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Abstract

We consider a finite-state partially observable Markov decision problem (POMDP) with an
infinite horizon and a discounted cost, and we propose a new method for computing a cost
function approximation that is based on features and aggregation. In particular, using the
classical belief-space formulation, we construct a related Markov decision problem (MDP)
by first aggregating the unobservable states into feature states, and then introducing repre-
sentative beliefs over these feature states. This two-stage aggregation approach facilitates
the use of dynamic programming methods for solving the aggregate problem and provides
additional design flexibility. The optimal cost function of the aggregate problem can in turn
be used within an on-line approximation in value space scheme for the original POMDP.
We derive a new bound on the approximation error of our scheme. In addition, we establish
conditions under which the cost function approximation provides a lower bound for the op-
timal cost. Finally, we present a biased aggregation approach, which leverages an optimal
cost function estimate to improve the quality of the approximation error of the aggregate
problem.

1 Introduction

We consider an infinite horizon partially observable Markov decision problem (POMDP) with a discounted
cost criterion. In particular, we assume that the state space X consists of n states, denoted by 1, . . . , n. The
control space U and observation space Z are finite, with elements denoted by u and z, respectively. Transi-
tions from state i to state j under control u occur at discrete times k according to transition probabilities
pij(u). Each transition produces an observation z with probability p(z | j, u) and incurs a cost of g(i, u, j).
At each stage k, we select a control uk ∈ U based on the history of observations z1, . . . , zk−1 and controls
u0, . . . , uk−1. The objective is to minimize the expected value of the total cost, discounted with a discount
factor α ∈ (0, 1).

It is well known that a POMDP admits an equivalent perfect-state information formulation, leading to
a Markov decision problem (MDP); see e.g., Åström (1965). This formulation involves the belief state
b =

(

b(1), . . . , b(n)
)

, where each component b(i) represents the conditional probability that the system is
in state i, given the history of controls and observations. The belief state is updated recursively through a
belief estimator:

b′ = F (b, u, z), (1)

where F is a given function, and b′ denotes the updated belief. The set of belief states is called the belief
space and is denoted by B.

We consider policies µ that map the belief space B to the control space U . The cost function of a policy µ,
denoted by Jµ, maps B to the real line ℜ, and is defined at any initial belief state b0 ∈ B as

Jµ(b0) = lim
N→∞

E
zk

k=1,...,N−1

{

N−1
∑

k=0

αkĝ
(

bk, µ(bk)
)

}

, (2)

1



Under review as submission to TMLR

where E{·} denotes expected value, and the stage cost ĝ(b, u) and the conditional distribution p̂(z | b, u) of
z given b and u are defined by

ĝ(b, u) =
n
∑

i=1

b(i)
n
∑

j=1

pij(u)g(i, u, j),

p̂(z | b, u) =
n
∑

i=1

b(i)
n
∑

j=1

pij(u)p(z | j, u).

(3)

The optimal cost function J∗, derived by optimizing over all possible policies µ, uniquely satisfies the Bellman
equation

J∗(b) = min
u∈U

[

ĝ(b, u) + α
∑

z∈Z

p̂(z | b, u)J∗
(

F (b, u, z)
)

]

, for all b ∈ B, (4)

see, e.g., (Bertsekas, 2017, Section 3.5.2) and (Bertsekas, 2012, Section 5.6), or (Krishnamurthy, 2016, Thm.
7.6.2). Once the optimal cost function J∗ is computed, an optimal policy µ∗ that satisfies Jµ∗(b) = J∗(b)
for all b ∈ B can be determined by minimizing the right-hand side of Eq. (4), i.e.,

µ∗(b) ∈ arg min
u∈U

[

ĝ(b, u) + α
∑

z∈Z

p̂(z | b, u)J∗
(

F (b, u, z)
)

]

, for all b ∈ B;

see, e.g., (Bertsekas, 2012, Section 1.2).

For many POMDP of practical interest, neither the optimal cost function J∗ nor the optimal policy µ∗ can be
computed exactly. Consequently, there has been extensive research on approximation schemes. Within the
literature on POMDP approximations, we note three principal approaches: value-based approximation meth-
ods Pineau et al. (2006); Ong et al. (2010); Lovejoy (1991); Littman et al. (1995); Zhou & Hansen (2001);
Poupart & Boutilier (2002); Yu & Bertsekas (2004); Roy et al. (2005); Saldi et al. (2017), heuristic search
Smith & Simmons (2004); Silver & Veness (2010); Somani et al. (2013); Sunberg & Kochenderfer (2018);
Wu et al. (2021), and policy-based approximation methods Schulman et al. (2017); Cobbe et al. (2021);
Ni et al. (2022). The first two approaches approximate the optimal cost function J∗ by using off-line and/or
on-line computations, whereas policy-based methods parameterize the policy and optimize it via gradient-
based algorithms.

In this paper, we focus on the aggregation approach, a value-based approximation methodology for MDP
with large state spaces. The conceptual aggregation framework of the present paper was first formulated in
(Bertsekas, 2012, Section 6.5), and its application to POMDP was given in (Bertsekas, 2012, Example 6.5.5).
In this framework, we approximate a given MDP with a reduced-space MDP (called aggregate MDP), which
can be designed by using domain-specific knowledge. The aggregate MDP can be solved by using dynamic
programming (DP) methods, among other techniques.

The most straightforward approach to apply aggregation to the belief-space formulation of a POMDP, is to
select a finite set of representative beliefs within the belief space and form an MDP with a finite state space.
However, this approach faces practical challenges when dealing with a large number of unobservable states,
i.e., when n is large. In particular, without favorable structural properties, solving the aggregated MDP
involves updating belief states according to Eq. (1). This computation can become prohibitively expensive
for large values of n, even if the transition probabilities pij(u) are sparse; i.e., for every i and u, the number
of j such that pij(u) > 0 is small relative to n. Furthermore, the effective selection of representative beliefs
from the high-dimensional belief space B is challenging, and the quality of the selection significantly impacts
the accuracy of the resulting cost function approximation.

To address these difficulties, we introduce a new belief aggregation method, which is better suited to the
POMDP structure. Rather than directly aggregating beliefs, we aggregate the unobservable states into
suitably designed feature states and then define representative beliefs over these feature states. The choice of
feature states can leverage problem-specific insights, providing an additional layer of flexibility, and leading
to a more informed and effective selection of representative beliefs for constructing the associated MDP.
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Moreover, because the number of feature states is typically much smaller than n, updating beliefs over these
feature states becomes computationally tractable when the transition probabilities pij(u) are sparse.

We note that feature-based aggregation techniques have been proposed for MDP with perfect-state
information; see, e.g., Tsitsiklis and Van Roy (Tsitsiklis & van Roy, 1996), Bertsekas and Tsitsiklis
(Bertsekas & Tsitsiklis, 1996, Section 3.1.2), and Bertsekas (Bertsekas, 2012, Section 6.5), (Bertsekas, 2018).
In these methods, features of the (observed) states are used to guide the design of the aggregated MDP.
When applied to POMDP, this means constructing features of the beliefs over the unobservable states, while
the dimension of the belief vector remains n. In contrast, our method constructs features of the unobservable
states, resulting in belief vectors defined over the feature space, whose dimension can be significantly smaller
than n.

As part of our analysis, we provide a bound for the error between the cost of the aggregate problem and the
optimal cost. Our result improves the existing error bound of Tsitsiklis and Van Roy (Tsitsiklis & van Roy,
1996), as we relax certain restrictions on how the aggregated MDP is constructed. Actually, our error bound
analysis does not rely on properties specific to POMDP. As a result, it can be applied to aggregation methods
for MDP with only minor modifications. A generalized version of this analysis, tailored specifically to MDPs,
is presented in Anonymous (2025b).

Apart from introducing the new aggregation framework and its theoretical analysis, we also provide an
extension of our method that leverages an existing cost function approximation V . This extension is based
on the biased aggregation framework introduced in Bertsekas (2019a); see also (Bertsekas, 2019b, Section 6.5).
In particular, given an MDP and the function V , biased aggregation formulates a modified MDP, whereby the
stage cost of the original MDP is altered using V . We demonstrate that our feature-based belief aggregation
framework for POMDP can incorporate a bias function, with significant computational savings.

In summary, our contributions are the following:

(i) We introduce a feature-based aggregation scheme that generalizes existing aggregation methods for
POMDP and facilitates DP calculations for solving the resulting aggregated problems.

(ii) We establish a new bound on the approximation error of the cost function obtained through aggre-
gation. This bound extends existing results by relaxing certain restrictions on how the aggregated
MDP are constructed.

(iii) We present an extension of our method that uses an existing cost function approximation as a bias
function. This extension offers enhanced flexibility and substantial computational savings, while
preserving theoretical guarantees.

To facilitate our discussion of the aggregation method and illustrate the theoretical results, we introduce the
following POMDP, adapted from (Bertsekas, 2012, Example 1.3.1). This POMDP will serve as a running
example in the next two sections. Owing to its favorable structure, both the optimal cost function J∗ and the
optimal policies can be computed conveniently. This allows us to compare the cost function approximations
obtained via aggregation with the optimal costs.

Example 1.1 (Treasure Hunting). Consider a sequential search problem involving N sites. Each site ℓ may
contain a treasure with value vℓ. Searching site ℓ incurs a cost cℓ and reveals the treasure with probability
βℓ (assuming a treasure is present). At each stage, we may choose a site to search or terminate the search.
The objective is to design a search policy that minimizes the expected infinite-horizon search cost, discounted
by a given factor α ∈ (0, 1).

We model this problem as a POMDP. The unobservable state space X consists of 2N + 1 states, representing
all possible combinations of treasure presence across the N sites, along with a termination state. In particular,
a non-terminated state i can be represented as i = (i1, i2, . . . , iN ), with iℓ ∈ {0, 1}, ℓ = 1, 2, . . . , N . Here
iℓ = 1 means that the ℓth site contains a treasure and iℓ = 0 means it does not. As a result, the state space
X can be defined as

X = {t} ∪
{

(i1, i2, . . . , iN ) | iℓ ∈ {0, 1}, ℓ = 1, 2, . . . , N
}

,
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where t represents the termination state. The control space U contains N + 1 options: searching one of the
N sites or terminating the search. At a given time period, if a site ℓ that contains a treasure is searched, the
search is successful with probability βℓ. In this case, the cost of the search is cℓ −vℓ, and the state transitions
to the state where the treasure is removed from site ℓ, while the status of the other sites remains unchanged.
The search is unsuccessful with the complementary probability 1 − βℓ. In this case, the cost of the search is
cℓ, and the state remains unchanged. At the end of a search, the belief state is suitably updated (using Bayes’
rule in the case of an unsuccessful search; see (Bertsekas, 2012, Example 1.3.1)).

Here the belief state b is a (2N + 1)-dimensional vector, and we assume that the initial belief state is given.
The belief update function F from Eq. (1), the stage cost ĝ and the observation probability p̂ in Eq. (3) can
be defined accordingly.1 In the following sections, we use this example to illustrate our aggregation method
and to illustrate the approximation error of our method.

The paper is organized as follows. In Section 2, we introduce the feature-based belief aggregation method,
including the dynamic system constructed through aggregation and the resulting optimal control problem.
In Section 3, we analyze the error of the cost function approximation obtained via aggregation, relative to
the optimal cost. In Section 4, we present computational results that support our analysis. In Section 5, we
describe the biased aggregation approach and we provide favorable computational results.

2 Feature-Based Belief Aggregation for POMDP

In this section, we present our aggregation method. We introduce a dynamic belief system and we formulate
the aggregate problem, following the framework of (Bertsekas, 2012, Section 6.5). This problem takes the
form of an MDP whose state space consists of selected representative beliefs over the feature states. Finally,
we describe computational approaches for solving the aggregate problem and discuss the computational
savings of our methodology.

2.1 Dynamic Belief System

The first step of our aggregation method is constructing a finite set F , which we call feature space. Its
elements, generally denoted by x and y, are called feature states. We connect feature states with the original
(unobservable) system states as follows:

(a) With every feature state x, we associate a subset Ix ⊂ {1, 2, . . . , n}. We require that the sets Ix,
x ∈ F , are disjoint.

(b) With every feature state x, we associate its disaggregation probability distribution {dxi | i =
1, 2, . . . , n}. We require that

dxi = 0, for all i 6∈ Ix. (5)

(c) With every state j = 1, 2, . . . , n, we associate its aggregation probability distribution {φjy | y ∈ F}.
We require that

φjy = 1, for all j ∈ Iy, y ∈ F . (6)

The disaggregation and aggregation probability distributions of Eqs. (5) and (6) specify a controlled dynamic
system involving both the original (unobservable) system states i, j and the (unobservable) feature states
x, y. The transition diagram of this dynamic system is given as Fig. 1.

We illustrate the process of designing feature states using our running example, as described below.

Example 2.1 (Features for Treasure Hunting). Recall that in Example 1.1, each nonterminated state i
can be represented by an N -dimensional vector (i1, i2, . . . , iN ) with iℓ ∈ {0, 1}, ℓ = 1, 2, . . . , N , indicating
the presence of a treasure in site ℓ. We may define as a feature state x the index of the site with the

1Due to the favorable structure of the problem, the belief vector can be compactly represented with only N + 1 dimen-
sions. The optimal policy can be derived using this compact representation; further details can be found in (Bertsekas, 2012,
Section 1.3).
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i j

x y
Unobservable feature states

F F

Ix X
Unobservable states

pij(u), g(i, u, j)

Disaggregation
probabilities dxi

Aggregation
probabilities φjy

Figure 1: The controlled dynamic feature-state system constructed through the disaggregation and aggre-
gation probability distributions in Eqs. (5) and (6).

largest undiscovered value, with ties broken consistently using a fixed rule. In particular, for every state
i = (i1, i2, . . . , iN ) such that iℓ = 1 for some ℓ, we define its feature state x as

x ∈ arg max
ℓ=1,...,N ; iℓ=1

vℓ. (7)

In addition, we assign feature state x = 0 to the states i = (0, . . . , 0) (nonterminated state with no remaining
treasures) and t (terminated state). Thus the feature space is F = {0, 1, . . . , N}. The sets Ix, x = 0, 1, . . . , N ,
form a partition of the state space X. The disaggregation probabilities dxi could be a uniform distribution over
all states i in Ix, while the aggregation probabilities φix map each state i deterministically to the corresponding
feature state x via Eq. (7).

For an illustration, let us assume that there are two sites with the treasure of the first site larger than the
one of the second site, i.e., v1 > v2. The state and feature spaces are

X = {(0, 0), (1, 0), (0, 1), (1, 1), t}, F = {0, 1, 2}.

The sets Ix, x = 0, 1, 2, are given by

I0 = {(0, 0), t}, I1 = {(1, 0), (1, 1)}, I2 = {(0, 1)}.

Because the treasure value at the first site is larger than that of the second site, the feature state associated
with the state (1, 1) is 1. As indicated above, this choice of feature states leads to a feature space of size
N + 1, which is much smaller than 2N + 1 when N is large. We will use this definition of X and F in our
subsequent discussion of the running example.

Alternatively, we can define the feature space F by grouping several search sites as one. For instance, we can
partition the N sites into L contiguous groups of equal size and define a feature state as x = (x1, x2, . . . , xL),
where each component xl is 1 if any site within the lth group contains a treasure, and 0 otherwise. This type
of aggregation leads to a feature space of size 2L + 1.

Having defined connections between feature states and states, we now introduce the associated beliefs. We
denote by Q the belief space over F , i.e., the set of probability distributions over the features in F . Elements
of Q are referred to as feature beliefs and are denoted by q = {q(x) |x ∈ F}. We aggregate this set
into a finite subset Q̃ that consists of m elements of Q, which we refer to as representative feature beliefs
q̃ = {q̃(x) |x ∈ F}; see Fig. 2. These representative feature beliefs are associated with feature beliefs as
follows.

(d) For each feature belief q ∈ Q, we define a probability distribution over Q̃, denoted by {ψqq̃ | q̃ ∈ Q̃}.
We refer to this distribution as the belief aggregation probability of q. We require that

ψq̃q̃ = 1, for all q̃ ∈ Q̃. (8)
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Feature belief space QFeature space F

Representative
feature
beliefs q̃ ∈ Q̃

State space X

x

i

Ix

Figure 2: Our feature-based belief aggregation method: (i) we map the unobservable states i into the feature
states x; (ii) we aggregate beliefs over the feature states q into a finite set of representative feature beliefs
q̃. In this illustration, we aggregate some of the n states i into 4 different feature states x; i.e., F contains
4 elements. The set Ix and its corresponding feature x are shown in the same color. Then we choose some
representative feature beliefs from the feature belief space Q (i.e., the 3-dimensional unit-simplex).

The feature space F and the aggregation probabilities can be designed based on engineering intuition or
learned from data Bertsekas (2018). As illustrated in Fig. 2, these features often lead to “irregular shapes”
of the sets Ix. This is a generic characteristic of feature-based aggregation schemes, which helps to capture
the “nonlinearity” of the optimal cost function Bertsekas (2018).

In what follows, we use our running example to demonstrate one special choice of the set Q̃ and its associated
belief aggregation probabilities.

Example 2.2. A general way to construct the set of representative feature beliefs Q̃ is through a uniform
discretization of Q. To this end, we define the set Q̃ as

Q̃ =
{

q̃
∣

∣ q̃ ∈ Q, q̃(x) = δx/ρ,
∑

x∈F

δx = ρ, δx ∈ {0, . . . , ρ}
}

, (9)

where ρ is a design parameter, which can be interpreted as the discretization resolution. For our two-site
search problem, cf. Example 2.1, the set Q is a 2-dimensional simplex and Q̃ is a finite subset of it.

For every feature belief q ∈ Q, we define its belief aggregation probability as

ψqq̃ = 1 if and only if q̃ ∈ arg min
q̃′∈Q̃

‖q − q̃′‖, (10)

where ties in the arg min are broken according to some rule, and ‖ · ‖ denotes the maximum norm. In the
literature, aggregation schemes where for every q ∈ Q, ψqq̃ = 1 for some q̃ ∈ Q̃ are referred to as hard
aggregation. In the subsequent discussion, we will use hard aggregation based on the representative feature
beliefs Q̃ and belief aggregation probabilities ψqq̃ defined in Eqs. (9) and (10), respectively, to demonstrate
the cost function approximations computed via our scheme.

Consistent with the standard aggregation framework (see (Bertsekas, 2012, Section 6.5) or (Bertsekas, 2019b,
Section 6.2)), the disaggregation and aggregation probabilities specify a controlled dynamic system involving
beliefs b, feature beliefs q, and representative feature beliefs q̃. This system includes four types of transitions,
as described below.

(i) From a representative belief q̃, we apply the disaggregation probabilities dxi and construct a belief
state b according to

b(i) =
∑

x∈F

q̃(x)dxi, i = 1, 2, . . . , n. (11)

(ii) From the belief b, we apply a control u ∈ U , which generates an observation z according to p̂(z | b, u)
and incurs the cost ĝ(b, u). We then update the belief as b′ = F (b, u, z).

(iii) From the updated belief b′, we generate the feature belief

q′(y) =
n
∑

j=1

b′(j)φjy, for all y ∈ F . (12)
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(iv) From the feature belief q′, we generate a new representative feature belief q̃′ according to the belief
aggregation probability ψq′q̃′ .

To express these transitions succinctly, we define a mapping D : Q̃ 7→ B by
(

b(1), b(2), . . . , b(n)
)

= D(q̃), b(i) satisfy Eq. (11) for all i. (13)

We denote the image of this mapping as B̃, i.e.,2

B̃ =
{

b ∈ B | b = D(q̃) for some q̃ ∈ Q̃
}

. (14)

In addition, we define a mapping Φ : B 7→ Q by

q′ = Φ(b′), q′(x) satisfies Eq. (12) for all x ∈ F . (15)

The resulting aggregate controlled dynamic belief system is illustrated in Fig. 3.

b b′

q QFeature belief

q̃ q̃′

Representative feature beliefs
Q̃ Q̃

B̃ B
Original beliefs

b′ = F (b, u, z), ĝ(b, u)

D(q̃)

Φ(b′)

ψqq̃′

Figure 3: The controlled dynamic belief system constructed through our feature-based belief aggregation
method.

2.2 The Aggregate Problem

Having defined the dynamic belief system through the procedure illustrated in Fig. 3, we obtain an optimal
control problem with state space Q̃ and control space U . A cost function for this problem is a vector in
ℜm, where m is the number of elements in Q̃. We denote such a vector by r, where rq̃ is the component
corresponding to q̃ ∈ Q̃. The associated Bellman equation is characterized by an operator H, which maps
r ∈ ℜm to Hr with components (Hr)(q̃) given by

(Hr)(q̃) = min
u∈U

[

ĝ
(

D(q̃), u
)

+ α
∑

z∈Z

p̂
(

z |D(q̃), u
)

∑

q̃′∈Q̃

ψG(q̃,u,z)q̃′rq̃′

]

, q̃ ∈ Q̃, (16)

where the mapping G : Q̃× U × Z 7→ Q is defined as

G(q̃, u, z) = Φ
(

F
(

D(q̃), u, z
)

)

. (17)

The function G compactly represents a series of operations. Given a representative belief q̃ ∈ Q̃, we obtain
its corresponding belief state D(q̃) through disaggregation. After applying a control u and receiving an
observation z, we obtain an updated belief state F

(

D(q̃), u, z
)

. The updated belief state is mapped to a
feature belief state through a two-step aggregation process (state belief b′ to feature belief q to representative
belief q̃′); cf. Fig. 3.

For the operator H, we have the following result.

2We will show in Section 3 that the representative feature beliefs q̃ acts as “doubles” of the beliefs in B̃.
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Proposition 1. Let r and r′ be vectors in ℜm and ‖ · ‖ be the maximum norm.

(a) If r ≤ r′, then Hr ≤ Hr′.

(b) We have ‖Hr −Hr′‖ ≤ α‖r − r′‖.

The proof of this proposition can be obtained by straightforward modifications of standard arguments; see,
e.g., (Bertsekas, 2019b, Section 6.2). It relies on the fact that both p̂ and ψ are probability distributions. In
what follows, we will refer to the properties of H stated in parts (a) and (b) of Prop. 1 as monotonicity and
contractivity, respectively.

A direct consequence of Prop. 1 is that the operator H has a fixed point r∗ ∈ ℜm, which satisfies uniquely
the equation r∗ = Hr∗ and is the optimal cost vector of the aggregate problem. This vector allows us to
approximate the optimal cost function of the original POMDP [cf. Eq. (4)] via the following interpolation
formula:

J̃(b) =
∑

q̃∈Q̃

ψΦ(b)q̃r
∗
q̃ ; (18)

see Fig. 4 for an illustration.

q

Interpolation
ψqq̃r

∗
q̃ + ψqq̃′r∗

q̃′

q̃

r∗
q̃

q̃′

r∗
q̃′

q̃′′

r∗
q̃′′

Feature beliefs

Cost

∑

q̃∈Q̃ ψqq̃r
∗
q̃

J̃(b)
q = Φ(b)

Representative feature beliefs

Figure 4: Illustration of the interpolation formula given by Eq. (18). It is used to obtain the cost function
approximation J̃ . The illustration is based on an approximation with three representative feature beliefs:
Q̃ = {q̃, q̃′, q̃′′}.

Given this cost function approximation, we can compute a suboptimal policy via one-step lookahead mini-
mization

µ̃(b) ∈ arg min
u∈U

[

ĝ(b, u) + α
∑

z∈Z

p̂(z | b, u)J̃(F (b, u, z))

]

. (19)

The quality of this policy depends on the difference between the cost function approximation J̃ [cf. Eq. (18)]
and the optimal cost function J∗ [cf. Eq. (4)], which we refer to as the approximation error, and analyze in
Section 3.

2.3 Methods for Solving the Aggregate Problem

The aggregate problem is an MDP with a finite state space (the set Q̃ of representative feature beliefs) and
the finite control space U . This MDP can be solved with standard DP methods. In particular, we can use
the exact value iteration (VI) algorithm to compute the optimal solution r∗. This is the fixed-point iteration

rk+1 = Hrk, (20)

that starts from some initial guess r0, where H is the contraction mapping of Eq. (16).

An asynchronous version of the algorithm can also be applied to solve this problem. In such an algorithm, at
each iteration k, we apply H to a single component of the current representative belief vector q̃k, and leave
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all other components unchanged. In particular, for a sequence of representative feature beliefs {q̃0, q̃1, . . . },
given rk and q̃k, we first compute the vector bk by

bk(i) =
∑

x∈F

q̃k(x)dxi, i = 1, 2, . . . , n; (21)

cf. Eq. (11). We then update only the component rk+1
q̃k

according to

rk+1
q̃k

= min
u∈U

[

ĝ
(

bk, u
)

+ α
∑

z∈Z

p̂(z | bk, u)
∑

q̃′∈Q̃

ψ
Φ
(

(F (bk,u,z)
)

q̃′
rq̃′

]

, (22)

while keeping all other components unchanged:

rk+1
q̃ = rk

q̃ , if q̃ 6= q̃k. (23)

The justification and convergence properties of this method parallel those of the standard asynchronous VI
algorithm; see Bertsekas (1982; 1983).

For both the exact and asynchronous VI algorithms, the vector bk and the functions ĝ, p̂, and F can be
written explicitly in closed form. Their values may also be estimated through simulation methods; e.g.,
employing particle filtering to approximate the belief estimator F . In either case, regardless of the VI
version or computation method, our aggregation scheme results in significant computational benefits. We
illustrate these benefits by considering specifically the asynchronous VI given in Eqs. (21)–(23), under the
assumption that bk and the functions ĝ, p̂, and F are evaluated explicitly in closed form.

The first benefit is that storing and retrieving low-dimensional representative feature beliefs q̃ is simpler than
handling full belief states b. The second benefit is that the computational effort required by Eqs. (21)–(23)
is greatly reduced when the set ∪x∈FIx contains far fewer elements than n, and/or when the transition
probabilities pij(u) are sparse for all i ∈ ∪x∈FIx and u ∈ U . Indeed, computing bk via Eq. (21) involves sig-
nificantly fewer unobservable states i when the set ∪x∈FIx is small. Moreover, sparse transition probabilities
pij(u), together with the small number of nonzero components in bk, substantially decrease the number of
unobservable states i, j needed to evaluate ĝ(bk, u) and p̂(z | bk, u); cf. Eq. (3). The belief update calculation
F (bk, z, u) similarly benefits from the small number of nonzero components of bk and the sparsity of the
transition probabilities. In particular, the belief estimator F is defined through Bayes’ rule, i.e., the jth
component of F (b, u, z), denoted by F (b, u, z)(j), is given as

F (b, u, z)(j) =
p(z | j, u)

∑n
i=1 b(i)pij(u)

∑n
i=1

∑n
j′=1 p(z | j′, u)pij′(u)b(i)

. (24)

For the same reasons, the number of states j where F (bk, u, z)(j) > 0 is much smaller than n. In addition,
the numbers of states i and j′ to enumerate in Eq. (24) are also much smaller than n.

From the above discussion, we can see that the unobservable states i involved in our algorithm form a set
X̂, which is defined as

X̂ = {i | i ∈ ∪x∈FIx or pji(u) > 0 for some j ∈ ∪x∈FIx and some u ∈ U}.

In fact, one may interpret our algorithm as using the POMDP with the unobservable state space X̂ to
approximate the original POMDP.

We demonstrate the computational savings from our scheme by using our running example.

Example 2.3. Let us illustrate the cost function approximation J̃ computed via our aggregation method
when the set Q̃ and the probabilities ψqq̃ for all q ∈ Q and q̃ ∈ Q̃ are defined according to Eqs. (9) and
(10), respectively; cf. Example 2.2. For the computational results to be presented shortly, the problem data
and experimental setup are summarized in Appendix A. When applying our feature-based belief aggregation,
we use discretization resolution ρ = 10 [cf. Eq. (9)], and define as a feature state the index of the site
with the biggest undiscovered value; cf. Example 2.1. Fig. 5 shows a comparison between our feature-based

9
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aggregation method and standard aggregation (i.e., non-feature-based aggregation, which is the special case of
our method where F = X). We note that without feature-based aggregation, the cost function approximation
in Eq. (18) becomes computationally impractical when the number of search sites exceeds N = 4. By contrast,
our feature-based belief aggregation can scale to problems with many more search sites. We also find that
feature-based belief aggregation leads to similar approximation error compared to standard aggregation.

2 4 6 8 10

1

2

3

aggregation feature-based aggregation
‖J∗ − J̃‖ (approximation error)

N (number of sites to search)
2 4 6 8 10

10−2

100

102

compute time (min)

N (number of sites to search)

Figure 5: Approximation error and computation time of the cost function approximation J̃ as defined by
Eq. (18) for the running example when aggregating the original belief space (red curves) and the feature
belief space (blue curves). The horizontal axes indicate the number of search sites N , which determines
the computational complexity of the problem. For problems with N > 4, the computation of the standard
aggregation scheme could not be completed within 2 hours, and the corresponding results are not recorded
in the figure.

3 Analysis of the Approximation Error

In this section, we study the difference between the cost function approximation J̃ of Eq. (18) relative to
the optimal cost function J∗. We first consider the values J̃(b) for beliefs in B̃; cf. Eq. (14). Based on the
analysis of these values, we quantify the differences between J̃ and the optimal cost J∗. Moreover, when the
set B̃, the mapping Φ [cf. Eq. (15)], and the belief aggregation probabilities ψ [cf. Eq. (8)] satisfy certain
conditions, we show that J̃ is a lower bound of J∗ within a certain error.

3.1 Cost Function Approximation for Beliefs in B̃

Starting from some representative feature belief q̃, our method generates deterministically a belief b ∈ B̃
according to b = D(q̃), where the mapping D : Q̃ 7→ B is defined in Eq. (13), and B̃ is the image of the
mapping D, i.e.,

B̃ =
{

b ∈ B | b = D(q̃) for some q̃ ∈ Q̃
}

,

cf. Eq. (14). To represent the belief space B sufficiently well by the representative feature belief space Q̃, it
is desirable for different representative feature beliefs q̃ and q̃′ to map to different belief states b̃ and b̃′. In
other words, the mapping D, when viewed as a mapping from Q̃ to B̃, should be one-to-one. Indeed this is
the case, thanks to the assumption that the nonempty sets Ix are disjoint, as we show next.

Proposition 2. Let q̃ and q̃′ be two representative feature beliefs that are different, i.e., q̃, q̃′ ∈ Q̃ and q̃ 6= q̃′.
Then the belief states b = D(q̃) and b′ = D(q̃′) are also different.

Proof. For every x ∈ F , let us select some ix ∈ {1, 2, . . . , n} such that ix ∈ Ix and dxix
> 0. Since the

nonempty sets Ix are disjoint, we have that for every ix,

ix 6∈ Ix′ , for all x′ 6= x (25)

Recall that for every feature state x, its disaggregation probabilities satisfy dxi > 0 only if i ∈ Ix; cf. Eq. (5).
Therefore, Eq. (25) implies that for every ix,

dx′ix
= 0, for all x′ 6= x. (26)

10
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Since q̃ 6= q̃′, there exists some x̃ ∈ F such that q̃(x̃) 6= q̃′(x̃). We will show that b(ix̃) 6= b′(ix̃), which implies
that b 6= b′.

Indeed, by definition, we have

b(i) =
∑

x∈F

q̃(x)dxi, b′(i) =
∑

x∈F

q̃′(x)dxi, i = 1, 2, . . . , n.

Let us focus on the component b(ix̃) corresponding to ix̃ ∈ Ix̃. It is given by

b(ix̃) =
∑

x∈F

q̃(x)dxix̃
= q̃(x̃)dx̃ix̃

,

where the last equality follows from Eq. (26). Similarly, b′(ix̃) = q̃′(x̃)dx̃ix̃
. Since q̃(x̃) 6= q̃′(x̃), we obtain

b(ix̃) 6= b′(ix̃).

Note that without the sets Ix being disjoint, different q̃ and q̃′ may be mapped to the same b via the mapping
D. Let us provide such an example.

Example 3.1 (Pathology without Ix being disjoint). Suppose that representative feature beliefs q̃ and q̃′

satisfy
q̃(x̃) 6= q̃′(x̃), q̃(x′) 6= q̃′(x′), for some x̃, x′, (27)

and
q̃(x) = q̃′(x), for all x 6= x̃ and x 6= x′. (28)

Suppose further that the sets Ix̃ and Ix′ and some state ĩ satisfy

{̃i} = Ix̃ = Ix′ , ĩ 6∈ Ix, for all x 6= x̃ and x′′ 6= x′. (29)

We claim that D(q̃) = D(q̃′). Indeed, from Eq. (28), we have

q̃(x̃) + q̃(x′) = q̃′(x̃) + q̃′(x′). (30)

Moreover, Eq. (29) implies that

dx̃ĩ = dx′ ĩ = 1, dxĩ = 0, for all x 6= x̃ and x′. (31)

Consider the component of D(q̃) that corresponds to the state ĩ. It is given by

∑

x∈F

q̃(x)dxĩ =q̃(x̃)dx̃ĩ + q̃(x′)dx′ ĩ = q̃(x̃) + q̃(x′)

=q̃′(x̃) + q̃′(x′) = q̃′(x̃)dx̃ĩ + q̃′(x′)dx′ ĩ

=
∑

x∈F

q̃′(x)dxĩ,

where the first and the second equalities follow from Eq. (31), the third equality is Eq. (30), and the fourth and
fifth equalities follow from Eq. (31). The last term

∑

x∈F q̃
′(x)dxĩ is the component of D(q̃′) that corresponds

to the state ĩ.

As for every other component of D(q̃) that corresponds to some state i 6= ĩ, we have

∑

x∈F

q̃(x)dxi =
∑

x∈F,x 6=x̃,x6=x′

q̃(x)dxi

=
∑

x∈F,x 6=x̃,x6=x′

q̃′(x)dxi =
∑

x∈F

q̃′(x)dxi,

where the first and the last equality follow from the condition {̃i} = Ix̃ = Ix′ and Eq. (28). Clearly, the last
term is the component of D(q̃′) that corresponds to i. Therefore, we have D(q̃) = D(q̃′).

11
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The preceding proposition states that through the disaggregation process, each representative feature belief
q̃ maps to a unique belief state b that belongs to the set B̃. In other words, the mapping D, when viewed
as a mapping from Q̃ to B̃, is one-to-one. As our next result, we show that the aggregation process defines
the inverse of such a mapping.

Proposition 3. Let b be a belief state belonging to the set B̃ and q̃ be a representative belief. Then b = D(q̃)
if and only if q̃ = Φ(b), i.e.,

b(i) =
∑

x∈F

q̃(x)dxi, i = 1, 2, . . . , n,

if and only if

q̃(y) =
n
∑

j=1

b(j)φjy, for all y ∈ F .

Proof. We first prove the only if part. Let us denote by q the vector Φ(b). In what follows, we will show
that q = q̃. By applying the relation b = D(q̃), we have for every y ∈ F ,

q(y) =
n
∑

j=1

b(j)φjy =
n
∑

j=1

∑

x∈F

q̃(x)dxjφjy

=
∑

x∈F

q̃(x)
n
∑

j=1

dxjφjy =
∑

x∈F

q̃(x)
∑

j∈Ix

dxjφjy,

(32)

where the last equality holds because dxj = 0 for all j 6∈ Ix; cf. Eq. (5).

Let us now focus on the sum
∑

j∈Ix
dxjφjy. We claim that

∑

j∈Ix

dxjφjy =

{

1 if x = y,

0 otherwise.
(33)

Suppose x = y. We have φjy = 1 for all j ∈ Ix = Iy according to Eq. (6). Since
∑

j∈Ix
dxj =

∑n
j=1 dxj = 1,

we obtain the desired equality. Suppose x 6= y. Using the fact that Ix and Iy are disjoint and that φjx = 1
for j ∈ Ix, we have φjy = 0 for j ∈ Ix. Therefore,

∑

j∈Ix
dxjφjy = 0. Combining Eq. (32) with Eq. (33)

leads to the equality q(y) = q̃(y). Since y is arbitrary, we obtain q = q̃.

Next, we show the if part. Suppose q̃ = Φ(b). Since b ∈ B̃, there exists some q̃′ such that b = D(q̃′). By
the only if of the statement, the equality b = D(q̃′) implies q̃′ = Φ(b). However, q̃ = Φ(b) by assumption.
Therefore, q̃′ = q̃, or equivalently, q̃ = Φ(b).

Having investigated the properties of the mappings D and Φ, we are ready to characterize the cost function
approximation J̃ for beliefs in B̃.

Proposition 4. Let b be a belief state belonging to the set B̃ such that b = D(q̃) for some q̃ ∈ Q̃. We have

ψΦ(b)p̃ = 1, ψΦ(b)p̃′ = 0, for all p̃′ 6= p̃. (34)

Moreover,
J̃(b) = r∗

q̃ .

Proof. By Prop. 3, b = D(q̃) implies q̃ = Φ(b). In view of the definitions of belief aggregation probability ψ
[cf. Eq. (8)], we obtain Eq. (34). Moreover,

J̃(b) =
∑

q̃′∈Q̃

ψΦ(b)q̃′r∗
q̃′ =

∑

q̃′∈Q̃

ψq̃q̃′r∗
q̃′ = r∗

q̃ ,

where the last equality follows from Eq. (34).

In summary, for every b such that b = D(q̃) for some q̃, its corresponding cost function approximation value
J̃(b) depends solely on the component of r∗ that corresponds to the representative feature belief q̃.

12
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3.2 Error Bound of The Cost Function Approximation J̃

We will now quantify the difference between the cost function approximation J̃ and the optimal cost function
J∗; cf. Eqs. (18) and (4). To this end, we define a footprint set of each representative feature belief q̃ ∈ Q̃ as

Sq̃ = {b ∈ B |ψΦ(b)q̃ > 0}. (35)

In other words, for every belief state b ∈ Sq̃, the cost function approximation J̃(b) depends on r∗
q̃ with weight

ψΦ(b)q̃; cf. Eq. (8). Similarly, for every belief state b ∈ B, we associate a representative set Rb defined as

Rb = {q̃ ∈ Q̃ |ψΦ(b)q̃ > 0}. (36)

In view of Props. 3 and 4, we have

D(q̃) ∈ Sq̃, for all q̃ ∈ Q̃. (37)

We now characterize the approximation error of J̃ . Our analysis relies critically on the condition (37).

Proposition 5. The cost function approximation J̃ defined in Eq. (18) and the optimal cost function J∗

satisfy

|J̃(b) − J∗(b)| ≤
ǫ

1 − α
, for all b ∈ B, (38)

where ǫ is the scalar defined by

ǫ = max
q̃∈Q̃

sup
b,b′∈Sq̃

|J∗(b) − J∗(b′)|. (39)

Proof. First, we show that ǫ is finite. Since the number of states and controls is finite and the cost function
g is bounded, it follows that the function ĝ in Eq. (3) is bounded. Thus, from the theory of discounted cost
DP problems, it follows that J∗ is bounded; see (Bertsekas, 2012, Section 1.2). As a result, for every q̃,
supb,b′∈Sq̃

|J∗(b) − J∗(b′)| is finite, and the finiteness of ǫ follows from the finiteness of the set Q̃.

Next, we consider the operator H defined by Eq. (16) and the m-dimensional vector r with components
defined by

rq̃ = inf
b∈Sq̃

J∗(b) +
ǫ

1 − α
, q̃ ∈ Q̃. (40)

These components are finite, and therefore, we have r ∈ ℜm. In view of the definitions of Sq̃, Rb, and rq̃

given in Eqs. (35), (36), and (40) we have

rq̃ ≤ J∗(b) +
ǫ

1 − α
, for all q̃ ∈ Rb, b ∈ B. (41)

13
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For every q̃ ∈ Q̃, we have

(Hr)(q̃)

= min
u∈U

[

ĝ
(

D(q̃), u
)

+ α
∑

z∈Z

p̂
(

z |D(q̃), u
)

∑

q̃′∈Q̃

ψG(q̃,u,z)q̃′rq̃′

]

= min
u∈U

[

ĝ
(

D(q̃), u
)

+ α
∑

z∈Z

p̂
(

z |D(q̃), u
)

∑

q̃′∈Q̃

ψ
Φ
(

F (D(q̃),u,z)
)

q̃′
rq̃′

]

= min
u∈U

[

ĝ
(

D(q̃), u
)

+ α
∑

z∈Z

p̂
(

z |D(q̃), u
)

∑

q̃′∈RF (D(q̃),u,z)

ψ
Φ
(

F (D(q̃),u,z)
)

q̃′
rq̃′

]

≤ min
u∈U

[

ĝ
(

D(q̃), u
)

+ α
∑

z∈Z

p̂
(

z |D(q̃), u
)

J∗
(

F
(

D(q̃), u, z
)

)

]

+
αǫ

1 − α

=J∗
(

D(q̃)
)

+
αǫ

1 − α

≤ inf
b∈Sq̃

J∗(b) + ǫ+
αǫ

1 − α

=rq̃,

where the second equality is due to the definition of G; cf. Eq. (17). The third equality is due to the definition
of R

F

(

D(q̃),u,z

); cf. Eq. (36). The first inequality follows from Eq. (41) with F
(

D(q̃), u, z
)

in place of b and

the fact that
∑

z∈Z p̂
(

z |D(q̃), u
)

= 1. The fourth equality holds because J∗ satisfies Bellman’s equation
of the original problem; cf. Eq. (4). The last inequality follows from the definition of ǫ and the fact that
D(q̃) ∈ Sq̃, as stated in Eq. (37); cf. Eq. (39). From this inequality, we obtain Hr ≤ r.

Due to the monotonicity of H [cf. Prop. 1], we have that the sequence {rk} with r0 = r and rk+1 = Hrk

is monotonically decreasing. Moreover, from the contractivity of H [cf. Prop. 1], we have limk→∞ rk = r∗.
Combining these properties with Eq. (41), we obtain

r∗
q̃ ≤ rq̃ ≤ J∗(b) +

ǫ

1 − α
, for all q̃ ∈ Rb, b ∈ B.

As a result, we have

J̃(b) =
∑

q̃∈Q̃

ψΦ(b)q̃r
∗
q̃ =

∑

q̃∈Rb

ψΦ(b)q̃r
∗
q̃ ≤ J∗(b) +

ǫ

1 − α
.

The converse inequality can be shown by considering the m-dimensional vector r with components

rq̃ = sup
b∈Sq̃

J∗(b) −
ǫ

1 − α
, q̃ ∈ Q̃.

The proof is thus complete.

The scalar ǫ of Eq. (39) is the maximum variation of the optimal cost function J∗ within the footprint sets
{Sq̃ | q̃ ∈ Q̃}; see Fig. 6. Thus, the meaning of the preceding proposition is that if J∗ varies by at most ǫ
within each footprint set, then the interpolation formula in Eq. (18) yields a cost function approximation
that is within ǫ

1−α
of the optimal.

Note that Prop. 5 places no restrictions on the aggregation probabilities φjy nor the belief aggregation
probabilities ψqq̃, except those specified by Eqs. (6) and (8). Consequently, the error bound in Prop. 5 goes
beyond the classical bound by Tsitsiklis and van Roy (Tsitsiklis & van Roy, 1996), where it is assumed that
the collection of the footprint sets forms a partition of the (observable) state space. For our aggregation
method, the conditions stated in Tsitsiklis & van Roy (1996) imply that for every b ∈ B, there exists exactly
one q̃ ∈ Q̃ such that ψΦ(b)q̃ = 1 and ψΦ(b)q̃′ = 0 for all q̃′ 6= q̃. A sufficient condition for this to hold is
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J∗(b)

J̃(b)

Beliefs b

Cost

Sq̃ Sq̃′
Sq̃′′

ǫ1

ǫ2
ǫ3

ǫ = max{ǫ1, ǫ2, ǫ3}

Figure 6: Schematic illustration of the scalar ǫ of Eq. (39) in Prop. 5; the illustration is based on an approx-
imation with representative feature beliefs q̃, q̃′, and q̃′′, with footprint sets Sq̃, Sq̃′ , and Sq̃′′ , respectively;
cf. Eq. (35).

that for every q ∈ Q, there exits exactly one q̃ ∈ Q̃ such that ψqq̃ = 1 and ψqq̃′ = 0 for all q̃′ 6= q̃. In
contrast, the bound in Eq. (38) allows states and feature beliefs to aggregate to multiple feature states and
representative feature beliefs, respectively. This implies that the footprint sets Sq̃ and Sq̃′ that correspond
to different representative feature beliefs may have nonempty intersections, as indicated in Fig. 6. Moreover,
our proof does not rely on properties specific to POMDP, allowing it to be adopted for similar aggregation
methods for MDP involving only observable states. A version of this proof, tailored specifically to MDPs
and featuring a generalized form of condition (37), is presented in Anonymous (2025b).

While the bound in Prop. 5 provides qualitative insight, it is conservative and smaller approximation errors
can be expected in practice. We illustrate this by using our running example.

Example 3.2. Let us consider the treasure hunting problem involving a single site, i.e., N = 1, so that we
can plot the values of J∗ and J̃ . We apply our aggregation scheme with the features described in Example 2.1.
Since there is only one site involved, we have F = X. The representative feature beliefs Q̃ and the belief
aggregation probabilities are defined as in Example 2.3; cf. Eqs. (9) and (10) in Example 2.2. The problem
data are given in Appendix A.

We show in Fig. 7 a comparison between the cost function approximation J̃ and the optimal cost function J∗

[cf. Eq. (4)] for varying discretization resolutions ρ [cf. Eq. (9)]. We note that the difference between the cost
function approximation J̃ and the optimal cost J∗ is reduced as the discretization resolution ρ is increased,
as expected from the error bound of Prop. 5.

We show in Fig. 8 a comparison between the theoretical bound and the actual approximation error of the cost
function approximation J̃ . We observe that the bound is not tight (as remarked earlier) but gets closer to the
actual error when the discretization resolution increases. Similar patterns can be observed for larger values
of N .

3.3 The Cost Function Approximation as a Lower Bound

In the preceding section, we quantified the difference between the cost function approximation J̃ [cf. Eq. (18)]
and the optimal cost function J∗. Within the context of POMDP, it is well-known [cf. Yu & Bertsekas (2004)
and (Bertsekas, 2012, Example 6.5.5)] that a cost function approximation constructed with a suitably defined
aggregation scheme can serve as a lower bound of the optimal cost function J∗. In what follows, we delineate
conditions under which the cost function approximation J̃ computed via our approach can serve as a lower
bound of J∗.

In particular, we require that the disaggregation, aggregation, and belief aggregation probabilities satisfy

b =
∑

b′∈B̃

ψΦ(b)Φ(b′)b
′, for all b ∈ B. (42)
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Figure 7: Comparison between the optimal cost function J∗ [cf. Eq. (4)] and the cost function approximation
J̃ [cf. Eq. (18)] for the POMDP for the treasure hunting problem when the number of sites N is 1, and the
belief aggregation probabilities ψqq̃ are defined based on Eq. (10). The horizontal axes indicate the belief
that the site has a treasure, and the vertical axes show the corresponding expected cost. Each plot relates
to a different discretization resolution ρ [cf. Eq. (9)], which leads to a different number m of representative
feature beliefs, as indicated below the horizontal axes.
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Figure 8: Comparison between the theoretical error bound [cf. Prop. 5] and the actual error of the cost
function approximation J̃ [cf. (18)] when applied to the treasure hunting example with a single search site,
i.e., N = 1.

In other words, the convex hull of B̃ [cf. Eq. (14)] equals B, and the convex combination coefficient associated
with b ∈ B and b′ ∈ B̃ is the belief aggregation probability ψΦ(b)Φ(b′). Under this condition, we have the
following result.

Proposition 6. Let the disaggregation, aggregation, and belief aggregation probabilities satisfy Eq. (42). The
cost function approximation J̃ defined in Eq. (18) and the optimal cost function J∗ satisfy

0 ≤ J∗(b) − J̃(b) ≤
ǫ

1 − α
, for all b ∈ B, (43)
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where ǫ is given by Eq. (39). In addition, if Q̃ contains n representative feature beliefs, J̃ is linear.

Proof. In what follows, we prove that J̃(b) ≤ J∗(b) for all b ∈ B. The other side of Eq. (43) follows directly
from Prop. 5. From Prop. 3, we have that for every b ∈ B̃, b = D(q̃) if and only if q̃ = Φ(b). As a result, the
relation given in Eq. (42) can be stated equivalently as

b =
∑

q̃∈Q̃

ψΦ(b)q̃D(q̃), for all b ∈ B. (44)

It is well-known that the optimal cost function J∗ is concave in b; see, e.g., (Sondik, 1978, Thm. 2),
(Krishnamurthy, 2016, Thms. 7.6.1-7.6.2), or (Bertsekas, 2012, Section 6.5.1). The concavity of J∗ and
Eq. (44) imply that

J∗(b) = J∗

(

∑

q̃∈Q̃

ψΦ(b)q̃D(q̃)

)

≥
∑

q̃∈Q̃

ψΦ(b)q̃J
∗
(

D(q̃)
)

, for all b ∈ B. (45)

Since J∗ also satisfies Bellman’s equation of the POMDP [cf. Eq. (4)], we obtain

J∗(b) = min
u∈U

[

ĝ(b, u) + α
∑

z∈Z

p̂(z | b, u)J∗
(

F (b, u, z)
)

]

= min
u∈U

[

ĝ(b, u) + α
∑

z∈Z

p̂(z | b, u)J∗

(

∑

q̃∈Q̃

ψ
Φ
(

F (b,u,z)
)

q̃
D(q̃)

)

]

≥ min
u∈U

[

ĝ(b, u) + α
∑

z∈Z

p̂(z | b, u)
∑

q̃∈Q̃

ψ
Φ
(

F (b,u,z)
)

q̃
J∗
(

D(q̃)
)

]

,

(46)

where the second equality follows from Eq. (44) with F (b, u, z) in place of b, and the inequality follows from
Eq. (45) with F (b, u, z) in place of b. In particular, for every b ∈ B̃ so that b = D(q̃) for some q̃ ∈ Q̃, Eq. (46)
becomes

J∗
(

D(q̃)
)

≥ min
u∈U

[

ĝ
(

D(q̃), u
)

+ α
∑

z∈Z

p̂
(

z |D(q̃), u
)

∑

q̃′∈Q̃

ψG(q̃,u,z)q̃′J∗
(

D(q̃′)
)

]

. (47)

From the definition of B̃, we have that Eq. (47) holds for all q̃ ∈ Q̃.

Let us consider a vector r̂ ∈ ℜm with components defined by

r̂q̃ = J∗
(

D(q̃)
)

, q̃ ∈ Q̃.

By definition of H [cf. Eq. (16)], Eq. (47) can be written equivalently as

Hr̂ ≥ r̂. (48)

Using arguments similar to those in the proof for Prop. 5, Eq. (48) implies that r̂ ≥ r∗, where r∗ is the fixed
point of H. Then for every b ∈ B, we have

J̃(b) =
∑

q̃∈Q̃

ψΦ(b)q̃r
∗
q̃ ≤

∑

q̃∈Q̃

ψΦ(b)q̃ r̂q̃ =
∑

q̃∈Q̃

ψΦ(b)q̃J
∗
(

D(q̃)
)

.

Combining this inequality with Eq. (45) yields the desired inequality.

Suppose that Q̃ contains n representative feature beliefs. Since the set B̃ spans B [cf. Eq. (42)], and B is
the belief space over n states, we have that B̃ is linearly independent; cf. Eq. (14). Consider three belief
states b1, b2, and b3, where b3 = γb1 + (1 − γ)b2 and γ ∈ [0, 1]. Due to the linear independence of B̃, the
aggregation probability ψΦ(b3)Φ(b′) of b3 satisfies

ψΦ(b3)Φ(b′) = γψΦ(b1)Φ(b′) + (1 − γ)ψΦ(b2)Φ(b′), b′ ∈ B̃.

Therefore, we have J̃(b3) = γJ̃(b1) + (1 − γ)J̃(b2).
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Example 3.3. Let us illustrate Prop. 6 through the treasure hunting problem in Example 1.1 with a single
search site. We construct the representative feature belief space using the method described in Example 3.2,
employing varying discretization resolutions. The belief aggregation probabilities ψqq̃ are computed to satisfy
the condition given in Eq. (42). Additional computational details are provided in Appendix A.

We show in Fig. 9 a comparison between the cost function approximation J̃ and the optimal cost function
J∗ [cf. Eq. (4)] for varying discretization resolutions ρ [cf. Eq. (9)]. We note that the cost function approx-
imations J̃ are lower bounds to the optimal cost, i.e., J̃ ≤ J∗, as asserted in Prop. 6. In contrast, the cost
function approximations computed in Example 3.2 may not be lower bounds of J∗, as shown in Fig. 7. This
is because the belief aggregation probabilities used in Example 3.2 do not satisfy the conditions in Eq. (44).
Moreover, when ρ = 1, the function J̃ computed here becomes a linear function of b.

0 0.2 0.4 0.6 0.8 1
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Figure 9: Comparison between the optimal cost function J∗ [cf. Eq. (4)] and the cost function approximation
J̃ [Eq. (18)] for the POMDP of Example 3.3 when the belief aggregation probabilities ψqq̃ satisfy Eq. (42). The
horizontal axes indicate the belief that the site has a treasure, and the vertical axes show the corresponding
expected cost. Each plot relates to a different discretization resolution ρ [cf. Eq. (9)], which leads to a
different number m of representative feature beliefs, as indicated below the horizontal axes.

4 Computational Experiments

We evaluate our feature-based aggregation method on a well-known problem in the POMDP literature,
namely the Rocksample (RS) problem Smith & Simmons (2004) with varying sizes of the unobservable state
space. We also evaluate it on a new problem: Cyber Autonomy Gym for Experimentation 2 (CAGE-2)
CAGE (2022), which involves a much larger unobservable state space and observation space. The sizes of
the tested problems are summarized in Table 1.

For the problems considered here, it is not tractable to compute their optimal cost functions J∗, making
direct comparison between the optimal cost functions and their approximations infeasible. Instead, we test

18



Under review as submission to TMLR

POMDP States n Observations |Z| Controls |U |

RS (4,4) Smith & Simmons (2004) 257 2 9
RS (5,5) Smith & Simmons (2004) 801 2 10
RS (5,7) Smith & Simmons (2004) 3201 2 12
RS (7,8) Smith & Simmons (2004) 12545 2 13
RS (10,10) Smith & Simmons (2004) 102401 2 15
CAGE-2 CAGE (2022) ≥ 1047 ≥ 1025 145

Table 1: POMDP used for the experimental evaluation, where |Z| and |U | represent the numbers of different
observations and controls, respectively.

the quality of the cost function approximations J̃ obtained via our method, as well as some value-based
methods discussed in Section 1, by applying the policy µ̃ defined by the following minimization:

µ̃(b) ∈ arg min
u∈U

[

ĝ(b, u) + α
∑

z∈Z

p̂(z | b, u)J̃(F (b, u, z))

]

;

cf. Eq. (19). We also apply the policies computed by heuristic search Silver & Veness (2010); Somani et al.
(2013); Sunberg & Kochenderfer (2018); Wu et al. (2021), and the policy-based methods Schulman et al.
(2017); Cobbe et al. (2021). A summary of the tested methods is given in Table 2. Additional problem data
and features used in our scheme are given in Appendix A. The code is available at Anonymous (2025a).

Method Value-based Heuristic search Policy-based

Lovejoy (1991) ✓

QMDP Littman et al. (1995) ✓

HSVI Smith & Simmons (2004) ✓

Roy et al. (2005) ✓

PBVI Pineau et al. (2006) ✓

SARSOP Ong et al. (2010) ✓

POMCP Silver & Veness (2010) ✓

R-DESPOT Somani et al. (2013) ✓

POMCPOW Sunberg & Kochenderfer (2018) ✓

AdaOPS Wu et al. (2021) ✓

PPO Schulman et al. (2017) ✓

PPG Cobbe et al. (2021) ✓

Table 2: Methods used for the experimental evaluation.

4.1 Evaluation Results On the RS Problems

We present the experimental results for the RS problems according to the categorization in Table 2. Fig. 10
compares our method with value-based approximation approaches on RS problems of varying sizes. Our
method requires substantially less off-line computation while achieving competitive performance on small
RS instances and outperforming all baselines on large-scale instances. In Fig 11, we compare our method
against heuristic search methods. We find that our method performs competitively with leading search
methods, despite not relying on extensive on-line computation per stage. Lastly, in Fig. 12, we compare our
method with the policy-based approximation methods. We find that our method consistently achieves lower
costs than the policy-based methods while being significantly more computationally efficient.

4.2 Evaluation Results On the CAGE-2 Problem

Due to the large scale of the CAGE-2 POMDP, we were only able to compare our method against three other
methods: POMCP Silver & Veness (2010), PPO Schulman et al. (2017), and PPG Cobbe et al. (2021). The
other methods are either infeasible for CAGE-2 due to its scale or lack publicly available implementations.
The evaluation results are summarized in Fig. 13. The on-line computational times required for our method
and POMCP are 0.95 and 30 seconds, respectively. We find that our method obtains the lowest cost
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Figure 10: Comparison between our method and value-based approximation methods for solving the RS
problems of varying sizes. “N/A” and a missing bar mean that a result could not be obtained after 1, 000
minutes of computation.

RS (4,4) RS (5,5) RS (5,7) RS (7,8) RS (10,10)

-20

-10

0

−
1
7
.
2

−
1
8
.
1

−
1
7
.
5

−
1
4
.
7

−
1
1
.
6

−
8
.
6

−
8
.
8

−
9
.
8

−
9
.
5

−
9
.
0

−
1
2
.
1

−
1
2
.
1

−
1
2
.
0

−
1
3
.
1

−
1
0
.
4

−
8
.
6

−
8
.
5

−
8
.
3

−
8
.
1

−
7
.
9

−
1
7
.
0

−
1
7
.
4

−
1
6
.
1

−
1
6
.
0

−
1
5
.
3

Our method POMCP R-DESPOT POMCPOW AdaOPS

Cost

Figure 11: Comparison between our method and heuristic search methods for solving the RS problems with
varying sizes. The search methods were given 1 second of search time per stage.

among the methods considered, while requiring significantly less off-line computation compared with PPO
and PPG. In particular, it attains top performance with only 8.5 minutes of off-line computation without
requiring extensive on-line computation per stage, as POMCP does. We attribute this strong performance
in part to our choice of features, which are tailored to the structure of the problem; see Appendix A for
details. A focused investigation of our method for this problem, where we also integrate other approximation
in value space schemes, can be found in Anonymous (2025c).

4.3 Discussion of Experimental Results

When compared with other value-based methods, our aggregation method scales well and provides good
performance. In particular, HSVI and SARSOP achieve similar or lower costs in small-scale instances of
RS, as shown in the first three columns of Fig. 10. However, they become computationally prohibitive for
large-scale instances, as well as the CAGE-2 POMDP. The remaining value-based approaches, except for
the one proposed in Roy et al. (2005), have higher cost function values in all RS problems while requiring
more off-line computation when compared against our method. The method proposed in Roy et al. (2005)
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Figure 13: Evaluation results on the CAGE-2 POMDP CAGE (2022). The upper plot shows the total
discounted cost and the lower plot shows the (off-line) compute time in minutes. POMCP was given 30
seconds of computational budget per stage.

requires much less off-line computation than our approach in RS problems. However, this is at the expense
of much larger cost values. None of the value-based methods other than our aggregation approach can be
implemented in CAGE-2 due to off-line computational challenges, even including that in Roy et al. (2005).
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When compared with heuristic search methods in RS problems, POMCP, R-DESPOT, and POMCPPOW
have inferior performances than our method; see Fig. 11. AdaOPS has slightly lower cost function values
than our method, as shown in Fig. 11. However, it relies on extensive online computations related to the
belief estimator. As a result, AdaOPS becomes computationally infeasible for CAGE-2. In fact, the only
heuristic search approach we managed to compare against in CAGE-2 is POMCP. However, POMCP yields
higher cost function values than our method.

As for policy-based methods, i.e., PPO and PPG, we can see in Figs. 12 and 13 that they have inferior
performance while requiring more computational time in RS problems and CAGE-2, when compared with
our method.

5 Biased Aggregation and the Approximation Errors

In this section, we introduce an extension of our method that leverages a known function V , which approx-
imates the optimal cost function J∗. We refer to this extension as biased aggregation, to distinguish it from
the standard aggregation approach described in the preceding sections. The biased aggregation approach
was introduced in Bertsekas (2019a), and can be viewed as the standard aggregation applied to a modified
POMDP, obtained by incorporating bias terms into the stage costs of the original POMDP. These biases are
defined using the given function V .

5.1 An Extension to Biased Aggregation

Suppose that we have a cost function approximation V for a given POMDP, which maps B to the real line ℜ
and is bounded. We refer to this cost function approximation as the bias function. In the biased aggregation
approach, we introduce a modified POMDP that is obtained from the original by changing its stage cost
from ĝ(b, u) to

ĝ(b, u) − V (b) + α
∑

z∈Z

p̂(z | b, u)V
(

F (b, u, z)
)

. (49)

while the rest of the problem definition remains the same. Let us denote by Ṽ the optimal cost function of
the modified POMDP. It satisfies the corresponding Bellman equation

Ṽ (b) = min
u∈U

[

ĝ(b, u) − V (b) + α
∑

z∈Z

p̂(z | b, u)
(

Ṽ
(

F (b, u, z)
)

+ V
(

F (b, u, z)
)

)

]

for all b ∈ B, or equivalently

Ṽ (b) + V (b) = min
u∈U

[

ĝ(b, u) + α
∑

z∈Z

p̂(z | b, u)
(

Ṽ
(

F (b, u, z)
)

+ V
(

F (b, u, z)
)

)

]

for all b ∈ B. By comparing this equation with the Bellman equation for the original problem [cf. Eq. (4)],
and in view of the fact that J∗ is the unique solution to Bellman’s equation of the original problem, we see
that the optimal cost functions of the modified and the original problems are related by

J∗(b) = Ṽ (b) + V (b), for all b ∈ B. (50)

In particular, when V (b) ≈ J∗(b), we have Ṽ (b) ≈ 0. Based on the error-bound analysis of Section 3. This
suggests that biased aggregation is characterized by tighter error bounds than standard aggregation, and
likely produces better approximations to J∗. Indeed, this is supported by our computational experiments.

Let us now apply our feature-based belief aggregation method to the modified problem. The controlled
dynamic belief system constructed via our method is illustrated in Fig. 14. It can be seen that under the
same policy and with the same sequence of random observations zk, the modified and the original POMDP
generate the same sequence of representative feature beliefs q̃k and beliefs bk. Moreover, the associated
Bellman equation can be characterized by an operator H̃ similar to that of the original problem, which maps
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r ∈ ℜm to H̃r with components

(H̃r)(q̃) = min
u∈U

[

ĝ
(

D(q̃), u
)

+ α
∑

z∈Z

p̂
(

z |D(q̃), u
)

(

V
(

F
(

D(q̃), u, z
)

)

+
∑

q̃′∈Q̃

ψG(q̃,u,z)q̃′rq̃′

)

]

− V
(

D(q̃)
)

, q̃ ∈ Q̃;

(51)

cf. Eq. (16).

b b′

q QFeature belief

q̃ q̃′

Representative feature beliefs
Q̃ Q̃

B̃ B
Original beliefs

b′ = F (b, u, z), ĝ(b, u)

D(q̃)

Cost −V (b)

Cost V (b′) Φ(b′)

ψqq̃′

Figure 14: The controlled dynamic belief system constructed through our feature-based belief aggregation
method for the modified POMDP with the bias function V ; cf. Eq. (49).

Since H̃ is defined by simply modifying the stage costs in the operator H, it inherits the monotonicity and
contractivity of H; see Prop. 1. Therefore, H̃ admits a unique fixed point r̃∗ = H̃r̃∗ within ℜm, which is
the optimal cost of the aggregate problem with modified stage costs. Once r̃∗ is obtained, a cost function
approximation J̃ of the original POMDP can be computed as

J̃(b) = V (b) +
∑

q̃∈Q̃

ψΦ(b)q̃ r̃
∗
q̃ . (52)

Moreover, from the definitions of H and H̃, it can be seen that the VI algorithm and its asynchronous
variant described in Section 2.3 can be modified accordingly for computing r̃∗. Compared with the standard
aggregation approach, these algorithms do not involve excessive additional computations when solving for
r̃∗. The only additional computation is evaluating V at the beliefs b that are also computed in the standard
aggregation. Therefore, the computational savings discussed in Section 2.3, when compared with aggregation
methods that operate directly on beliefs, remain valid in the biased aggregation approach.

We illustrate the biased aggregation method by applying it to our running example.

Example 5.1. We apply biased aggregation to the problem instance described in Example 3.3 and compare it
with standard aggregation. In particular, we consider the treasure hunting problem introduced in Example 1.1
with a single search site. The representative feature belief space Q̃ is constructed using the method described
in Example 3.2 with varying discretization resolutions. The belief aggregation probabilities ψqq̃ are computed
to satisfy the condition given in Eq. (42); cf. Example 3.3. Additional computational details are provided
in Appendix A. We define the bias function V to be the cost function approximation J̃ computed according
to Eq. (18) using the unbiased aggregation method described in Example 3.3 with discretization resolution
ρ = 3; cf. Fig. 15.

In Fig. 16 we compare the cost function approximation J̃ for the biased and the unbiased case with vary-
ing discretization resolutions ρ [cf. Eq. (9)]. We observe that the function V biases the values of the cost
function approximation J̃ to their correct levels. This bias allows us to obtain accurate cost function approx-
imations with fewer representative feature beliefs than the unbiased case. In fact, we obtain a near-optimal
approximation with only m = 5 representative feature beliefs when using biased aggregation.
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Figure 15: Comparison between the optimal cost function J∗ [cf. Eq. (4)] and the given cost function
approximation V . In particular, the function V is computed by using the standard aggregation approach
with representative feature beliefs and the belief aggregation probabilities described in Example 3.3 with
discretization resolution ρ = 3.
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Figure 16: Comparison between the optimal cost function J∗ [cf. Eq. (4)] and the cost function approxima-
tions J̃ with and without the bias function V for Example 5.1; cf. Eqs. (49) and (18). The belief aggregation
probabilities ψqq̃ satisfy Eq. (42). The horizontal axes indicate the belief that the site has a treasure, and
the vertical axes show the corresponding expected cost. The two plots here show the results where ρ equals
4 and 5, respectively. This leads to a different number m of representative feature beliefs, as indicated below
the horizontal axes; cf. Eq. (9). In both cases, biased aggregation obtains a better approximation compared
with standard aggregation.

5.2 The Approximation Error

Let us now discuss briefly the approximation error of J̃ ; cf. Eq. (52). Since biased aggregation is standard
aggregation applied to a modified POMDP, Props. 2, 3, and 4 readily apply to biased aggregation without
modification. In addition, the counterparts of Props. 5 and 6 also hold by replacing J∗ with J∗ −V , in view
of the relation between J∗ and Ṽ given in Eq. (50). Let us state without proofs these two results.
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We first state the counterpart of Prop. 5 applied to the biased aggregation. For convenience, we recall that
for every q̃ ∈ Q̃, its footprint set Sq̃ is defined as

Sq̃ = {b ∈ B |ψΦ(b)q̃ > 0}. (53)

We have the following result.

Proposition 7. The cost function approximation J̃ defined in Eq. (52) and the optimal cost function J∗

satisfy

|J̃(b) − J∗(b)| ≤
ǫ

1 − α
, for all b ∈ B,

where ǫ is a finite constant defined by

ǫ = max
q̃∈Q̃

sup
b,b′∈Sq̃

|J∗(b) − V (b) − J∗(b′) + V (b′)|. (54)

Finally, we state the counterpart of the error bound of Prop. 6 for biased aggregation, which requires that
the convex hull of B̃ equals B, and the convex coefficient associated with b ∈ B and b′ ∈ B̃ is the belief
aggregation probability ψΦ(b)Φ(b′); i.e.,

b =
∑

b′∈B̃

ψΦ(b)Φ(b′)b
′, for all b ∈ B. (55)

Under this condition, we have the following result.

Proposition 8. Let the disaggregation, aggregation, and belief aggregation probabilities satisfy Eq. (55). The
cost function approximation J̃ defined in Eq. (52) and the optimal cost function J∗ satisfy

0 ≤ J∗(b) − J̃(b) ≤
ǫ

1 − α
, for all b ∈ B,

where ǫ is given by Eq. (54). In addition, if Q̃ contains n representative feature beliefs, J̃ − V is linear.

6 Conclusion

In this paper, we have introduced an aggregation-based method for approximating the optimal cost func-
tion of finite-state POMDP with infinite horizon and discounted costs. Our method leverages the classical
belief-space formulation by aggregating unobservable states into feature states, enabling the use of standard
DP techniques to solve the resulting MDP. This approach reduces the necessary computation and enhances
solution tractability. Through interpolation based on solutions to these MDP, we have obtained effective
approximations of the optimal cost functions in the original POMDP. We have provided theoretical insights
by establishing bounds on the approximation error, demonstrating the conditions under which our approxi-
mations form valid lower bounds for the optimal costs. Our method thus offers both practical computational
advantages and meaningful theoretical guarantees in solving large-scale POMDP. We have also provided an
extension of our method that biases the approximation towards the true optimal cost by incorporating a
given cost function approximation.
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A Experimental Setup

We evaluate the discounted total cost for each POMDP based on 1000 simulation trials involving 100 stages.
We run all simulations on an M2-ultra processor with the official POMDP parameters published in the
literature.3 For POMCP, PPO, and PPG, we use the parameters listed in Anonymous (2025c). For all other
methods, we use the default hyperparameters in the available open-source implementation. In particular,
for those methods where an open-source implementation is provided by the authors of the original paper,
we use that implementation. For those methods where no open-source implementation is provided by the
authors, we use the implementation and hyperparameters from the software library Egorov et al. (2017).
For Lovejoy’s method Lovejoy (1991), we use triangulation with the following granularities: 2 for RS (4,4),
and 1 for the other POMDPs.

3For the CAGE-2 POMDP, we use commit 9421c8e and the b-line attacker.
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A.1 Treasure Hunting

Problem data The treasure values, search costs, and detection probabilities used in our running examples
are as follows:

v = (6.48, 5.22, 5.43, 7.58, 3.09, 3.76, 8.01, 8.53, 7.86, 8.20),

c = (0.55, 0.86, 0.58, 0.86, 0.50, 0.98, 0.85, 0.74, 0.58, 0.84),

β = (0.13, 0.78, 0.11, 0.68, 0.11, 0.10, 0.30, 0.73, 0.54, 0.45).

These values correspond to a problem instance with 10 sites. For examples involving fewer than 10 sites
(N < 10), we use the first N entries of the vectors v, c, and β to define the respective treasure values, costs,
and detection probabilities. The discount factor α is 0.99.

Feature-based belief aggregation In Examples 3.3 and 5.1, we require that the aggregation probabilities
ψqq̃ satisfy the condition stated in Eq. (42) [or equivalently, Eq. (44)]. We design the belief aggregation
probabilities such that each belief b is represented by the convex hull of the “nearest” beliefs in B̃ based on
the maximum norm; cf. Eq. (14).

Off-line and on-line computation The aggregate problem is solved by VI given by Eq. (20). In both
off-line and on-line computation, the belief estimator F is computed exactly according to its definition; cf.
Eq. (24).

A.2 RS and CAGE-2

Problem data The detailed problem data can be found in Anonymous (2025a).

Feature-based belief aggregation For RS (4,4)-RS (7,8), we associate each state i with a unique feature
state x; i.e., X = F . For RS (10,10), we define a feature state x as a 3-dimensional vector representing a
node position in a 3 × 3 grid. We use φix to aggregate the 10 × 10 grid positions of state i into the positions
of the 3×3 grid. This results in a feature space of cardinality 9, 216. In addition, we define dxi to be uniform
across all states with matching features.

For CAGE-2, we define as a feature state x a vector with three components: attacker-state, attacker-target,
and decoy-state. The first two components represent the attacker’s current location in the network and its
next target node. The last component is the configuration of the deployed decoy services. We define φix to
map each state i into x uniformly. This results in a feature space of cardinality 427, 500. In addition, we
define dxi to be uniform across all states with matching features.

For all problems, we define the set of representative feature beliefs Q̃ via uniform discretization using Eq. (9).
We use discretization resolution ρ = 3 for RS (4,4); ρ = 2 for RS (5,5) and RS (5,7); and ρ = 1 for RS (7,8),
RS (10,10), and CAGE-2. We associate these representative feature beliefs with feature beliefs q ∈ Q via
the nearest-neighbor mapping in Eq. (10).

Off-line and on-line computation The aggregate problems are all solved by VI; cf. Eq. (20). For RS
(4,4)-RS (7,8), the belief estimator F is calculated exactly according to its definition [cf. Eq. (24)] in both
off-line and on-line computation.

For RS (10,10) and CAGE-2, the belief estimator F involved in both off-line and on-line computation is
approximated by a rejection-sampling particle filter with 100 particles Crisan & Doucet (2002).
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