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Abstract

Inspired by the success of DeepSeek-R1, we explore the potential of rule-based
reinforcement learning (RL) in MLLM post-training for perception policy learn-
ing. While promising, our initial experiments reveal that incorporating a thinking
process through RL does not consistently lead to performance gains across all
visual perception tasks. This leads us to delve into the essential role of RL in
the context of visual perception. In this work, we return to the fundamentals and
explore the effects of RL on different perception tasks. We observe that the percep-
tual perplexity is a major factor in determining the effectiveness of RL. We also
observe that reward design plays a crucial role in further approaching the upper
limit of model perception. To leverage these findings, we propose Perception-R1, a
scalable RL framework using GRPO during MLLM post-training. With a standard
Qwen2-VL-2B-Instruct, Perception-R1 achieves +4.2% on RefCOCO+, +17.9%
on PixMo-Count, +4.2% on PageOCR, and notably, 31.9% AP on COCO2017
val for the first time, establishing a strong baseline for perception policy learning.
Project code is available at https://github.com/linkangheng/PR1.

1 Introduction

“We do not see the world as it is, but as we are — or as we are conditioned to see it.”

Stephen R. Covey

The landscape of large language model (LLM) has undergone a paradigm shift from non-reasoning
foundation model, e.g., GPT-4/40 [44, 19], DeepSeek-V3 [33]], to strongly reasoning model, e.g.,
OpenAl o1/03 [45], DeepSeek-R1 [12]], and Kimi-1.5 [57]]. DeepSeek-R1, in particular, introduced
a simple yet effective rule-based reinforcement learning (RL) approach [55], enabling emergent
reasoning patterns without relying on traditional scaffolding techniques such as Monte Carlo Tree
Search (MCTS) [17}167]] or Process Reward Models (PRM) [31]]. This has catalyzed a new revolution
in LLM post-training techniques, prompting researchers to develop more powerful reasoning language
models [42, 24]].

Despite these advancements, current explorations predominantly focus on the purely linguistic
domain, and the unimodal nature of these reasoning models limits their ability to engage with the
world in a truly perceptive way. To bridge this gap, this work takes a pioneering step in exploring
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the potential of perception policy learning within multimodal LLMs [61 3] from lens of RL. While
transferring RL techniques with reasoning processes, i.e., chain-of-thought [66]], from the language
domain shows promise on certain visual tasks, our empirical studies reveal that this approach is
not universally effective. This inevitably prompts us to reexamine the role that RL play in visual
perception tasks, and how the utilization of RL can lead to better and scalable perception policy.

Current understanding of reinforcement learning as a post-training technique is primarily rooted
in linguistic tasks [24] and language-centric multimodal tasks [[10]. This work, however, posits
that perception is a critical prerequisite for visual reasoning. We argue that only by fully unlocking
the perceptual patterns of Multimodal LLMs (MLLMs) can these models achieve complex visual
reasoning. Visual perception tasks, fundamentally distinct from natural language tasks, necessitate a
revised understanding of RL in this context due to two unique properties:

* Visual perception is grounded in the objective physical world. It possesses definite physical truth
values (e.g., points, lines, bounding boxes) but lacks the semantic depth of language.

* Visual perception tasks, such as visual grounding and counting, are often "single-step" direct
predictions. This limits the structured reasoning search space typically explored by RL.

These characteristics indicate that applying RL to visual perception will yield different properties,
motivating our exploration of a perception-first RL cognition. This work investigates the RL post-
training of MLLMs in visual perception, complementing and extending current understanding.
Through extensive experimental analysis, we have identified several bitter yet valuable lessons.

* Explicit thinking process (CoT) during RL is not necessary for current perception policy. (§[5.2) We
observe that the model without thinking process performs better than the one with thinking process.

* Reward design plays a pivotal role in perception policy learning. (§ An appropriate reward
function will lead to a healthier learning curve and explore stronger perceptual patterns of MLLM.

* Perceptual perplexity determines RL superiority over SFT. (§[5.2) We observe that RL can bring
more significant improvement compared to SFT on more complex visual tasks, e.g., object detection.

Driven by these findings, we present a simple, effective, and scalable RL framework, i.e., Perception-
R1, for efficient perception policy learning. Inspired by mainstream language reasoning models [12,
57, Perception-R1 applies rule-based RL algorithm GRPO [55]] during MLLM post-training stage.
With a vanilla Qwen2-VL-2B-Instruct [61]], Perception-R1 achieves significant improvement on
multiple visual perception benchmarks, e.g., +4.2% on RefCOCO+ [40], +17.9% on PixMo-
Count [13]], and +4.2% F1-score on PageOCR [34]]. More importantly, Perception-R1 serves as
the first time to enable a pure MLLM to reach 31.9% mAP on the object detection benchmark
COCO02017 [32] val, showcasing the great potential of general foundation models to surpass expert
models in mainstream visual tasks. We hope our method, results, and analysis will inspire future
research on perception policy learning with RL.

2 Related Works

Multimodal Foundation and Reasoning Models. Recently, vision-language models [37, 3} 73} [70]]
have demonstrated remarkable capabilities in visual comprehension [64,|68]] and generation [14} 48]
through large-scale pretraining [2,161]] and visual instruction tuning [37}35]. These models integrate
visual modalities into a unified semantic space via visual encoders [49] and adapters [[11}[37], while
leveraging auto-regressive large language models [59, |1] as decoders for output generation. Despite
the advancements in multimodal foundation models, their visual reasoning capabilities remain in an
early developmental stage. Recent approaches [8, |39} 41]] have explored reinforcement learning (RL)
post-training to enhance visual reasoning. However, they primarily focus on language-centric tasks
such as ambiguous reference resolution [39] and geometric problem-solving [41]], while overlooking
critical aspects of perception-driven reasoning. In this work, we take a pioneering step in utilizing RL
for perception policy learning, aiming to bridge this gap and advance multimodal reasoning.

Visual Perception in Multimodal Models. Visual perception, a core concept in computer vision [21]
52,1201 169, 29], involves interpreting and understanding sensory (visual) information from the real
world. In the context of MLLMs, visual perception is crucial for integrating, comprehending, and
reasoning about visual data from images or videos. Current MLLMs typically bolster their visual
perception by employing advanced visual architectures [63}164], optimized visual-language modeling



strategies [[70} 68]], and sophisticated post-training techniques [74]]. This work explores the potential
of reinforcement learning (RL) to further enhance these visual perception capabilities.

RL-based Post-training in LLMs and MLLMs. Reinforcement learning (RL) has emerged as a
pivotal paradigm for refining LLMs through alignment with human preferences and task-specific
objectives. Prominent approaches like Reinforcement Learning from Human Feedback (RLHF) [46]
and Direct Preference Optimization (DPO) [50] have demonstrated remarkable success in enhancing
safety, coherence, and instruction-following capabilities of LLMs [43] 47, 44] and MLLMs [74, 60]].
Recently, rule-based RL techniques, represented by GRPO [55]], have demonstrated the potential
for large-scale RL applications. LLMs have officially entered the era of strongly reasoning models.
Subsequently, MLLMs [8, 139, l41]] have also quickly followed this technology. However, so far, there
has been no exciting, true "Aha Moment" in the multimodal domain. This study aims to investigate
the potential contributions of RL to multimodal models, focusing on visual perception.

3 Preliminaries

Perception Policy Definition. The goal of perception policy in visual-language context is enabling
the model to first () extract and understand visual information from the environment [37, |68]], then
(i1) perform logical reasoning based on this understanding [73} 70] to (iif) accomplish specific tasks
and further interact with the environment [} 22]]. In this work, we aim to empower the model to deal
with a series of pure visual, e.g., counting, detection, and visual-language, e.g., grounding, optical
character recognition (OCR), tasks through perception policy learning.

Group Relative Policy Optimization (GRPO [53]) is a rule-based reinforcement learning algorithm
tailored for post-training LLMs. Its core idea is to use group relative rewards to optimize the policy,
eliminating the need for a separate critic model [54]]. Specifically, GRPO samples multiple outputs
(01 ~ og in Figure|l) from the old policy for the same input, calculates the average reward of these
outputs as the baseline, and uses the relative rewards to guide policy updates. The optimization
objective of GRPO can be formulated as following:
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where € and (3 are hyper-parameters, and Ai,t is the advantage, computed using a group of rewards
{r1,ra, -+ ,rg} corresponding to the outputs within each group. Refer to [12}[55] for more details.

4 Perception-R1

In a nutshell, our Perception-R1 applies the rule-based RL algorithm GRPO [55] to the post-training
stage of MLLM and optimizes the reward modeling to support perception policy learning. FigurelT]
illustrates the idea, more approach and implementation details introduced next.

4.1 Rule-based Reward Modeling

The reward function serves as the principal training signal in reinforcement learning (RL), directing
the optimization process. Existing LLM methods [12} |57, 24]] basically apply a highly resilient,
rule-based reward system consisting of only two reward types: Format Reward and Answer Reward.

Format Reward. In existing LLM and MLLM, the output format is comprised of two essential
components: the final output format and the intermediate reasoning process format. The reward for
the final output is defined in accordance with specific task requirements and is typically encapsu-
lated within <answer></answer> tags, whereas the reward for the intermediate reasoning process
generally mandates that the reasoning steps be enclosed within <think></think> tags. Formally,
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Figure 1: Illustration of Perception-R1 framework. Following DeepSeek-R1 [12], we prompt
MLLM model to generate several rollout responses, conduct reward modeling, and then apply
GRPO [535]] during post-training stage.
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In Perception-R1, we follow this setting. A subtle difference emerges that visual perception task
frequently require the output of object coordinates, e.g., bounding box, lines, or points. Consequently,
the output format must be strictly constrained to the [x1,y1,x2,y2] structure.

Answer Reward. The Answer Reward pertains to the correctness of model-generated responses,
serving as a central consideration in reward design. Typically, outputs from language models are
abstract and semantically rich, requiring validation through external mechanisms such as code-based
ADE [12] or mathematical answer verification [55]. In contrast, visual perception tasks benefit from
clearly defined physical ground truths, which simplify the development of a robust reward function.

Perception-R1 diverges from LLM approaches by anchoring the reward mechanism in visual discrimi-
nation. This departure is pivotal, as it replaces the often implicit and subjective feedback mechanisms
typical of language models with an explicit, quantifiable metric. Formally, discriminative reward r;
can be represented as:

Ty = (I)(Oi7z)7 (3)

where ®(-) indicates the discriminative function, for example, IoU for bounding box and euclidean
distance for point. By leveraging visual discrimination, we provide the model with a clear and
objective feedback signal, ensuring the model’s policy update with precise measured margin.

4.2 Multi-Subject Reward Matching

In natural environments, physical objects rarely appear in isolation and instead frequently co-occur
in groups. This inherent complexity gives rise to a challenge we define as reward matching, which
entails aligning the model’s output with the corresponding ground truth before reward computation.
Specifically, when prompting the model to predict the attributes of multiple subjects within an image,
e.g., points and bounding box, it is necessary to determine the appropriate ground truth reference for
each subject to ensure accurate reward assignment.

Formally, let y = {y;} Y, denote the set of predicted attributes for IV subjects, and let z = {z;}
represent the corresponding ground truth attributes.We model the reward matching problem as a
bipartite graph matching task, where one set of nodes corresponds to predictions and the other to
ground truths. The edge weight between a prediction y; and a ground truth ¢; is determined by the
reward function ®(y;, z;) defined in Eq. [3} which measures their similarity or compatibility. The
objective is to find the optimal assignment that maximizes the total reward:

M
Jj=1
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where ) is the set of all valid assignments between predictions and ground truths. To solve this
optimization problem efficiently, we employ the Hungarian algorithm [27]], a well-established method
for bipartite graph matching that guarantees the optimal pairing by maximizing the overall reward (or
equivalently, minimizing the cost). This ensures that each predicted attribute is accurately matched
with its corresponding ground truth, thereby optimizing the reward computation process.

After the optimal reward assignment is determined, we calculate the answer reward by aggregating
the individual rewards for each subject. Mathematically, the overall reward score is defined as:

1 N
Sanswer = N ; o (7/1, Z&(i)) ’ 5)
Stolal = Sformat + Sanswer

where & is the optimal assignment obtained via the Hungarian algorithm.In Perception-R1, we
primarily use reward matching for visual counting and object detection tasks, as these involve
multiple objects.

4.3 Perception-R1 Configuration

Model Setting. Our model implementation follows Qwen2-VL [61]. We mainly use the Qwen2-VL-
Instruct-2B as the baseline model.We also utilize Qwen2.5-VL-3B-Instruct [3] for training object
detection tasks, due to its specialized optimization for localizing bounding boxes. The input image
resolution for Qwen2-VL is dynamic cooperated with 2D-RoPE [56].

Task and Data Setting. Given that Perception-R1 is primarily oriented towards pure visual and visual-
language tasks, we select several mainstream and representative downstream tasks for perception
policy learning, specifically including visual grounding, e.g., refCOCO [71] / + [71]] / g [40]l, OCR, i.e.,
PageOCR [34], visual counting, i.e., Pixmo-Count [13], and object detection, i.e., COCO2017 [32].
For each task, a subset (5k ~ 10k) of samples are respectively extracted as base data for individual
post-training. More details are in the appendix

Training Setting. We focus on the RL-based post-training stage of MLLM. All the selected base
models have already undergone pre-training and SFT stage. During RL stage, the initial learning rate
is set as 1e — 6 with 8 rollouts by default and a batch size of 1. The following are some important
hyper-parameters during post-training. Prompts detailed settings are in the appendix [A.T]

Gradient Accmulation Rollout G KL Coefficient Max Response Len = Temperature
2 8 0.04 2048 1.0

Reward Setting. We tailor distinct discriminative rewards for various visual perception tasks. For
the grounding task, the reward is based on the Intersection over Union (IoU) between the predicted
output and the ground truth. In the counting task, we adopt a paradigm similar to Qwen2.5-VL, which
first detects points and then counts them. Here, the reward is derived from the Euclidean distance
computed during reward matching. For OCR, the edit distance serves as the primary reward metric.
Lastly, in object detection, we combine multiple rewards: an object number reward based on the F1
score, a location reward using IoU, and a binary classification reward with a missing penalty.

Sampling Setting. Following Kimi-1.5 [57], we adopt a curriculum sampling strategy that begins
with easier data and gradually transitions to more challenging examples. Specifically, for the object
detection task, we first conduct offline training on the COCO dataset to compute reward values.
Based on the selected rewards, i.e., number reward, we partition the dataset accordingly. As training
advances, we progressively replace the data with more difficult samples (i.e., those associated with
lower rewards) while concurrently increasing the rollout to broaden the model’s exploration space.



Table 1: Visual grounding benchmark evaluation. To comprehensively assess the model’s ground-
ing capability, we select referring experssion comprehension (REC) benchmark, i.e., RefCOCO [71]],
RefCOCO+[71]], and RefCOCOg[40]] for evaluation. The expert model is denoted in

RefCOCO

method sizevalaso testAasotestBaso|valars testAars testBa7s|valags testAags testBags valgyg testAy,testByy,g

LLaVA-1.5(35] 7B [49.1 549 433 (107 136 69 |04 03 03 [20.1 229 16.8
LLaVA-NeXT [36]7B |82.5 88.4 74.0 |457 548 356 |19 26 0.7 [434 48.6 36.8
LLaVA-OV [28] 7B |73.0 823 635 (242 296 159 |05 05 0.5 [32.6 375 26.6
Qwen2-VL [61] 2B [86.8 89.6 820 |77.2 80.6 70.1 |33.0 357 269 |65.7 68.6 59.7

Perception-R1 28 [89.1 914 845 |79.5 83.6 724 |35.0 385 28.8 (679 71.2 61.9
RefCOCO+

method sizevalaso testAasotestBaso|valars testAars testBazs|valags testAags testBags valgyg testAyyg testBayg

LLaVA-1.5[35] 7B [42.4 49.7 364 |98 124 64 |05 05 02 [17.6 20.8 143
LLaVA-NeXT [36]]7B |74.5 84.0 64.7 |41.5 518 300 |19 27 1.0 393 46.2 319
LLaVA-OV [28] 7B |65.8 79.0 57.2 |23.6 288 153 |06 06 04 |30.0 36.1 243
Qwen2-VL [61] 2B [77.1 825 70.1 |68.7 73.8 60.0 |294 323 23.0 584 629 51.0

Perception-R1 2B |81.7 86.8 743 |73.6 793 64.2 |32.6 369 26.7 |62.6 67.7 55.1

RefCOCOg
method size|valaso testaso vala7s testars valags testags valgyg  testay,
LLaVA-1.5[35] 7B [43.2 45.1 85 93 03 03 17.3 18.2
LLaVA-NeXT [36]78 | 77.5 77.1 40.7 39.9 1.8 1.7 40.0 39.6
LLaVA-OV [28] 7B |70.8 70.8 23.3 23.6 0.6 0.7 31.6 31.7
Qwen2-VL [61] 2B |83.3 83.1 72.7 73.0 28.9 279 61.6 61.3
Perception-R1 2B | 85.7 854 75.7 76.0 32.1 33.1 64.5 64.8

Table 2: PageOCR evaluation, compared with various strong expert and general models. "en" means
English and "zh" means Chinese.

Edit Distance |  Fl-score 1 Precision 1 Recall 1 BLEU 1 METEOR 1
size | en zh en zh en zh en zh en zh en zh

Qwen2-VL [61] 2B [ 8.0 10.0 944 93.0 969 96.1 93.0 905 909 78.0 941 872
LLaVA-NeXT [36] 7B [43.0 - 647 - 573 - 88.1 - 478 - 582 -

Perception-R1 2B 2.8 84 982 969 98.6 972 97.8 96.7 96.6 747 98.1 93.8

5 Experiments

The experimental section evaluates Perception-R1’s performance on visual perception tasks (§[5.1)),
followed by analytical experiments exploring reinforcement learning (RL)’s role in perception policy
learning (§[5.2). Finally, it discusses the interplay between visual perception and RL, along with key
insights for perception policy learning (§[5.3).

5.1 Performance Landscape in Perception Tasks

We evaluate Perception-R1 on mainstream perception tasks: visual grounding, counting, OCR,
and object detection. Experiments use the datasets described in § 4.3]and benchmarks for image
understanding. Results are in Tables [TH4]

Visual Grounding is a task that involves localizing visual objects based on linguistic descriptions.
Specifically, given a language prompt, the model is required to output the spatial coordinates of
the subject (typically a single entity) described in the prompt. As shown in Table |I| we evaluate



Table 3: Mainstream visual tasks evaluation including (a) visual object counting and (b) challenging
general object detection. Notably, the results of expert model in (b) are copied from MMDetection [7]).
+ means Perception-R1 for object detection is build based on Qwen2.5-VL-3B-Instruct [3].

Viusal Counting Object Detection
method size Pixmoya1 PiXmogest method size epoch AP APs5o APzs
LLaVA-1.5[35] 7B 333 31.0 - 273 279 492 283
LLaVA-1.6 [58] 7B 32.7 319 - 12 356 557 379
LLaVA-OV [28] 7B 55.8 53.7 41M 500 42.0 624 442
Qwen2-VL [61] 2B 60.2 50.5 Qwen2.5-VL [3] 3B 1 16.1 23.7 16.7
Perception-R1 2B 78.1 75.6 Perception-R1" 38 1 319 46.7 334

(a) Visual counting evaluation on Pixmo-Count [13]  (b) Object detection evaluation on COCO2017 [32]
val set and test set. validation set.

Table 4: General image understanding and reasoning evaluation, compared with various baselines.
We select 8 mainstream multimodal benchamrks, i.e., MMBench [38], MM Vet [72]], MMStar [9], Sci-
enceQA [53], SeedBench [18], MME [16], LLaVA-Bench [37], and ai2D [26] for the comprehensive
understanding. We use the model after RL training in the counting tasks for the eval.
MMBench MM Vet MMStar ScienceQA SeedBench MME LLaVA-Bench AI2D
IIm Avg Avg Avg Avg Avg  Cognition Perception Avg Avg
LLaVAL.S [35] Vicunal.5-7B| 62.8 32.8 32.6 654 60.1 302.1 1338.3 52.6 51.9
LLaVA-NeXT [36] Vicunal.5-7B| 66.0 37.9 37.7 68.2 69.1 195.7 1419.5 52.7 67.4
Qwen2-VL [61]  Qwen2-2B 719 456 463 74.0 72.7 4185 1471.1 46.5 71.6

Perception-R1 Qwen2-2B 71.8 489 457 734 73.0 430.0 1473.9 58.2 71.8

Perception-R1 on three mainstream benchmarks, refCOCO / + / g, and report Acc@0.5, Acc@0.75,
and Acc@0.95 to comprehensively assess its visual grounding capability. We surprisingly find that
several SOTA MLLMs exhibit poor performance on the more challenging Acc@0.95 metric, with
scores even below 1%. In contrast, Perception-R1 achieves a stable performance of over 30% on this
metric. This observation suggests that the community should prioritize reporting more discriminative
results in future evaluations. The experimental results demonstrate that Perception-R1 exhibits strong
competitiveness compared to both specialized and general-purpose models.

Optical Character Recognition (OCR) represents a critical task in visual perception due to its
substantial practical value. Current methodologies predominantly adopt either expert models or
fine-tuned generalist models for OCR. Perception-R1 pioneers the utilization of RL to further
unlock the OCR capabilities of MLLM. As shown in Table[2] our proposed Perception-R1 achieves
SoTA performance on the highly challenging OCR benchmark, i.e., PageOCR [34], demonstrating
significant superiority over existing expert models, e.g., GOT (98.2% vs. 97.2% F1-score) and robust
generalist models, e.g., LLaVA-NeXT (98.2% vs. 64.7% F1-score). Notably, Perception-R1 does
not use the Chinese OCR data for training so it is a zero-shot performance for Chinese metric. This
breakthrough substantiates the formidable potential of RL applications in OCR tasks, establishing
new frontiers for enhancing textual understanding and recognition in complex visual environments.

Visual Counting, as a fundamental vision task, necessitates models to accurately quantify category-
specific instances within images, requiring robust visual logic to identify and enumerate targets
through structured recognition patterns. In Perception-R1, we adopt a detect-then-count paradigm
that reformulates the counting problem into a point detection process. As shown in Table [3a]
Perception-R1 achieves remarkable counting performance, surpassing the current strong baselines
by a substantial margin (17.9% improvement compared to Qwen2-VL in Pixmo val set). This
advancement substantiates that RL effectively stimulates models to explore intrinsic visual logic
mechanisms (Although counting yields deterministic results, the sequence of counting can exhibit
distinct patterns), thereby enhancing their capacity to resolve complex vision tasks.

General Object Detection, widely regarded as the crown jewel of computer vision tasks, has long
been considered one of the most challenging problems in visual perception. As a pioneering endeavor
to integrate RL into object detection, Perception-R1 achieves a groundbreaking milestone, serving
as the first pure MLLM to surpass the 30+ AP threshold, i.e., 31.9 AP in Table on the
COCO 2017 val set, matching or even exceeding the performance of specialized expert models.
This achievement underscores rule-based RL’s immense potential in addressing complex vision tasks
requiring sophisticated visual-logic integration.



Table 5: Ablation Study of Perception-R1. We perform ablation studies to investigate key properties
of Perception-R1 across a range of visual perception tasks. Specifically, we report the Acc@0.5 for
RefCOCO / +/ g val set, the Fl-score for PageOCR, the average scores for Pixmo-Count, and the
AP metric for COCO2017 val set. w/o means without. Notably, there is no reward matching applied
to visual grounding and OCR tasks, as these tasks do not involve the multi-subject reward.

Visual Grounding OCR Visual Counting | Detection
case RefCOCO RefCOCO+ RefCOCOg | PageOCR | Pixmoyay Pixmogese | COCO2017
w/o reward matching - - - - 77.1 75.4 23.5
w/o RL 86.8 77.1 83.3 98.2 60.2 50.5 16.1
w thinking 75.1 67.9 71.3 93.8 74.9 72.8 25.7
w/o thinking 89.1 81.7 85.7 98.2 78.1 75.6 28.1
RL only 89.1 81.7 85.7 98.2 78.1 75.6 31.9
SFT only 88.2 80.7 84.6 97.2 58.0 59.9 259
SFT+RL 88.4 80.7 85.1 98.3 77.1 75.4 30.8

Table 6: Reward design analysis of Perception-R1. cls reward indicates binary classification reward
and missing reward is a penalty to penalize missed detections. To facilitate rapid experimentation, we
randomly sampled 10k data from COCO2017 train set for this experiment.

C0OCO02017
reward function AP AP5o AP75
format reward + location reward (IoU) 18.8 253 20.1
format reward + location reward (IoU) + cls reward 202 273 214
format reward + location reward (IoU) + cls reward + recall reward (F1) 27.6 42.0 28.7
format reward + location reward (IoU) + cls reward + recall reward (F1) + missing reward| 28.1 42.0 29.6

General Visual Comprehension extends beyond pure perceptual tasks, and we evaluate Perception-
R1 on multiple multimodal benchmarks. As shown in Table ] we observe an intriguing phenomenon
that models trained with RL for vision-specific tasks, e.g., counting task, exhibit concurrent perfor-
mance gains in generic comprehension benchmarks. We attribute this cross-task enhancement to the
perception policy learning, which drives the model to discover superior image interpretation patterns.

5.2 Ablation Study of Perception-R1

In this section, we aim to conduct a comprehensive ablation study to systematically investigate the
contributions of critical components within Perception-R1. Experimental results are shown in Table[5]
From the experimental results, we can derive three principal empirical findings:

Reward matching enhances the explorability of multi-subject visual perception. As evidenced
by the comparative results between row 1 and 2 in Table [5] replacing the bipartitle matching with
sequential matching leads to substantial performance degradation in both visual counting and object
detection task. This suggests that sequential matching constrains the RL exploration space. On the
contrast, the bipartite matching mechanism provides more possibility in reward assignment, enabling
the model to explore optimal visual perception patterns.

Explicit thinking processes prove non-essential for contemporary visual perception. Comparative
analysis of row 3 and 4 reveals consistent performance degradation across all four evaluated perception
tasks when incorporating an explicit thinking process during both training and inference phases.
Similar phenomenon also emerges in image classification tasks [30]]. We posit that this phenomenon
arises because current visual perception tasks are more oriented toward visual logic rather than
semantic logic. This shift implies that explicit language-centric reasoning processes are unnecessary,
as models tend to focus more on learning implicit visual patterns.

Perceptual perplexity dictates RL’s advantage over SFT. A comparison of post-training methods
(SFT, RL, and SFT+RL) across four perception tasks (Table E], rows 6-8) reveals that RL offers
superior performance enhancement in tasks with high perceptual perplexity, such as counting and
multi-object/category detection. Conversely, for low-perplexity tasks like grounding and OCR, RL
performs comparably to or even worse than SFT. This suggests that high perceptual perplexity is a
significant factor influencing RL’s effectiveness, indicating that RL techniques are most beneficial
for tasks with greater perceptual complexity and a larger exploration space for the perception policy.
Further analysis of perceptual perplexity is provided in the appendix
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Figure 2: Scalability analysis of Perception-R1. We select two primary tasks: grounding and
counting. We visualize the training reward curves under varying numbers of rollouts and evaluate the
final performance of each task. All experiments are conducted with 5% sampled data. And the default
rollout number setting (1x) is 8.

5.3 More In-depth Analysis

In this section, we explore several key properties of Perception-R1 to further enhance our understand-
ing of Perception Policy Learning with RL.

Analysis of reward design for perception policy learning. We introduced the details of reward
function of Perception-R1 in § 4.3] In this part, we examine the influence of these reward functions
on perception policy learning. Specifically, using object detection as a case study, we incrementally
integrate the designed answer reward into the format reward, as illustrated in Table [6] The results
indicate that the progressive introduction of refined reward functions leads to consistent improvements
in detection performance, ultimately exceeding the performance of expert models. This underscores
the critical role of reward design in perception policy learning. Furthermore, it identifies a promising
avenue for future research: the development of more refined and task-specific reward functions to
enhance perception policy learning.

Analysis of scaling up rollout for perception policy learning. The scalability of RL is a key concern
of existing LLM post-training. In this part, we analyze the scalability of Perception-R1, focusing
specifically on scaling up the number of rollouts. As shown in Figure[2] we conduct rollout-scaling
experiments in two tasks: visual grounding and visual counting. The results indicate that increasing
rollout count enhances reward optimization and final performance. This demonstrates Perception-R1’s
strong scaling properties and underscores the critical role of rollout quantity in scaling perception
policies. By generating sufficient rollouts, the model broadens its exploration space, increasing the
diversity of candidate solutions for reward evaluation. This expansion accelerates convergence to
optimal visual perception patterns.

6 Limitation and Conclusion

"What can RL bring to MLLM?" is a public question since the propose of DeepSeek-R1. Several latest
works attempt to apply RL from the perspective of language-centric visual reasoning [39} 15} 41]].
However, in this paper, we take a different pathway and argue that perception is a crucial prerequisite
for visual reasoning. Only by fully unlocking the perception patterns of MLLMs can the models
possess the ability to reason about complex visual tasks. Nevertheless, we regrettably find that many
current perception tasks are overly simplistic, which limits the exploration space for RL. This, in turn,
restricts the possibility of MLLMs achieving a perceptual "Aha moment" through thinking process.
Finding more appropriate perception tasks, aka., meta task, may be the key to addressing this issue.

In a summary, this work takes a pioneering step in exploring the potential of rule-based RL in MLLM
post-training for perception policy learning. Through extensive experimental analysis, we establish
several valuable cognition about perception policy learning with RL. Driven by these findings, we
build Perception-R1, a simple, effective, and scalable RL framework for efficient perception policy
learning. Perception-R1 sets new SoTAs across multiple visual perception tasks, particularly in object
detection tasks. By introducing a novel paradigm, it achieves and even surpasses the performance of
expert models, showing the great potential of perception policy learning with RL.
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¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The discussion of limitation is presented in Section [6]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the full set of assumptions and a complete (and correct) proof in
Section 3|and Section[]including preliminaries and equations and detailed explanation.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All reproduce information including source code are provided in this paper.

Guidelines:
* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the source code and detailed readme in supplemental material and
we also provide detailed data source in the appendices.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We present the experimental setting in section[d.3]

Guidelines:
* The answer NA means that the paper does not include experiments.
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* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We do not report error bars in this work.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report it on Section[d.3]and all experiments are conducted on NVIDIA
A100 Tensor Core GPU.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This work aligns with NeurIPS Code of Ethics.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This work does not have potential negative societal impacts.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no high risk for misuse of our models and datasets.
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Guidelines:
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code and data are following licenses properly. And all related works are
cited.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new code and models in this paper. Both the code and mode
cards are well-documented, with detailed information regarding usage, training procedures,
licenses, and limitations provided alongside the assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments and research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments and research with
human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: This work is build based on LLMs and we provide a detailed introduction
about them.
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Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

In this appendix, we provide additional details about Perception-R1, which are omitted due to the
9-page limit of the main paper. Specifically, Section [A.T] elaborates on the detailed dataset and
training settings. Section[A.2]presents additional explanation about perceptual perplexity. Section[A.3]
presents more experimental results.

A.1 Additional Details about Experimental Setting

More detailed dataset information of Perception-R1. In Section 4.3} we introduced what data
was used for RL post-training of Perception-R1 on which tasks. In this part, we will provide more
detailed information about the datasets, as shown in Table[7]

Table 7: Training dataset statistics. Notably, we do not mix the data from different perception tasks
for joint training because the rewards for different tasks vary.

tasks datasets Original Used Ratio
visual grounding | RefCOCO / RefCOCO+ / RefCOCOg 320k 5k 1.56%
OCR PageOCR 50k 5k 10%

visual counting PixMo-Count 1.9M 10k  0.5%
object detection C0OCO02017 110k 110k 100%
overall - 2.38M 130k -

More detailed training setting information of Perception-R1. Section 4.3|elaborates on several
key parameters of Perception-R1. In this part, we further demonstrate the diverse prompts employed
for distinct perception tasks, as shown in Table E}

Table 8: Prompts of Perception-R1. The system prompt of Perception-R1 follows Qwen2-VL [61]]
and Qwen2.5-VL [3]].

tasks ‘ system prompt user prompt

visual grounding | Qwen2-VL Output the bounding box of the {question} in the image.
OCR Qwen2-VL OCR this image.

visual counting Qwen2-VL Output all the bounding boxes of the {label}

object detection | Qwen2.5-VL Please output bbox coordinates and names of {90 categories of COCO}.

A.2 Additional Explanation about Perceptual Perplexity

In this work, we point out that perceptual perplexity is a major factor in determining the effectiveness
of RL. And RL techniques are most beneficial for tasks with greater perceptual complexity and a
larger exploration space for the perception policy. In this part, we aim to demonstrate the impact of
perceptual perplexity across different tasks on the performance of RL through quantitative analysis.
Specifically, we utilize the theoretical possibility of matching outcomes in reward matching to
quantify the perceptual perplexity of the task, that is, how many theoretical matching results exist
between the model’s predictions and the ground truth. We also count the probabilities of actual
matches across different datasets, that is, the average number of permutations of the ground-truth
output per image.

Table 9: Perceptual perplexity analysis of different perception tasks. n is the number of ground
truth. The statistical value of perplexity is calculated based on sampled data.

tasks ‘ dataset theoretical statistical
visual grounding refCOCO 1 1
OCR PageOCR 1 1
visual counting Pixmo-Count Al 229,202
object detection COCO02017 Ay 3.47e+83

As shown in Table [J] in visual grounding and OCR tasks, there is only one fixed target for the
ground truth, leading to just one possible matching outcome. However, for visual counting and
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Output

e :
=
=

Question:

<image>Output all the bounding boxes of the bird.

Perception-R1:
(259,427),(466,591)(298,172),(497,315)(558,344),(759,524)(0,273),(61,466)(30,790),(222,875)(27,9),(208,207)(0,902),
(95,998)(0,637),(51,714)(15,389),(215,599) Num boxes = 9

Figure 3: Demo case of Percpetion-R1 on visual counting task.

Question:
<image>Output the bounding box of the woman holding a child in the image.

Perception-R1:
The woman holding a child(157,459),(208,622)

Figure 4: Demo case of Percpetion-R1 on visual grounding task.

object detection tasks, multiple target objects exist in an image. The various permutations of these
targets create numerous matching possibilities, offering ample exploration space for RL to optimize
perception capabilities.

A.3 Additional Experimental Results
More qualitative results. In this section, we provide more qualitative analysis of Perception-R1

on multiple visual perception tasks. The selected cases are shown in Figure [3]- [5]including visual
counting, visual grounding, object detection, and OCR task, respectively.
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Question:
<image>Please output bbox coordinates and names of {90 categories of COCO}.

Perception-R1:

[

{"bbox_2d": [435, 1, 616, 415], "label": "person"},
{"bbox_2d": [218, 112, 323, 253], "label": "person"},
{"bbox_2d": [147, 165, 225, 280], "label": "person"},
{"bbox_2d": [183, 126, 239, 242], "label": "person"},
{"bbox_2d": [276, 77, 338, 192], "label": "person"},
{"bbox_2d": [127, 54, 471, 406], "label": "laptop"},
{"bbox_2d": [108, 174, 156, 243], "label": "cell phone"},
{"bbox_2d": [26, 107, 103, 214], "label": "potted plant"},
{"bbox_2d": [64, 29, 280, 137], "label": "chair"}

]

Figure 5: Demo case of Percpetion-R1 on general object detection task. The color of bounding
boxes correspond to the category.
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Question:

<image>OCR this image.

Perception-R1:

G E AR L A B\n\nRiding Dirty\n\nA muddy mix of road- and mountain-bike racing, cyclocross doubles the thrill of
both sports. Here’s the gear to get you started.\n\nby Berne Broudy\n\nCyclocross is as cool as it looks: Racers
pedal drop-handlebar bikes with trail-ready tires through a course that often includes pavement, dirt, mud, and
grass, as well as obstacles that force you to dismount and sling your bike over your shoulder. “All you really need is
to be tough and have a good attitude and a desire to suffer a little bit,” says Stu Thorne, founder and director of the
Cannondale professional cyclocross team. The right gear helps, too.\n\nBest for Entry Level\n\nCannondale
CAADX 105\n\nWhat you sacrifice with extra weight you make up for with a highly capable aluminum frame thatll
keep you going between races. A carbon-blade fork helps eat up some of the pounding the courses can dish out. The
dependable 2x11 speed Shimano 105 drivetrain powers through any grade, and TRP cable disc brakes perform well
even in mud. Meanwhile, the 35cc tires and stable geometry make the CAADX a superfun commuter if you're
looking for a bike that can multitask.\n\ncannondale.com $1,970\n\nBest for Experienced Cyclists\n\nSpecialized
CruX Elite X1\n\nIf you already log long miles on a premium road bike, this should be your new cross rig. The
carbon frame is as light as it is.\n\nA low bottom bracket and relatively slack head angle, which make it stable,
helped us sail through rocks and roots and corner quickly. The tires can be run tubeless to better resist flats, and
extra clearance means they spin freely when caked with mud. The CruX Elite is playful and fast — and something
you won’t outgrow as you collect medals.\n\nspecialized.com $3,000\n\nACCESSORIES\n\nCraft Shield
Glove\n\nThe cross season typically runs from September through February, so you'll need hearty gloves like these,
with a fleece lining and a waterproof base, for warmth on wet race days. craftsports.us $78\n\nDarn Tough Micro
Crew\n\nUnlike other bike races, cyclocross requires you to be on foot at times. So light, strong socks are key. These
aren’t likely to wear out, but Darn Tough will replace them if they do. darntough.com $18\n\nPark Tool Brush
Set\n\nThe mud, dirt, and grime that builds up during off-road rides can damage key components. This kit does
more than just keep your bike looking fresh; it keeps it healthy, too. parktool.com $80\n\nRapha Arm and Leg
Warmer\n\nThese merino layers, which have a bit of Lycra for stretch, peel off easily when the weather warms up.
And they dry quickly, whether you sweat profusely or get caught in a sudden squall. rapha.cc From $70\n\nTopeak
SmartGauge D2\n\nFor peak performance, adjust your tire pressure to suit the terrain. (On soft trails, lower
pressure makes it grip better.) The SmartGauge makes it a snap with a fast, readable result. topeak.com $40

Figure 6: Demo case of Percpetion-R1 on OCR task.
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