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Abstract

Pre-trained models are widely used in fine-001
tuning downstream tasks with linear classifiers002
optimized by the cross entropy loss, which003
might face robustness and stability problems.004
These problems can be improved by learning005
representations that focus on similarities in the006
same class and variance in different classes007
when making predictions. In this paper, we008
utilize the K-Nearest Neighbors Classifier in009
pre-trained model fine-tuning. For this KNN010
classifier, we introduce a supervised momen-011
tum contrastive learning framework to learn012
the clustered representations of the supervised013
downstream tasks. Extensive experiments on014
text classification tasks and robustness tests015
show that by incorporating KNNs with the tra-016
ditional fine-tuning process, we can obtain sig-017
nificant improvements on the clean accuracy018
in both rich-source and few-shot settings and019
can improve the robustness against adversarial020
attacks. 1021

1 Introduction022

Pre-trained language models exemplified by BERT023

(Devlin et al., 2018) have been widely applied in024

fine-tuning downstream text classification tasks.025

It is commonly used to fine-tune the pre-trained026

model with the cross entropy loss (Rumelhart et al.,027

1986) that calculates the KL-divergence between028

the one-hot vectors of labels and the model output029

predictions and then make predictions using linear030

classifiers (Radford et al., 2019; Devlin et al., 2018;031

Liu et al., 2019; Yang et al., 2019; Lan et al., 2019).032

Still, such a standard process has its shortcom-033

ings: (A) the cross entropy loss may lead to034

poor generalization performance as pointed out035

by Liu et al. (2016); Cao et al. (2019) and may036

lack robustness against noisy labels (Zhang and037

Sabuncu, 2018; Sukhbaatar et al., 2014) and adver-038

sarial samples (Goodfellow et al., 2014; Nar et al.,039

1all codes will be available at https://github.com//

2019). Also, in fine-tuning BERT, the cross entropy 040

loss may be unstable especially with limited data 041

(Dodge et al., 2020; Zhang et al., 2020). (B) On 042

the other hand, making predictions through linear 043

classifiers added directly on top of the pre-trained 044

models may face the overfitting problem especially 045

when the training data is limited (Snell et al., 2017; 046

Zhang et al., 2020). 047

To tackle the above shortcomings, it is intuitive 048

to build better representations in pre-trained lan- 049

guage models and make predictions based on clas- 050

sifiers that have better generalization abilities. 051

Therefore, in this paper, instead of simply using 052

a linear classifier to do the prediction, we utilize 053

the classic K-Nearest Neighbors classifier to make 054

predictions based on the training sample representa- 055

tions. The classic KNN classifier that makes predic- 056

tions based on counting the top-K similar samples 057

has been neglected for a long time since end to 058

end neural networks have achieved great success in 059

the computer vision field (He et al., 2016) as well 060

as the natural language processing field (Vaswani 061

et al., 2017; Devlin et al., 2018). However, when 062

the representations have been well-learned through 063

the massive calculation of the masked language 064

model task pre-training, it is intuitive to revisit and 065

utilize the K-Nearest Neighbor classifier that makes 066

predictions based on the representation similarity. 067

The KNN classifier makes predictions based on 068

the similarity between representations. Therefore, 069

the decision boundary is tighter within the same 070

class and altering the representation to an incorrect 071

class is more difficult which can improve model 072

robustness. On the other hand, the KNN classi- 073

fier makes predictions based on the anchors of the 074

multiple training samples which are well-learned 075

representations from the BERT model. Therefore, 076

utilizing KNN classifier can make better use of the 077

semantic representations of the pre-trained models 078

than simply using linear classifiers to draw decision 079

boundaries. 080
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For training the representations that are clustered081

within the same class for the KNN classifier, it is082

intuitive to use contrastive learning based training083

strategies. The goal is to construct a tight cluster084

of the representations within the same class while085

keeping the clusters of different classes at distance.086

With the label information from the downstream087

task dataset, we introduce a class-wise supervised088

contrastive learning framework to cluster the repre-089

sentations. Based on traditional constrastive learn-090

ing framework, we use the class-wise positives091

drawn from the same class of the given example in-092

stead of using limited augmentation-based methods093

to construct positives. These class-wise positives094

are relatively more abundant and useful comparing095

with augmentation-based positives and they can096

also be diversified in semantics.097

To make use of the class-wise positives, we in-098

troduce a sampling strategy that collect both the099

most similar positives and least similar positives to100

learn representations that can be tightly clustered101

within the same class while keeping distance be-102

tween different classes based on the momentum103

contrast learning framework (MoCo) (He et al.,104

2020). The momentum contrast framework intro-105

duces a momentum-based optimization process to106

update the representations of the negatives from a107

queue which makes it possible to make use of mas-108

sive negatives. In our usage of contrastive learning,109

incorporating the queue-based momentum contrast110

allows the usage of massive positives and negatives111

which is intuitive in using class-wise positives.112

For the representation learning of the positives,113

we are hoping that (1) the cluster of samples is114

tight within the same class; (2) the clusters are115

distant between classes. Therefore, when updat-116

ing the representations of the class-wise positives,117

we introduce a sampling strategy that consider the118

most similar and least similar positives to get better119

cluster representations. Updating the most similar120

positives can draw near the representations within121

the same class especially in the pre-trained repre-122

sentations where contrastive learning on randomly123

selected pre-trained representations may sabotage124

the pre-trained information.125

We construct extensive experiments to test126

the generalization and robustness ability of our127

contrastive-learned representations for the KNN128

classifier. We test rich-resource and low-resource129

text classification tasks on the GLUE benchmark;130

we then test the robustness of the KNN classifier131

by using the classifier to defend against strong 132

substitution-based adversarial attack methods. Ex- 133

periment results indicate that the KNN classifier 134

can (1) improve the performances by a consider- 135

able margin in text classification tasks; (2) improve 136

the defense ability against adversarial attacks sig- 137

nificantly. 138

To summarize our contributions: 139

• We introduce the idea of utilizing tradi- 140

tional KNN classifiers in downstream task 141

fine-tuning of pre-trained models and use 142

contrastive-learning to learn the representa- 143

tions for the KNN classifier. 144

• We make use of class-wise positives and neg- 145

atives and introduce a sampling strategy that 146

consider most and least similar positives for 147

the contrastive learning process especially in 148

pre-trained models. 149

• We incorporate a momentum contrast based 150

framework to allow multiple positives and 151

negatives in the contrastive learning process. 152

• Extensive experiments show the effectiveness 153

of the proposed contrastive learning frame- 154

work for the KNN classifier in both model 155

generalization ability and model robustness. 156

2 Related Work 157

2.1 Utilizing the KNN Classifier in PTMs 158

The K nearest neighbor classifier is a traditional 159

algorithm that makes predictions based on repre- 160

sentation similarities. While pre-trained models 161

(PTMs) (Devlin et al., 2018; Radford et al., 2018; 162

Lan et al., 2019; Liu et al., 2019) have been widely 163

applied, the idea of using nearest neighbors in pre- 164

trained models is also explored. Khandelwal et al. 165

(2019) uses nearest neighbors to augment the lan- 166

guage model predictions by using neighbors of the 167

predictions as targets for language model learn- 168

ing. Kassner and Schütze (2020) applies nearest 169

neighbors as additional predictions to boost the 170

question answering task. These methods use near- 171

est neighbors to find augment samples based on the 172

pre-trained language models rather than using the 173

KNN classifier as the decision maker. 174

On the other hand, making predictions based on 175

the nearest neighbors can be used in improving 176

model robustness. Papernot and McDaniel (2018) 177

explores the possibility of using nearest neighbors 178
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to make decisions instead of using linear classifiers179

in the computer vision field, showing that classi-180

fication results based on near neighbors are more181

resilient to adversarial attacks (Goodfellow et al.,182

2014; Carlini and Wagner, 2016).183

2.2 Contrastive Learning184

Contrastive learning (Hadsell et al., 2006; Chen185

et al., 2020) is a similarity-based training strategy186

that has been widely used (Hjelm et al., 2018; Ser-187

manet et al., 2018; Tschannen et al., 2019). The for-188

mulation of the contrastive loss is mainly based on189

the noise contrastive estimation loss (Gutmann and190

Hyvärinen, 2010; Mnih and Kavukcuoglu, 2013)191

or the N-pair losses (Sohn, 2016), which is also192

closely related to the metric distance learning and193

triplet losses (Schroff et al., 2015; Weinberger and194

Saul, 2009).195

While recent contrastive learning frameworks196

are mainly used in self-supervised tasks (He et al.,197

2020; Chen et al., 2020), the contrastive losses can198

also be used in a supervised scenario with minor199

modification to the loss function (Khosla et al.,200

2020; Gunel et al., 2020). These supervised con-201

trastive learning losses are added as an additional202

task in the normal training, the inference process is203

still based on linear classifiers.204

3 KNN-BERT205

We propose KNN-BERT that utilizes the KNN clas-206

sifier when using pre-trained models exemplified207

by BERT as the representation encoder. We illus-208

trate the KNN-BERT by describing (1) the KNN209

classifier usage; (2) the training process of the rep-210

resentations for the KNN classifier.211

3.1 KNN Classifier212

We combine the normal linear classifier with the213

KNN classifier and use the weight-averaged logits214

as the final prediction logits. Suppose the encoded215

representation is q with label Yq and the linear clas-216

sifier is F (·); we use ki with label Yki to denote217

the K nearest neighbors measured by the cosine218

similarity.219

The KNN logits is a voted result denoted as220

KNN(q).221

With weight ratio ϕ, the final prediction score s222

is calculated by:223

s = (1− ϕ)Softmax(F (q)) + ϕKNN(q) (1)224

Here, the linear classifier F (·) is learned by tra- 225

ditional cross entropy loss. For the kNN classi- 226

fier learning, we illustrate our proposed contrastive 227

learning framework in the following section. 228

3.2 Contrastive Learning for KNN 229

In order to train representations for the KNN classi- 230

fier in fine-tuning pre-trained models, we introduce 231

a supervised contrastive learning framework that 232

makes use of label information to construct positive 233

and negative samples. 234

Derived from the InfoNCE loss (Gutmann and 235

Hyvärinen, 2010), we consider a supervised con- 236

trastive loss function Lsc: 237

Lsc =
1

M

∑
kj∈k+

(
− log

exp(q · kj/τ)∑
ki∈{k−,kj}

exp(q · ki/τ)
)

(2)

238

Here, k+ is the set of M samples that have the la- 239

bel with the given query sample q and k− is the set 240

of samples from different classes. Such a loss func- 241

tion could narrow down the gap between the query 242

and the positive samples and push away the query 243

and the negatives. Considering that the positive 244

samples could be diversified since they are from 245

the same class but the representations possess vari- 246

ous semantic information encoded by pre-trained 247

models, it is important to determine which posi- 248

tives should be used in calculating the similarities 249

with the given query, otherwise, the learned repre- 250

sentations may not be tightly clustered. 251

Therefore, we aim to learn the clusters by (1) 252

tightening the cluster of samples of the same class; 253

(2) pushing away samples from different classes. 254

As seen in Figure 1, we calculate similarities 255

between the most similar positives and the query 256

to build a tighter cluster by narrowing the gap of 257

these most similar samples with the query. On the 258

other hand, we select the least similar positives and 259

draw them towards the query sample. Optimizing 260

the gap between the least similar positives and the 261

query sample is similar with using hard-negatives 262

for better clustering, so we can also name these 263

positives as hard-positives. 264

Therefore, we select Mm most similar positives 265

km and Ml least similar positives kl from posi- 266

tives set k+ and only update these selected positive 267

sample representations. Calculating all positives 268

might sabotage the semantic information which 269
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it 's a charming and often affecting journey .  the film suffers from a lack of humor ( something needed to  
balance out the violence ) ... 

Pre-trained Language Model Representations

Cross Entropy Loss Fine-tuned Model

Normal Fine-tuning Representations

Classification Boundaries :

Clear but Close 

Most Similar Positives

Least Similar Positives

Cluster for the KNN-BERT 

KNN-BERT representations 

Learned with Contrastive Learning

Negatives

Positive Sample: Negative Sample:

Figure 1: An illustration of using contrastive learning methods to build clusters for downstream classification tasks.
We use dots of different colors to denote different classes. The most similar positives are the major cluster while
the least similar positives are the data points that are closer to the negative classes. The KNN classifier use an
anchor-based prediction strategy unlike previous linear classifiers, we use contrastive loss to make the clusters
tighter and draw the least similar samples towards the major cluster.

may not be related to the classification represen-270

tations and hurt the classification results since the271

class-wise positives can be significantly different272

with the query. The proportion of the selected most273

and least similar positives would play a vital role274

in the cluster learning process, which will be dis-275

cussed in the later section.276

Since we only update these selected positives,277

we can re-write the contrastive loss function to:278

L′
sc =

1

Mm +Ml

∑
kj∈{km,kl}

(
−log

exp(q · kj/τ)∑
ki∈{k−,kj}

exp(q · ki/τ)
) (3)279

3.3 Connections with Traditional Contrastive280

Learning281

Contrastive learning (Hadsell et al., 2006; Chen282

et al., 2020) is to train a representation (denoted283

as q) using positive keys (denoted as k+) and neg-284

ative keys (denoted as k−). When the similarity285

is measured by the dot-product, a contrastive loss286

with one positive key and multiple negative keys287

(N negatives) is considered as:288

Lc = −log
exp(q · k+/τ)∑

ki∈{k−,k+}
exp(q · ki/τ)

(4)289

Here τ is the temperature hyper-parameter, and290

{k−, k+} is the sum of over one positive k+ and291

N negatives ki ∈ k−, which is N + 1 samples 292

in total. This form of loss is closely related to 293

the widely used information noise contrastive es- 294

timation (Oord et al., 2018). This form of loss is 295

widely used in self-supervised contrastive learning 296

tasks (Sohn, 2016; Oord et al., 2018; Henaff, 2020; 297

Baevski et al., 2020) where the positive can be con- 298

structed using data augmentation methods (Chen 299

et al., 2020). 300

Compared with the traditional contrastive learn- 301

ing method, tasks such as text classification are su- 302

pervised tasks where supervised contrastive learn- 303

ing is explored in the language understanding tasks 304

(Gunel et al., 2020). The major difference is that 305

supervised contrastive learning allows multiple us- 306

age of positives since the positives can be drawn 307

from the same class with the query sample. 308

Based on the self-supervised and supervised con- 309

trastive learning frameworks, we build our pro- 310

posed contrastive learning framework for the KNN- 311

BERT model. 312

3.4 Optimizing with Momentum Contrast 313

As illustrated in Eq. 3, we are using multiple posi- 314

tives and a large number of negatives in calculating 315

the contrastive loss, therefore, we utilize a momen- 316

tum contrast framework to update the positives and 317

negatives for better representation clustering. 318

In the contrastive learning training process, in- 319

corporating massive negatives can help better sam- 320

ple the underlying continuous high-dimensional 321
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space of the encoded representations. Therefore,322

the momentum contrast framework (MoCo) is in-323

troduced (He et al., 2020) to consider very large324

amount of negatives using a queue-based update325

strategy.326

In the momentum contrast framework, there are327

two separate encoders: query encoder and key en-328

coder. The query encoder is updated by using the329

gradient descent of the query samples. The opti-330

mization of the key encoder is solved by a momen-331

tum process using the parameters from the query332

encoder as illustrated below:333

θk ← mθk + (1−m)θq (5)334

Here θq and θk are the encoders while only the335

query encoder θq is updated by gradients through336

back-propagation.337

The negative representations are first pushed into338

the recurrent queue and only the samples in the339

end of the queue are updated by encoding with340

the key encoder after the key encoder is updated341

by the momentum process based on the query en-342

coder. Through the momentum update process, the343

constrastive learning process can consider a great344

amount of positives and negatives since the pro-345

cess does not need to calculate the gradients on all346

positives and negatives.347

Different from the traditional Moco framework348

where the positive sample is updated based on gra-349

dients, we have large amounts of both positives350

and negatives in the supervised contrastive learning351

setting. We simply push all these samples in to352

the queue and construct the positives and negatives353

based on the label of the query sample.354

3.5 Combined Training355

In the pre-trained model fine-tuning exemplified by356

text classification tasks, the representations are the357

[CLS] tokens used for text classification tasks. We358

use the l2 normalization over these representations359

since normalization methods are widely used in360

contrastive learning methods and have been proved361

useful through empirical results. Therefore, the362

queries and their corresponding positives and nega-363

tives are the representations of the BERT encoder364

output [CLS] tokens.365

We add the contrastive loss along with the origi-366

nal cross entropy loss Lce in the fine-tuning process367

to make use of the label information in a more di-368

rect way.369

Therefore, the final training loss is: 370

L = (1− λ)Lce + λL′
sc (6) 371

4 Experiments 372

4.1 Datasets 373

We use several text classification datasets to evalu- 374

ate the effectiveness and robustness of our proposed 375

KNN-based classifier. 376

We use several datasets in the GLUE benchmark 377

(Wang et al., 2018): RTE (Dagan et al., 2005); 378

MRPC (Dolan and Brockett, 2005); QNLI (Ra- 379

jpurkar et al., 2016); MNLI (Williams et al., 2018) 380

and SST-2 (Socher et al., 2013). In testing the 381

text classification models, we have two experiment 382

settings: we train the model with the full train- 383

ing dataset and test on the validation set; we also 384

set a few-shot setting with only a small portion 385

of the training set. We sample a test set and a 386

development set from the given development set 387

following (Gunel et al., 2020). We also use the 388

IMDB movie review dataset (Maas et al., 2011) and 389

the AG’s News news-genre classification dataset 390

(Zhang et al., 2015) to test the generalization ability 391

as well as the model robustness. We use the well- 392

known substitution-based adversarial attack meth- 393

ods, Textfooler (Jin et al., 2019) and Bert-Attack 394

(Li et al., 2020) to attack our KNN classifier. 395

4.2 Implementations 396

We run the experiments based on BERT-BASE (De- 397

vlin et al., 2018) and RoBERTa LARGE model (Liu 398

et al., 2019) using Huggingface Transformers. We 399

use the standard fine-tuning hyper parameters with 400

learning rate set to 2e-5 and batch-size set to 32 401

and optimize using the Adam optimizer. The pa- 402

rameters are not particularly tuned, we only use the 403

parameters provided by the Transformers toolkit 404
2. In the experiments that concern the contrastive 405

learning process, we search for proper hyperparam- 406

eters. The size of the queue is 32000, while in the 407

tasks with a small size of training set we put the 408

entire dataset into the queue. 409

For the training hyper-parameter configuration, 410

we set the momentum update parameter m = 0.999 411

with the temperature τ = 0.07 following He et al. 412

(2020). We set the positives number Mt and Mn 413

considering the training set size of different tasks 414

selecting from a certain set {10, 50, 100, 200, 400}. 415

2https://github.com/huggingface/transformers

5



Methods RTE MRPC QNLI MNLI SST-2 IMDB AG’s News

BERT-BASE (Devlin et al., 2018) 65.34 88.99 91.37 84.51 92.72 93.50 94.50
SCL (Gunel et al., 2020) 67.87 87.97 90.99 84.35 92.43 92.65 93.40
Memory-Bank (Wu et al., 2018) 66.43 88.67 91.67 84.35 93.00 93.16 94.83
MoCo (He et al., 2020) 71.11 88.90 91.26 84.50 92.70 93.50 94.65

KNN-BERT (Memory-Bank) 71.12 89.71 91.73 84.82 93.11 93.18 94.86
KNN-BERT (MoCo) 75.70 91.22 91.74 84.69 93.11 93.62 94.75

Table 1: Main Results on full-data text classification tasks and sentence pair classification tasks.

The ratio ϕ between the contrastive and the linear416

classifier during inference time is 0.25 typically and417

λ is 0.1 typically. And the number of neighbors418

K is selected from a certain set {100, 200, 500,419

1000}. We use the development set result to choose420

the optimal hyper-parameter.421

For the robustness experiments, we use422

Textfooler (Jin et al., 2019) and BERT-Attack (Li423

et al., 2020) as the adversarial attack methods to424

attack the downstream task classifiers. We use the425

TextAttack Toolkit (Morris et al., 2020) to imple-426

ment the attack methods and test the performances427

against adversarial attacks using our KNN-based428

classifier.429

4.3 Baselines430

We compare our KNN-based classifier with sev-431

eral contrastive learning methods. We train these432

methods using the same parameters with our KNN-433

based approach for a fair comparison.434

To the best of our knowledge, we are the first435

to deploy the KNN classifier in text classification436

tasks therefore the most important baseline is the437

same model trained with contrastive losses without438

using the KNN classifier.439

SCL: We first construct a supervised contrastive440

loss involved training baseline which is similar to441

Gunel et al. (2020). The supervised contrastive loss442

is similar to Eq. 2 where the positive and negatives443

are randomly selected in the minibatch. The SCL444

method uses randomly selected in-batch positives445

and negatives.446

Memory-Bank: Wu et al. (2018) introduces447

a contrastive framework to make use of massive448

negative samples based on Memory Banks.449

MoCo: We then construct a more delicate base-450

line that incorporates the contrastive loss using the451

MoCo (He et al., 2020) framework. That is, the452

negatives are drawn from the queue which is sig-453

nificantly larger than the batch size.454

Methods RTE MRPC QNLI SST-2

BERT 66.4 88.9 90.5 93.5
KNN-BERT 70.2 89.1 90.8 93.5

Table 2: Main Results on the test server of GLUE bench-
mark using KNN-BERT (MoCo) checkpoints based on
the best development set results.

4.4 Main Results 455

We propose a KNN-based classifier trained with 456

MoCo-based contrastive learning framework and 457

we test on the widely acknowledged GLUE bench- 458

mark as shown in Tab.1. We observe that when 459

using the KNN classifier, the model performances 460

have an average improvement of 1.39 points com- 461

pared with the BERT baseline. We also test the 462

KNN classifier on the test server of the GLUE 463

benchmark 3 as shown in Tab.2. 464

We compare our KNN-BERT method with sev- 465

eral contrastive learning baselines. As seen, when 466

we use the contrastive learning loss in the training 467

stage with negatives sampled from the minibatch, 468

the performances improve by a small margin com- 469

pared with the BERT baselines. Further, when 470

we only use the MoCo training loss as an addi- 471

tional loss in the training process, the model per- 472

formances are still behind the KNN-BERT method. 473

Results of two variants of our method KNN-BERT 474

(MoCo) and KNN-BERT (Memory-Bank) indicate 475

that updating the representations using MoCo is 476

also important for the KNN classifier. Compared 477

with the Memory bank framework and the MoCo 478

framework, we can observe the our contrastive 479

learning method for the KNN classifier can achieve 480

a considerable improvements indicating that the 481

modification we proposed for the supervised lan- 482

guage understanding task is effective. 483

3https://gluebenchmark.com/
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Num. Methods SST-2 QNLI IMDB

100

BERT 78.90(3.31) 65.76(29.87) 73.38(13.39)
SCL 75.96(9.37) 65.27(26.20) 73.65(6.52)
MoCo 79.63(5.85) 68.14(0.24) 74.82(13.98)
KNN-BERT 81.36(5.85) 70.52(0.45) 79.56(1.95)
RoBERTa 92.16(0.83) 70.40(47.72) 92.66(0.20)
SCL 90.00(1.88) 71.39(53.64) 92.21(0.48)
MoCo 91.14(1.01) 72.90(57.81) 92.71(0.57)
KNN-RoBERTa 93.20(0.10) 76.00(37.26) 93.68(0.41)

1000

BERT 88.30(0.63) 76.26(1.25) 88.82(0.08)
SCL 89.40(0.06) 77.16(0.52) 88.53(0.07)
MoCo 88.58(0.85) 77.34(0.63) 89.11(0.12)
KNN-BERT 89.96(0.37) 77.68(0.89) 91.68(0.53)
RoBERTa 93.26(0.28) 85.32(1.57) 94.47(0.03)
SCL 93.49(0.23) 87.15(3.71) 94.24(0.02)
MoCo 93.90(0.28) 85.98(0.17) 94.01(0.18)
KNN-RoBERTa 94.04(0.13) 87.32(0.09) 96.08(0.55)

Table 3: Few-Shot Results on the constructed test set.
We run 5 times using different seeds and use the aver-
aged performance with variance given in the parenthe-
ses.

4.5 Few-Shot GLUE Results484

As mentioned, we observe that the contrastive loss485

based KNN classifier can achieve better results in486

low-source tasks. Therefore, we construct a few-487

shot experiment using limited data for the down-488

stream tasks.489

As seen in Tab.3, both BERT and RoBERTa490

models can be improved by the KNN classifier491

when the training set has only 100 or 1000 training492

samples in the SST-2, QNLI and IMDB dataset.493

The few-shot setting constrains the performances494

of language model fine-tuning compared with the495

rich-source fine-tuning, while the KNN classifier496

can gain a more significant improvement in the497

few-shot settings compared with the rich-source498

fine-tuning. Plus, we can observe that the KNN499

classifier have a relatively small variance, indicat-500

ing that the performance is more stable.501

We assume that when the training data is limited,502

the linear classifier would face a serious overfit-503

ting problem. The similarity-based KNN classi-504

fier, on the other hand, considers more connec-505

tions between the samples in the same class, which506

contributes to the improvements over the few-shot507

experiments. Compared with the baseline super-508

vised contrastive learning methods, using the KNN509

classifier to make predictions can achieve higher510

performances.511

4.6 Model Robustness against Adversarial512

Attacks513

The robustness of neural networks has raised more514

and more concerns while these powerful models515

are widely applied. To explore the robustness of516

Methods Origin Textfooler BERT-Attack

IMDB

BERT 93.7 24.7 17.3
KNN(ϕ = 0.5) 94.3 44.7 25.7
KNN(ϕ = 1.0) 94.3 52.7 30.0

AG’s News

BERT 88.0 22.0 21.7
KNN(ϕ = 0.5) 90.6 22.7 37.3
KNN(ϕ = 1.0) 90.3 47.7 42.7

Table 4: Robustness experiments tested on strong ad-
versarial attack methods (KNN is the the KNN-BERT
method). The metric is the after-attack accuracy.

our KNN classifier against strong adversarial attack 517

methods, we construct a robustness experiment to 518

put our KNN classifier as the target model for the 519

strong attacking methods. We use two different 520

settings: (1) the predictions are made by both the 521

linear classifier and the KNN classifier (ϕ = 0.5) 522

(2) predictions are only made by the KNN classifier 523

(ϕ = 1). 524

As seen in Tab.4, utilizing the KNN classifier 525

is helpful in obtaining a higher accuracy when at- 526

tacked by strong adversarial attack methods. Since 527

the attacking process is an iterative searching pro- 528

cess, it becomes harder to find proper substitu- 529

tions as adversarial examples when the distance 530

between classes is larger. The comparison between 531

the KNN-only classifier(ϕ = 1.0) and the KNN 532

& Linear combined classifier(ϕ = 0.5) indicates 533

that the linear classifier is not robust even when 534

the model has been trained with contrastive losses, 535

which reveals a strong advantage of utilizing the 536

KNN classifier in the pre-trained model fine-tuning. 537

In the KNN classifier, the robustness improvements 538

are obtained by the closer distributions over the 539

clean examples from the training set serving as an- 540

chors, which could provide strong defense results 541

against adversarial examples. 542

4.7 Ablations 543

We conduct experiments to explore the effective- 544

ness of each components in the proposed method. 545

We explore a certain hyper-parameter setting while 546

fixing the rest based on best results in the develop- 547

ment set. 548

4.7.1 Effectiveness of Using KNN classifier 549

To explore the effectiveness of the KNN classifier, 550

We plot the ratio curve of ϕ between prediction 551

scores using linear classifier and KNN classifier. 552
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Figure 2: KNN parameter ablation. We use the relative
gap (based on ϕ = 0 and K = 1 to clearly observe the
difference.

As seen in Fig.2(a), the performance of the KNN553

classifier is slightly better than the linear classifier,554

which indicates that KNN based classifier is effec-555

tive in improving downstream tasks. Combining556

both classifiers can achieve a higher performance557

when ϕ = 0.9 in the MRPC task, ϕ = 0.6 in the558

MRPC task and ϕ = 0.8 in the MNLI task, in-559

dicating that a combination of the two classifiers560

can also be beneficial. Based on the ablations, we561

can summarize the KNN classfier is effective and562

robust.563

4.7.2 Importance of K neighbors in KNN564

In our proposed KNN-BERT, the selection of num-565

ber of nearest neighbors is a major parameter.566

Therefore, we plot the curve of using different K.567

As seen in Fig.2(b), the selection of K is less vital568

when the K is large enough. A very small K can569

still have a considerable but not supreme result.570

We can summarize that a large K is not neces-571

sary which can save the computation cost.572

4.7.3 Importance of Introducing Most/Least573

Similar Positives574

The major part of our contrastive learning frame-575

work is the selection of most and least similar posi-576

tives and negatives since we aim to make use of the577

feature of both most and least positives to construct578

tighter and more distinguishable clusters. We con-579

struct an ablation study by searching for optimal M580

in an intuitive selected range {1, 20, 50, 100,200}.581

As seen in Tab.5, compared with randomly selected582

positives, using specific selected positives achieves583

considerable improvements. Further, the selection584

of different Mm and Ml plays an important role.585

We assume that the selection of Mm and Ml de-586

pends on the training set size of different tasks.587

Methods RTE MRPC Methods RTE MRPC

M./L. SP. Mm = 10 Mm = 50

Ml = 1 67.8 91.5 Ml = 1 74.7 91.1
Ml = 10 71.5 91.3 Ml = 50 73.8 91.3
Ml = 20 71.5 91.3 Ml = 100 75.7 91.2

Mm = 100 Mm = 200

Ml = 1 73.3 90.4 Ml = 1 67.1 90.0
Ml = 100 73.3 90.3 Ml = 200 66.4 91.5
Ml = 200 67.8 90.2 Ml = 400 67.1 91.4

RTE MRPC RTE MRPC
Rand. Positive

M = 10 68.9 90.1 M = 100 71.1 90.8
M = 50 70.4 89.3 M = 200 69.0 89.6

Table 5: Importance of Most/Least Similar Positives
(M.L. SP.) compared with using random selected M
positives (Rand. Positive).

Further, compared with using randomly selected 588

positives or single positive, we can observe that us- 589

ing multiple positives helps achieve a considerable 590

improvement than using a single positive sample, 591

especially on tasks that have more diversified pat- 592

terns like the RTE task. The values of Mm and 593

Ml are larger than the batch size which indicates 594

that introducing the MoCo framework is fair and 595

effective. Further, we can see that different values 596

of hard-positives Ml also matters, which indicates 597

that introducing a proper number of hard-positives 598

is helpful in learning better representations. 599

To summarize, introducing the sampling strategy 600

of most/least similar positives is effective and the 601

selection of M depends on the size of the training 602

set therefore requires only a few searching efforts. 603

5 Conclusion 604

In this paper, we introduce a KNN-based classifier 605

to improve the performance of pre-trained model 606

fine-tuning. We utilize the traditional KNN classi- 607

fier in pre-trained model fine-tuning and train clus- 608

tered representations based on a supervised con- 609

trastive learning framework. We introduce a most 610

and least similar positive sample selection strategy 611

based on momentum contrast framework for multi- 612

ple class-wise positives and negatives in contrastive 613

learning. The KNN classifier can achieve higher 614

performances on the downstream tasks while it can 615

improve the model robustness against strong ad- 616

versarial attack methods. We hope that the idea 617

of utilizing traditional the KNN classifier could 618

provide hints for using classic machine learning 619

methods in fine-tuning of pre-trained models. 620
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