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ABSTRACT

Graph-like data are heterogeneous with different types of nodes and edges. Het-
erogeneous structure in a graph means it has various structures such as trees, cir-
cles, and grid-like. In representation learning, it is important to learn embedding
spaces whose geometry matches the underlying structure of the data. In the liter-
ature, an active research direction aims at using product spaces, which consists of
Euclidean and non-Euclidean manifolds to represent data of varying curvatures.
However, real-world data are usually heterogeneous and consist of a mixture of
varying structures, requiring the representation learning process to flexibly select
and combine the member spaces accordingly. Since previous works only consider
a combination of embedding spaces with equal weights, in this paper, we pro-
pose a data-driven method to learn the embeddings in a weighted product space
for graph data. Specifically, our model utilizes the topological information of the
input graph to learn the weight of each component of the product spaces. Exper-
iments on synthetic and real-world datasets show that our models produce better
representations in terms of distortion measures, and perform better on tasks such
as word similarity learning.

1 INTRODUCTION

Representation learning aims to find parameterizations of data distribution manifolds of low intrinsic
dimension from data samples into high dimensional feature spaces (Bengio et al., 2013). Euclidean
embedding spaces have been traditionally used in most representation learning models (Balazevic
et al., 2019; Mikolov et al., 2013b). However, due to their uniform geometric structure, it has been
realized that Euclidean spaces cannot faithfully represent various types of structure data such as tree-
like (Nickel & Kiela, 2017) or circle-like (Wilson et al., 2014) graphs. Thus, increasing attention
has been paid to feature embedding into non-Euclidean spaces (Wilson et al., 2014; Nickel & Kiela,
2017; Chami et al., 2019; Meng et al., 2019; Ganea et al., 2018). Recent works (Gu et al., 2018;
Skopek et al., 2020) also show promising results when learning representation in product spaces of
components with different geometries. This is mainly motivated by the fact that real-world graphs
usually have varying patterns and complicated geometry, rather than being uniformly structured,
while models with embedding spaces of the single geometric type usually fail in capturing the un-
derlying mixed structures leading to higher distortion in representation (Gu et al., 2018).

Since existing models (Gu et al., 2018; Skopek et al., 2020) use product spaces with equally weighted
components, training data samples are used to fit the learnable parameters in all these spaces evenly
after the component spaces are determined. We argue that this approach limits the robustness of

1



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

models when learning data of mixed geometric structures since all components in product spaces
are updated equally, even if the input data have a dominating geometric type compared to others.
As a result, it is difficult to appropriately adjust the geometry of product spaces to that of the input
graph.

To address this problem, (Zhang et al., 2021) recently proposes a method called Switch Spaces which
learns to choose a combination of K components from the total of N spaces with input specification.
Switch Spaces starts with two embedding points, then learns to choose the top K spaces whose
combination is best suited for a specific scoring function. However, with such a gating mechanism
(Zhang et al., 2021) could be seen as a similarity learning between two graph nodes, thus Switch
Spaces cannot capture the overall relation of points from input data.

To deal with this problem, we propose a new data-driven approach with a new scoring mechanism
for each component in the product spaces that enables automatic learning of the soft weights for
each component space based on the overall structure of the entire input data. More precisely, we
introduce a new soft gating mechanism for automatic component spaces weighting and learning the
weights of all component spaces from the input graph data. Our method allows us to construct
general product spaces with weighted signatures based on given input data, which is capable of
learning better representation from data with varying geometric structures.

Our main contributions are summarized in the following. Firstly, to our best knowledge, this work
is the first one that discusses the problem of learning weighted product spaces from the entire input
graph. Secondly, we propose a new approach to learn embedding product spaces for representation
learning via a soft gating mechanism in Section 2. Thirdly, we perform experiments on synthetic
and real-world datasets to validate our approach in Section 3.

2 PROPOSED METHOD

In this section, we describe our new approach for adaptively learning weighted product spaces for
representation learning. Our goal is to construct product space models that make data with certain
patterns be handled by suitable subsets of component spaces. To this end, we introduce a new soft
weight gating mechanism. The main idea is to weigh the score for each component in embedding
product spaces with specialization to enforce the curvature of the embedding to be approximate to
the graph curvature.

Figure 1: Illustration of weighting mechanism in our proposed method. From left to right, for an
input graph G = (V,E), we use a graph coarsening technique to pool G to produce assignment
matrix Snl×nl+1

, where nl+1 = N is the number of components in the product space; self multi-
head attention is then used to capture weight vector w ∈ RN which is then used to define soft
weighted average distortion over all the nodes of G. We implement the coarsening module with
DiffPool in this paper.

Problem formulation. Given three types of geometry Euclidean (E), Hyperbolic (H), and Spherical
(S). Let M1,M2, . . . ,MN be N component spaces where Mi ∈ {E,H,S} and dimMi = bi.
The goal is to learn from the input data the weighting scores w = (w1, . . . , wN ) ∈ RN for each
component space such that the embedding of data into P = w1M1 × w2M2 × · · · × wNMN will
have lowest geometric distortion.

Weighting scores and graph coarsening. To find the soft weight for each component space, we
use the DiffPool architecture from (Ying et al., 2018) to distill topology information from the graph.
In particular, let S(l) ∈ Rnl×nl+1 denotes the cluster assigment matrix at pooling layer l. Then
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Table 1: Davg(↓) results on the synthetic datasets.
Dim Method Best model Cycle Tree Ring of trees

d = 3 Single H3 0.163 0.0461 0.0896
S3 0.009 0.16 0.11

Product H2 × S1 0.11 0.055 0.0632
Ours w1H2 × w2S1 0.104 0.051 0.058

w1H1 × w2S2 0.116 0.046 0.0514
d = 5 Single H5 0.132 0.042 0.09

S5 0.011 0.14 0.13
Product H2 × S3 0.115 0.07 0.052

H2 × S2 × E 0.12 0.092 0.047
Ours w1H2 × w2S3 0.11 0.058 0.054

w1H2 × w2S2 × w3E 0.095 0.086 0.0414

S(l) gives a soft assignment of each node at layer l to a cluster at the next layer l + 1. We treat
the number of cluster as a hyperparameter and nl+1 = N . Intuitively, each row of S(l) shows a
soft margin of each node to each component space in P . After the final pooling layer, we apply a
multi-head attention block to get w ∈ RN which is the average weight of N spaces in P . We refer
to (Ying et al., 2018) for more detailed information on DiffPool.

Objective function and optimization. Let w ∈ RN is the weight vector of N spaces are captured
from A.3. Our total average distortion objective function is defined as:

L(x) =
∑

1≤i<j≤n

∣∣∣∣∣
(

dP (xi, xj)

dG (Xi, Xj)

)2

− 1

∣∣∣∣∣+ λLaux, (1)

where d2P(xi, xj) =
N∑

k=1

wk dist
2(xk

i , x
k
j ) , dG is the graph distance and Laux is a combina-

tions of the link prediction (LLP) loss and entropy regularization (Le). More precisely, LLP =∥∥∥A(l) − S(l)S(l)T
∥∥∥
F

at each layer l, where ∥ · ∥F denotes the Frobenius norm, and Le =

1
n

n∑
i=1

H (Si), where H(Si) is the entropy of the row ith in matrix S. Minimizing Le makes the

output cluster assignment for each node close to a one-hot vector so that the membership for each
cluster is clearly defined. Our objective function L(x) in (1) is optimized with the Riemannian
gradient descent algorithm from (Gu et al., 2018, Algorithm 1).

3 EXPERIMENTS

3.1 EMBEDDINGS OF SYNTHETIC AND REAL-WORLD DATASETS.

Metrics and baselines. We use the average distortion Davg and mean average precision mAP
metrics whose formulas can be found in A.4 to measure the quality of graph embeddings. Pure
product spaces (Gu et al., 2018) is used as the state-of-the-art baselines for comparison with our
models.

Results on synthetic datasets. We first perform experiments of finding the best matching embed-
ding spaces in total dimensions d = 3 and d = 5 for the three synthetic datasets Cycle, Tree, and
Ring of trees introduced in Gu et al. (2018), each of them is a graph of 40 nodes with canonical ge-
ometry. The average distortion results are reported in Table 1. Overall, our best models significantly
outperform best models from Gu et al. (2018) in terms of Davg . For d = 3, our method improves
upon the pure product model by 18.6% and 16.3% on Ring of trees and Tree datasets, respectively.
When d = 5, our models perform better than the models of Gu et al. (2018) on Cycle and Ring of
trees by 17.3% and 11.9%, respectively.

Results on real-world datasets. We evaluate the quality of embeddings of our models on two real-
world datasets with embeddings into spaces of 10 and 50 total dimensions. The first dataset is Cs
PhDs, a graph of computer science Ph.D advisor-advisee relationships (de Nooy et al., 2011). The
second dataset is Power, a power distribution network (Watts & Strogatz, 1998).
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Table 2: Davg(↓) and mAP (↑) results of on the Cs PhDs and Power datasets.

Dim Method Best model Cs PhDs Power
Davg mAP Davg mAP

d = 10 Single H10 0.0502 0.9310 0.0388 0.8442
Product (H2)5 0.0357 0.9694 0.0396 0.8739

H5 × S5 0.0529 0.9041 0.0323 0.8850
Ours w(H2)5 0.0301 0.9699 0.0423 0.854

w(S2)5 0.055 0.8361 0.0402 0.894
w1H5 × w2S5 0.0494 0.9231 0.0231 0.8842

d = 50 Single H50 0.091 0.881 0.0531 0.845
Product (H10)5 0.0657 0.913 0.0501 0.869

(H10)2 × (S10)2 × E10 0.057 0.907 0.0495 0.856
Ours w(H10)5 0.062 0.932 0.0479 0.871

w(S5)10 0.062 0.87 0.0648 0.871
w1(H10)3 × w2(S10)2 0.059 0.9312 0.0426 0.862

w1(H10)2 × w2(S10)2 × w3E10 0.046 0.924 0.05 0.86

Results on the Cs PhDs and Power datasets are reported in Tables 2. On both dimensions and both
datasets, our best models learn better embeddings than the product spaces models of (Gu et al.,
2018). On the Cs PhDs dataset, our best models improve upon the best models of the pure product
space approach (Gu et al., 2018) by 15.6% for d = 10, and 19.3% for d = 50 in terms of aver-
age distortion, respectively. Similarly, on the Power dataset, our models outperform best models
of (Gu et al., 2018) by 28.4% and 13.9% on Davg for d = 10, 50, respectively. We provide more
experimental results on the quality of embeddings in the Appendix.

For the total embedding dimension d = 10, our method finds that the optimal weighted product
spaces to embed the Power dataset is 0.83H5 × 0.16S5. The rate between hyperbolic and spherical
components is 0.83 : 0.16 ≈ 5 : 1 which is only possible to capture by our approach.

An heuristics way to estimate the component in the product of model space. The component
in the pool of the product spaces is chosen based on the distortion value of a single space on the
synthetic and benchmark dataset. For example, Table 1 witness the best distortion of S3 on the
Cycle dataset. Thus, we can choose the product of model spaces that has spherical properties as a
component in the product of model spaces.

3.2 PERFORMANCE ON THE WORD SIMILARITY TASK

We evaluate our models on applications that require the understanding of the underlying manifold
structure with a downstream task of learning word embeddings on the Word Similarity (WS-353)
benchmark dataset as in previous works (Gu et al., 2018; Leimeister & Wilson, 2018). Our imple-
mentation is based on the hyperbolic skip-gram embeddings from (Leimeister & Wilson, 2018).

Setup. We use the standard skip-gram model (Mikolov et al., 2013a) and extend the loss func-
tion to a generic objective suitable for arbitrary manifolds, which is a variant of the objective
used in (Leimeister & Wilson, 2018). More precisely, given a word u and a target w with la-
bel y = 1 if w is a context word for u, and y = 0 if it is a negative sample, the model is
P (y | w, u) = σ

(
(−1)1−y (− cosh (d (αu, γw)) + θ)

)
.

Word similarity. We measure the Spearman rank correlation ρ between our scores and annotated
ratings on the word similarity datasets WS-353 ((Finkelstein et al., 2001)) 1. The results are reported
in Table 3. In general, our models outperform both the hyperbolic word embeddings of (Leimeister
& Wilson, 2018) and the pure product space models of (Gu et al., 2018) on both total dimension
settings.

1https://github.com/mfaruqui/eval-word-vectors
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Table 3: Spearman rank correlation on the WS-353 dataset.

Dim Method Best model Spearman rank
d = 10 Single H10 0.4412

Product H5 ×H5 0.4489
Ours w1H5 × w2H5 0.4510

d = 50 Single H50 0.6389
Product (H25)2 0.6421

(H10)5 0.6531
Ours w1(H25)× w2H25 0.6506

w(H10)5 0.6612

4 CONCLUSION

Real-world data usually have complicated geometric structures which are difficult to capture by
embedding into spaces of uniform curvature. We introduce a data-driven method of weighted prod-
uct spaces for learning better representation. Our models improve both the embedding quality and
downstream task performance compared to previous works.
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Table 4: Notations.
Notation Explanations

f an embedding
D(f) the distortion fidelity measure of the embedding f
mAP (f) the mean average precision fidelity measure of the embedding f
G a graph with V nodes and E edges
n is the number of nodes in the graph G
a, b nodes in a graph
Na neighborhood around node a in a graph
Ra,b the smallest set of closest points to node a in an embedding f that contains node b
M is an Riemanninan manifold when equipped with a metric g
p p ∈ M is a point in a manifold M
TpM the tangent spaces of point p in M
g is an metric defining an inner product on TpM
Ed d-dimensional Euclidean space
Sd d-dimensional Spherical space
Hd d-dimensional Hyperbolic space
P product manifold including spherical, euclidean and hyperbolic components
Expx(v) the exponential map at point x of tangent vector v
dE metric distance between two points in Euclidean space
dH metric distance between two points in Hyperbolic space
dS metric distance between two points in Spherical space
dG metric distance between two points in a graph G
K(x, y) the sectional curvature for a subspace spanned by linearly independent x, y ∈ TpM
J is the diagonal matrix which is used in the Minkowski inner product
acosh() is the inverse hyperbolic cosine function
arccos() is the inverse cosine function
A ∈ Rn×n is a graph adjacency matrix of graph G
X is initial embedding for all the node in graph G
GNN a graph neural network model with inputs are A,X
Z the embedding matrix which is achieved from a GNN model
Z ′ the coarsened embedding matrix which is achieved from a GNN model
||p||2 l2 norm of vector p
S
(l)
nl×nl+1

is a soft assignment matrix at layer l
H is the entropy function
deg(a) is the degree of node a in undirected graph G
w = (w1, . . . , wN ) ∈ RN is the weighted score to each of the given components in the product of model space.

A APPENDIX

A.1 RELATED WORK

In recent years, learning representation in non-Euclidean spaces has gained increasing interest. For
example, hyperbolic representation learning has shown state of the art performance on a number of
tasks such as taxonomic entities modeling (Nickel & Kiela, 2017), network embeddings (Nickel &
Kiela, 2017), recommender systems (Vinh Tran et al., 2020), question answering (Tay et al., 2018),
knowledge graphs completion (Balazevic et al., 2019; Chami et al., 2020b), graph-related classifi-
cation (Chami et al., 2019; Liu et al., 2019), similarity-based hierarchical Clustering (Chami et al.,
2020a). Hyperbolic space is better for the embedding of trees and excels in modeling hierarchi-
cal structures (Chami et al., 2020a), while spherical space is a more suitable choice for directional
similarity modeling and data with cyclical structure (Meng et al., 2019; Wilson et al., 2014). Re-
cent works have applied spherical spaces in text embeddings (Meng et al., 2019), texture mapping
(Wilson et al., 2014), time-warping functions embedding (Wilson et al., 2014). As discussed above,
different spaces have their own special geometric feature, and the choice of embedding spaces de-
pends on the characteristics of the data.

The quality of such feature embeddings crucially depends on whether the geometry of the space
matches that of the graph. Euclidean spaces are often a poor choice for many types of real-world
graph data, where one encounters hierarchical structure and power-law degree distribution due to
negative curvature are linked to negative curvature (Chami et al., 2020a). In particular, recent works
(Chami et al., 2020b; Gu et al., 2018; Zhang et al., 2021) show that hyperbolic spaces and more
general manifolds, such as products of constant-curvature spaces and matrix manifolds, are advan-
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tageous to approximate better capture from graphs. A product space is a direct product of embedding
spaces with heterogeneous curvature (e.g., Euclidean space, hyperbolic space, spherical space, etc.)
(Zhang et al., 2021; Gu et al., 2018). Each component of product space has a constant curvature
while the curvature of product space is the sum of curvatures of components which is still constant
(Di Giovanni et al., 2022), which makes it possible to capture a wider range of curvatures with lower
distortion than a single space. Theoretically, product space is well-suited for modeling real-world
data with a mixture of structures. Empirically, product spaces have demonstrated their efficacy in
graph reconstruction (Gu et al., 2018), wording embedding with low dimensions (Gu et al., 2018).

A.2 BACKGROUND

Embeddings. For metric spaces U, V equipped with distances dU , dV , an embedding is an injective
continuous map f : U → V . The quality of an embedding is measured by various fidelity measures.
A standard measure is the average distortion Davg(f). The distortion of a pair of points a, b is∣∣∣∣(dV (f(a),f(b))

dU (a,b)

)2

− 1

∣∣∣∣, and Davg(f) is the average distortion over all pairs of points.

Distortion is a global metric; it considers the explicit value of all distances. At the other end of
the global-local spectrum of fidelity measures are the mean average precision (mAP), which ap-
plies to unweighted graphs. Let G = (V,E) be a graph and node a ∈ V have neighborhood
Na = {b1, · · · , bdeg(a)}, where deg(a) is the degree of a. In the embedding f , define Ra,bi to be the
smallest ball around f(a) that contains bi which means Ra,bi is the smallest set of nearest points re-

quired to retrieve the ith neighbor of a in f . Thus, define mAP(f) = 1
|V |

∑
a∈V

1
deg(a)

|Na|∑
i=1

|Na∩Ra,b|
|Ra,bi |

.

mAP (f) is a ranking-based measure for local neighborhoods; it does not track explicit distances
like a distortion measure. We see that, mAP (f) ≤ 1 (higher is better) while Davg ≥ 0 (lower is
better) (Gu et al., 2018).

Riemannian manifolds. Let M be a smooth manifold, p ∈ M be a point, and TpM be the tangent
space to the point p. If M is equipped with a Riemannian metric g, then the pair (M, g) is called a
Riemannian manifold. The shortest-distance paths on manifolds are called geodesics. To compute
distance functions on a Riemannian manifold, the metric tensor g is integrated along the geodesic.
This is a smoothly varying function (in p) gp(., .) : TpM × TpM → R that induces geometric
notions such as length and angle by defining an inner product on the tangent space. For example,
the norm of v ∈ TpM is defined as ||v||g := gp(v, v)

1
2 . In Euclidean space Rd, each tangent space

TpRd is canonically identified with Rd , and the metric tensor gE is simply the usual inner product.
We refer to (Willmore, 2013; Petersen, 2006) for a formal introduction of Riemannian geometry.

Product manifolds. Consider a sequence of smooth manifolds M1,M2, · · · ,Mk. The product
manifold is defined as the Cartesian product M = M1 ×M2 × · · · ×Mk. We write points p ∈ M
through their coordinates p = (p1, . . . , pk), pi ∈ Mi and similarly a tangent vector v ∈ TpM can be
written (v1, . . . , vk) : vi ∈ Tpi

Mi. If the Mi are equipped with metric tensor gi, then the product

M is also Riemannian with metric tensor gp(u, v) =
k∑

i=1

gipi
(ui, vi).

Geodesics and distances. Gradient descent algorithms on manifolds requires a notion of taking
a step. This step can be performed in the tangent space and transferred to the manifold via the
exponential map Expp : TpM → M (Willmore, 2013). In a product manifold P , for tangent
vectors v = (v1, . . . , vk) at p = (p1, . . . , pk) ∈ P , the exponential map simply decomposes, as do
squared distances:

Expp(v) =
(
Expp1

(v1) , . . . ,Exppk
(vk)

)
, d2P(x, y) =

k∑
i=1

d2i (xi, yi) (2)

In other words, the shortest path between points in the product travels along the shortest paths in
each component simultaneously. Note the analogy to Euclidean products Rd ≡

(
R1

)d
.

Hyperbolic and spherical models. We use the hyperboloid model of hyperbolic space with points
in Rd+1. Let J ∈ R(d+1)×(d+1) be the diagonal matrix with J00 = −1 and Jii = 1 : i > 0. For
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p, q ∈ Rd+1, the Minkowski inner product is ⟨p, q⟩∗ := pTJq = −p0q0+p1q1+ . . .+pdqd, and the

corresponding norm is ||p||∗ = ⟨p, p⟩
1
2
∗ . For any K > 0, the hyperboloid Hd

K is defined as the subset{
p ∈ Rd+1 : ∥p∥∗ = −K1/2, p0 > 0

}
. When the subscript K is omitted, it is taken to be 1. The

hyperbolic distance on Hd is dH(p, q) = acosh(−⟨p, q⟩∗) where acosh() is the inverse hyperbolic
cosine function (Willmore, 2013; Petersen, 2006).

Similarly, spherical space SdK is most easily defined when embedded in Rd+1. The manifold SdK is
defined as the subset p ∈ Rd+1 : ||p||2 = K

1
2 , with metric tensor gS is induced by inner product

on the tangent space at each point only. The spherical distance on Sd is dS⟨p, q⟩ = arccos(⟨p, q⟩)
where arccos() is the inverse cosine function (Willmore, 2013; Petersen, 2006).

A.3 WEIGHTED PRODUCT MANIFOLDS AND GRAPH COARSENING.

We aim to obtain the weight for each model which reflects how much the component space con-
tributes to the product of the model spaces. For example, in the case of the Ring of tree dataset
which has a lot of tree structures and one ring, we can think that it will be better if we evaluate
the score for the hyperbolic model is bigger than the spherical model. In this work, to get the soft
weight information for all the spaces, we use the DiffPool (Ying et al., 2018) architecture to distill
topology information from the graph. Formally, let Z = GNN(A,X) ∈ Rn×d be the output of a
GNN module, where A ∈ Rn×n is a graph adjacency matrix. DiffPool defines a strategy to output
a new coarsened graph with m < n nodes and a new weighted adjacency matrix A′ ∈ Rm×m and
node embeddings Z ′ ∈ Rm×d. DiffPool has the interactive property which means that the new
coarsen graph can turn to be used as input to another DiffPool layer, and this whole process can be
repeated L times, generating a model with L GNN layers that operate on a series of coarser and
coarser versions of the input graph.

For specific, S(l) ∈ Rnl×nl+1 denotes the cluster assigment matrix at layer l. S(l) gives a soft
assignment of each node at layer l to a cluster at the next layer l + 1. In other words, each row of
S(l) corresponds to one of the nl nodes (or clusters) at layer l, and each column of S(l) corresponds
to one of the nl+1 clusters at the next layer l + 1. In our work, we treat the number of cluster as
a hyperparameter and nl+1 = N , where N is the number of components in the product space P .
Intuitively, each row of S(l) shows a soft margin of each node to each each component space in
P . At the end, we use a multihead attention pooling to achieve w ∈ RN which is presented for
the average weight of N spaces in P over the nl clusters. We refer to (Ying et al., 2018) for more
information.

A.4 METRIC

We use two common metrics average distortion Davg, and mean average precision mAP to measure
the quality of embeddings.

Distortion measure. Distortion measure is used to quantify how far an embedding map is from an
isometry. Assume we have a set data points P = {p1, . . . , pN} ⊂ X . An embedding map f : X →
Y is called D-embedding, where D > 1, and dX (., .) is the distance in the input space (Euclidean or
graph distance) and dY (., .) is the distance in the embedding spaces. The total distortion is defined
as:

Davg(f) :=
∑

1≤i≤j≤N

∣∣∣∣∣
(
dY (f (pi) , f (pj))

dX (pi, pj)

)2

− 1

∣∣∣∣∣ (3)

Mean average precision. Mean average precision (mAP ) is used as a local measure of fidelity for
embeddings of unweighted graphs. Let G = (V,E) be a graph and node a ∈ V have neighborhood
Na = {b1, . . . , bdeg(a)} where deg(a) is the degree of a. In the embedding f , define Ra,bi to be
smallest ball around f(a) that contains bi (that is, Ra,bi is the smallest set of nearest points required
to retrieve the i-th neighbor of a in f ). The formula of mAP is:

mAP(f) =
1

|V |
∑
a∈V

1

deg(a)

|Na|∑
i=1

|Na ∩Ra,bi |
|Ra,bi |

. (4)
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Table 5: Distortion measure on synthetic datasets (lower is better). Best results from Product space
method (Gu et al., 2018) are underlined, while our best results are boldfaced. wi’s are learnable
weights depended on input data.

Dim Method Best model Cycle Tree Ring of trees
d = 3 Product

H2 × S1 0.11 0.055 0.0632
Ours

w1H2 × w2S1 0.104 0.051 0.058
w1H1 × w2S2 0.116 0.046 0.0514

d = 5 Product
H2 × S3 0.115 0.07 0.052

H2 × S2 × E 0.12 0.092 0.047
Ours

w1H2 × w2S3 0.11 0.058 0.054
w1H2 × w2S2 × w3E 0.095 0.086 0.0414

d = 10 Product
(S5)2 0.194 0.254 0.0958

H5 × S5 0.2176 0.211 0.0885
Ours

w(S5)2 0.1602 0.231 0.089
w1H5 × w2S5 0.1691 0.1985 0.0823

Table 6: Distortion measure of single space on synthetic datasets (lower is better).

Dim Model Cycle Tree Ring of trees
|V | = 40 |V | = 40 |V | = 40
|E| = 40 |E| = 39 |E| = 40

d = 3
H3 0.163 0.0461 0.0896
E3 0.106 0.149 0.0989
S3 0.009 0.16 0.11

d = 5
H5 0.132 0.042 0.09
E5 0.095 0.186 0.093
S5 0.011 0.14 0.13

d = 10
H10 0.275 0.098 0.1104
E10 0.236 0.1968 0.103
S10 0.114 0.1769 0.1463

mAP (f) is a ranking-based measure for local neighborhoods; it does not track explicit distances
like a distortion measure.

A.5 PARAMETER SETTINGS

We choose the best parameters for each model. Several hyper-parameters having a major impact on
the models are lr (learning rate); λ (to balance the influence of auxiliary loss). We run 500 epochs
and 5000 epochs with the synthetic and benchmark datasets respectively. We turn hyper-parameters
with lr in {0.001, 0.003, 0.005, 0.01} for Cities and three synthetic graphs. lr is searched in the
range {1, 3, 5, 10} with the remaining dataset. λ is searched in range {0.5, 1, 1.5, 2, 3}. The tuning
process gives us lr = 0.005 for Cities graph, lr = 0.01 for the three synthetic graphs, and lr = 5 for
the two remaining benchmark datasets. We choose λ = 1.5 for the best distortion. In the weighted
module, we use DiffPool with two GraphSAGE (Hamilton et al., 2017) pooling layers.

A.6 ADDITIONAL EXPERIMENTAL RESULTS
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Table 7: Distortion measure on synthetic datasets (lower is better). wi are learnable weights de-
pended on input data.

Dim Method Models Cycle Tree Ring of trees
d = 3 Product

H2 × S1 0.11 0.055 0.0632
Ours

w1H2 × w2S1 0.104 0.051 0.058
(+5.4%)

w1H1 × w2S2 0.116 0.046 0.0514
(+16.3%) (+18.6%)

d = 5 Product
H3 × S2 0.124 0.06 0.054
H2 × S3 0.115 0.07 0.052

H2 × S2 × E 0.12 0.092 0.047
Ours

w1H3 × w2S2 0.102 0.068 0.05
w1H2 × w2S3 0.11 0.058 0.054

(+3.3%)
w1H2 × w2S2 × w3E 0.095 0.086 0.0414

(+17.3%) (+11.9%)
d = 10 Product

(H5)2 0.221 0.223 0.0932
(S5)2 0.194 0.254 0.0958

H5 × S5 0.2176 0.211 0.0885
Ours

(wS5)2 0.1602 0.231 0.089
(+17.4%)

w1H5 × w2S5 0.1691 0.1985 0.0823
(+5.9%) (+7%)

Table 8: Statistics of all three benchmark datasets.
Dataset Number of nodes (|V |) Number of edges (|E|)
Cs PhDs 1025 1043
Power 4941 6594
Cities 312 48 516

Table 9: Distortion and mAP of models with single embedding space on benchmark datasets (Davg:
lower is better; mAP: higher is better).

Dim Model Cs PhDs Power Cities
Davg mAP Davg mAP Davg mAP

d = 10
H10 0.0502 0.9310 0.0388 0.8442 0.0938 0.814
E10 0.0543 0.8691 0.0917 0.8860 0.0753 0.843
S10 0.0569 0.8329 0.0500 0.7952 0.0613 0.8513

d = 50
H50 0.091 0.881 0.0531 0.845 0.0732 0.832
E50 0.097 0.842 0.0752 0.821 0.062 0.853
S50 0.112 0.812 0.0623 0.823 0.0623 0.879

d = 100
H100 0.16 0.82 0.091 0.792 0.124 0.798
E100 0.057 0.889 0.112 0.784 0.112 0.802
S100 0.125 0.853 0.095 0.812 0.098 0.8103
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Table 10: Distortion and mAP on benchmark datasets (Davg: lower is better; mAP: higher is better).
Dim Methods Models Cs PhDs Power Cities

Davg mAP Davg mAP Davg mAP
d = 10 Product

(H2)5 0.0357 0.9694 0.0396 0.8739 0.0687 0.842
(H5)2 0.0382 0.9628 0.0365 0.8605 0.0765 0.824
(S5)2 0.0579 0.7940 0.0471 0.8059 0.0593 0.8387
(S2)5 0.0562 0.8314 0.0483 0.8818 0.0662 0.8301

H5 × S5 0.0529 0.9041 0.0323 0.8850 0.0642 0.852
Ours

w(H2)5 0.0301 0.9699 0.0423 0.854 0.0693 0.8315
(+15.6%)

w(H5)2 0.0489 0.8465 0.034 0.88 0.076 0.83
w(S5)2 0.056 0.813 0.0431 0.812 0.06 0.832
w(S2)5 0.055 0.8361 0.0402 0.894 0.0632 0.82

w1H5 × w2S5 0.0494 0.9231 0.0231 0.8842 0.0573 0.836
(+28.4%) (+3%)

d = 50 Product
(H10)5 0.0657 0.913 0.0501 0.869 0.071 0.86
(H5)10 0.0786 0.86 0.0723 0.842 0.083 0.845
(S10)5 0.0726 0.843 0.0682 0.84 0.0458 0.8932
(S5)10 0.07 0.89 0.0701 0.831 0.0523 0.879

(H10)3 × (S10)2 0.062 0.912 0.051 0.85 0.0512 0.8821
(H10)2 × (S10)2 × E10 0.057 0.907 0.0495 0.856 0.0449 0.912

Ours
w(H10)5 0.062 0.932 0.0479 0.871 0.082 0.8497
w(H5)10 0.059 0.89 0.0503 0.857 0.08 0.851
w(S10)5 0.074 0.829 0.0613 0.86 0.0423 0.912
w(S5)10 0.062 0.87 0.0648 0.871 0.051 0.881

w1(H10)3 ×w2(S10)2 0.059 0.9312 0.0426 0.862 0.0487 0.903
(+13.9%)

w1(H10)2 ×w2(S10)2 × w3E10 0.046 0.924 0.05 0.86 0.0397 0.9258
(+19.3%) (+11.5%)

d=100 Product
(H20)5 0.0485 0.86 0.078 0.83 0.097 0.821
(S20)5 0.0713 0.921 0.08 0.812 0.094 0.8114

(H50)× (S50) 0.0623 0.912 0.0712 0.796 0.098 0.81
(H20)2 × (S20)2 × E20 0.04774 0.934 0.0632 0.8423 0.0912 0.803

Ours
w(H20)5 0.044 0.89 0.0691 0.8432 0.103 0.802
w(S20)5 0.072 0.88 0.062 0.8 0.0793 0.84

w1(H50)× w2(S50) 0.0532 0.9342 0.07 0.823 0.0769 0.847
(+15.6%)

w1(H20)2 ×w2(S20)2 × w3E20 0.0321 0.943 0.0487 0.862 0.092 0.798
(+32.5%) (+14.3%)
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