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ABSTRACT

We propose Meta-World Conditional Neural Processes (MW-CNP), a conditional
world model generator that leverages sample efficiency and scalability of Con-
ditional Neural Processes to allow an agent to sample from the generated world
model. We intend to reduce the agent’s interaction with the target environment as
much as possible. Thus, MW-CNP meta-learns world models that use prior ex-
perience. Using the world model generated from MW-CNP the RL agent can be
conditioned on significantly fewer samples collected from the target environment
to imagine the unseen environment. We emphasize that the agent does not have
access to the task parameters throughout training and testing.

1 INTRODUCTION

A diverse set of skills can be acquired through incremental learning in environments with emergent
complexity. In line with this, world model generation has been an integral part of open-ended learn-
ing (Wang et al. (2019)). Although creating a variety of challenging simulation environments is a
promising direction, it is bounded by the limitations of the physics engine and the predetermined set
of environment parameters. We propose generating world models from the agent’s own experience
to overcome this problem.

Research on lifelong learning focus on learning incrementally and adapting rapidly to unknown tasks
from incoming streams of data (Parisi et al. (2019)). Challenges associated with lifelong learning
include catastrophic forgetting, negative transfer, and resource limitations. In addition, data to be
processed after deployment and optimal model hyperparameters are not available a priori.

Meta reinforcement learning is an enduring area of interest that enables fast adaptation in test tasks.
Recent works have integrated meta-learning to offline RL (Mitchell et al. (2020)) and lifelong learn-
ing (Finn et al. (2019); Nagabandi et al. (2018); Berseth et al. (2021)). In open-ended learning, a
policy with high representational capacity can be utilized for increasingly challenging environments.
In this work, we are interested in few-shot learning in settings where the transition dynamics of the
environment change across tasks. More specifically, the agent is trained a the distribution of tasks
with varying transition dynamics and expected to adapt to an unseen task with few samples from the
target environment. Sampling in the real world is expensive; hence reducing the number of samples
used for fast adaptation is an important research direction for sim-to-real RL.

In this work we are interested in meta-reinforcement learning settings where the reward function
stays the same but the transition function changes across multiple tasks. In particular, each tran-
sition function depends on the environment parameters that are hidden during training and testing.
More concretely, imagine a setting where an agent moves to a goal location in different environments
parametrized by different force fields. Different force fields push the agent in different directions.
Through trial and error, the agent learns to move robustly in environments with different transition
dynamics. The agent is required to adapt quickly to a new target environment with hidden environ-
ment parameters and reward signals at test time.

We propose Meta-World CNP to generate world models from a few samples collected from the target
environment. Our contributions include (1) generating and learning world models with no access to
target environment parameters, (2) sample efficient, fast adaptation to the unseen test environment.
Requires significantly less rollouts from the unseen target environment at test time compared to No
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Reward Meta-Learning (NORML) Yang et al. (2019) and (3) utilizing offline datasets of Markov
Decision Process tuples for training.

2 PRELIMINARIES

2.1 CONDITIONAL NEURAL PROCESSES

Conditional Neural Processes are proposed as a novel neural architecture by (Garnelo et al. (2018) to
predict the parameters of a probability distribution conditioned on a permutation invariant prior data
and target input. CNPs attempt to represent a family of functions using Bayesian Inference and the
high representational capacity of neural networks. The architecture of CNPs consists of parameter
sharing encoders and a decoder named the query network. In particular, first a random number of
input and true output pairs (xfi , ytruefi ) are sampled from the function f i ∈ F . Each pair is encoded
into a latent representation via the encoder networks. Then, these representations are averaged along
the dimensions to account for the invariance to permutation and the number of inputs. The resulting
representation is concatenated with the target input query and fed to the query network. The query
network outputs the predicted mean and standard deviation for the queried input (xqfi).

2.2 NO-REWARD META LEARNING

NORML, proposed by (Yang et al. (2019)), is an extension of MAML-RL framework (Finn et al.
(2017)) for settings where the environment dynamics change across tasks instead of the reward func-
tion. The goal of NORML is to utilize past experience to quickly adapt to tasks with unknown pa-
rameters from a few samples with missing reward signals. Provided that the change in dynamics can
be represented in (st,at, st+1), NORML learns an pseudo-advantage function Aψ (st,at, st+1). It
is important to note that the aim of Aψ is to guide the meta-policy adaptation instead of fitting to the
advantage function. Aψ is used to compute task specific parameters in the MAML inner loop from
a set of state transitions of task i Dtrain

i that does not contain reward signal. The learned advantage
function is optimized in the MAML outer loop using the reward information present in rollouts Dtest

i
obtained from updated task-specific policy parameters.

3 PROPOSED METHOD: META-WORLD CONDITIONAL NEURAL PROCESS
(MW-CNP)

In this section, we present our method, named Meta-World Conditional Neural Processes (MW-
CNP), for learning world models using prior experience. We first describe the problem setup and
then explain MW-CNP’s structure in detail.

In few-shot learning, the goal is to quickly adapt to an unseen target task using a few labeled data
in the target environment. Meta-World Conditional Neural Processes (MW-CNP) can reduce the
number of samples required from the target environment by generating world models from fewer
samples from the target environment with no access to the target environment parameter. These
models can then be used to obtain inexpensive rollouts for finetuning at test time.

Online Meta-Learning We denote the initial state distribution as ρ(s0) : S → R, state transition
distribution of taski as ρi(st+1|st, at) : S × A × S → R, and the reward function as rt : S ×
A × S → R. During meta-training we store transitions for each taski as a set of observations
Bi = {(st, at, st+1)}nt=0 ⊂ S ×A× S without the task parameter. Hence during both training and
testing the parameters of the state transition distribution are hidden.

After we obtain the meta-policy and learn the pseudo-advantage function Aψ (st,at, st+1) using
NORML, we train our MW-CNP model using the replay buffer of transitions B = {Bi}ni=1 where
n denotes the number of environments.

Meta-World Conditional Neural Processes (MW-CNP) MW-CNP is trained in an offline fash-
ion using unlabeled batches of Markov Decision Process (MDP) tuples collected during online meta-
learning. Figure 1 illustrates the training procedure for MW-CNP. It is worth noting that the environ-
ment parameter is hidden during training and testing. In each training iteration, an unlabeled batch
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Bi = {(st, at, st+1)}nt=0 is randomly sampled from the offline dataset. Then, a set of task-specific
MDP tuples {(sk, ak, sk+1)}k and a single MDP (sq, aq, s

′
q) are randomly sampled from the chosen

batch Bi. (sq, aq, s′q) is used for target state-action query [sq, aq] and true target next state label [s′q].
Each MDP tuple (sk, ak, sk+1) is encoded into a fixed size representation using a parameter sharing
encoder network. These representations are then passed through an averaging module A to obtain a
latent representation r of the hidden environment transition function used in batch Bi. The resulting
latent representation r is concatenated with the [sq, aq] to predict the distribution parameters µq, σq
of the next state s′q given the latent representation r and the target query [sq, aq].
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Figure 1: Structure and the training procedure of the Meta World-CNP

The loss function of MW-CNP can be expressed as

µq, σq = fθD
(
[sq, aq]⊕ 1

n

∑n
k gθE (sk, ak, s

′
k)
)

L(θE , θD) = − logP
(
s
′true
q | µq, softplus(σq)

)
where fθD , gθE are the decoder the encoder networks, [sq, aq] is the target state action query,
(sk, ak, s

′
k) are the randomly sampled transitions from the set of observations Bi.

Figure 2 illustrates the test procedure of MW-CNP. At test-time, the agent is allowed to collect a
few samples from the unseen target environment. These samples are encoded into representations
of fixed size by an encoder network with shared weights. A shared representation of the target envi-
ronment is obtained using an averaging module shown in Figure 2(I). Once the latent representation
is obtained for the target environment with a hidden task parameter rollouts can be generated inex-
pensively. This representation is used to predict the parameters of the next-state distribution for the
state-action query [sq, aq].

For each MW-CNP generated rollout, same true initial state, sampled from the real target environ-
ment, is used. The inital state is fed to the stochastic meta-policy to obtain the action query aq Figure
2(II). Then, the predicted next-state is used to sample the next action query until the episode is ter-
minated. The rollouts ”hallucinated” from the MW-CNP are combined with the true rollout sampled
from the real target environment. The resulting set of rollouts are fed to the pseudo-advantage net-
work. The learned pseudo-advantage network learned during online meta-learning uses (s, a, s′)
tuple as input and outputs an advantage estimation value. Hence, once experience from the gen-
erated world model is collected, these experiences are fed to the learned advantage function in the
form of (s, a, s′). Finally, meta policy is finetuned for fast adaptation to the target task using the
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Figure 2: Structure and the test procedure of the MW-CNP

estimated advantage values and combined set of MW-CNP generated rollouts and a single target
environment rollout.

4 EXPERIMENTS

In this section, we analyze the performance of our method and compare it with NORML and the
oracle in 2D point agent environment. The goal of the point agent, initialized at [x=0,y=0], is to
move to the position [x=0,y=1], where x,y are the positions on the 2D plane. We are interested
in a meta-RL setting where the reward function is identical across multiple tasks. Different tasks
are created by generating different artificial force fields that push the agent in different directions
(ϕ). We use the same reward function, the negative Euclidean distance from the goal position, and
hyperparameters used in NORML for comparative analysis. In the Point Agent environment 5000
tasks are defined over the [−π, π] interval.

Figure 3: Expected reward (y-axis) of finetuning over generated data and ground truth data in target
tasks. X-axis represents the target task indices.
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The agent is initially trained across a distribution of 5000 tasks, i.e. in environment with 5000
different force fields. Then, it is tested in an unseen target task. The rollouts obtained from the
target environment will be referred to as actual rollouts, whereas the rollouts generated from the
MW-CNP will be named imagined rollouts. At test time, Oracle agent uses 25 actual rollouts from
the unseen target environment. 25 rollouts were used in the original NORML experiment hence
we use the same number of rollouts for comparison. The NORML agent and the MW-CNP agent
are allowed to use only a single rollout for finetuning the meta-policy. By limiting the number of
actual rollouts that can be used for finetuning we aim to compare sample efficiency of MW-CNP
to the baseline NORML. The average return obtained from the target environment after finetuning
the meta policy of NORML with 1 rollout are shown in Fig. 3 with green bars. As shown, when
MW-CNP and NORML used the same amount of actual rollouts (1 actual rollout) from the target
environment, MW-CNP outperforms NORML dramatically. Even though the oracle agent trained
with NORML used a significantly higher number of actual rollouts than MW-CNP (25 to 1), their
performances are similar, as shown in illustrations in Figures 4, 5, 6 and the bar plots in 3.

Figure 3 shows the average return obtained in the target environment over tasks. We compare results
for NORML finetuning over 1 rollout, NORML finetuning over 25 rollouts (Oracle) and finetuning
over a combination of 24 imagined rollouts from the MW-CNP model, and 1 actual rollout from the
target environment. At test-time MW-CNP uses a total of 25 combined rollouts similar to the oracle
NORML that uses 25 actual rollouts.
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Figure 4: Illustrations of trajectories for Tasks 0, 500, 1000 and 1500

We condition the MW-CNP model on the same rollout used for 1 rollout-finetunig. The results
show that the samples generated from the agent’s imagination created by the MW-CNP generated
sophisticated samples that can be used for finetuning the meta-policy for fast domain adaptation.
All in all, MW-CNP requires significantly less interaction with the target environment compared to
NORML, for fast adaptation to the unseen task.

5 DISCUSSION

We showed that meaningful hallucinated rollouts can be collected using the MW-CNP framework
to guide the meta-policy adaptation. We compared the expected return obtained from finetuning
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Figure 5: Illustrations of trajectories for Tasks 2000, 2500, 3000 and 3500
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Figure 6: Illustrations of trajectories for Tasks 4000 and 4500

6



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

over generated data with MW-CNP and the ground truth data. While our initial experiments are
conducted in low-dimensional state and actions spaces such as the point agent, CNPs were shown
to perform well with high dimensional inputs like image data (Seker et al. (2019)). Therefore, we
plan to extend our work and apply it to high-dimensional sensorimotor spaces, such as manipulator
robots with RGB-D cameras.
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