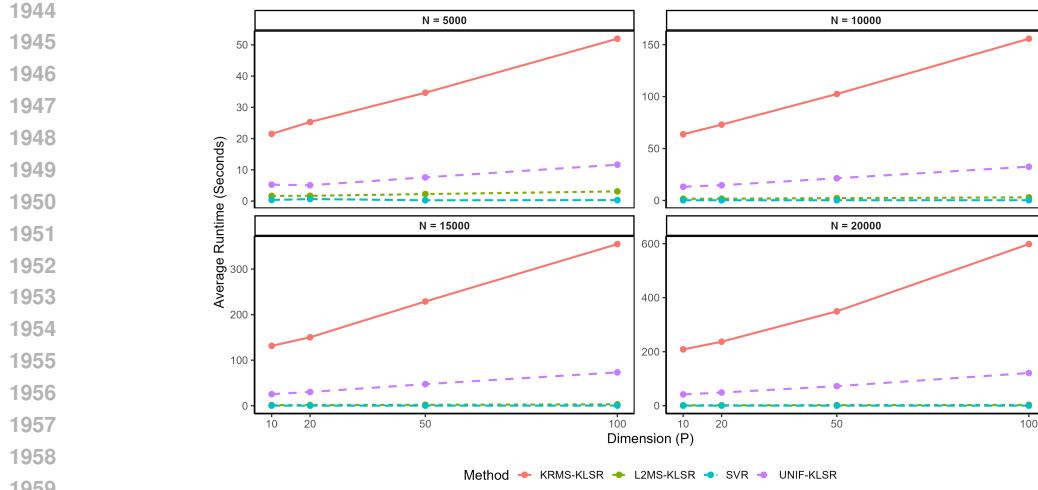
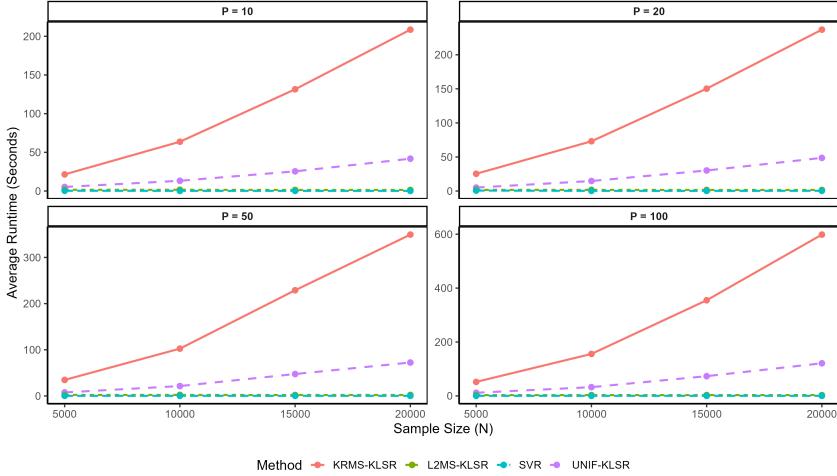
Table 7: Performance comparison of KRMS-KLSR and six competing methods for corrupted mechanism M1 in Experiment 2

θ	Method	$n = 1000$			$n = 2000$			$n = 3000$		
		AMSE	SD	PSR	AMSE	SD	PSR	AMSE	SD	PSR
0	UNIF-KLSR	1.958	0.054	100.00%	1.783	0.054	100.00%	1.745	0.047	100.00%
	MS-KLSR	1.996	0.049	100.00%	1.848	0.054	100.00%	1.830	0.050	100.00%
	KRMS-KLSR	1.987	0.053	100.00%	1.840	0.057	100.00%	1.808	0.048	100.00%
	SVR	1.975	0.059	100.00%	1.786	0.055	100.00%	1.693	0.048	100.00%
	UNIF-LSR	2.073	0.058	100.00%	2.001	0.063	100.00%	1.999	0.051	100.00%
	GMS-LSR	2.051	0.053	100.00%	1.995	0.060	100.00%	1.994	0.048	100.00%
	LGS-LSR	2.052	0.049	100.00%	1.996	0.060	100.00%	1.994	0.050	100.00%
0.1	UNIF-KLSR	2.026	0.060	89.85%	2.820	0.115	90.00%	2.838	0.104	89.96%
	MS-KLSR	2.220	0.072	98.63%	2.687	0.090	98.98%	2.702	0.111	98.96%
	KRMS-KLSR	1.981	0.061	100.00%	1.852	0.069	100.00%	1.804	0.055	100.00%
	SVR	2.013	0.061	89.85%	1.944	0.060	90.00%	1.905	0.057	89.96%
	UNIF-LSR	3.806	0.316	89.85%	4.119	0.272	90.00%	4.295	0.242	89.96%
	GMS-LSR	2.417	0.135	99.24%	2.578	0.136	99.18%	2.723	0.153	99.10%
	LGS-LSR	2.047	0.080	99.86%	2.041	0.083	99.80%	2.046	0.072	99.81%
0.2	UNIF-KLSR	2.116	0.073	80.12%	3.157	0.105	80.23%	3.149	0.093	80.03%
	MS-KLSR	2.148	0.091	95.41%	3.135	0.105	96.46%	3.125	0.095	96.58%
	KRMS-KLSR	1.994	0.067	100.00%	1.857	0.053	100.00%	1.808	0.051	100.00%
	SVR	2.044	0.072	80.12%	1.966	0.056	80.23%	1.937	0.059	80.03%
	UNIF-LSR	6.253	0.635	80.12%	6.933	0.521	80.23%	7.173	0.469	80.03%
	GMS-LSR	2.960	0.237	97.17%	3.358	0.172	96.80%	3.436	0.138	96.76%
	LGS-LSR	2.080	0.080	99.63%	2.142	0.103	99.56%	2.172	0.079	99.48%
0.3	UNIF-KLSR	2.148	0.085	70.09%	3.133	0.119	70.10%	3.308	0.109	70.08%
	MS-KLSR	2.303	0.106	86.54%	3.091	0.130	91.76%	3.245	0.110	92.03%
	KRMS-KLSR	1.975	0.074	100.00%	1.851	0.060	100.00%	1.807	0.061	100.00%
	SVR	2.068	0.084	70.09%	1.970	0.066	70.10%	1.950	0.060	70.08%
	UNIF-LSR	9.912	0.754	70.09%	10.514	0.610	70.10%	10.757	0.544	70.08%
	GMS-LSR	3.623	0.210	92.40%	3.826	0.225	91.91%	3.859	0.168	91.95%
	LGS-LSR	2.133	0.093	99.29%	2.301	0.136	98.96%	2.448	0.154	98.76%
0.4	UNIF-KLSR	2.303	0.101	59.79%	3.062	0.095	60.07%	3.095	0.099	59.89%
	MS-KLSR	2.432	0.098	73.42%	3.047	0.141	82.42%	3.137	0.100	83.27%
	KRMS-KLSR	1.993	0.083	100.00%	1.839	0.045	100.00%	1.817	0.065	100.00%
	SVR	2.141	0.074	59.79%	2.004	0.057	60.07%	1.983	0.064	59.89%
	UNIF-LSR	13.929	0.895	59.79%	14.233	0.651	60.07%	14.512	0.447	59.89%
	GMS-LSR	4.522	0.384	84.24%	4.859	0.336	83.98%	4.889	0.260	84.20%
	LGS-LSR	2.283	0.133	98.73%	2.616	0.133	98.03%	2.772	0.117	97.52%

D.3 REAL EXAMPLES

We illustrate the application of the proposed kernel-based robust Markov subsampling method to two real-world datasets: the NASDAQ stock dataset with economic indicators and an air quality dataset.

Example 1. To evaluate the performance of the proposed subsampling method on real-world financial data, we conduct an empirical analysis using a dataset comprising historical trading information from the NASDAQ market. The dataset is sourced from a public repository <https://www.kaggle.com/datasets/sai14karthik/nasdaq-dataset> and integrates data from major financial providers, including Yahoo Finance, Federal Reserve Economic Data (FRED), Alpha Vantage, and Quandl. It encompasses the period from January 4, 2010 to October 25, 2024, containing daily open-high-low-close (OHLC) prices, trading volume, and key macroeconomic and market sentiment indicators for a designated NASDAQ-listed stock. The raw dataset contains a total of 3,914 daily observations. The primary objective of our analysis is to predict the next trading day's daily percentage return for this NASDAQ stock. Accordingly, the target variable is taken as the daily return R_{t+1} , calculated as $R_{t+1} = (P_{t+1} - P_t)/P_t$, where P_t and P_{t+1} denote the closing

Figure 3: Runtime comparison of different methods with varying sample sizes N and dimensions P Figure 4: Runtime comparison of different methods with varying sample sizes N and dimensions P

prices on trading day t and $t + 1$, respectively. To construct a predictive model, we filter a set of predictors based on the established financial economic theory and common practices in empirical finance. These features are designed to capture diverse aspects of market dynamics and are broadly categorized as follows.

(A) Historical Market Behavior. We include the daily returns from the five preceding trading days (i.e., R_t, \dots, R_{t-4}) to capture short-term momentum effects or potential mean-reversion patterns. A 5-day moving average (MA_5) and a 20-day moving average (MA_{20}) of closing prices are incorporated to represent short- and medium-term price trends, respectively. (B) Macroeconomic Conditions and Market Sentiment. We incorporate daily-frequency macroeconomic indicators and market sentiment proxies, including the CBOE volatility index (a measure of market risk expectations), a benchmark interest rate, the Effective Federal Funds Rate, the TED spread, an exchange rate, and commodity prices of Gold and Oil. These variables are widely recognized in the literature as external factors that may influence asset prices. After constructing these features, we remove observations with missing values. The remaining dataset is then divided into a training set (70% of observations) and a test set (the remaining 30%). We conduct regression analysis to predict the next-day return R_{t+1} , and compared the performance of the proposed KRMS-KLSR method with five competing methods: MS-KLSR, UNIF-KLSR, UNIF-LSR, GMS-LSR, and LGS-LSR. Results for AMSE and SD values over $M = 100$ replicates are summarized in Table 8.

Table 8: AMSE and SD values of six subsampling methods in NASDAQ stock data analysis

θ	Method	$n = 500$		$n = 1000$		$n = 1500$		θ	$n = 500$		$n = 1000$		$n = 1500$	
		AMSE	SD	AMSE	SD	AMSE	SD		AMSE	SD	AMSE	SD	AMSE	SD
0.0	UNIF-KLSR	0.016	0.001	0.016	0.001	0.016	0.001	0.2	0.042	0.007	0.039	0.006	0.039	0.005
	MS-KLSR	0.016	0.001	0.016	0.001	0.016	0.001		0.021	0.003	0.021	0.002	0.020	0.002
	KRMS-KLSR	0.016	0.001	0.016	0.001	0.016	0.001		0.016	0.001	0.016	0.001	0.016	0.001
	UNIF-LSR	0.016	0.001	0.016	0.001	0.016	0.001		0.101	0.014	0.093	0.010	0.088	0.008
	GMS-LSR	0.016	0.001	0.016	0.001	0.016	0.001		0.079	0.025	0.073	0.016	0.073	0.016
	LGS-LSR	0.016	0.001	0.016	0.001	0.016	0.001		0.061	0.029	0.062	0.021	0.063	0.018
0.1	UNIF-KLSR	0.025	0.004	0.024	0.003	0.024	0.003	0.3	0.060	0.011	0.056	0.007	0.055	0.007
	MS-KLSR	0.017	0.001	0.017	0.001	0.017	0.001		0.027	0.004	0.026	0.003	0.026	0.003
	KRMS-KLSR	0.016	0.001	0.016	0.001	0.016	0.001		0.016	0.001	0.016	0.001	0.016	0.001
	UNIF-LSR	0.097	0.020	0.089	0.015	0.101	0.011		0.110	0.018	0.095	0.011	0.092	0.009
	GMS-LSR	0.064	0.032	0.062	0.020	0.079	0.017		0.085	0.023	0.080	0.013	0.078	0.011
	LGS-LSR	0.045	0.027	0.045	0.020	0.061	0.017		0.066	0.025	0.071	0.019	0.071	0.014

We first evaluate the considered six subsampling methods on the original dataset without artificial contamination (i.e., contamination proportion $\theta = 0.0$). As shown in Table S7, in this uncontaminated scenario, six methods yield nearly identical AMSE values with low SD, indicating that the original dataset contains minimal extreme outliers. To investigate the robustness of the subsampling strategies, we artificially corrupt the training data. Specifically, for predictors x_k , we replace a proportion θ of observations with random values drawn from $w_k \sim U(2, 3)$; for corresponding response variable y , we replace its observation with that drawn from $O_i \sim \mathcal{N}(1, 3)$. As an illustration, we here consider three contamination proportions: $\theta \in \{0.1, 0.2, 0.3\}$, representing mild to severe data corruption scenarios.

The results under artificial contamination are presented in Table S7. Key findings include that (i) the proposed KRMS-KLSR method exhibits exceptional robustness, maintaining stable AMSE and SD values regardless of contamination levels and sample sizes, aligns with its uncontaminated performance, demonstrating its strong ability to mitigate contamination effects. (ii) The MS-KLSR method demonstrates consistent robustness, consistently outperforming the UNIF-KLSR method regardless of contamination levels and sample sizes, while effective, exhibits slightly less stability compared to the KRMS-KLSR method. (iii) the LGS-LSR performs best among linear methods. The GMS-LSR and UNIF-LSR methods suffer from significant performance deterioration under contamination, yielding higher AMSE values. (iv) The KRMS-KLSR and MS-KLSR methods maintain consistent performance regardless of sample sizes. Less robust methods show minor AMSE improvements with larger sample sizes at a high contamination level, but remain inferior to the KRMS-KLSR method. (v) While all six methods perform similarly on uncontaminated data, contamination scenarios clearly show KRMS-KLSR method’s superiority in maintaining both accuracy and stability.

Example 2. To demonstrate the proposed method, we employ the Air Quality dataset, which comprises 9358 hourly averaged responses from an array of 5 metal oxide chemical sensors collected between March 2004 and February 2005. This dataset includes ground truth measurements for carbon monoxide (CO), non-methane hydrocarbons (NMHC), benzene, total nitrogen oxides (NOX), and nitrogen dioxide (NO₂), obtained from a co-located certified reference analyzer. Due to the high proportion of missing values in the raw data, we utilize a preprocessed version of the dataset curated by “cmertin” https://github.com/cmertin/Machine_Learning to ensure reliability for modeling.

The dataset is split into training set (70%) and test set (30%). In this example, we focus on predicting the hourly averaged NO₂ concentration (in $\mu\text{g}/\text{m}^3$), using the following predictor variables: month, hour, the five sensor responses (hourly averaged), temperature, relative humidity, and absolute humidity. We assess the proposed KRMS-KLSR method against several competing approaches: (i) kernel-based subsampling techniques: UNIF-KLSR and MS-KLSR, and (ii) linear regression-based subsampling techniques: UNIF-LSR, GMS-LSR, and LGS-LSR. Performance metrics: AMSE and SD values for three subsample sizes as well as four contamination levels are given in Table 9.

Similarly to Example 1, we first evaluate the considered six subampling methods for the original air quality dataset (i.e., uncontaminated, $\theta = 0.0$). From Table 9, we observe the following findings: (i) kernel-based subsampling methods usually outperform linear regression-based subsampling models

Table 9: AMSE and SD values of six subsampling methods in Air Quality data analysis

θ	Method	$n = 500$		$n = 1000$		$n = 1500$		θ	$n = 500$		$n = 1000$		$n = 1500$	
		AMSE	SD	AMSE	SD	AMSE	SD		AMSE	SD	AMSE	SD	AMSE	SD
0.0	UNIF-KLSR	0.410	0.011	0.393	0.009	0.386	0.009	0.2	0.499	0.015	0.495	0.012	0.493	0.012
	MS-KLSR	0.418	0.014	0.400	0.011	0.395	0.010		0.487	0.014	0.485	0.014	0.485	0.015
	KRMS-KLSR	0.443	0.018	0.425	0.014	0.419	0.013		0.444	0.021	0.425	0.012	0.421	0.014
	UNIF-LSR	0.472	0.010	0.469	0.010	0.468	0.010		0.573	0.026	0.569	0.020	0.568	0.018
	GMS-LSR	0.471	0.011	0.469	0.011	0.468	0.010		0.502	0.016	0.504	0.015	0.504	0.015
	LGS-LSR	0.471	0.010	0.469	0.010	0.468	0.010		0.476	0.012	0.476	0.012	0.475	0.012
0.1	UNIF-KLSR	0.475	0.016	0.470	0.012	0.468	0.011	0.3	0.518	0.016	0.514	0.014	0.513	0.013
	MS-KLSR	0.456	0.014	0.458	0.014	0.458	0.016		0.506	0.015	0.506	0.015	0.505	0.017
	KRMS-KLSR	0.443	0.016	0.425	0.015	0.421	0.013		0.450	0.017	0.455	0.018	0.458	0.017
	UNIF-LSR	0.532	0.024	0.528	0.019	0.526	0.017		0.613	0.032	0.609	0.027	0.610	0.023
	GMS-LSR	0.489	0.015	0.489	0.014	0.488	0.012		0.518	0.018	0.520	0.016	0.520	0.015
	LGS-LSR	0.477	0.012	0.474	0.012	0.474	0.011		0.479	0.011	0.477	0.011	0.477	0.012

in that the former has smaller AMSE values than the latter regardless of sample sizes, and (ii) UNIF-KLSR method consistently achieves the lowest AMSE values regardless of subsample sizes in the presence of uncontaminated cases, demonstrating strong performance on uncontaminated data. The proposed KRMS-KLSR method yields slightly higher AMSE value, likely because its robustness leads to the exclusion of some informative observations in this contamination-free setting. These results indicate that UNIF-KLSR method behaves satisfactorily when applied to relatively uncontaminated datasets.

To assess the performance of the considered six subsampling methods in the presence of contaminated data, we artificially introduce outliers into the training dataset by replacing a proportion θ of observations. The outliers are generated as follows: predictors x_k are drawn from the normal distribution $\mathcal{N}(-10, 3)$, and their corresponding responses y from the normal distribution $\mathcal{N}(-3, 3)$. Mirroring Example 1, we consider three contamination levels: $\theta \in \{0.1, 0.2, 0.3\}$. The results for artificially corrupted datasets are given in Table 9. From Table 9, we have the following key findings. First, the proposed KRMS-KLSR method outperforms other methods in that the former has smaller AMSE values and the relatively small SD values than the latter regardless of contamination levels and subsample sizes, while the UNIF-KLSR and MS-KLSR methods perform better than linear regression-based three subsamplers in that the former consistently has smaller AMSE values than the latter regardless of contamination levels and subsample sizes. Second, the linear regression-based LGS-LSR method performs better than the UNIF-LSR and GMS-LSR approaches in terms of AMSE and SD values regardless of contamination levels and subsample sizes, which perform poorly under the considered settings. Third, the KRMS-KLSR method demonstrates exceptional stability, its AMSE values remain nearly unchanged even as contamination level θ increases, closely matching its performance on uncontaminated data ($\theta = 0$). This resilience is further confirmed by its low SD values, particularly at higher contamination levels θ . Fourth, larger subsample size n generally enhance or stabilize the performance of all subsampling methods. In summary, the KRMS-KLSR method demonstrates outstanding robustness to contamination, maintaining near-optimal accuracy across contamination levels while significantly outperforming competing subsampling methods.

E CONVERGENCE ANALYSIS AND PARAMETER SENSITIVITY ANALYSIS

To address concerns related to the convergence of the iterative optimization (Algorithm 1), the validity of subsampling, and the sensitivity to hyperparameters, we provide a comprehensive empirical analysis in this section. These simulation studies complement the theoretical discussion and further validate the robustness of the KRMS method. In the subsequent subsections, we generate datasets under case M1 of Experiment 2, with a contamination level of $\theta = 0.4$, and repeat the experiment 100 times.

E.1 CONVERGENCE ANALYSIS OF THE ITERATIVE PROCEDURE

Figure 5 presents a robust evaluation of the iterative KRMS process under heavy data contamination, displaying the mean and 95% Confidence Interval (CI) across iterations (κ). The analysis

is structured along two independent aspects to simultaneously monitor model stability and performance. Figure 5a, which focuses on algorithmic convergence (parameter stability), employs the Mean Squared Prediction Change (MSPC), defined as $\|\hat{y}^{(\kappa)} - \hat{y}^{(\kappa-1)}\|_2^2/n$, as the key metric. Figure 5b tracks generalization performance via RMSE computed on a clean testset. As shown in Figure 5, both the MSPC and the RMSE drop sharply within the first 3–5 iterations and stabilize thereafter. This empirical evidence strongly indicates that the proposed recursive updating strategy effectively corrects the initial pilot estimate $\alpha^{(0)}$, preventing divergence even when the initial sample contains outliers.

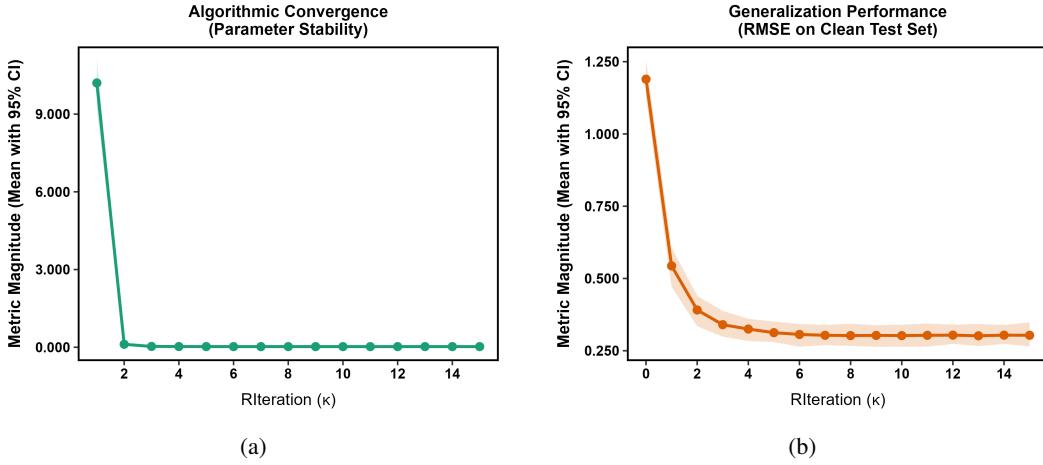


Figure 5: Convergence diagnosis of the Algorithm 1.

E.2 VALIDATION OF THE SAMPLING MECHANISM

To illustrate the target distribution of our Markov subsampling procedure and demonstrate how the weights $w(\tilde{z}, \alpha)$ effectively down-weight contaminated observations, we visualize the sampling behavior in both the metric space and the feature space. Figure 6a displays the density distribution of the sampling metric $\log(w)$ for clean versus contaminated subsamples. Figure 6b visualizes the spatial distribution of the selected subsamples in a two-dimensional feature space, overlaid on the full contaminated dataset.

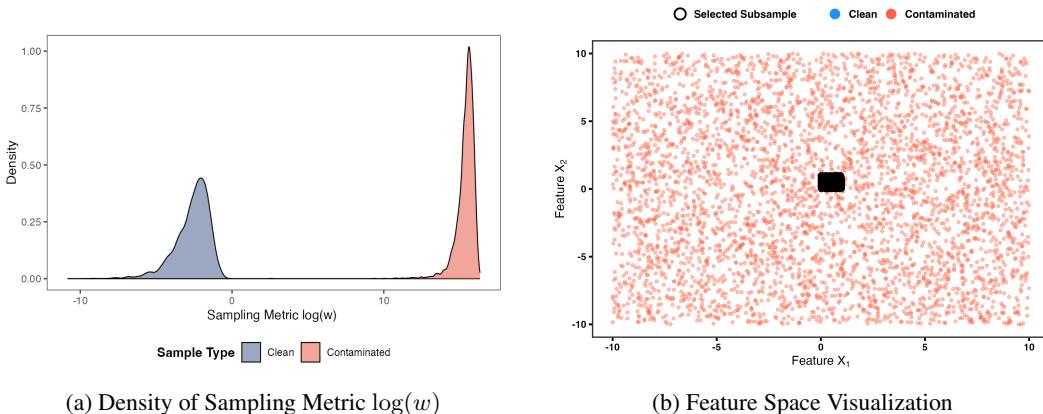


Figure 6: Visualization of the Subsampling Mechanism.

Figure 6a demonstrates a clear distinction between the weight distributions of clean and contaminated samples. Since the acceptance probability is proportional to $1/w(\tilde{z}, \alpha)$, the algorithm inherently favors selecting “clean” data. Furthermore, as depicted in Figure 6b, even under heavy

2160
 2161 contamination, the subsampling algorithm predominantly selects nearly pure “clean” data points
 2162 (shown in black). This provides additional evidence that the Markov chain effectively converges to
 2163 the “clean” data distribution.

2164 E.3 PARAMETER SENSITIVITY ANALYSIS

2166 We conduct sensitivity analyses on the subsample size n_0 and the burn-in period t_0 . Figure 7a
 2167 illustrates that as subsample size increases, the RMSE on the “clean” testset gradually decreases and
 2168 eventually stabilizes. This indicates that a moderate number of subsamples is sufficient to achieve
 2169 reliable performance, thereby substantially lowering computational cost. Figure 7b shows that the
 2170 algorithm’s performance remains highly stable across different burn-in periods. This observation
 2171 suggests rapid mixing of the Markov chain, and demonstrates that the method is insensitive to the
 2172 specific choice of t_0 , which simplifies parameter tuning in practice.

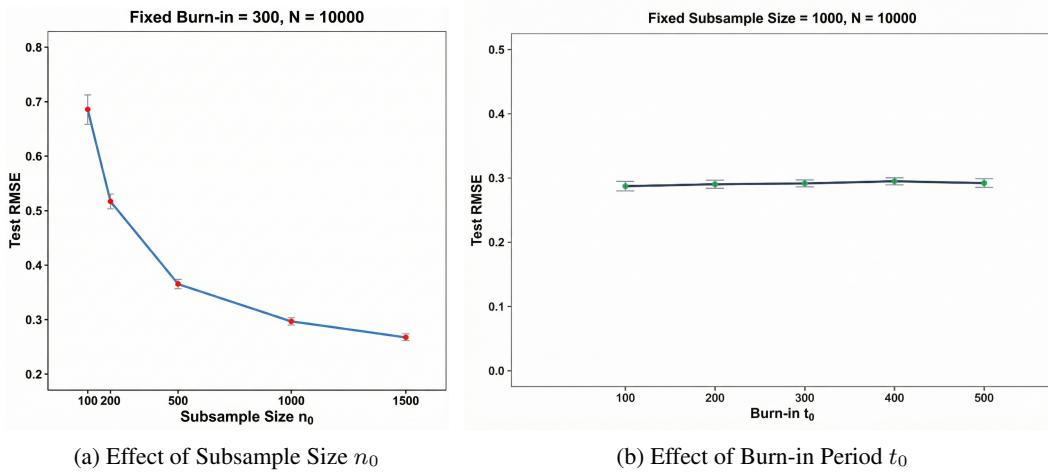


Figure 7: Sensitivity Analysis

2191 We assess the performance of KRMS with three alternative kernel functions: the Laplacian kernel
 2192 $K(\mathbf{x}, \mathbf{y}) = \exp(-|\mathbf{x} - \mathbf{y}|/\sigma)$, the linear kernel, and the polynomial kernel $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^\top \mathbf{y} + c)^d$.
 2193 As shown in Table 10, while the Gaussian kernel achieves the best overall results, the Laplacian kernel
 2194 remains competitive. In contrast, non-stationary kernels (linear and polynomial) perform notably
 2195 worse. This is likely because non-stationary kernels produce values that depend on the absolute position
 2196 of data points; as a result, outliers with large norms may be incorrectly selected, compromising
 2197 robustness. We also investigate sensitivity to the bandwidth parameter σ of the Gaussian kernel.
 2198 Figure 8 shows the performance of KRMS across $\sigma = c/p$ for $c \in [0.1, 10]$. The results indicate
 2199 that KRMS remains highly stable over a wide range of c , while the other two methods are noticeably
 2200 sensitive to the bandwidth selection. In our experiments, the bandwidth of the Gaussian kernel is
 2201 set according to the dimension-dependent rule: $\sigma = 1/p$ (Chang & Lin, 2011), which reflects the
 2202 linear growth of squared Euclidean distances in high-dimensional space. The chosen value ($c = 1$)
 2203 falls within the observed high-performance plateau, confirming that our parameter selection is both
 2204 principled and non-arbitrary.

2214
 2215
 2216 Table 10: Performance comparison of KRMS with different kernel for corrupted mechanism M1 in
 2217 Experiment 2
 2218

θ	Method	$n = 500$			$n = 1000$			$n = 1500$		
		AMSE	SD	PSR	AMSE	SD	PSR	AMSE	SD	PSR
0.1	KRMS-Gaussian	1.137	0.041	100.00%	1.098	0.036	100.00%	1.087	0.035	100.00%
	KRMS-Laplacian	1.134	0.041	100.00%	1.093	0.039	100.00%	1.085	0.039	100.00%
	KRMS-Polynomial	27.276	10.036	50.63%	38.847	12.791	56.42%	46.036	14.027	62.14%
	KRMS-Linear	25.631	0.964	75.58%	25.245	0.900	78.07%	25.055	0.711	79.82%
0.2	KRMS-Gaussian	1.153	0.044	100.00%	1.099	0.038	100.00%	1.091	0.035	100.00%
	KRMS-Laplacian	1.152	0.046	100.00%	1.104	0.040	100.00%	1.100	0.041	100.00%
	KRMS-Polynomial	29.191	22.964	29.15%	40.328	30.571	37.06%	56.794	32.144	44.62%
	KRMS-Linear	29.833	0.548	41.96%	29.746	0.547	47.15%	29.708	0.472	51.71%
0.3	KRMS-Gaussian	1.145	0.050	100.00%	1.104	0.041	100.00%	1.101	0.038	100.00%
	KRMS-Laplacian	1.135	0.048	100.00%	1.103	0.046	100.00%	1.095	0.042	100.00%
	KRMS-Polynomial	19.498	13.403	18.85%	25.048	27.75	26.68%	20.857	27.660	32.96%
	KRMS-Linear	30.734	0.499	25.19%	30.712	0.450	30.98%	30.732	0.475	36.01%
0.4	KRMS-Gaussian	1.149	0.045	100.00%	1.104	0.042	100.00%	1.106	0.042	100.00%
	KRMS-Laplacian	1.139	0.041	100.00%	1.107	0.033	99.99%	1.104	0.043	100.00%
	KRMS-Polynomial	21.616	10.487	11.88%	18.749	12.201	19.05%	19.390	15.188	24.91%
	KRMS-Linear	31.086	0.518	16.69%	31.087	0.483	22.57%	31.084	0.475	27.13%

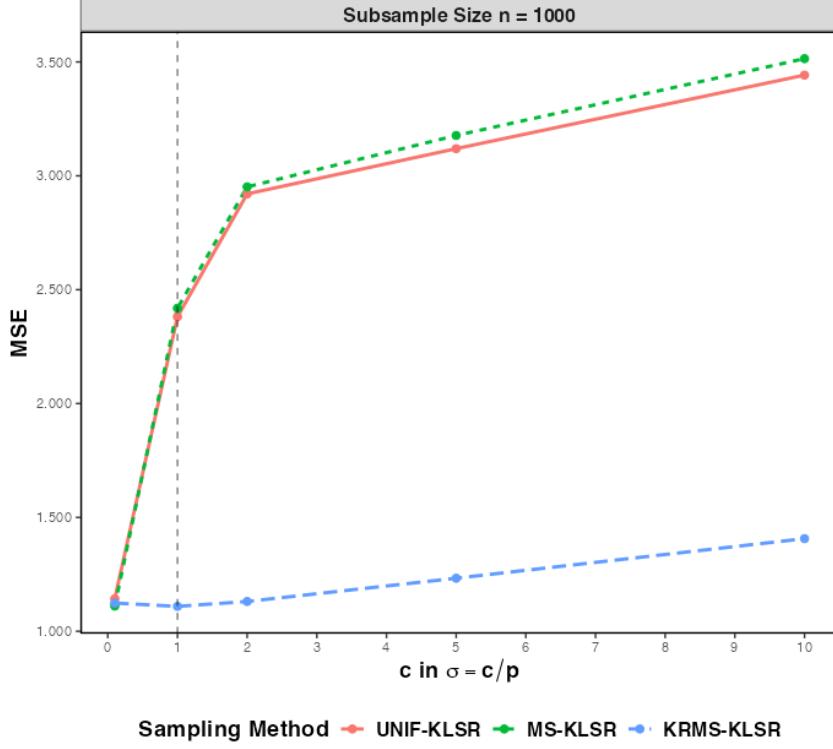


Figure 8: Bandwidth Sensitivity Analysis