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ABSTRACT

Even though meta-learning has attracted wide attention in recent years, the gen-
eralization problem of meta-learning is still not well addressed. Existing works
focus on meta-generalization to unseen tasks at the meta-level, while ignoring
that adapted-models may not be generalized to the tasks domain at the adaptation-
level, which can not be solved trivially. To this end, we propose a new regulariza-
tion mechanism for meta-learning – Minimax-Meta Regularization. Especially,
we maximize the regularizer in the inner-loop to encourage the adapted-model
to be more sensitive to the new task, and minimize the regularizer in the outer-
loop to resist overfitting of the meta-model. This adversarial regularization forces
the meta-algorithm to maintain generality at the meta-level while it is easy to
learn specific assumptions at the task-specific level, thereby improving the gen-
eralization of meta-learning. We conduct extensive experiments on the represen-
tative meta-learning scenarios to verify our proposed method, including few-shot
learning and robust reweighting. The results show that our method consistently
improves the performance of the meta-learning algorithms and demonstrates the
effectiveness of Minimax-Meta Regularization.

1 INTRODUCTION

Meta-learning has been proven to be a powerful paradigm for extracting well-generalized knowledge
from data and accelerating the learning process for new tasks (Thrun & Pratt, 2012). It simulates
the machine learning process by a bi-level objective (Finn et al., 2017), evaluating the query (meta-
validation) set with an adapted-model learned from the meta-model by the support (meta-training)
set. Meta-learning has received increasing attention in many machine learning settings such as few-
shot learning (Sung et al., 2018; Sun et al., 2019; Wang et al., 2020) and robust learning (Ren et al.,
2018; Shu et al., 2019; Li et al., 2019), and can be deployed in many practical applications (Kang
et al., 2019; Dou et al., 2019; Yu et al., 2018; Madotto et al., 2019). Despite the success, the
additional level of learning creates another potentially overfiting (Rajendran et al., 2020b), which
significantly challenges the generalization of meta-learning algorithms. Specifically, the meta-model
should be generalized to unseen tasks (meta-generalization). In the meanwhile, the adapted-model
should be generalized to the domain of a specific task, which we called adaptation-generalization
(Figure 1). A key challenge is how to regularize the meta-algorithms to ensure this two-levels
generalization.

The deep neural networks tend to overfit the sampling bias due to its representation power, leading
to poor generalization (Song et al., 2020). Regularizations such as weight decay (Krogh & Hertz,
1992), dropout (Gal & Ghahramani, 2016), and incorporating noise (Tishby & Zaslavsky, 2015;
Alemi et al., 2016; Achille & Soatto, 2018), can effectively present the model from the overfitting
and enhance the generalization. However, direct applying the regularization to the networks lim-
ited the flexibility of fast adaptation in the inner loop (meta-training) of meta-learning (Yao et al.,
2021). Recent works aim to address the meta-generalization problem by meta-regularizations, such
as constraining the meta-initialization space (Yin et al., 2019), enforcing the similarity of the per-
formance of the meta-model on different tasks (Jamal & Qi, 2019), and augmenting meta-training
data (Rajendran et al., 2020b; Ni et al., 2021; Yao et al., 2021). These methods significantly enhance
the generalization for unseen tasks. However, they ignore the adaptation-generalization to the data
distribution of the meta-testing tasks (Figure 1), which is not negligible.

The work takes the first step further to optimize both meta-generalization and adaptation-
generalization for meta-learning. However, the adaptation-generalization is significant challenging
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Figure 1: Illustration of our proposal and previous works. A robust meta-learning should eschew
both meta overfitting, where the meta-model overfits to meta-training tasks due to the limited number
of tasks, and adaption overfitting, where the adapted model overfits to few-shot samples from meta-
testing due to the few-shot number. While previous works only consider the meta-generalization
with meta-regularization to alleviate the meta overfitting and ignore the potential adaption overfit-
ting. Our Minimax-Meta Regularization enables the meta-learning algorithm to be generalized at
both meta-level and adaptation-level, which can significantly enhance the generality.

for meta-learning, where we meet a dilemma between fast adaptation and generality: 1) regulariz-
ing the model during meta-testing time can enhance the generalization to the task domain, however,
limits the fast adaptation that is the goal of meta-learning; 2) exacerbating the overfitting to the few-
shot samples from meta-testing can enhance the fast adaptation, however, limits the generality to the
task domain.

To address the challenge, we consider learning a meta-model resistant to the adapted-model over-
fitting during the meta-testing time. To achieve this, we design a well-general mechanism called
Minimax-Meta Regularization for meta-learning. During the meta-training, we enforce the adapted-
model to be more overfitting to the support data by adding a inverse (negative) regularization in the
inner loop, and enforce the meta-model to be more generalized on the test samples by adding a pos-
itive regularization in the outer loop. By doing so, the learned meta-model can be meta-generalized,
making adapted-models perform well on the query (meta-validation) set, even when the adapted-
models are prone to overfit to the support (meta-training) set. Therefore during the meta testing, the
adapted-model can still be generalized to the task domain, even though they are overfitting to few-
shot samples. In particular, the Minimax-Meta Regularization is well general to be implemented in
all bi-level optimization frameworks without additional computational cost.

To verify the above intuition, we conduct experiments of the basic MAML (Finn et al., 2017) frame-
work. Surprisingly, we find that both positively regularizing the outer loop meta-training and neg-
atively regularizing the inner loop adaption can significantly enhance the few-shot classification.
Another interesting finding is that adding positive regularization in the inner loop impairs the per-
formance, which indirectly proves the efficacy of our proposal. We conduct extensive experiments
on few-shot regression, few-shot classification, and robust reweighting (Ren et al., 2018). The ex-
perimental results show that Minimax-Meta Regularization generally improves the performance of
bi-level meta-learning algorithms and is compatible with common methodologies for enhancing
meta-learning. Moreover, Minimax-Meta Regularization shows the capability to improve the gener-
alization of meta-learning algorithms and help address meta-overfitting problems to a certain extent.

Our Contributions. 1) we propose a limitation of previous works on meta-generalization that ig-
nore the adaptation-generalization; 2) we design a general mechanism named Minimax-Meta Reg-
ularization for meta-learning, which aims to capture a meta-model that is both meta-generalized
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and resistant to the adaptation overfitting; 3) we empirically verify the intuition of Minimax-Meta
Regularization and give possible reasons; 4) we conduct three different bi-level optimization tasks
to show the efficacy of the proposed method.

2 PRELIMINARY

We first give a brief introduction and notation of meta-learning. In the meta-learning problem setting
that we consider, the goal is to learn a generalized initialization model for better adapting to new
tasks from only a few samples. To achieve this, it requires a set of support (meta-training) data{
Dsi = {xsi,j , ysi,j}kj=1

}n
i=1

and query (meta-testing) data
{
Dqi = {x

q
i,j , y

q
i,j}mj=1

}n
i=1

sampled from
tasks {Ti}ni=1 drawn from distribution p(T ), where k and m denote the number of data samples
from support and query data, and n is the number of tasks. Denote L and µ to be the loss function
and inner-loop learning rate.

Meta-learning (Finn et al., 2017) simulates the adaptation and evaluation procedure of machine
learning, and aims to learn a well-generalized model f parameterized by θ∗ by the following bi-
level optimization

θ∗ = argmin
θ

1

n

n∑
i=1

1

m

∑
z∈Dq

i

L(φi(θ,Dsi ), z), s.t.φi(θ,Dsi ) = θ − µ∇θ
∑
z∈Ds

i

L(θ, z) (1)

where z represents the data sample (x, y). The outer loop (represents the meta-validation phase)
measures the generalization performance of the adapted-model φi by the query data Dqi . The inner
loop (represents the meta-training phase) defines that the adapted-model φi is finetuned from initial-
ization θ by multiple steps gradient descent with the support data Dsi . Note that gradient steps can
be more than one, the formulation 1 is written for shortness.

3 META LEARNING WITH MINIMAX-META REGULARIZATION

We aim to learn a well-generalized meta-initialization that can fast adapt to new tasks with ro-
bust performance. To achieve this, the meta-learner should be meta-generalized, i.e. learn a meta-
model θ that is robust to tasks distribution p(T ), and adaptation-generalized, i.e. the adapted model
φ(θ,Ds),Ds ∼ T should be robust to the data distribution of the task domain T . The meta-
generalization problem has been studied in many previous works (Yin et al., 2019; Collins et al.,
2020; Yao et al., 2021; Ni et al., 2021), and can be addressed by designing regularization in the
outer loop. However, due to the limited number of samples of Ds,Dq , the adaptation-generalization
problem is significantly challenging for meta-learning.

To address this, we propose a novel and well-general regularization framework for meta-learning –
Minimax-Meta Regularization. In this section, we first present the training objective for minimax-
regularized meta-learning while giving the intuition behind the design, and run a simulation to verify
the high-level insight.

3.1 TRAINING OBJECTIVE

Based on the formulation 1 for meta-learning, we present the minimax-regularized meta-learning
training objective as follows, where we add a positive regularization in the outer loop to achieve
meta-generalization, and an inverse (negative) regularization in the inner loop to achieve adaptation-
generalization.

θ∗ = argmin
θ

1

n

n∑
i=1

1

m

∑
z∈Dq

i

L(φi(θ,Dsi ), z) + λout
1

n

n∑
i=1

Regout(φi(θ,Dsi )), (2)

s.t. φi(θ,Dsi ) = argmin
φ
〈µ∇θ

∑
z∈Ds

i

L(θ, z), φ〉+ 1

2
‖φ− θ‖2 − λin 1

n

n∑
i=1

Regin(φ), (3)

where Regout and Regin are the regularizations in the outer and inner loop, while λout ≥
0 and λin ≥ 0 are the coefficients respectively. Note the the formulation φi(θ,Dsi ) =
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Table 1: Simulation Verification.
Mini-Imagenet 5-way Few-Shot Classification for MAML

Regularization Type Outer Reg Inner Reg 1-Shot 5-Shot
no regularization 0 0 48.75±0.44% 64.37±0.30%

regularize the loss fuction + + 49.15±0.50% 66.00±0.14%
regularize the outer-loop + 0 50.31±0.48% 68.79±0.15%
regularize the inner-loop 0 + 46.89±0.42% 64.03±0.36%

inverse regularize the inner-loop 0 - 49.92±0.23% 65.61±0.38%
minimax-meta regularization (ours) + - 50.84±0.26% 69.40±0.17%

argminφ〈µ∇θ
∑
z∈Ds

i
L(θ, z), φ〉 + 1

2‖φ − θ‖2 in the inner loop is the equivalent mirror de-
scent (Beck & Teboulle, 2003) version of the gradient descent. We next introduce the intuition
behind this design.

Outer positive regularization. As defined in Eq 2, we add a positive regularization
Regout(φi(θ,Dsi )) that regularizes the model-overfitting of the adapted-model φi(θ,Dsi ). By doing
so, the meta learner is enforced to learn a generalized meta-model θ∗ such that the adapted-model
φi(θ

∗,Dsi ) on each tasks is not overfitting and generalized to query data. This idea has been studied
in previous works (Yin et al., 2019; Collins et al., 2020; Yao et al., 2021; Ni et al., 2021), and has
been shown to significantly enhance the meta-generalization.

Inner inverse regularization. The generalization performance depends not only on the complexity
of the adapted-model φi(θ,Dsi ), but also the adaptation rule, i.e. the formulation of the inner loop
function. As defined in Eq 3, we add a inverse regularization Regin(φ) that negatively regularizes
the model-complexity of the adapted-model φi(θ,Dsi ). By doing so, the inner loop function simu-
lates the adaptation overfitting during meta-testing by enforcing the adapted-model to be overfitting
during meta-training. Therefore, learning from the minimax regularized meta-learning, the learned
meta-model θ∗ can be resistant to adaptation overfitting.

From the above discussion, the Minimax-Meta Regularization enables the meta-learning to capture
a meta-model that is both meta-generalized and adaptation-generalized. This framework is com-
putational efficient without additional computational cost. In addition, the Minimax-Meta Regular-
ization is general to all bi-level optimization formulation, thus can be directly applied to different
meta-algorithms on different bi-level learning problems.

3.2 EMPIRICAL VERIFICATION.

We next verify the design by a simulation test by conducting the basic MAML framework (Finn
et al., 2017) with different regularization types. As illustrated in Table 1, we make the following
observations:

Outer positive regularization enhances the generalization performance. Compare the results from
“no regularization” and “regularize the outer-loop”, we observe that adding outer regularization
can get 1.56% and 4.42% accuracy improvements in 1-shot and 5-shot experiments, which verifies
the efficacy of the outer regularization. This is aligned with the intuition that outer regularization
enhances the meta-generalization, leading to better performance.

Inner negative regularization enhances the generalization performance. Compare the results from
“no regularization” and “inverse regularize the inner-loop”, we observe that adding inner inverse
regularization can get 1.17% and 1.24% accuracy improvements in 1-shot and 5-shot experiments,
which verifies the efficacy of the inner inverse regularization. This is aligned with the intuition that
inner reverse regularization enhances adaptation-generalization, thus improving performance.

The outer regularization and inner inverse regularization are compatible. Compare the results from
“Minimax-Meta Regularization”, “regularize the outer-loop”, and “inverse regularize the inner-
loop”, we observe that Minimax-Meta Regularization can get 0.52% (1-shot)/0.61% (5-shot) and
0.92% (1-shot)/3.79% (5-shot) accuracy improvements than solely regularizing the outer-loop and
inverse regularizing the inner-loop, which verifies the compatibility of the inner inverse regulariza-
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tion. This is aligned with the intuition that meta-generalization and adaptation-generalization are
not in conflict.

Inner positive regularization impairs the generalization performance. Compare the results from “no
regularization” and “regularize the inner-loop”, we observe that adding inner positive regulariza-
tion suffers from -1.86% and -0.34% accuracy impairments in 1-shot and 5-shot experiments, which
aligns with the intuition that positive regularization that limits the adaptation in the inner-loop im-
pairs the adaptation-generalization.

4 RELATED WORK

Meta-learning. A line of meta-learning methods has sought to train recurrent neural networks
that ingest entire datasets Santoro et al. (2016); Duan et al. (2016). However, they need to place
constraints on the model architecture. Another line aims to learn a transferable metric space between
samples from previous tasks (Vinyals et al., 2016; Snell et al., 2017; Mishra et al., 2018; Oreshkin
et al., 2018). However, it is limited to classification problems. In this paper, we focus on gradient-
based meta-learning methods that learn a meta-initialization (Finn et al., 2017; 2018; Li et al., 2017;
Finn & Levine, 2018; Grant et al., 2018; Lee & Choi, 2018; Park & Oliva, 2019; Flennerhag et al.,
2020), which is a well-generalized for meta-training tasks, being agnostic to both model architecture
and problems. However, these approaches are shown to be overfitting the meta-training tasks and
generalizing poorly to meta-testing tasks (Yoon et al., 2018; Collins et al., 2020; Rothfuss et al.,
2021; Yao et al., 2021).

Meta-Regularization. Standard regularizations such as weight decay (Krogh & Hertz, 1992),
dropout (Gal & Ghahramani, 2016), and incorporating noise (Tishby & Zaslavsky, 2015; Alemi
et al., 2016; Achille & Soatto, 2018), which can significantly enhance the generality of single-loop
machine learning. However, the straightforward method that regularizes the neural networks lim-
its the flexibility of fast adaptation in the inner loop (Yao et al., 2021). Recently, a few works
were proposed to design the meta-regularization to improve meta-generalization. MR-MAML (Yin
et al., 2019) constrains the search space of the meta-model, and allows the adaptation to be suf-
ficient in the inner loop. Jamal & Qi (2019) proposed TAML to enforce the meta-model to per-
form similarly across tasks. Rajendran et al. (2020a) explored an information-theoretic framework
of meta-augmentation by adding randomness to labels of both support and query sets. Yao et al.
(2021) proposed two task augmentation methods – MetaMix and Channel Shuffle, which is theo-
retically proved to be generalized to unseen tasks. Ni et al. (2021) investigated the distinct ways
where data augmentation can be integrated at both the image and class levels. Rothfuss et al. (2021)
addressed the meta-generalization problem using the PAC-Bayesian framework, and proposed PA-
COH that is PAC-optimal with Gaussian processes. However, these works focus only on the meta-
generalization, i.e., generalize to the unseen tasks, while the adaptation-generalization that measures
how the adapted-model generalizes to the task domain is merely considered.

This paper proposes the Minimax-Meta Regularization for meta-learning, implementing a positive
regularization in the outer-loop and a negative regularization in the inner-loop. The framework can
enhance both meta-generalization and adaptation-generalization, and thus improve the performance.

5 EXPERIMENTS

In this section, we conduct extensive experiments on three types of classical meta-learning tasks
including, few-shot classification, few-shot regression, and robust reweighting with meta-learning,
to demonstrate the efficacy of our proposed methods. With these experiments, we demonstrate
that our methods i) outperform previous meta-learning algorithms in terms of predictive accuracy;
ii) mitigate the meta-overfitting effectively. We will introduce the experimental setup, results, and
analysis in the following subsections.

5.1 FEW-SHOT CLASSIFICATION

We first carry out experiments on the few-shot classification task, one of the most popular tasks to
evaluate meta-learning algorithms. To verify the effectiveness of our approach, we adapt Minimax-
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Table 2: Omniglot 20-way 1-shot experi-
ment. We report the test accuracy in the
last epoch with 95% confidence interval
for the mean over 3 runs.

Omniglot 20-way 1-Shot Classification
Accuracy

Siamese Nets 88.2%
Matching Nets 93.8%
Neural Statistician 93.2%
Memory Mod. 95.0%
Meta-SGD 95.93±0.38%
Meta-Networks 97.00%
MAML 94.20± 0.941%
Minimax-MAML (ours) 95.76±0.32%
MAML++ 97.21±0.51%
Minimax-MAML++ (ours) 97.77±0.05%

Table 3: Mini-Imagenet 5-way few-shot experiment. We
report the test accuracy in the last epoch with 95% confi-
dence interval for the mean over 3 runs.

Mini-Imagenet 5-way Few-Shot Classification
Approach Accuracy

1-Shot 5-Shot
Matching Nets 43.56% 55.31%
Meta-SGD 50.47±1.87% 64.03±0.94%
Meta-Networks 49.21% -
MAML 48.75±0.44% 64.37±0.30%
Minimax-MAML (ours) 50.84±0.26% 69.40±0.17%
MAML++ 52.25±0.19% 68.38±0.46%
Minimax-MAML++ (ours) 52.80±0.06% 71.43±0.38%

Meta Regularization into bi-level optimization meta-learning algorithms and make a benchmark to
compare with other methods.

5.1.1 EXPERIMENTAL SETUP

Datasets. For the few-shot classification task, we experiment on the public released datasets Mini-
Imagenet (Ravi & Larochelle, 2017; Vinyals et al., 2016) and Omniglot (Lake et al., 2015), following
the few-shot benchmark setting provided in (Antoniou et al., 2018). The Omniglot dataset is a
collection of 1623 character classes with different alphabets. Each class in the dataset contains 20
instances. In the experiment, all the character classes are shuffled, and then the shuffled classes are
divided into the training set, validation set, and test set, with 1150, 50, and 423 instances respectively.
Rotation augmentation is applied to the images with 90-degree increments to create new classes. The
second dataset used in the few-shot classification experiment is Mini-Imagenet (Ravi & Larochelle,
2017), which is sampled from ImageNet with 600 instances of 100 classes. Each image is resized
into 84 × 84. Following the work (Ravi & Larochelle, 2017), we split the Mini-Imagenet dataset
into 64 classes for training, 12 classes for validation, and 24 classes for testing.

Experimental details. We select MAML (Finn et al., 2017) as the representative bi-level opti-
mization meta-leanring model. To evaluate the effectiveness of Minimax-Meta Regularization, we
first begin the experiment with the baseline MAML on the 5-way 1/5-shot Mini-Imagenet setting.
Then, on top of the original MAML, we implement Minimax-MAML by adding Minimax-Meta
Regularization. We then compare Minimax-MAML with original MAML and other meta-learning
baselines on the 5-way 1/5-shot Mini-Imagenet setting and the the 20-way 1-shot Omniglot setting.
The compared baselines include Matching Networks (Vinyals et al., 2016), Meta-SGD (Li et al.,
2017), Meta-Networks (Munkhdalai & Yu, 2017), Siamese Nets (Koch et al., 2015), Neural Statis-
tician (Edwards & Storkey, 2016), and Memory Module (Kaiser et al., 2017). Here we also include
MAML++ (Antoniou et al., 2018) in the experiment and further implement Minimax-MAML++ for
comparison. MAML++ is an improved version of MAML, with 6 specific methodologies added
together for the performance improvement of MAML. We include MAML++ in our experiment for
studying two questions: i) By comparing Minimax-MAML with MAML++, we want to analyze
if Minimax-Meta Regularization, as a general improving mechanism, has the potential to outper-
form algorithm-specific methodologies. ii) By comparing Minimax-MAML++ with MAML++, we
want to evaluate if Minimax-Meta Regularization is compatible with complicated model-specific
improving methodologies in bi-level optimization models. Note regularization is only added during
the training phase. All the MAML/MAML++ experiments involving regularization share the same
form of regularization objective. The regularization is achieved by combining the l2-norm regular-
ization and output entropy regularization. More detailed experiment setting information could be
find in Appendix B.
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Table 4: Test MSE for the sinusoid regression under the non-mutually-exclusive setting. We im-
plemented Minimax-Meta Regularization for MAML and MR-MAML, and compare them with the
original methods. Each experiment is repeated for 5 times, we report the mean test MSE and std in
parentheses.

Methods MAML Minimax-
MAML(ours) MR-MAML(A) Minimax-

MR-MAML(A)(ours) MR-MAML(W) Minimax-
MR-MAML(W)(ours)

5-shot 0.686(0.080) 0.461(0.036) 0.229(0.045) 0.209(0.048) 0.179(0.050) 0.136(0.005)
10-shot 0.153(0.008) 0.125 (0.005) 0.121(0.017) 0.112(0.028) 0.065 (0.018) 0.059(0.005)

5.1.2 RESULTS AND ANALYSIS

The baseline comparison results under Omniglot and Mini-Imagenet settings are shown in Table 2
and Table 3. Minimax-Meta Regularization are shown to improve both the original MAML and the
MAML++ frameworks. In the Omniglot 20-way 1-shot classification experiment, the mean accuracy
of MAML and MAML++ are improved from 94.20% and 97.21% to 95.76% and 97.77% respec-
tively. Both the methods had unstable results in these experiments. After adopting Minimax-Meta
Regularization, the std values of the final accuracy of these two methods have been significantly
reduced, indicating better performance stability. The Minimax-MAML++ reached the best perfor-
mance in this setting compared to other baselines with good stability. Significant improvements
from Minimax-Meta Regularization are also shown in Mini-Imagenet 5-way 1/5-shot classification
experiments. In the 1-shot experiments, the original MAML cannot outperform Meta-SGD and
Meta-Networks baselines. The Minimax-Meta Regularization improves the accuracy of MAML
from the average of 48.75% to 50.84%, which enables MAML to outperform other baselines. In
the 5-shot experiments, Minimax-MAML could outperform MAML++ by 1.02%. Considering that
MAML++ adopts 6 individual techniques specifically designed for MAML, Minimax-Meta Regu-
larization shows strong effectiveness in this outperform as a general methodology.

5.2 FEW-SHOT REGRESSION

5.2.1 EXPERIMENTAL SETUP

Datasets. For the few-shot regression task, we consider a non-mutually-exclusive regression prob-
lem based on the Sinusoids synthetic dataset. Each task of Sinusoids regression involves the regress-
ing from the input to the output of a generated sine wave, where the amplitudes of the sinusoids are
different among tasks. In our experiment, we follow the setting provided by (Yin et al., 2019). The
Sinusoids data is created in the following way: the amplitude A of the sinusoid is uniformly sampled
from a set of 20 scalars {0.1, 0.3, · · · , 4}; u is sampled uniformly from [−5, 5] ; and y is sampled
from N (Asin(u), 0.12).

Experimental details. During the training, both u and A are provided as input of models, i.e.
x = (u,A). During the test time, we expand the range of the tasks by randomly sampling the
amplitude A uniformly from [0.1, 4] and use a random one-hot vector as the input of the network.
The meta-training tasks are a proper subset of the meta-test tasks. Under this setting, the amplitude
input at the training phase makes this regression problem non-mutually-exclusive, which makes the
meta-learning model prone to the memorization problem(Yin et al., 2019) during training. In the ex-
periments, we compare with the representative bi-level optimization meta-learning baseline MAML
(Finn et al., 2017), and the meta-regularized MAML (MR-MAML) (Yin et al., 2019) where the
regularization is either on the activations (MR-MAML(A)) or the weights (MR-MAML(W)). Both
MR-MAML(A) and MR-MAML(W) are initially designed for solving the memorization problem.
The Minimax-Meta Regularization is implemented for all the above 3 methods with l2-norm as the
regularization objectives for both the inner-loop and outer-loop.

5.2.2 RESULTS AND ANALYSIS

Original MAML was shown to be capable of solving normal sinusoid few-shot regression prob-
lem(Finn et al., 2017). However, the results of non-mutually-exclusive sinusoid regression 5.2.2
suggest that added amplitude input makes MAML suffer from memorization problem and give poor
test result. From the experiment result5.2.2, we could observe that Minimax-Meta Regularization
improves the performance of MAML on both 5-shot and 10-shot tasks. In the 10-shot task, the
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Figure 2: Training accuracy curve. Since 40%
of training samples are with the wrong label, the
model maintains train-acc around 60% would be
considered resistant to overfitting on the training.

Figure 3: Test accuracy curve. Since the test
dataset is clean, models that can maintain high
test-acc show better learning robustness (less af-
fected by training noise).

test MSE of MAML improved from 0.153 to 0.125 with Minimax-Meta Regularization, which is
close to the MR-MAML(A). This observation suggests that the minimax-regularization could help
the meta-learning model be more resistant to the memorization problem to some extent. Moreover,
by comparing the results of MR-MAML methods with Minimax-Meta Regularization and the orig-
inal MR-MAML models, we could find that both MAML(A) and MAML(W) gained performance
improvements with added Minimax-Meta Regularization on both 5-shot and 10-shot tasks. And the
smaller std values indicate the promotion of stability. This shows that minimax could be compatible
with methods specifically designed for addressing memorization problem and further improve the
performance.

5.3 ROBUST REWEIGHTING WITH META-LEARNING

5.3.1 EXPERIMENTAL SETUP

To verify the general effectiveness of our proposed methods, we further conduct the experiments on
the task of robust reweighting with meta-learning. For this experiment, we compare the performance
of our method and baselines on the noisy MNIST dataset, which is created by randomly flipping the
labels of 40% training images. Each image has a dimension of 28×28. The task is to classify each
image into 0 to 9 handwritten numbers, where the 10000 training images have 40% noisy labeled
data. The validation set consists of 100 correctly-labeled images that are randomly selected from
the correctly-labeled samples in the training set to ensure that the reweight method does not have the
privilege of training on more data. We use the LeNet-5 as the backbone model and train the model
for 1000 epochs. The learning rates for the first 1/3, the middle 1/3, and the last 1/3 training epochs
are set to be 1e-2, 1e-3, and 1e-4 respectively. The basic meta-learning baselines we evaluate here
is Meta-Reweighting introduced by the work (Ren et al., 2018). The Meta-Reweighitng algorithm
learns to assign weights to training examples for robust learning. To determine the example weights,
Meta-Reweighting performs a meta gradient descent step on the mini-batch example weights (which
are initialized from zero) to minimize the loss on a clean unbiased validation set. Our method adds
the Minimax-Meta Regularization on top of Meta-Reweighting. We add regularization on the outer-
loop, where the optimal weights are calculated and adopted for meta-update. The inverted regular-
ization is added on the inner-loop, where the weighted inner-model fits the clean unbiased validation
set for optimal weight calculation. Intuitively, such a regularization method makes the model be-
comes more conservative when updating based on noise train data in the outer loop and values the
diversity of predictions more, thereby resisting overfit. At the same time, the inner model was en-
couraged to make sharper predictions on the clean validation set by the inverted regularization, so
that the potential of the clean data set can be more fully utilized. The regularization objective used
in our method is maximizing output entropy (minimizing output entropy in the outer-loop). We
call our method Minimax Reweighting. Detailed information of the implementation of Minimax
Reweighting is provided in Appendix C.
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Table 5: MNIST noisy label experiment quantitative results. We report the test and train accuracy in
the last epoch with 95% confidence interval for the mean over 5 runs.

Train Accuracy Test Accuracy
Direct Training 99.99%±0.01% 62.3±0.20%
Meta-Reweighting 70.38±0.34% 87.45±0.34%
Meta-Reweighting & Outer-loop Regularization 59.870±0.22% 93.90±0.25%
Minimax Reweighting 59.33±0.25% 95.38±0.12%

5.3.2 RESULTS AND ANALYSIS

Under this setting, models experienced large epoch training with the big initial learning rate. Mod-
els are extremely prone to overfit the training dataset during the training phase. To understand the
performance of the models under a robust learn setting, we could first look at the training curve of
the models (Figure 2,3). Since the training set is noisy, models overfitted to the train set would show
significant performance deduction on the clean test set. From the perspective of robust learning, the
direct training model sets the lower performance bound to some extent. Since it does not have any
denoising ability, it quickly overfits the training set during the training. It reaches peak accuracy
on the clean test set around the 80th epoch and the overfitting begins after that epoch. We could
identify the overfitting characteristic from the training and testing accuracy curve. Since 40% of the
labels in the training set are wrong, once the model starts to predict the training data with accuracy
larger than 60%, it’s fitting the distribution of the noise training data instead of the ground truth
distribution. At the same time, the performance deduction on the clean test set would begin. Finally,
we could observe the training accuracy and testing accuracy of directly trained model converged to
nearly 100% and 60% respectively, which indicates a complete overfit. On the contrary, the model
with optimal learning robustness should never overfit the train set, which would maintain a train
accuracy value close to 60%(since only 60% of the train labels are correct) and keep optimal per-
formance on the clean test set. Compared to direct training, the training curve of Meta-Reweighting
baseline (Ren et al., 2018) shows a significant improvement in the learning robustness. However,
it still suffers from overfitting. It neither completely overfits the training dataset nor ignores all the
noises, its training accuracy converges to around 70%. Meta-Reweighting model could finally main-
tain test accuracy at around 87.5%, experienced continual test accuracy deduction after around 100th
epoch. Minimax-Reweighting nearly reached the optimal learning robustness under this setting. The
training accuracy of Minimax-Reweighting stuck at around 60% with rarely any change throughout
the training phase. And the testing accuracy maintained peak value around 95.5% without observ-
able deduction. To further evaluate the effectiveness of Minimax-Reweighting, we implemented the
outer-loop-only regularization on top of the Meta-Reweighting algorithm to make comparisons. The
results intend that only regularizing the outer loop at the meta-level cannot reach the performance
of Minimax-Meta Regularization. Quantitative results of final accuracy are shown in Table 5. As
for train accuracy, the original Meta-Reweighting algorithm reached 70.38% accuracy, which in-
dicates a certain overfit. On the contrary, after adding regularization, both Minimax Reweighting
and outer-loop regularized Meta-Reweighting could preserve a training accuracy of around 60%,
which represents the resistance to training set overfit. However, Minimax Reweighting outperforms
outer-loop regularized Meta Reweighting on the clean test set accuracy

6 CONCLUSION

This paper studies the generalization problem of meta-learning. In this paper, we go one step deeper
and propose a new regularization mechanism for meta-learning – Minimax-Meta Regularization.
Specifically, we maximize the regularizer in the inner loop to encourage the adapted-model to fit
an “aggressive, more specific, prone to overfitting” hypothesis and minimize the regularizer in the
outer loop to fit a “conservative, more general, resistant to overfitting” hypothesis. Such adversar-
ial regularization forces the meta-model to maintain generality at the meta-level even when it is
easy to learn specific assumptions at the task-specific level, thereby improving the robustness of the
meta-model. In the experiment, representative meta-learning scenarios, including few-shot learning,
robust learning, and reinforcement learning, are conducted to verify our method. The results show
that our method consistently improves the meta-learning algorithms’ performance and demonstrates
the advantage of Minimax-Meta Regularization.
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APPENDIX

A GENERAL FORM OF MINIMAX-META REGULARIZATION IN
META-LEARNING

Algorithm 1 General Form of Minimax-Meta Regularization in Meta-Learning
Require: Meta-training set Dmeta−train, Learner M with parameters φ
Require: Meta-Learner R with parameters θ.
Ensure: φT

1: randomly initialize φ
2: for d = 1, n do
3: Dsupport, Dquery ← random dataset from Dmeta−train
4: φ0 ← c0
5: for t=1, T do
6: Xt,Yt ← random batch from Dsupport

7: Lt ←
8: L (M (Xt;φt−1) ,Yt) + InverseRegObjective (M (Xt;φt−1) ,Yt, φt−1)
9: ct ← R

((
∇φt−1

Lt,Lt
)
; θd−1

)
10: φt ← ct
11: end for
12: X,Y ← Dquery

13: Ltest ← L (M (X;φT ) ,Y) +RegObjective (M (X;φT ) ,Y, θd−1)
14: Update θd using∇φT

Ltest
15: end for

B DETAILS OF FEW-SHOT CLASSIFICATION EXPERIMENT

B.1 IMPLEMENTATION OF MINIMAX-MAML

Algorithm 2 Minimax-MAML
Require: p(T ) : distribution over tasks
Require: α, β : step size hyperparameters γe, γn: reg-rate hyperparameter of Information Entropy,

L2 Norm
Ensure: θT

1: randomly initialize θ
2: while not done do
3: for all Ti do
4: Evaluate ∇θLTi (fθ) with respect to K examples
5: Compute adapted parameters with gradient
6: descent: θ′i = θ − α∇θ

(
LTi (fθ) + γeEntropyTi(fθ)− γnL2 Norm(θ)

)
7: end for
8: Update θ ← θ − β∇θ

∑
Ti∼p(T )

(
LTi

(
fθ′i
)
− γeEntropyTi(fθ′i) + γnL2 Norm(θi

′)
9: end while

Pseudo code is shown in Algorithm 2.

For all few-shot classification experiments, we use a γe = 2 and γn = 5e-5.

All the MAML/MAML++ experiments involving regularization share the same form of regulariza-
tion objective. The regularization is achieved by combining the l2-norm regularization and output
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entropy regularization. The bi-level optimization objective could be written as:

θ∗ = argmin
θ

1

n

n∑
i=1

1

m

∑
z∈Dq

i

L(φi(θ,Dsi ), z) + δout · (γn · 0.5‖φi(θ,Dsi )‖2 − γeH(φi(θ,Dsi ), z))),

(4)

s.t. φi(θ,Dsi ) = θ − µ∇θ
∑
z∈Ds

i

L(θ, z) + δin · (γn · 0.5‖θ‖2 − γeH(θ, z))),

(5)

Where H(θ, z) denotes the information entropy of prediction of z using θ as model parameter.
Here δin and δout respectively determine the type of regularization for the inner-loop and outer-
loop. Their values of δin and δout can be 1, 0 or -1, corresponding to normal regularization, none
regularization, and inverse regularization respectively. Original MAML has δin = 0 and δout =
0. MAML becomes Minimax-MAML while δin and δout are set by -1 and 1. The selection for
δin and δout values for other experiment could be found in 1. γn and γe are hyper-parameters
controlling the regularization rate. We use γn = 0.0005 and γe=2 for all the experiments. All the
MAML experiments take 5 inner-steps. In one experiment, the training takes 100 epochs, and each
epoch consists of 500 iterations. After each epoch, the performance of the model is evaluated on the
validation set. When the training is complete, a prediction of the test set is made by the ensemble of
the top 5 performing models on the validation set. Each experiment is repeated 3 times. The Adam
optimizer was adopted for the model training, with a learning rate of 0.001, β1 = 0.9 and β2 = 0.99.
Task batch size for all Omniglot experiments is 16. Mini-Imagenet experiments use task batch sizes
of 4 and 2 for 1-shot and 5-shot experiments respectively.

As for empirical verification experiment, on top of the original MAML, we implement different
individual regularization methods and run experiments for each one separately. The regulariza-
tion methods include outer-loop-only regularization, inner-loop-only regularize , inverse inner-loop
regularization, loss function regularization, and Minimax-Meta Regularization. This stage of exper-
iments complete the empirical verification of method discussed in 3.2.

C IMPLEMENTATION DETAIL OF MINIMAX META-REWEIGHTING

Pseudo code is shown in Algorithm 3. In our experiment, we use a γin = 0.25 and γout = 2

Algorithm 3 Weighted Minimax Meta-Reweighting.
Require: model θ0, train Df , valid Dg, n,m, γin, γout
Ensure: θT

1: for t = 0 . . . T − 1 do
2: {Xf , yf} ← SampleMiniBatch (Df , n)
3: {Xg, yg} ← SampleMiniBatch (Dg,m)
4: ŷf ← Forward (Xf , θt)
5: ε← 0; lf ←

∑n
i=1 εiC (yf,i, ŷf,i)

6: ∇θt ← BackwardAD (lf , θt)

7: θ̂t ← θt − α∇θt
8: ŷg ← Forward

(
Xg, θ̂t

)
9: lg ← 1

m

∑m
i=1 (C (yg,i, ŷg,i) + γinEntropy(ŷg,i))

10: ∇ε← BackwardAD (lg, ε)

11: w̃ ← max(−∇ε, 0);w ← w̃∑
j w̃+δ(

∑
j w̃)

12: l̂f ←
∑n
i=1 wi (C (yf,i, ŷf,i)− γoutEntropy(ŷf,i))

13: ∇θt ← BackwardAD
(
l̂f , θt

)
14: θt+1 ← OptimizerStep (θt,∇θt)
15: end for
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