KNN-BERT: Fine-Tuning Pre-Trained Models with KNN Classifier

Anonymous ACL submission

Abstract

Pre-trained models are widely used in fine-
tuning downstream tasks with linear classifiers
optimized by the cross entropy loss, which
might face robustness and stability problems.
These problems can be improved by learning
representations that focus on similarities in the
same class and variance in different classes
when making predictions. In this paper, we
utilize the K-Nearest Neighbors Classifier in
pre-trained model fine-tuning. For this KNN
classifier, we introduce a supervised momen-
tum contrastive learning framework to learn
the clustered representations of the supervised
downstream tasks. Extensive experiments on
text classification tasks and robustness tests
show that by incorporating KNNs with the tra-
ditional fine-tuning process, we can obtain sig-
nificant improvements on the clean accuracy
in both rich-source and few-shot settings and
can improve the robustness against adversarial
attacks. !

1 Introduction

Pre-trained language models exemplified by BERT
(Devlin et al., 2018) have been widely applied in
fine-tuning downstream text classification tasks.
It is commonly used to fine-tune the pre-trained
model with the cross entropy loss (Rumelhart et al.,
1986) that calculates the KL-divergence between
the one-hot vectors of labels and the model output
predictions and then make predictions using linear
classifiers (Radford et al., 2019; Devlin et al., 2018;
Liu et al., 2019; Yang et al., 2019; Lan et al., 2019).

Still, such a standard process has its shortcom-
ings: (A) the cross entropy loss may lead to
poor generalization performance as pointed out
by Liu et al. (2016); Cao et al. (2019) and may
lack robustness against noisy labels (Zhang and
Sabuncu, 2018; Sukhbaatar et al., 2014) and adver-
sarial samples (Goodfellow et al., 2014; Nar et al.,

'all codes will be available at https://github.com//

2019). Also, in fine-tuning BERT, the cross entropy
loss may be unstable especially with limited data
(Dodge et al., 2020; Zhang et al., 2020). (B) On
the other hand, making predictions through linear
classifiers added directly on top of the pre-trained
models may face the overfitting problem especially
when the training data is limited (Snell et al., 2017,
Zhang et al., 2020).

To tackle the above shortcomings, it is intuitive
to build better representations in pre-trained lan-
guage models and make predictions based on clas-
sifiers that have better generalization abilities.

Therefore, in this paper, instead of simply using
a linear classifier to do the prediction, we utilize
the classic K-Nearest Neighbors classifier to make
predictions based on the training sample representa-
tions. The classic KNN classifier that makes predic-
tions based on counting the top-K similar samples
has been neglected for a long time since end to
end neural networks have achieved great success in
the computer vision field (He et al., 2016) as well
as the natural language processing field (Vaswani
et al., 2017; Devlin et al., 2018). However, when
the representations have been well-learned through
the massive calculation of the masked language
model task pre-training, it is intuitive to revisit and
utilize the K-Nearest Neighbor classifier that makes
predictions based on the representation similarity.
The KNN classifier makes predictions based on
the similarity between representations. Therefore,
the decision boundary is tighter within the same
class and altering the representation to an incorrect
class is more difficult which can improve model
robustness. On the other hand, the KNN classi-
fier makes predictions based on the anchors of the
multiple training samples which are well-learned
representations from the BERT model. Therefore,
utilizing KNN classifier can make better use of the
semantic representations of the pre-trained models
than simply using linear classifiers to draw decision
boundaries.

For training the representations that are clustered
within the same class for the KNN classifier, it is
intuitive to use contrastive learning based training
strategies. The goal is to construct a tight cluster
of the representations within the same class while
keeping the clusters of different classes at distance.
With the label information from the downstream
task dataset, we introduce a class-wise supervised
contrastive learning framework to cluster the repre-
sentations. Based on traditional constrastive learn-
ing framework, we use the class-wise positives
drawn from the same class of the given example in-
stead of using limited augmentation-based methods
to construct positives. These class-wise positives
are relatively more abundant and useful comparing
with augmentation-based positives and they can
also be diversified in semantics.

To make use of the class-wise positives, we in-
troduce a sampling strategy that collect both the
most similar positives and least similar positives to
learn representations that can be tightly clustered
within the same class while keeping distance be-
tween different classes based on the momentum
contrast learning framework (MoCo) (He et al.,
2020). The momentum contrast framework intro-
duces a momentum-based optimization process to
update the representations of the negatives from a
queue which makes it possible to make use of mas-
sive negatives. In our usage of contrastive learning,
incorporating the queue-based momentum contrast
allows the usage of massive positives and negatives
which is intuitive in using class-wise positives.

For the representation learning of the positives,
we are hoping that (1) the cluster of samples is
tight within the same class; (2) the clusters are
distant between classes. Therefore, when updat-
ing the representations of the class-wise positives,
we introduce a sampling strategy that consider the
most similar and least similar positives to get better
cluster representations. Updating the most similar
positives can draw near the representations within
the same class especially in the pre-trained repre-
sentations where contrastive learning on randomly
selected pre-trained representations may sabotage
the pre-trained information.

We construct extensive experiments to test
the generalization and robustness ability of our
contrastive-learned representations for the KNN
classifier. We test rich-resource and low-resource
text classification tasks on the GLUE benchmark;
we then test the robustness of the KNN classifier

by using the classifier to defend against strong
substitution-based adversarial attack methods. Ex-
periment results indicate that the KNN classifier
can (1) improve the performances by a consider-
able margin in text classification tasks; (2) improve
the defense ability against adversarial attacks sig-
nificantly.
To summarize our contributions:

* We introduce the idea of utilizing tradi-
tional KNN classifiers in downstream task
fine-tuning of pre-trained models and use
contrastive-learning to learn the representa-
tions for the KNN classifier.

* We make use of class-wise positives and neg-
atives and introduce a sampling strategy that
consider most and least similar positives for
the contrastive learning process especially in
pre-trained models.

* We incorporate a momentum contrast based
framework to allow multiple positives and
negatives in the contrastive learning process.

» Extensive experiments show the effectiveness
of the proposed contrastive learning frame-
work for the KNN classifier in both model
generalization ability and model robustness.

2 Related Work
2.1 Utilizing the KNN Classifier in PTMs

The K nearest neighbor classifier is a traditional
algorithm that makes predictions based on repre-
sentation similarities. While pre-trained models
(PTMs) (Devlin et al., 2018; Radford et al., 2018;
Lan et al., 2019; Liu et al., 2019) have been widely
applied, the idea of using nearest neighbors in pre-
trained models is also explored. Khandelwal et al.
(2019) uses nearest neighbors to augment the lan-
guage model predictions by using neighbors of the
predictions as targets for language model learn-
ing. Kassner and Schiitze (2020) applies nearest
neighbors as additional predictions to boost the
question answering task. These methods use near-
est neighbors to find augment samples based on the
pre-trained language models rather than using the
KNN classifier as the decision maker.

On the other hand, making predictions based on
the nearest neighbors can be used in improving
model robustness. Papernot and McDaniel (2018)
explores the possibility of using nearest neighbors

to make decisions instead of using linear classifiers
in the computer vision field, showing that classi-
fication results based on near neighbors are more
resilient to adversarial attacks (Goodfellow et al.,
2014; Carlini and Wagner, 2016).

2.2 Contrastive Learning

Contrastive learning (Hadsell et al., 2006; Chen
et al., 2020) is a similarity-based training strategy
that has been widely used (Hjelm et al., 2018; Ser-
manet et al., 2018; Tschannen et al., 2019). The for-
mulation of the contrastive loss is mainly based on
the noise contrastive estimation loss (Gutmann and
Hyvirinen, 2010; Mnih and Kavukcuoglu, 2013)
or the N-pair losses (Sohn, 2016), which is also
closely related to the metric distance learning and
triplet losses (Schroff et al., 2015; Weinberger and
Saul, 2009).

While recent contrastive learning frameworks
are mainly used in self-supervised tasks (He et al.,
2020; Chen et al., 2020), the contrastive losses can
also be used in a supervised scenario with minor
modification to the loss function (Khosla et al.,
2020; Gunel et al., 2020). These supervised con-
trastive learning losses are added as an additional
task in the normal training, the inference process is
still based on linear classifiers.

3 KNN-BERT

We propose KNN-BERT that utilizes the KNN clas-
sifier when using pre-trained models exemplified
by BERT as the representation encoder. We illus-
trate the KNN-BERT by describing (1) the KNN
classifier usage; (2) the training process of the rep-
resentations for the KNN classifier.

3.1 KNN Classifier

We combine the normal linear classifier with the
KNN classifier and use the weight-averaged logits
as the final prediction logits. Suppose the encoded
representation is ¢ with label Y, and the linear clas-
sifier is F'(-); we use k; with label Y}, to denote
the K nearest neighbors measured by the cosine
similarity.

The KNN logits is a voted result denoted as
KNN(q).

With weight ratio ¢, the final prediction score s
is calculated by:

s = (1 — ¢)Softmax(F(q)) + pKNN(q) (1)

Here, the linear classifier F'(+) is learned by tra-
ditional cross entropy loss. For the kNN classi-
fier learning, we illustrate our proposed contrastive
learning framework in the following section.

3.2 Contrastive Learning for KNN

In order to train representations for the KNN classi-
fier in fine-tuning pre-trained models, we introduce
a supervised contrastive learning framework that
makes use of label information to construct positive
and negative samples.

Derived from the InfoNCE loss (Gutmann and
Hyvirinen, 2010), we consider a supervised con-
trastive loss function Lg:

_ 1 exp(q - k;/7)
ﬁsc - M Z (lOg Z eXp(q .]’Cl/T))
kj€k+ kie{k—,kj}

2

Here, k_ is the set of M samples that have the la-
bel with the given query sample ¢ and k_ is the set
of samples from different classes. Such a loss func-
tion could narrow down the gap between the query
and the positive samples and push away the query
and the negatives. Considering that the positive
samples could be diversified since they are from
the same class but the representations possess vari-
ous semantic information encoded by pre-trained
models, it is important to determine which posi-
tives should be used in calculating the similarities
with the given query, otherwise, the learned repre-
sentations may not be tightly clustered.

Therefore, we aim to learn the clusters by (1)
tightening the cluster of samples of the same class;
(2) pushing away samples from different classes.

As seen in Figure 1, we calculate similarities
between the most similar positives and the query
to build a tighter cluster by narrowing the gap of
these most similar samples with the query. On the
other hand, we select the least similar positives and
draw them towards the query sample. Optimizing
the gap between the least similar positives and the
query sample is similar with using hard-negatives
for better clustering, so we can also name these
positives as hard-positives.

Therefore, we select M,,, most similar positives
knm and M; least similar positives k; from posi-
tives set k4 and only update these selected positive
sample representations. Calculating all positives
might sabotage the semantic information which

Cross Entropy Loss Fine-tuned Model

o
[
Classification Boundaries : . . .
Clear but Close o0 o
o®
e /°

Most Similar Positives

KNN-BERT representations
Learned with Contrastive Learning

o
o0 0 o PY
Positive Sample: . Negative Sample:
e 00

it's a charming and often affecting journey .

the film suffers from a lack of humor (something needed to
balance out the violence) ...

Pre-trained Language Model Representations

Figure 1: An illustration of using contrastive learning methods to build clusters for downstream classification tasks.
We use dots of different colors to denote different classes. The most similar positives are the major cluster while
the least similar positives are the data points that are closer to the negative classes. The KNN classifier use an
anchor-based prediction strategy unlike previous linear classifiers, we use contrastive loss to make the clusters
tighter and draw the least similar samples towards the major cluster.

may not be related to the classification represen-
tations and hurt the classification results since the
class-wise positives can be significantly different
with the query. The proportion of the selected most
and least similar positives would play a vital role
in the cluster learning process, which will be dis-
cussed in the later section.

Since we only update these selected positives,
we can re-write the contrastive loss function to:

/ 1
Lo=——
* Mm+Mlk-e{zk:k(
J my l}
exp(q - k;/7))
>, exp(q-ki/T)

ki E{kf ,k]' }

3)

—log

3.3 Connections with Traditional Contrastive
Learning

Contrastive learning (Hadsell et al., 2006; Chen
et al., 2020) is to train a representation (denoted
as q) using positive keys (denoted as k) and neg-
ative keys (denoted as k_). When the similarity
is measured by the dot-product, a contrastive loss
with one positive key and multiple negative keys
(N negatives) is considered as:

exp(q - ky/7)
2. exp(q-ki/7)

kie{k—7k+}

L. = —log

4

Here 7 is the temperature hyper-parameter, and
{k_,k+} is the sum of over one positive k. and

N negatives k; € k_, which is N + 1 samples
in total. This form of loss is closely related to
the widely used information noise contrastive es-
timation (Oord et al., 2018). This form of loss is
widely used in self-supervised contrastive learning
tasks (Sohn, 2016; Oord et al., 2018; Henaff, 2020;
Baevski et al., 2020) where the positive can be con-
structed using data augmentation methods (Chen
et al., 2020).

Compared with the traditional contrastive learn-
ing method, tasks such as text classification are su-
pervised tasks where supervised contrastive learn-
ing is explored in the language understanding tasks
(Gunel et al., 2020). The major difference is that
supervised contrastive learning allows multiple us-
age of positives since the positives can be drawn
from the same class with the query sample.

Based on the self-supervised and supervised con-
trastive learning frameworks, we build our pro-
posed contrastive learning framework for the KNN-
BERT model.

3.4 Optimizing with Momentum Contrast

As illustrated in Eq. 3, we are using multiple posi-
tives and a large number of negatives in calculating
the contrastive loss, therefore, we utilize a momen-
tum contrast framework to update the positives and
negatives for better representation clustering.

In the contrastive learning training process, in-
corporating massive negatives can help better sam-
ple the underlying continuous high-dimensional

space of the encoded representations. Therefore,
the momentum contrast framework (MoCo) is in-
troduced (He et al., 2020) to consider very large
amount of negatives using a queue-based update
strategy.

In the momentum contrast framework, there are
two separate encoders: query encoder and key en-
coder. The query encoder is updated by using the
gradient descent of the query samples. The opti-
mization of the key encoder is solved by a momen-
tum process using the parameters from the query
encoder as illustrated below:

O — mby, + (1 —m)b, 5)

Here 0, and 0}, are the encoders while only the
query encoder 0, is updated by gradients through
back-propagation.

The negative representations are first pushed into
the recurrent queue and only the samples in the
end of the queue are updated by encoding with
the key encoder after the key encoder is updated
by the momentum process based on the query en-
coder. Through the momentum update process, the
constrastive learning process can consider a great
amount of positives and negatives since the pro-
cess does not need to calculate the gradients on all
positives and negatives.

Different from the traditional Moco framework
where the positive sample is updated based on gra-
dients, we have large amounts of both positives
and negatives in the supervised contrastive learning
setting. We simply push all these samples in to
the queue and construct the positives and negatives
based on the label of the query sample.

3.5 Combined Training

In the pre-trained model fine-tuning exemplified by
text classification tasks, the representations are the
[CLS] tokens used for text classification tasks. We
use the /o normalization over these representations
since normalization methods are widely used in
contrastive learning methods and have been proved
useful through empirical results. Therefore, the
queries and their corresponding positives and nega-
tives are the representations of the BERT encoder
output [CLS] tokens.

We add the contrastive loss along with the origi-
nal cross entropy loss L. in the fine-tuning process
to make use of the label information in a more di-
rect way.

Therefore, the final training loss is:

L=(1—-MNLee+ Moy (6)

4 Experiments

4.1 Datasets

We use several text classification datasets to evalu-
ate the effectiveness and robustness of our proposed
KNN-based classifier.

We use several datasets in the GLUE benchmark
(Wang et al., 2018): RTE (Dagan et al., 2005);
MRPC (Dolan and Brockett, 2005); QNLI (Ra-
jpurkar et al., 2016); MNLI (Williams et al., 2018)
and SST-2 (Socher et al., 2013). In testing the
text classification models, we have two experiment
settings: we train the model with the full train-
ing dataset and test on the validation set; we also
set a few-shot setting with only a small portion
of the training set. We sample a test set and a
development set from the given development set
following (Gunel et al., 2020). We also use the
IMDB movie review dataset (Maas et al., 2011) and
the AG’s News news-genre classification dataset
(Zhang et al., 2015) to test the generalization ability
as well as the model robustness. We use the well-
known substitution-based adversarial attack meth-
ods, Textfooler (Jin et al., 2019) and Bert-Attack
(Li et al., 2020) to attack our KNN classifier.

4.2 Implementations

We run the experiments based on BERT-BASE (De-
vlin et al., 2018) and RoBERTa LARGE model (Liu
et al., 2019) using Huggingface Transformers. We
use the standard fine-tuning hyper parameters with
learning rate set to 2e-5 and batch-size set to 32
and optimize using the Adam optimizer. The pa-
rameters are not particularly tuned, we only use the
parameters provided by the Transformers toolkit
2 In the experiments that concern the contrastive
learning process, we search for proper hyperparam-
eters. The size of the queue is 32000, while in the
tasks with a small size of training set we put the
entire dataset into the queue.

For the training hyper-parameter configuration,
we set the momentum update parameter m = 0.999
with the temperature 7 = 0.07 following He et al.
(2020). We set the positives number M; and M,
considering the training set size of different tasks
selecting from a certain set {10, 50, 100, 200, 400}.

Zhttps://github.com/huggingface/transformers

Methods RTE MRPC QNLI MNLI SST-2 IMDB AG’s News
BERT-BASE (Devlin et al., 2018) 65.34 8899 9137 84.51 92.72 93.50 94.50
SCL (Gunel et al., 2020) 67.87 8797 90.99 8435 9243 92.65 93.40
Memory-Bank (Wu et al., 2018) 66.43 88.67 91.67 8435 93.00 93.16 94.83
MoCo (He et al., 2020) 71.11 8890 9126 84.50 9270 93.50 94.65
KNN-BERT (Memory-Bank) 71.12 89.71 91.73 84.82 93.11 93.18 94.86
KNN-BERT (MoCo) 75770 91.22 91.74 84.69 93.11 93.62 94.75

Table 1: Main Results on full-data text classification tasks and sentence pair classification tasks.

The ratio ¢ between the contrastive and the linear
classifier during inference time is 0.25 typically and
A is 0.1 typically. And the number of neighbors
K is selected from a certain set {100, 200, 500,
1000}. We use the development set result to choose
the optimal hyper-parameter.

For the robustness experiments, we use
Textfooler (Jin et al., 2019) and BERT-Attack (Li
et al., 2020) as the adversarial attack methods to
attack the downstream task classifiers. We use the
TextAttack Toolkit (Morris et al., 2020) to imple-
ment the attack methods and test the performances
against adversarial attacks using our KNN-based
classifier.

4.3 Baselines

We compare our KNN-based classifier with sev-
eral contrastive learning methods. We train these
methods using the same parameters with our KNN-
based approach for a fair comparison.

To the best of our knowledge, we are the first
to deploy the KNN classifier in text classification
tasks therefore the most important baseline is the
same model trained with contrastive losses without
using the KNN classifier.

SCL: We first construct a supervised contrastive
loss involved training baseline which is similar to
Gunel et al. (2020). The supervised contrastive loss
is similar to Eq. 2 where the positive and negatives
are randomly selected in the minibatch. The SCL
method uses randomly selected in-batch positives
and negatives.

Memory-Bank: Wu et al. (2018) introduces
a contrastive framework to make use of massive
negative samples based on Memory Banks.

MoCo: We then construct a more delicate base-
line that incorporates the contrastive loss using the
MoCo (He et al., 2020) framework. That is, the
negatives are drawn from the queue which is sig-
nificantly larger than the batch size.

Methods RTE MRPC QNLI SST-2
BERT 66.4 88.9 90.5 93.5
KNN-BERT 70.2 89.1 90.8 93.5

Table 2: Main Results on the test server of GLUE bench-
mark using KNN-BERT (MoCo) checkpoints based on
the best development set results.

4.4 Main Results

We propose a KNN-based classifier trained with
MoCo-based contrastive learning framework and
we test on the widely acknowledged GLUE bench-
mark as shown in Tab.1. We observe that when
using the KNN classifier, the model performances
have an average improvement of 1.39 points com-
pared with the BERT baseline. We also test the
KNN classifier on the test server of the GLUE
benchmark ? as shown in Tab.2.

We compare our KNN-BERT method with sev-
eral contrastive learning baselines. As seen, when
we use the contrastive learning loss in the training
stage with negatives sampled from the minibatch,
the performances improve by a small margin com-
pared with the BERT baselines. Further, when
we only use the MoCo training loss as an addi-
tional loss in the training process, the model per-
formances are still behind the KNN-BERT method.
Results of two variants of our method KNN-BERT
(MoCo) and KNN-BERT (Memory-Bank) indicate
that updating the representations using MoCo is
also important for the KNN classifier. Compared
with the Memory bank framework and the MoCo
framework, we can observe the our contrastive
learning method for the KNN classifier can achieve
a considerable improvements indicating that the
modification we proposed for the supervised lan-
guage understanding task is effective.

3https://gluebenchmark.com/

Num. Methods SST-2 QNLI IMDB
BERT 78.90(3.31) 65.76(29.87) 73.38(13.39)
SCL 75.96(9.37) 65.27(26.20) 73.65(6.52)
MoCo 79.63(5.85) 68.14(024) 74.82(13.98)
100 _KNN-BERT 81.36(5.85) 70.52(0.45) 79.56(1.95)
RoBERTa 92.16(0.83) 70.40(47.72) 92.66(0.20)
SCL 90.00(1.88) 71.39(53.64) 92.21(0.48)
MoCo 91.14(1.01) 72.90(57.81) 92.71(0.57)
KNN-RoBERTa 93.20(0.10) 76.0037.26) 93.68(0.41)
BERT 88.30(0.63) 76.26(1.25) 88.82(0.08)
SCL 89.40(0.06) 77.16(0.52) 88.53(0.07)
MoCo 88.58(0.85) 77.34(0.63) 89.11(0.12)
1000 KNN-BERT 89.96(0.37) 77.68(0.89) 91.68(0.53)
RoBERTa 93.26(0.28) 85.32(1.57) 94.47(0.03)
SCL 93.49(0.23) 87.153.71) 94.24(0.02)
MoCo 93.90(0.28) 85.98(0.17) 94.01(0.18)
KNN-RoBERTa 94.040.13) 87.32(0.09) 96.08(0.55)

Table 3: Few-Shot Results on the constructed test set.
We run 5 times using different seeds and use the aver-
aged performance with variance given in the parenthe-
ses.

4.5 Few-Shot GLUE Results

As mentioned, we observe that the contrastive loss
based KNN classifier can achieve better results in
low-source tasks. Therefore, we construct a few-
shot experiment using limited data for the down-
stream tasks.

As seen in Tab.3, both BERT and RoBERTa
models can be improved by the KNN classifier
when the training set has only 100 or 1000 training
samples in the SST-2, QNLI and IMDB dataset.
The few-shot setting constrains the performances
of language model fine-tuning compared with the
rich-source fine-tuning, while the KNN classifier
can gain a more significant improvement in the
few-shot settings compared with the rich-source
fine-tuning. Plus, we can observe that the KNN
classifier have a relatively small variance, indicat-
ing that the performance is more stable.

We assume that when the training data is limited,
the linear classifier would face a serious overfit-
ting problem. The similarity-based KNN classi-
fier, on the other hand, considers more connec-
tions between the samples in the same class, which
contributes to the improvements over the few-shot
experiments. Compared with the baseline super-
vised contrastive learning methods, using the KNN
classifier to make predictions can achieve higher
performances.

4.6 Model Robustness against Adversarial
Attacks

The robustness of neural networks has raised more
and more concerns while these powerful models
are widely applied. To explore the robustness of

Methods Origin Textfooler ~BERT-Attack
IMDB
BERT 93.7 24.7 17.3
KNN(¢ = 0.5) 943 44.7 25.7
KNN(¢p =1.0) 943 52.7 30.0
AG’s News
BERT 88.0 22.0 21.7
KNN(¢ =0.5) 90.6 22.7 373
KNN(¢ =1.0) 90.3 47.7 42.7

Table 4: Robustness experiments tested on strong ad-
versarial attack methods (KNN is the the KNN-BERT
method). The metric is the after-attack accuracy.

our KNN classifier against strong adversarial attack
methods, we construct a robustness experiment to
put our KNN classifier as the target model for the
strong attacking methods. We use two different
settings: (1) the predictions are made by both the
linear classifier and the KNN classifier (¢ = 0.5)
(2) predictions are only made by the KNN classifier
(¢ =D.

As seen in Tab.4, utilizing the KNN classifier
is helpful in obtaining a higher accuracy when at-
tacked by strong adversarial attack methods. Since
the attacking process is an iterative searching pro-
cess, it becomes harder to find proper substitu-
tions as adversarial examples when the distance
between classes is larger. The comparison between
the KNN-only classifier(¢p = 1.0) and the KNN
& Linear combined classifier(¢ = 0.5) indicates
that the linear classifier is not robust even when
the model has been trained with contrastive losses,
which reveals a strong advantage of utilizing the
KNN classifier in the pre-trained model fine-tuning.
In the KNN classifier, the robustness improvements
are obtained by the closer distributions over the
clean examples from the training set serving as an-
chors, which could provide strong defense results
against adversarial examples.

4.7 Ablations

We conduct experiments to explore the effective-
ness of each components in the proposed method.
We explore a certain hyper-parameter setting while
fixing the rest based on best results in the develop-
ment set.

4.7.1 Effectiveness of Using KNN classifier

To explore the effectiveness of the KNN classifier,
We plot the ratio curve of ¢ between prediction
scores using linear classifier and KNN classifier.

iz e o s o
”&
o

oo o o = o o o o o o]

(a) selection of ¢

(b) selection of K

Figure 2: KNN parameter ablation. We use the relative
gap (based on ¢ = 0 and K = 1 to clearly observe the
difference.

As seen in Fig.2(a), the performance of the KNN
classifier is slightly better than the linear classifier,
which indicates that KNN based classifier is effec-
tive in improving downstream tasks. Combining
both classifiers can achieve a higher performance
when ¢ = 0.9 in the MRPC task, ¢ = 0.6 in the
MRPC task and ¢ = 0.8 in the MNLI task, in-
dicating that a combination of the two classifiers
can also be beneficial. Based on the ablations, we
can summarize the KNN classfier is effective and
robust.

4.7.2 Importance of K neighbors in KNN

In our proposed KNN-BERT, the selection of num-
ber of nearest neighbors is a major parameter.
Therefore, we plot the curve of using different K.
As seen in Fig.2(b), the selection of K is less vital
when the K is large enough. A very small K can
still have a considerable but not supreme result.

We can summarize that a large K is not neces-
sary which can save the computation cost.

4.7.3 Importance of Introducing Most/Least
Similar Positives

The major part of our contrastive learning frame-
work is the selection of most and least similar posi-
tives and negatives since we aim to make use of the
feature of both most and least positives to construct
tighter and more distinguishable clusters. We con-
struct an ablation study by searching for optimal M
in an intuitive selected range {1, 20, 50, 100,200}.
As seen in Tab.5, compared with randomly selected
positives, using specific selected positives achieves
considerable improvements. Further, the selection
of different M, and M; plays an important role.
We assume that the selection of M,,, and M; de-
pends on the training set size of different tasks.

Methods RTE MRPC Methods RTE MRPC
M./L. SP. M, =10 M, =50
M, =1 67.8 915 M;=1 1747 091.1
M; =10 715 913 M; =50 73.8 91.3
M; =20 71.5 91.3 M; =100 75.7 91.2
M,, = 100 M,, =200
M, =1 733 904 M;=1 67.1 900
M; =100 733 90.3 M; =200 664 91.5
M; =200 67.8 90.2 M; =400 67.1 914
RTE MRPC RTE MRPC
Rand. Positive
M =10 689 90.1 M =100 71.1 90.8
M =50 704 893 M =200 69.0 89.6

Table 5: Importance of Most/Least Similar Positives
(M.L. SP.) compared with using random selected M
positives (Rand. Positive).

Further, compared with using randomly selected
positives or single positive, we can observe that us-
ing multiple positives helps achieve a considerable
improvement than using a single positive sample,
especially on tasks that have more diversified pat-
terns like the RTE task. The values of M, and
M are larger than the batch size which indicates
that introducing the MoCo framework is fair and
effective. Further, we can see that different values
of hard-positives M; also matters, which indicates
that introducing a proper number of hard-positives
is helpful in learning better representations.

To summarize, introducing the sampling strategy
of most/least similar positives is effective and the
selection of M depends on the size of the training
set therefore requires only a few searching efforts.

5 Conclusion

In this paper, we introduce a KNN-based classifier
to improve the performance of pre-trained model
fine-tuning. We utilize the traditional KNN classi-
fier in pre-trained model fine-tuning and train clus-
tered representations based on a supervised con-
trastive learning framework. We introduce a most
and least similar positive sample selection strategy
based on momentum contrast framework for multi-
ple class-wise positives and negatives in contrastive
learning. The KNN classifier can achieve higher
performances on the downstream tasks while it can
improve the model robustness against strong ad-
versarial attack methods. We hope that the idea
of utilizing traditional the KNN classifier could
provide hints for using classic machine learning
methods in fine-tuning of pre-trained models.

References

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
arXiv preprint arXiv:2006.11477.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,
and Tengyu Ma. 2019. Learning imbalanced datasets
with label-distribution-aware margin loss. arXiv
preprint arXiv:1906.07413.

Nicholas Carlini and David A. Wagner. 2016. Towards
evaluating the robustness of neural networks. CoRR,
abs/1608.04644.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In /n-
ternational conference on machine learning, pages

1597-1607. PMLR.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Proceedings of the First Inter-
national Conference on Machine Learning Chal-
lenges: Evaluating Predictive Uncertainty Visual Ob-
ject Classification, and Recognizing Textual Entail-
ment, MLCW’05, page 177-190, Berlin, Heidelberg.
Springer-Verlag.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Tan J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoy-
anov. 2020. Supervised contrastive learning for pre-
trained language model fine-tuning. arXiv preprint
arXiv:2011.01403.

Michael Gutmann and Aapo Hyvirinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics, pages 297-304.
JMLR Workshop and Conference Proceedings.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant

mapping. In 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 1735-1742. IEEE.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9729-9738.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770—
778.

Olivier Henaff. 2020. Data-efficient image recognition
with contrastive predictive coding. In International
Conference on Machine Learning, pages 4182—-4192.
PMLR.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-
Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. 2018. Learning deep
representations by mutual information estimation and
maximization. arXiv preprint arXiv:1808.06670.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is BERT really robust? natural
language attack on text classification and entailment.
CoRR, abs/1907.11932.

Nora Kassner and Hinrich Schiitze. 2020. Bert-
knn: Adding a knn search component to pretrained
language models for better qa. arXiv preprint
arXiv:2005.00766.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020.
Supervised contrastive learning. arXiv preprint
arXiv:2004.11362.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang
Xue, and Xipeng Qiu. 2020. Bert-attack: Adver-
sarial attack against bert using bert. arXiv preprint
arXiv:2004.09984.

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng
Yang. 2016. Large-margin softmax loss for convolu-
tional neural networks. In /ICML, volume 2, page 7.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1608.04644
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
http://arxiv.org/abs/1907.11932
http://arxiv.org/abs/1907.11932
http://arxiv.org/abs/1907.11932

Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies, pages 142—150.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. Advances in neural information process-
ing systems, 26:2265-2273.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119-126.

Kamil Nar, Orhan Ocal, S Shankar Sastry, and Kan-
nan Ramchandran. 2019. Cross-entropy loss and
low-rank features have responsibility for adversarial
examples. arXiv preprint arXiv:1901.08360.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Nicolas Papernot and Patrick McDaniel. 2018. Deep
k-nearest neighbors: Towards confident, inter-

pretable and robust deep learning. arXiv preprint
arXiv:1803.04765.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. openai.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. nature, 323(6088):533-536.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 815-823.

10

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jas-
mine Hsu, Eric Jang, Stefan Schaal, Sergey Levine,
and Google Brain. 2018. Time-contrastive networks:
Self-supervised learning from video. In 2018 IEEE
International Conference on Robotics and Automa-
tion (ICRA), pages 1134—-1141. IEEE.

Jake Snell, Kevin Swersky, and Richard S Zemel. 2017.
Prototypical networks for few-shot learning. arXiv
preprint arXiv:1703.05175.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Kihyuk Sohn. 2016. Improved deep metric learning
with multi-class n-pair loss objective. In Proceed-
ings of the 30th International Conference on Neural
Information Processing Systems, pages 1857—1865.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri,
Lubomir Bourdev, and Rob Fergus. 2014. Train-
ing convolutional networks with noisy labels. arXiv
preprint arXiv: 1406.2080.

Michael Tschannen, Josip Djolonga, Paul K Rubenstein,
Sylvain Gelly, and Mario Lucic. 2019. On mutual
information maximization for representation learning.
arXiv preprint arXiv:1907.13625.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. ArXiv
preprint 1804.07461.

Kilian Q Weinberger and Lawrence K Saul. 2009. Dis-
tance metric learning for large margin nearest neigh-
bor classification. Journal of machine learning re-
search, 10(2).

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1112—-1122.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua
Lin. 2018. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3733-3742.

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2020. Revisiting few-sample
bert fine-tuning. arXiv preprint arXiv:2006.05987.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649-657.

Zhilu Zhang and Mert R Sabuncu. 2018. Generalized
cross entropy loss for training deep neural networks
with noisy labels. arXiv preprint arXiv:1805.07836.

11

