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Abstract

Deep reinforcement learning (RL) has recently shown significant benefits in solv-1

ing combinatorial optimization (CO) problems, reducing reliance on domain ex-2

pertise, and improving computational efficiency. However, the field lacks a uni-3

fied benchmark for easy development and standardized comparison of algorithms4

across diverse CO problems. To fill this gap, we introduce RL4CO, a unified5

and extensive benchmark with in-depth library coverage of 23 state-of-the-art6

methods and more than 20 CO problems. Built on efficient software libraries7

and best practices in implementation, RL4CO features modularized implemen-8

tation and flexible configuration of diverse RL algorithms, neural network archi-9

tectures, inference techniques, and environments. RL4CO allows researchers to10

seamlessly navigate existing successes and develop their unique designs, facili-11

tating the entire research process by decoupling science from heavy engineering.12

We also provide extensive benchmark studies to inspire new insights and future13

work. RL4CO has attracted numerous researchers in the community and is open-14

sourced at https://github.com/ai4co/rl4co.15

1 Introduction16

Combinatorial optimization (CO) focuses on finding optimal solutions for problems with discrete17

variables and has broad applications, including vehicle routing [89, 60], scheduling [128], and hard-18

ware device placement [53]. Given that the combinatorial space expands exponentially and exhibits19

NP-hard characteristics, the operations research (OR) community has traditionally tackled these20

challenges through the development of mathematical programming algorithms [35] and handcrafted21

heuristics [27]. Despite their success, these methods still face significant limitations: mathemat-22

ical programming struggles with scaling, while handcrafted heuristics require significant domain-23

specific adjustments for different CO problems.24
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Recently, to address these limitations, neural combinatorial optimization (NCO) [7] has emerged.25

It employs deep neural networks to automate the problem-solving process and significantly reduces26

the computation demands and the need for domain expertise. Recent NCO works mainly leverage27

the reinforcement learning (RL) paradigm, making significant strides in improving exploration ef-28

ficiency [62, 54], relaxing the needs of obtaining optimal solutions, and extending to various CO29

tasks [128, 89, 60, 53]. Although supervised learning (SL) methods [29] are shown to be effective in30

NCO, they require the availability of high-quality solutions, which is unrealistic for large instances31

or theoretically hard problems. Therefore, we focus on the widespread RL paradigm in this paper.32

Despite the growing popularity and advancements in using reinforcement learning for solving com-33

binatorial optimization, there remains a lack of a unified benchmark for analyzing past works under34

consistent implementations and conditions. The absence of a standardized benchmark hinders NCO35

researchers’ efforts to make impactful advancements and leverage existing successes, as it becomes36

challenging to determine the superiority of one method over another. Moreover, the significance of37

NCO lies in its potential for generalizability across multiple problems without extensive problem-38

specific knowledge. Variations in implementation can make it difficult for new researchers to en-39

gage with the NCO community, and inconsistent comparisons obstruct straightforward performance40

evaluations. These issues pose significant challenges and underscore the need for a comprehensive41

benchmark to streamline research and foster consistent progress.42

Contributions. To bridge this gap, we introduce RL4CO, the first comprehensive benchmark with43

multiple baselines, environments, and boilerplate from the literature, all implemented in a modular,44

flexible, accelerated, and unified manner. Our aim is to facilitate the entire research process for45

the NCO community with the following key contributions: 1) Simplifying development through46

modularizing 27 environments and 23 existing baseline models, allowing for flexible and automated47

combinations for effortless testing, switching, and achieving state-of-the-art performance; 2) En-48

hancing the training and testing efficiency through the customized unified pipeline tailored for49

the NCO community based on advanced libraries such as TorchRL [15], PyTorch Lightning [31],50

Hydra [123], and TensorDict [15]; 3) Standardizing evaluation to ensure fair and comprehensive51

comparisons, enabling researchers to automatically test a broader range of problems from diverse52

distributions and gather valuable insights using our testbed. Overall, RL4CO eliminates the need53

for repetitive heavy engineering in the NCO community and fosters seamless future development by54

building on existing successes, enabling advanced innovation and progress in the field.55

2 Related Works56

Neural Combinatorial Optimization. Neural combinatorial optimization (NCO) utilizes machine57

learning techniques to automatically develop novel heuristics for solving NP-hard CO problems.58

We classify the majority of NCO research from the following perspectives: 1) Learning Paragiams:59

researchers have employed supervised learning [115, 108, 29, 75] to approximate optimal solutions60

to CO instances. Further research leverages reinforcement learning [6, 89, 60, 62], and unsupervised61

learning [39, 84] to ease the difficulty of obtaining (near-)optimal solutions. 2) Models: various deep62

learning architectures such as recurrent neural networks [115, 22, 68], graph neural networks [48,63

84], Transformers [60, 62], diffusion models [108], and GFlowNets [129, 56] have been employed.64

3) Problems: NCO has demonstrated great success in various problems, including vehicle routing65

problems (VRPs) (e.g., traveling salesman problem and capacitated VRP), scheduling problems66

(e.g., job shop scheduling problems [128]), hardware device placement [53], and graph-based CO67

problems (e.g., maximum independent set [23, 2] and maximum cut [129]). 4) Heuristic Types:68

generally, the learned heuristics can be categorized as constructive in an autoregressive [60] or non-69

autoregressive [48] way, and improvement heuristics, which leverage traditional heuristics [120, 80]70

and meta-heuristics [105]. We refer to Bengio et al. [7] for a comprehensive survey. In this paper,71

we focus on the reinforcement learning paradigm due to its effectiveness and flexibility. Notably,72

the proposed RL4CO is versatile to support most combinations of models, problems and heuristic73

types, making it an apt library and benchmark for future research in NCO.74
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Table 1: Comparison of libraries in reinforcement learning for combinatorial optimization.

Library Environments
#

Baselines†
#

Hardware
Acceleration Availability Modular

Baselines
Open

Community
ORL [4] 3 1 × × × ×
OR-Gym [42] 9 - × ✓ × ×
Graph-Env [12] 2 - × ✓ × ×
RLOR [116] 2 2 × ✓ ✓ ×
RoutingArena [111] 1 8 ✓ × × ×
Jumanji [14] 22 3 ✓ ✓ × ×
RL4CO (ours) 27‡ 23 ✓ ✓ ✓ ✓
† We consider as baselines ad-hoc network architectures (i.e., policies) and RL algorithms from the literature.
‡ We also consider the possible 16 combinations of environments generated by the unified Multi-Task VRP, as

they have been historically considered separate environments in the NCO literature.

Related Benchmark Libraries. Despite the variety of general-purpose RL software libraries [18,75

70, 96, 119, 24, 33, 81], there is a lack of a unified and extensive benchmark for CO problems. Balaji76

et al. [4] propose an RL benchmark for Operations Research (OR) with a PPO baseline [100]; Hubbs77

et al. [42], Biagioni et al. [12] provide a collection of OR environments. Wan et al. [116] propose78

a general-purpose library for OR, and benchmarks the canonical TSP and CVRP environments.79

However, a major downside of the above libraries is that they cannot be massively parallelized due80

to their reliance on the OpenAI Gym API, which can only run on CPU, unlike RL4CO, which is81

based on the TorchRL [15], a recent official PyTorch [92] library for RL that enables hardware-82

accelerated execution of both environments and algorithms. Prouvost et al. [94] introduces a library83

specialized for CO problems that work in combination with traditional MILP [71] solvers. We also84

mention Routing Arena [111], whose scope is different from RL4CO, namely, comparing NCO and85

classical solvers only for the CVRP. The most related work is Jumanji [14], which provides a variety86

of CO environments written in JAX [16] that can be hardware-accelerated alongside an actor-critic87

baseline. While Jumanji is an RL environment suite, RL4CO is a full-stack library that integrates88

environments, policies, RL algorithms under a unified framework.89

3 RL4CO: Taxonomy90

We describe the RL4CO taxonomy, categorizing components into Environments, Policies, and RL91

Algorithms. Then we translate the taxonomy to implementation in § 4.92

Environments. Given a CO problem instance x, we formulate the solution-generating procedure as93

a Markov Decision Process (MDP) characterized by a tuple (S,A, T ,R, γ) as follows. State S is94

the space of states that represent the given problem x and the current partial solution being updated95

in the MDP. Action A is the action space, which includes all feasible actions at that can be taken at96

each step t. State Transition T is the deterministic state transition function st+1 = T (st, at) that97

updates a state st to the next state st+1. Reward R is the reward function R(st, at) representing98

the immediate reward received after taking action at in state st. Finally, γ ∈ [0, 1] is a discount99

factor that determines the importance of future rewards. Since the state transition is deterministic,100

we represent the solution for a problem x as a sequence of T actions a = (a1, . . . , aT ). Then the101

total return
∑T

t=1 R(st, at) translates to the negative cost function of the CO problem.102

Policies. The policies can be categorized into constructive policies, which generate a solution from103

scratch, and improvement policies, which refine an existing solution.104

Constructive policies. A policy π is used to construct a solution from scratch for a given problem105

instance x. It can be further categorized into autoregressive (AR) and non-autoregressive (NAR)106

policies. An AR policy is composed by an encoder f that maps the instance x into an embedding107

space h = f(x) and by a decoder g that iteratively determines a sequence of actions a as follows:108

at ∼ g(at|at−1, ..., a0, st,h), π(a|x) ≜
T−1∏

t=1

g(at|at−1, . . . , a0, st,h). (1)

3



reset()

Autoregressive Policy

Instance

Encoder Decoder

Policy

Env

Solution

Solution
Improvement

step() action
reset()

Instance

Encoder

Env

Solution

Solution
Improvement

heuristics

Solution
Construction

Policy
Non-Autoregressive Policy Instance

Solution

Env

Encoder Decoder

Local
Search

action

Policy

step()

reset()

Constructive Methods Improvement Methods

Figure 1: Overview of different types of policies and their modularization in RL4CO.

A NAR policy encodes a problem x into a heuristic H = f(x) ∈ RN
+ , where N is the number of109

possible assignments across all decision variables. Each number in H represents a (unnormalized)110

probability of a particular assignment. To obtain a solution a from H, one can sample a sequence111

of assignments from H while dynamically masking infeasible assignments to meet problem-specific112

constraints. It can also guide a search process, e.g., Ant Colony Optimization [28, 125, 56], or be113

incorporated into hybrid frameworks [127]. Here, the heuristic helps identify promising transitions114

and improve the efficiency of finding an optimal or near-optimal solution.115

Improvement policies. A policy can be used for improving an initial solution a0 = (a00, . . . , a
0
T−1)116

into another one potentially with higher quality, which can be formulated as follows:117

ak ∼ g(a0,h), π(aK |a0,x) ≜
K−1∏

k=1

g(ak|ak−1, ...,a0,h), (2)

where ak is the k-th updated solution and K is the budget for number of improvements. This process118

allows continuous refinement for a long time to enhance the solution quality.119

RL Algorithms. The RL objective is to learn a policy π that maximizes the expected cumulative120

reward (or equivalently minimizes the cost) over the distribution of problem instances:121

θ∗ = argmax
θ

Ex∼P (x)

[
Eπ(a|x)

[
T−1∑

t=0

γtR(st, at)

]]
, (3)

where θ is the set of parameters of π and P (x) is the distribution of problem instances. Eq. (3) can122

be solved using algorithms such as variations of REINFORCE [109], Advantage Actor-Critic (A2C)123

methods [59], or Proximal Policy Optimization (PPO) [100]. These algorithms are employed to train124

the policy network π, by transforming the maximization problem in Eq. (3) into a minimization125

problem involving a loss function, which is then optimized using gradient descent algorithms. For126

instance, the REINFORCE loss function gradient is given by:127

∇θLa(θ|x) = Eπ(a|x) [(R(a,x)− b(x))∇θ log π(a|x)] , (4)
where b(·) is a baseline function used to stabilize training and reduce gradient variance. We also128

distinguish between two types of RL (pre)training: 1) inductive and 2) transductive RL. In inductive129

RL, the focus is on learning patterns from the training dataset to generalize to new instances, thus130

amortizing the inference procedure. Conversely, transductive RL (or test-time optimization) opti-131

mizes parameters during testing on target instances. Typically, a policy π is trained using inductive132

RL, followed by transductive RL for test-time optimization.133

4 RL4CO: Library Structure134

RL4CO is a unified reinforcement learning (RL) for Combinatorial Optimization (CO) library that135

aims to provide a modular, flexible, and unified code base for training and evaluating RL for CO136

methods with extensive benchmarking capabilities on various settings. As shown in Fig. 2, RL4CO137

decouples the major components of an RL pipeline, prioritizing their reusability in the implementa-138

tion. Following also the taxonomy of § 3, the main components are: (§ 4.1) Environments, (§ 4.2)139

Policies, (§ 4.3) RL algorithms, (§ 4.4) Utilities, and (§ 4.5) Environments & Baselines Zoo.140
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Figure 2: Overview of the RL4CO pipeline: from configurations to training a policy.

4.1 Environments141

Environments in RL4CO fully specify the CO problems and their logic. They are based on the142

RL4COEnvBase class that extends from the EnvBase in TorchRL [15]. A modular generator143

can be provided to the environment. The generator provides CO instances to the environ-144

ment, and different generators can be used to generate different data distributions. Static in-145

stance data and dynamic variables, such as the current state st, current solution ak for im-146

provement environments, policy actions at, rewards, and additional information are passed in a147

stateless fashion in a TensorDict [86], that we call td, through the environment reset and148

step functions. Additionally, our environment API contains several functions, such as render,149

check_solution_validity, select_start_nodes (i.e., for POMO-based optimization [62])150

and optional API as local_search solution improvement.151

It is noteworthy that RL4CO enhances the efficiency of environments when compared to vanilla152

TorchRL, by overriding and optimizing some methods in TorchRL EnvBase. For instance, our new153

step method brings a decrease of up to 50% in latency and halves the memory impact by avoiding154

saving duplicate components in the stateless TensorDict.155

4.2 Policies156

Policies in RL4CO are subclasses of PyTorch’s nn.Module and contain the encoding-decoding157

logic and neural network parameters θ. Different policies in the RL4CO "zoo" can inherit from158

metaclasses like ConstructivePolicy or ImprovementPolicy. We modularize components to159

process raw features into the embedding space via a parametrized function ϕω , called feature em-160

beddings. 1) Node Embeddings ϕn: transform mn node features of instances x from the feature161

space to the embedding space h, i.e., [B,N,mn] → [B,N, h]. 2) Edge Embeddings ϕe: trans-162

form me edge features of instances x from the feature space to the embedding space h, i.e.,163

[B,E,me] → [B,E, h], where E is the number of edges. 3) Context Embeddings ϕc: capture164

contextual information by transforming mc context features from the current decoding step st from165

the feature space to the embedding space h, i.e., [B,mc] → [B, h], for nodes or edges. Overall,166

Fig. 3 illustrates a generic constructive AR policy in RL4CO, where the feature embeddings are ap-167

plied similarly to other types of policies. Embeddings can be automatically selected by RL4CO at168

runtime by simply passing the env_name to the policy. Additionally, we allow for granular control169

of any higher-level policy component independently, such as encoders and decoders.170

4.3 RL Algorithms171

RL algorithms in RL4CO define the process that takes the Environment with its problem in-172

stances and the Policy to optimize its parameters θ. The parent class of algorithms is the173

RL4COLitModule, inheriting from PyTorch Lightning’s pl.LightningModule [31]. This al-174

lows for granular support of various methods including the [train, val, test]_step, auto-175

matic logging with several logging services such as Wandb via log_metrics, automatic optimizer176

configuration via configure_optimizers and several useful callbacks for RL methods such as177

on_train_epoch_end. RL algorithms are additionally attached to an RL4COTrainer, a wrap-178

per we made with additional optimizations around pl.Trainer. This module seamlessly supports179

features of modern training pipelines, including logging, checkpoint management, mixed-precision180

training, various hardware acceleration supports (e.g., CPU, GPU, TPU, and Apple Silicon), and181

multi-device hardware accelerator in distributed settings [69]. For instance, using mixed-precision182
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Figure 3: Overview of modularized RL4CO policies. Any component such as the encoder/decoder structure
and feature embeddings can be replaced and thus the model is adaptable to various new environments.

training significantly decreases training time without sacrificing much convergence and enables us183

to leverage recent routines, e.g., FlashAttention [26, 25], which we investigate in Appendix.184

4.4 Utilities185

Configuration Management. Optionally, but usefully, we adopt Hydra [123], an open-source186

Python framework that enables hierarchical config management, making it easier to manage com-187

plex configurations and experiments with different settings as shown in Appendix. Hydra addi-188

tionally allows for automatically parsing parameters (un-)defined in configs - i.e., python run.py189

experiment=routing/pomo env=cvrp env.generator_params.num_loc=50 launches an190

experiment defined under routing/pomo and changes the environment to CVRP with 50 locations.191

Decoding Schemes. Decoding schemes handle the logic of model logits z by applying preprocess-192

ing, such as masking of infeasible actions and/or additional techniques to select better actions during193

training and testing. We implement the model and problem-agnostic decoding schemes under the194

DecodingStrategy class in the RL4CO codebase that can be easily reused: 1) Greedy, which195

selects the action with the highest probability; 2) Sampling, which samples n_samples solutions196

from the current masked probability distribution of the policy, incorporating sampling strategies like197

2.a) Softmax Temperature τ , 2.b) top-k sampling [61], and 2.c) top-p (or Nucleus) sampling [38]198

(more details in Appendix); 3) Multistart, which enforces diverse starting actions as demonstrated in199

POMO [62], such as starting from different cities in the Traveling Salesman Problem (TSP) with N200

nodes; 4) Augmentation, which applies transformations to instances, such as random rotations and201

flipping in Euclidean problems [55], to create an augmented set of problems.202

Documentation, Tutorials, and Testing. We release extensive documentation to make it as acces-203

sible as possible for both newcomers and experts. RL4CO can be easily installed by running pip204

install rl4co with open-source code available at https://github.com/ai4co/rl4co. Sev-205

eral tutorials and examples are also available under the examples/ folder. We thoroughly test our206

library via continuous integration on multiple Python versions and operating systems. The following207

code snippet shows minimalistic code that can train a model in a few lines:208

from rl4co.envs.routing import TSPEnv, TSPGenerator
from rl4co.models import AttentionModelPolicy, POMO
from rl4co.utils import RL4COTrainer
# Instantiate generator and environment
generator = TSPGenerator(num_loc=50, loc_distribution="uniform")
env = TSPEnv(generator)
# Create policy and RL model
policy = AttentionModelPolicy(env_name=env.name, num_encoder_layers=6)
model = POMO(env, policy, batch_size=64)
# Instantiate Trainer and fit
trainer = RL4COTrainer(max_epochs=10, accelerator="gpu", precision="16-mixed")
trainer.fit(model)
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4.5 Environments & Baselines Zoo209

Environments. We include benchmarking from the following environments, divided into four ar-210

eas. 1) Routing: Traveling Salesman Problem (TSP) [65], Capacitated Vehicle Routing Problem211

(CVRP) [13], Orienteering Problem (OP) [64, 21], Prize Collecting TSP (PCTSP) [5], Pickup and212

Delivery Problem (PDP) [50, 99] and Multi-Task VRP (MTVRP) [72, 131, 9] (which modularizes213

with 16 problem variants including the basic VRPTW, OVRP, VRPB, VRPL and VRPs with their214

constraint combinations); 2) Scheduling: Flexible Job Shop Scheduling Problem (FJSSP) [17], Job215

Shop Scheduling Problem (JSSP) [97] and Flow Shop Scheduling Problem (FJSP); 3) Electronic216

Design Automation: multiple Decap Placement Problem (mDPP) [53]; 4) Graph: Facility Loca-217

tion Problem (FLP) [30] and Max Cover Problem (MCP) [51].218

Baseline Zoo. Given that several works contribute to both new policies and new RL algorithm219

variations, we list the papers we reproduce. For 1) Constructive AR methods, we include the220

Attention Model (AM) [60], Ptr-Net [115], POMO [62], MatNet [63], HAM [67], SymNCO [55],221

PolyNet [41], MTPOMO [72], MVMoE [131], L2D [128], HGNN [106] and DevFormer [53]. For222

2) Constructive NAR methods, we benchmark Ant Colony Optimization-based DeepACO [125]223

and GFACS [56] as well as the hybrid NAR/AR GLOP [127]. 3) Improvement methods include224

DACT [78], N2S [79] and NeuOpt [80]. We also include 4) General-purpose RL algorithm from225

the literature, including REINFORCE [109] with various baselines, Advantage Actor-Critic (A2C)226

[59] and Proximal Policy Optimization (PPO) [100] that can be readily be combined with any policy.227

Finally, we include 5) Active search (i.e., Transductive RL) methods AS [6] and EAS [40].228

5 Benchmarking Study229

We perform several benchmarking studies with our unified RL4CO library. Given the limited space,230

we invite the reader to check out the Appendix for supplementary material.231

5.1 Flexibility and Modularity232

Changing policy components. The integration of many state-of-the-art methods in RL4CO from233

the NCO field in a modular framework makes it easy to implement and improve upon state-of-the-234

art neural solvers for complex CO problems with only a few lines of code and improve upon them.2235

Table 2: Solutions obtained with RL4CO for the FJSSP
with different model configurations.

FJSSP
Encoder / Decoder 10× 5 20× 5

HGNN + MLP (g.) [106] Obj. 111.82 211.21
Gap 15.8% 12.1%

MatNet + MLP (g.) Obj. 103.91 197.92
Gap 7.6% 5.0%

MatNet + Pointer (g.) Obj. 101.17 196.3
Gap 4.8% 4.2%

MatNet + Pointer (s. x128) Obj. 98.31 192.02
Gap 1.8% 1.9%

We demonstrate this in Table 2 for the FJSSP by236

gradually replacing or adding elements to the237

original SotA policy [106]. First, replacing the238

HGNN encoder with the more expressive Mat-239

Net encoder [63] already improves the aver-240

age makespan by around 7%. Further improve-241

ments can be achieved by replacing the MLP242

decoder with the Pointer mechanism in the AM243

decoder [60] with gaps to BKS around 3×244

lower compared to the original policy in Song245

et al. [106] even with greedy performance.246

5.2 Constructive Policies247

Mind Your Baseline. In on-policy RL, which is often employed in RL4CO due to fast reward248

function evaluations, several different REINFORCE baselines have been proposed to improve the249

performance. We benchmark several RL algorithms training constructive policies for routing prob-250

lems of node size 50, whose underlying architecture is based on the encoder-decoder Attention251

Model [60] and whose main difference lies in how the REINFORCE baseline is calculated (we ad-252

ditionally train the AM with PPO as further reference). For a fair comparison, we run all baselines253

2The different model configurations shown here can be obtained by simply changing the Hydra configura-
tion file like the one shown in Appendix.
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in controlled settings with the same number of optimization steps and report results in Table 3. We254

note that A2C generally underperforms other baselines. Such performance can be attributed to the255

fact that since in routing problems, the rewards are sparse (i.e., can only be calculated upon solving256

an entire problem), estimating the value of an entire instance x is inherently a challenging task.257

Table 3: Optimality Gap obtained via greedy decoding.

Method TSP CVRP OP PCTSP PDP

A2C 2.22 7.09 8.64 14.96 10.02
AM-Rollout 1.41 5.30 4.40 2.46 9.88
POMO 0.89 3.99 14.26 11.61 10.64
Sym-NCO 0.47 4.61 3.09 2.12 7.73
AM-PPO 0.92 4.60 3.05 2.45 8.31

Interestingly, while POMO [62], which takes258

as a baseline the shared baseline of all routes259

forcing each starting node to be different, may260

work well as baselines for problems in which261

near-optimal solutions can be constructed from262

any node (e.g., TSP), this may not be true for263

other problems such as the Orienteering Prob-264

lem (OP): the reason is that in OP only a subset265

of nodes should be selected in an optimal solution, while several states will be discarded. Hence,266

forcing the policy to select all of them makes up for a poor baseline. We remark that while SymNCO267

(whose shared baseline involves symmetric rotations and flips) [55] may perform well in Euclidean268

problems, this is not applicable in non-Euclidean CO, including asymmetric routing problems and269

scheduling. We found similar trends regarding actor-critic methods as A2C and PPO in the EDA270

mDPP problem [53], which we report in Appendix. Namely, a greedy rollout baseline [60] can do271

better than value-based methods due to the challenging task of instance value estimation.272
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Figure 4.1: Decoding schemes of the autoregressive NCO solvers evaluated in this paper.

the Decap Placement Problems (DPP) from electronic design automation in Appendix B. Further
details on environment implementations and data generation are provided in Appendix C.

Decoding Schemes The solution quality of NCO solvers often shows large variations in perfor-
mances to the different decoding schemes, even though using the same NCO solvers. Regarding
that, we evaluate the trained solvers using five schemes shown in Fig. 4.1:

• Greedy: elects the highest probabilities at each decoding step.

• Sampling: concurrently samples N solutions using a trained stochastic policy.

• Multistart Greedy: inspired by POMO, decodes from the first given nodes and considers the
best results from N cases starting at N different cities. For example, in TSP with N nodes, a
single problem involves starting from N different cities.

• Augmentation: selects the best greedy solutions from randomly augmented problems (e.g.,
random rotation and flipping) during evaluation.

• Multistart Greedy + Augmentation: combines Multistart Greedy and Augmentation.

4.2 Benchmark Results

In-distribution We first measure the performances of NCO solvers on the same dataset distribu-
tion on which they are trained. The results for training on 50 nodes are summarized in Table 4.1. We
first observe that, counter to the commonly known trends that AM < POMO < Sym-NCO, the trends
can change to decoding schemes and targeting CO problems. Especially when the solver decodes
the solutions with Augmentation or Greedy Multistart + Augmentation, the performance
differences among the benchmarked solvers on TSP and CVRP become less significant.
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Figure 4.2: Pareto front of decoding schemes by number of samples. Left: TSP50; right: CVRP50.

We note that the original implementation of POMO 9 is not directly applicable to OP, PCTSP and
PDP. Adapting it to solve new problems is not straightforward due to the coupling between envi-
ronment and policy implementations. However, owing to the flexibility of RL4CO, we successfully
implemented POMO for OP and PCTSP. Our results indicate that POMO underperforms in OP and
PCTSP; unlike TSP, CVRP, and PDP, where all nodes need to be visited, OP and PCTSP are not
constrained to visit all nodes. Due to such differences, POMO’s visiting all nodes strategy may not
work as an effective inductive bias. Further, we benchmark the NCO solvers for PDP, which is not
originally supported natively by each of the benchmarked solvers. We apply the environment em-
beddings and the Heterogeneous Attention Encoder from HAM (Li et al., 2021a) to the NCO models
for encoding pickup and delivery pairs, further emphasizing RL4CO’s flexibility. We observe that
AM-XL, which employs the same RL algorithm as AM but features the encoder architecture of
POMO and is trained with an equivalent number of samples, yields performance comparable to

9https://github.com/yd-kwon/POMO
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mances to the different decoding schemes, even though using the same NCO solvers. Regarding
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• Greedy: elects the highest probabilities at each decoding step.

• Sampling: concurrently samples N solutions using a trained stochastic policy.
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best results from N cases starting at N different cities. For example, in TSP with N nodes, a
single problem involves starting from N different cities.
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We note that the original implementation of POMO 9 is not directly applicable to OP, PCTSP and
PDP. Adapting it to solve new problems is not straightforward due to the coupling between envi-
ronment and policy implementations. However, owing to the flexibility of RL4CO, we successfully
implemented POMO for OP and PCTSP. Our results indicate that POMO underperforms in OP and
PCTSP; unlike TSP, CVRP, and PDP, where all nodes need to be visited, OP and PCTSP are not
constrained to visit all nodes. Due to such differences, POMO’s visiting all nodes strategy may not
work as an effective inductive bias. Further, we benchmark the NCO solvers for PDP, which is not
originally supported natively by each of the benchmarked solvers. We apply the environment em-
beddings and the Heterogeneous Attention Encoder from HAM (Li et al., 2021a) to the NCO models
for encoding pickup and delivery pairs, further emphasizing RL4CO’s flexibility. We observe that
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Figure 4: Decoding schemes study of POMO
on CVRP50. [Left]: Pareto front of decoding
schemes by the number of samples; [Right]: per-
formance of sampling with different temperatures
τ and p values for top-p sampling.

Decoding Schemes. The solution quality of NCO273

solvers often shows significant improvements in per-274

formance to different decoding schemes, even with275

the exact NCO solvers. We evaluate the trained276

solver with different decoding schemes and settings277

as shown in Fig. 4.278

Generalization. Using RL4CO, we can easily eval-279

uate the generalization performance of existing base-280

lines by employing supported environments that in-281

corporate various VRP variant tasks and instance282

distributions (termed MTPOMO and MDPOMO, re-283

spectively). Empirical results on CVRPLib, shown284

in Table 4, reveal that training on different tasks285

significantly enhances generalization performance.286

This finding underscores the necessity of building foundational models across diverse CO domains.287

Large-Scale Instances. We evaluate large-scale CVRP instances of thousands of nodes, with more288

visualizations and scaling in Appendix. The last row of Table 5 illustrates the performance of the289

hybrid NAR/AR GLOP [127], while others refer to reproduced results from Ye et al. [127]. Our290

implementation in RL4CO improves the performance in not only speed but also solution quality.291

5.3 Combining Construction and Improvement: Best of Both Worlds?292

While constructive policies can build solutions in seconds, their performance is often limited, even293

with advanced decoding schemes such as sampling or augmentations. On the other hand, improve-294

ment methods are more suitable for larger computing budgets. We benchmark models on TSP with295

50 nodes: the AR constructive method POMO [62] and the improvement methods DACT [78] and296

NeuOpt [80]. In the original implementation, DACT and NeuOpt started from a solution constructed297

randomly. To further demonstrate the flexibility of RL4CO, we show that bootstrapping improve-298

ment methods with constructive ones enhance convergence speed. Fig. 5 shows that bootstrapping299

with a pre-trained POMO policy significantly enhances the convergence speed. To further investi-300

gate the performance, we report the Primal Integral (PI) [8, 113, 111], which evaluates the evolution301

of solution quality over time. Improvement methods alone, such as DACT and NeuOpt, achieve 2.99302

and 2.26 respectively, while sampling from POMO achieves 0.08. This shows that the “area under303

the curve” can be better even if the final solution is worse for constructive methods. Bootstrapping304
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Benchmark POMO MTPOMO MDPOMO
Obj. Gap Obj. Gap Obj. Gap

Set A 1075 3.13% 1076 3.20% 1074 2.97%
Set B 996 3.41% 1003 4.06% 995 3.26%
Set E 761 5.04% 760 4.82% 762 5.07%
Set F 813 13.52% 798 12.09% 825 13.66%
Set M 1259 16.37% 1234 13.58% 1263 16.03%
Set P 620 6.72% 608 3.72% 613 5.04%
Set X 73953 16.80% 73763 16.69% 81848 23.69%

Table 4: Results on CVRPLIB instances with models trained on N =
50. Greedy multi-start decoding is used.
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Figure 5: Bootstrapping improve-
ment with constructive methods.

with POMO then improves DACT and NeuOpt to 0.08 and 0.04 respectively, showing the benefits305

of modularity and hybridization of different components.306

6 Discussion307

6.1 Limitations and Future Directions308

Table 5: Performance on large-scale CVRP instances.

CVRP1K CVRP2K CVRP7K
Obj. Time (s) Obj. Time (s) Obj. Time (s)

LKH-3 46.4 6.2 64.9 20 245.0 501

AM 61.4 0.6 114.4 1.9 354.3 26
TAM(AM) 50.1 0.8 74.3 2.2 233.4 26
TAM(LKH-3) 46.3 1.8 64.8 5.6 196.9 33
GLOP-G(AM)* 47.1 0.4 63.5 1.2 191.7 2.4
GLOP-G(LKH-3)* 45.9 1.1 63.0 1.5 191.2 5.8

GLOP-G(AM) 46.9 0.3 64.7 0.7 190.9 2.0
GLOP-G(LKH-3) 45.5 0.5 62.8 0.8 190.1 3.9

While RL4CO is an efficient and modular li-309

brary specialized in CO problems, it might not310

be suitable for any other task due to a number311

of area-specific optimizations, and we do not312

expect it to seamlessly integrate with, for in-313

stance, OpenAI Gym wrappers without some314

modifications. Another limitation of the library315

is its scope so far, namely RL. In fact, extend-316

ing the library to support supervised methods317

and creating a comprehensive "AI4CO" library318

could benefit the whole NCO community. We319

additionally identify in Foundation Models3 for CO and related scalable architectures a promising320

area of future research to overcome generalization issues across tasks and distributions, for which321

we provided some early clues.322

6.2 Long-term Plans323

Our long-term plan is to become the go-to RL for CO benchmark library. While not strictly tied324

to implementation and benchmarking, we are committed to helping resolve issues and questions325

from the community. For this purpose, we created a Slack workspace (link available in the online326

documentation) that by now has attracted more than 130 researchers. It is our hope that our work327

will ultimately benefit the NCO field with new ideas and collaborations.328

7 Conclusion329

This paper introduces RL4CO, a modular, flexible, and unified Reinforcement Learning (RL) for330

Combinatorial Optimization (CO) benchmark. We provide a comprehensive taxonomy from envi-331

ronments to policies and RL algorithms that translate from theory to practice to software level. Our332

benchmark library aims to fill the gap in unifying implementations in RL for CO by utilizing sev-333

eral best practices with the goal of providing researchers and practitioners with a flexible starting334

point for NCO research. We provide several experimental results with insights and discussions that335

can help identify promising research directions. We hope that our open-source library will provide336

a solid starting point for NCO researchers to explore new avenues and drive advancements. We337

warmly welcome researchers and practitioners to actively participate and contribute to RL4CO.338

3https://github.com/ai4co/awesome-fm4co
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