
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review

PREDICTING THE BEHAVIOR OF AI AGENTS USING
TRANSFER OPERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Predicting the behavior of AI-driven agents is particularly challenging without a
preexisting model. In our paper, we address this by treating AI agents as stochastic
nonlinear dynamical systems and adopting a probabilistic perspective to predict
their statistical behavior using the Fokker-Planck equation. We formulate the
approximation of the density transfer operator as an entropy minimization problem,
which can be solved by leveraging the Markovian property and decomposing
its spectrum. Our data-driven methodology simultaneously approximates the
Markov operator to perform prediction of the evolution of the agents and also
predicts the terminal probability density of AI agents, such as robotic systems
and generative models. We demonstrate the effectiveness of our prediction model
through extensive experiments on practical systems driven by AI algorithms.

1 INTRODUCTION

Autonomous agents operate in dynamic environments, making decisions based on continuous feed-
back that enables them to learn and adapt over time. Therefore, studying the behavior and alignment
of these AI-driven agents is critical for several reasons. Analyzing their actions can help prevent
behaviors that conflict with human values and ethical standards [Rossi & Mattei (2019), Doshi
& Gmytrasiewicz (2005)]. Furthermore, understanding their behavior is essential for enhancing
their efficiency and reliability, particularly in safety-critical applications such as autonomous robots
[Pourmehr & Dadkhah (2012)]. These intelligent models are typically complex, high-dimensional,
and only partially observable over short time intervals. This complexity raises the question of
which properties can be efficiently quantified to truly understand their capabilities. The design and
understanding of AI components embedded within these agents depend crucially on analyzing the
interplay between AI-driven decision-making and the physical behavior of the closed-loop system.
This capability is foundational for users to perceive, predict, and interact effectively with intelligent
systems. It also provides the theoretical and technical basis for practical tasks such as decision-making
and reinforcement learning [Levine et al. (2016), Ganzfried & Sandholm (2011)].

Given these challenges, it is important to develop methods capable of harnessing critical information
to identify the behavior of AI components in closed-loop systems. In Déletang et al. (2021) and
Roy et al. (2022), the authors try to model the AI agent as a system that was pre-trained using
reinforcement learning and the environment is a partially-observable Markov decision process. The
authors in Dipta et al. (2022) present a card game and leverage the game theory framework to
analyze learning agents’ characteristics with environmental changes. Moreover, Lee & Popović
(2010) try capture a rich set of behavior variations by determining the appropriate reward function in
the reinforcement learning framework. For a comprehensive review of literature on modeling and
predicting AI agents behavior, we refer readers to Albrecht & Stone (2018). Among these emerging
methodologies, there has been a notable increase in modeling these behaviors as nonlinear dynamical
systems [Narendra & Parthasarathy (1992); Beer (1995); Suttle et al. (2024); Ijspeert et al. (2002)].
Originating from studies in partial differential equations (PDEs) and fluid mechanics, techniques such
as Dynamic Mode Decomposition (DMD) and its generalizations have also demonstrated significant
capability in revealing the underlying evolutionary laws of AI agents [Schmid (2022), Brunton et al.
(2021)].

Despite these advances made in the above mentioned works chaotic behavior resulting from nonlin-
earity and stochasticity encountered in practical problems pose significant challenges to deterministic

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review

modeling and identification. However, despite the substantial uncertainties, and sensitivities to initial
conditions affecting AI agents, their statistical behavior and properties can be surprisingly regular.
Specifically, when the closed-loop dynamics of AI agents are time-invariant, the density evolution
of the agents’ states follows a Markovian property [Risken (1996), Gardiner (2009), Hoehn et al.
(2005)].

These observations motivate analyzing this problem from a statistical perspective. In particular,
modeling the evolution trajectories of the state via a stochastic process and then studying the transfer
and propagation of the probability density functions, has gathered a lot of attention. This approach,
drawing from statistical mechanics, assumes that the agents trajectories are independent and governed
by the same Fokker-Planck equation, which characterizes the statistical behavior of agents based
on their underlying dynamics, showing significant advantages in handling systems with complex,
high-dimensional nonlinear chaotic dynamics and noise perturbations [Risken (1996); Lasota &
Mackey (2013)]. Another motivation for analyzing the evolution of densities arises from generative
AI. The characteristics of the sampling probability density are often intricate. Traditional statistical
models frequently fall short due to the high dimensionality of the data and the inherent complexities
of the sampling process. Generative models, such as those based on denoising diffusion processes
[Ho et al. (2020)] or iterative reward-based sampling methods using transformers [Kingma (2013)],
introduce complex stochastic dynamics. These dynamics are challenging to analyze at the level of
individual samples. Instead, adopting a macroscopic perspective and focusing on the evolution of
probability densities induced by these models enables the study of the aggregate behavior of complex
models and a better understanding of their underlying mechanisms.

The application of probabilistic models to learn and predict the statistical behavior of complex AI
agents has gained increasing attention in areas such as autonomous driving, motion planning, and
human-robot interaction [Lefèvre et al. (2014); Trautman et al. (2015); Bai et al. (2015); Rasouli et al.
(2017)]. However, algorithms based on this probabilistic perspective, particularly those studying the
propagation of density processes, remain underexplored. Several open challenges persist in advancing
this field, especially in developing unified frameworks that bridge the gap between domain-specific
methodologies and general modeling approaches [Baarslag et al. (2016)].

In this work, we focus on virtual or physical agents with stochastic dynamics, which are controlled or
operated by AI algorithms. We model the evolution of their state distributions as a Markov chain
(or process). Unlike existing approaches that primarily predict agent evolution, our work adopts a
macroscopic/statistical mechanics perspective. Our aim is to develop algorithms capable of predicting
not only the propagation of future densities but also the stationary distribution of the Markov process,
which corresponds to the controlled objective applied to the AI agents.

Specifically, we utilize the spectral decomposition theorem [Lasota & Mackey (2013)] for Markov
operators to decompose the propagation of the Markov transfer operator into a transient decaying term
and projections onto a set of cyclical bases representing the asymptotic behavior. As demonstrated
in our analysis, this approach significantly simplifies the learning and representation of Markov
processes, while also facilitating the prediction of the agents’ future behavior from a macroscopic
perspective.

1.1 RELATED WORK

The behavior prediction of AI-driven agents has been a growing focus in various domains, including
robotics, generative modeling, and reinforcement learning. A number of approaches have been
proposed, but they differ significantly in methodology, interpretability, and scope. Below, we situate
our work within these efforts, identifying gaps that our approach aims to address.

1.1.1 STATISTICAL MODELING OF AI AGENTS

Modeling AI agents as stochastic systems has been explored in works like Goswami et al. (2018), who
use constrained Ulam Dynamic Mode Decomposition to approximate Perron-Frobenius operators
for deterministic and stochastic systems. Norton et al. (2018) proposes finite volume methods for
numerical approximation, which form the foundation for deep learning-based operator approximation
methods, such as DeepONets and Fourier Neural Operators [Li et al. (2021); De Ryck & Mishra
(2022)]. However, these methods prioritize scalability and numerical efficiency, often at the cost of
interpretability and robustness when applied to systems with high-dimensional chaotic dynamics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review

Our approach addresses this gap by adopting a spectral decomposition framework, which not only
approximates the Markov operator but also provides interpretable insights into the evolution and
asymptotic behavior of densities.

1.1.2 BEHAVIOR PREDICTION AND REACHABILITY ANALYSIS

Several works have examined the behavior of AI agents through reachability analysis. Meng et al.
(2022) directly learn state transfer functions, while Everett et al. (2021) and Zhang et al. (2023)
analyze neural network-controlled systems to estimate their reachable states. These approaches focus
on trajectory-specific predictions, which can become computationally expensive for systems with
high-dimensional state spaces or stochastic dynamics.

Our method departs from these by adopting a macroscopic perspective: rather than tracking individual
trajectories, we model the evolution of probability densities. This provides computational advantages
and insights into the statistical behavior of systems without requiring exhaustive trajectory-level
analysis.

1.1.3 GENERATIVE MODELING AND DIFFUSION PROCESSES

Generative models have also seen increasing adoption in behavior prediction, particularly through
diffusion-based approaches [Song et al. (2020); Ho et al. (2020)]. These methods focus on sampling
from complex distributions by iteratively refining noisy samples, but they do not explicitly model the
density evolution over time. This makes it challenging to analyze the long-term statistical behavior of
these models.

In contrast, our work incorporates diffusion modeling within a broader framework of Markov
transfer operators, enabling both the prediction of density evolution and the estimation of stationary
distributions.

1.1.4 LIMITATIONS OF EXISTING APPROACHES

Despite their contributions, many existing methods are either limited in scope or fail to generalize
across diverse application domains. For instance:

• Reachability methods often require exhaustive computation of individual trajectories, which
is infeasible for high-dimensional stochastic systems.

• Generative models excel at producing samples but do not explicitly address density evolution,
limiting their applicability for long-term behavior prediction.

• Operator approximation methods prioritize computational efficiency but lack interpretability
or alignment with asymptotic properties.

1.2 OUR CONTRIBUTIONS

Our main contributions are detailed as follows:

• AI-driven agents behave in unpredictable ways due to machine learning black boxes. We
look at this through the lens of propagation of probability densities and the stochastic transfer
operator. AI agents are trained with data that has inherent biases. This, coupled with the
structure of machine learning models, can potentially alter the alignment of the model. To
verify the alignment of the model, we predict the asymptotic behavior of the model by
analyzing the terminal stationary density of the AI agents.

• We propose PISA, a novel and scalable algorithm that can simultaneously predict the
evolution of the densities of AI agents and estimate their terminal density. Our algorithm is
motivated by the spectral decomposition theorem [Lasota & Mackey (2013)] and provides a
theoretical backing for its performance. PISA simultaneously approximates the action of
the Markov transfer operator from the trajectory data of agents and predicts their asymptotic
behavior.

• In our proposed algorithm PISA, the model complexity is indexed by the number of basis
functions. The number of basis functions is a tunable parameter that can be altered according

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review

to the user’s needs. We provide a theoretical guarantee of the existence of the optimal solution
to our operator estimation problem.

• We numerically verify the effectiveness of PISA in a variety of practical cases and compare it
with existing literature. We first predict the behavior of unicycle robots driven by a controller
based on diffusion models. Then we analyze the behavior of generative models from the
lens of density evolution. Lastly, we apply PISA in the case of predicting the movement of
pedestrians. We observe that PISA performs significantly better than the existing literature.

Briefly speaking, by adopting a spectral decomposition approach, our proposed method bridges the
gaps in these prior works. Specifically:

• It balances computational efficiency with interpretability, providing insights into both short-
term evolution and long-term stationary behavior.

• It generalizes to diverse systems, including high-dimensional chaotic systems, by focusing
on density evolution rather than individual trajectories.

• It integrates with advanced generative models and reinforcement learning frameworks,
providing a unified approach to behavior prediction.

This contextualization positions our work as a step toward a more comprehensive framework for
understanding the statistical behavior of AI-driven agents.

1.3 STATISTICAL BEHAVIOR PERSPECTIVE AND THE FOKKER-PLANCK EQUATION

Consider a practical AI agent with physical dynamics defined by

ẋ = h(x, u) + g(x)ξ, (1)

where u is an external input to the system and ξ represents the white noise signal. With a parameterized
machine learning model as feedback u = MLθ(x), the system’s dynamics including the feedback
input is given by

ẋ = h(x,MLθ(x)) + g(x)ξ = f(x) + g(x)ξ, (2)

where x(t) ∈ X ⊆ RM and f(·) : RM 7→ RM and g(·) : RM 7→ Rp are nonlinear continuous
functions.

The nonlinear system (2) is highly dependent on initial conditions and the noise ξ. Instead of
analyzing individual trajectories of (2), we take the perspective of analyzing several independent
trajectories simultaneously. Despite the challenges posed by stochasticity, and complexity in the
system dynamics, the evolution of the statistical distribution over the states of all agents remains
well-structured [Lasota & Mackey (2013)]. Particularly, at each time instance, samples from all the
independent trajectories can be viewed as a probability density of the states. Therefore, the evolution
of states from various initial conditions can be viewed as the evolution of a probability density. The
evolution of the probability density function of states at time t, denoted by ρ(x, t), forms a Markov
process that obeys the Fokker-Planck equation, as described below:

Lemma 1 (Risken (1996)) For agents governed by (2), we have that the evolution of the density of
states ρ(x, t) is a Markov process. The evolution is given by the Fokker-Planck equation

∂ρ(x, t)

∂t
= −

n∑
i=1

∂ (fi(x, ue)ρ(x, t))

∂xi
+

1

2

n∑
i=1

n∑
j=1

∂2
(
g(x)gT (x)ρ(x, t)

)
ij

∂xi∂xj
= AFP ◦ρ(x, t), (3)

where AFP is the differential operator the characterizes the evolution of ρ(x, t) with time, also
denoted as the Markov transfer operator. For the series of densities {ρk(x)} = {ρ(x, kτ)} with some
τ > 0, the density transfer operator P is a Markov operator such that

ρk+1(x) = P ◦ ρk(x), (4)

and if the Markov process is constrictive [(Lasota & Mackey, 2013, Definition 5.3.1)], then there is a
correspondent stationary density ρ∗(x) such that

ρ∗(x) = P ◦ ρ∗(x). (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review

Remark 1 It is important to note that the Markov transfer operator P completely defines the
evolution of the density of the system. Hence, our goal is to analyze the behavior of the AI-driven
agents given by (2), through the estimation of the action of P . Our goal is to also estimate the
asymptotic behavior of AI-driven agents as several systems (2) exhibit stationary states asymptotically.
For example, robotics systems are designed to stabilize certain points in the domain. Another example
is a diffusion model which is trained to sample from unknown target distributions. For systems
that exhibit stationary states, there exists an invariant density ρ∗ [Lasota & Mackey (2013)] for the
Markov operator such that (5) holds. Here agents following (2) reach ρ∗ asymptotically. We seek to
estimate the terminal density ρ∗ as it provides a convenient method to assess the alignment of the
AI-driven agents.

Remark 2 We have noticed that for some general AI agents, the density evolution process of the state
may not be a Markovian process. This happens, for example, when h(x, u), g(x) or u(x) in (1) and
(2) are time-variant and non-stationary. In these cases, a similar form of time-variant Fokker-Planck
equation holds, though it does not implies a Markov process [Risken (1996)]. Nonetheless, we
claim that the Markovian setting is actually widely used and considered for model simplicity and
convenience of analysis. To give an example, the state evolution of Markov decision processes (MDPs)
with any fixed (stationary) control policy applied, forms a Markov process [Bertsekas (2012)].

1.4 FROM SAMPLES TO DENSITIES

Our data consists of the state trajectory of N identical agents governed by the dynamics (2). The
trajectory of these agents are collected from t = 0 to t = T with a fixed sampling period τ = T

K .
The sampled dataset is given by {Xn}Nn=1 of the state x, where Xn = [χn0 , χ

n
1 , χ

n
2 , · · · , χnK] ∈

RM×(K+1). Note that the collected data set can also come from a single agent starting from N
different initial states.

Estimating probability densities from samples is an active problem in machine learning and statistics.
In this work, we employ Kernel Density Estimation to numerically construct the probability density
ρk(x) using the data {Xn}. We can view {Xn} by iterating with respect to time as {Yk}Kk=0, where
Yk = [χ1

k, χ
2
k, · · · , χNk] denotes the state vectors of N particles at time t = kτ . Using kernel density

estimation [Hastie et al. (2009)], we then get an empirical probability distribution estimation ρk(x).
In this paper, we choose to use the Gaussian kernel for the estimation of ρk which is given by

ρk(x) =
1

N
√
det(2πσ2

kIM)

N∑
n=1

e
−∥x−χn

k∥2

2σ2
k . (6)

It is important to note that any choice of density estimation algorithm can be used with the data
{Xn} to obtain {ρk(x)}Kk=0. KDE provides a convenient choice for measuring the probability ρ(x)
at fixed reference points. The choice of reference points and the parameter σk can be chosen by the
user to better approximate ρk. In this paper, we choose to uniformly sample the reference points
in the domain X to estimate every ρk(x). We fix a constant σK = σ for simplicity. More specific
KDE-related tools can be used based on the system in consideration and the domain, as enlisted in
[Chen (2017)].

We illustrate in Figure 1 how the state trajectory x(t) is coupled with the probability density ρ(x, t)
for the Van der Pol oscillator,

ẋ1 = x2, ẋ2 = µ(1− x2
1)x2 − x1.

Remark 3 We acknowledge that the choice of kernels significantly affects both the accuracy and
the computational complexity of the algorithm. However, since our main focus lies in predicting the
trajectories of densities, we opted for a practical kernel choice tailored to the application at hand.
More sophisticated methods to approximate densities from data choosing might yield better results
and our algorithm can easily be used with these techniques.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review

(a) Initial states x(0) (b) Initial density ρ0(x) (c) States x(1500τ) (d) Density ρ1500(x)

Figure 1: Illustration of the relationship between the states and probability density of the Van der
Pol oscillator in a bounded domain. The x-axis in the figures corresponds to x1 and the y-axis in
the figures corresponds to x2. (a) Various particles with different initial states driven by Van der Pol
dynamics. (b) Density of initial state of agents. (c) States of the agent after time t = 1500τ . (d)
Density of the states at time t = 1500τ . Brighter colors in (b) and (d) represent higher probability.
The states are sampled with t = 0.01.

2 PREDICTION INFORMED BY SPECTRAL-DECOMPOSITION ALGORITHM
(PISA) FOR LEARNING MARKOV TRANSFER OPERATORS

We present our algorithm to estimate the Markov transfer operator in this section. Further, we predict
the asymptotic behavior of the system by estimating the terminal density of the dynamical system.
We approximate the action of the Markov transfer operator using the following model,

P ◦ ρk(x) =
1

l

l∑
i=1

ρk−l+i(x)−
l∑
i=1

(
1

l
− Aiθ(ρk)

)
Giγ(x). (7)

Here, we are decomposing the action of the Markov transfer operator on the density ρk(x) into 2l
components as given by l functionals Aiθ(ρk) and l functions Giγ(x). The functionals Aiθ(ρk) and
functions Giγ(x) are parameterized by θ and γ respectively. Moreover, we impose the following
constraints:

P ◦ Giγ(x) = Gi+1
γ (x), ∀i = 1, · · · , l − 1;

P ◦ Glγ(x) = G1
γ(x);

⟨Giγ(x),Gjγ(x)⟩ = 0,∀i ̸= j.

(8)

This method of decomposing the Markov transfer operator is guided by the spectral decomposition
theorem which we elaborate on in Section 4.

Given the decomposition of the Markov transfer operator, we propose the following loss function,
guided by the spectral decomposition theorem, to learn the parameter θ and γ.

L(θ, γ) =

K−1∑
k=l−1

D

(
1

l

l∑
i=1

ρk−l+i(x)−
l∑
i=1

(
1

l
− Aiθ(ρk)

)
Giγ(x)

∥∥∥∥∥ρk+1(x)

)

+ λ

l∑
i̸=j

⟨Giγ(x),Gjγ(x)⟩+ µ

l∑
r=1

D

(
l∑
i=1

Aiθ(G
r
γ)G

i
γ(x)

∥∥∥∥∥Gr+1
γ (x)

) (9)

We then construct PISA as the following alternating optimization algorithm to compute θ and γ, in
which we choose Aiθ(ρ) and Giγ(x) to be outputs of two distinct neural networks parameterized by θ
and γ, respectively. An important aspect of PISA is that it can also predict the terminal density of the
Markov transfer operator. The estimate of terminal density of P can be expressed as

ρ∗(x) =
1

l

l∑
i=1

Giγ(x). (10)

Note that optimization problems (11) and (12) are constrained by the structure of Giγ and Aiθ. These
constraints are easily satisfied by non-negative output layers of typical neural network architectures.
For instance, normalized sigmoid layer for Giγ satisfies the constraints in (11) and (12).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review

Algorithm 1: Prediction Informed by Spectral-decomposition Algorithm (PISA)
Data: l > 0, λ > 0, µ > 0; ρk(x), for k = 0, 1, · · · ,K; initial values of γ and θ; two small

positive thresholds ϵ1 and ϵ2;
Result: γ and θ;

1 Nepochs ← 1000
2 while Nepochs ̸= 0 do
3 Solve the following optimization problem to get γ∗

min
γ

L(θ, γ)

s.t. Giγ(x) ≥ 0 and
∫
Giγ(x)dx = 1, for i = 1, · · · , l;

(11)

4 if ∥γ∗ − γ∥ ≥ ϵ1 then
5 γ ← γ∗

6 end
7 Solve the following optimization problem to get θ∗

min
θ

L(θ, γ)

s.t. Aiθ(ρk) ≥ 0, for i = 1, · · · , l and
l∑
i=1

Aiθ(ρk) = 1;
(12)

8 if ∥θ∗ − θ∥ ≥ ϵ2 then
9 θ ← θ∗

10 end
11 Nepochs = Nepochs − 1
12 end

3 NUMERICAL EXPERIMENTS

We present the effectiveness of PISA on different numerical testbeds. We performed the numerical
experiments on a machine with Intel i9-9900K CPU with 128GB RAM and the Nvidia Quadro
RTX 4000 GPU. In our numerical experiments, we compare the performance of PISA with that of
Meng et al. (2022) and DDPD proposed in Zhao & Jiang (2023a). Particularly, Meng et al. (2022)
approximates the Perron-Frobenius operator as

ρk+1 = et·NNδ(x,t)ρk.

Here, note that NNδ approximates the differential operator AFP given in (3). Then et·NNδ is an
approximately linear solution to (4). Moreover, in Zhao & Jiang (2023a), the authors provided the
dynamic probability density decomposition (DPDD) method, which is based on Extended Dynamic
Mode Decomposition and makes a linear finite-dimensional approximation of the Markov transfer
operator to forecast the density evolution.

3.1 LUNAR LANDER (CONTINUOUS)

We apply PISA to predict the behavior of a reinforcement learning algorithm. Lunar lander (Continu-
ous) is a rocket trajectory optimization problem on the Gymnasium platform Towers et al. (2024),
with an eight-dimensional state and three-dimensional control input. We first train a feedback control
policy using the Actor-Critic algorithm to make the rocket land on the landing pad which is always
given by the coordinates (0,0) in the simulation environment. The feedback policy results in stochastic
nonlinear dynamics as described in (2). We collect 3000 trajectories of length 500 time steps. We
evaluate the density of the states via kernel density estimation (KDE) method to get a trajectory
of densities as {ρt(x)}500t=0. We use the first 100 steps of the density trajectory to learn the Markov
transfer operator using PISA. We also estimate the Markov transfer operator using DPDD (Zhao &
Jiang (2023a)), and direct NN (Meng et al. (2022)), respectively to compare the different models. We
evaluate the performance of the learned models to predict the density for the following 400 steps to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review

get {ρ̂t(x)}500t=101 for each of the three algorithms. We use the KL divergence between the predicted
density ρ̂k and the true density ρk to characterize the performance of each algorithm. In Figure 2(a),
we compare the performance of the three algorithms. We see that Meng et al. (2022) performs better
initially due to its linearity assumption on the transfer operator but PISA performs better in the long
term. However, DPDD performs significantly worse as it projects the operator on a finite basis. In
Figure 2(b), we depict the predicted stationary density ρ∗ of the lunar lander. We see that ρ∗ is
centered around (0,0) with a high probability which verifies that the controller makes the rocket land
within the landing pad most times.

0 1 2 3 4
0

2

4

6

8

10

PISA
Meng et al. (2022)
DPDD

D
(ρ
t
||ρ̂

t
)

time
(a)

x
2

x1

(b)

Figure 2: Experiments on the lunar lander in the Gymnasium environment. (a) Comparison of
performance between PISA, Meng et al. (2022) and DPDD. PISA performs better than the other
algorithms in the long term although Meng et al. (2022) performs better initially due to its linearity
assumption. (b) Prediction of the stationary density ρ∗ of the lunar lander centered at (0,0). This
confirms that the controller ensures that the rocket lands within the landing pad.

3.2 PREDICTING BEHAVIOR OF SCORE-BASED GENERATIVE MODEL

We consider the problem of analysis of the behavior of diffusion models. Diffusion models generate
data using a bidirectional scheme. Given data samples from an unknown density, in the forward
process, noise is sequentially added until the data samples resemble white noise samples from a
standard Gaussian. Then, to generate new samples, the reverse process of diffusion models iteratively
removes noise from white noise samples to generate realistic samples from the target density. The
reverse process is particularly complex as the amount of noise to be removed at every step is estimated
using neural networks. Our task is to analyze the behavior of diffusion models in the reverse process
from the lens of evolving probability densities. We particularly consider the case of diffusion models
based on estimating the score Song et al. (2020). We seek to study the behavior of these score-based
generative models by their action on samples in the reverse process.

In Song et al. (2020), the forward and reverse processes use the following Stochastic Differential
Equation (SDE),

ẋ = Ax+Bu, (13)

where x, u ∈ R10. In the forward process where noise is sequentially added, x(0)are samples from
an unknown target distribution, and u(t) is sampled from a Gaussian u(t) ∼ N (0, I). In the reverse
process, x(T) ∼ N (0, I) is the initial point, and u(t) is the output of a neural network Sψ(x, t) that
estimates the amount of noise needed to be removed at each step t to obtain a realistic sample. In
this experiment, we predict the behavior of the score-based diffusion model in the reverse process.
For the reverse process, the task is to sample from Gaussians centered at −61 and 61 and kI where
k ∼ N (−3, I). The noise distribution is the standard Gaussian. In Figure 3(a) we show the first
two dimensions of the samples used in the reverse process of the diffusion model. The blue points
denote the initial points sampled from a standard Gaussian. The red points denote the final samples
from the target distribution. To train the diffusion model, we use N = 12000 samples from the target
distribution. The data samples are diffused in the forward process for a time period of 8 seconds. In
the reverse process, to sample from the desired distributions, we learn the score as proposed in Song
et al. (2020). Once the score is sufficiently learned using a neural network, we record N trajectories

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review

in the reverse process for a time period of five seconds, which constitute the training dataset. Then
we predict the behavior for the next three seconds which is the testing dataset.

We use the KL divergence between the predicted ρ̂t and the true ρt from the testing dataset as a
metric to numerically analyze the performance of PISA. It is evident from Figure 3(b) that PISA
accurately predicts the behavior of the diffusion model with varying choices of the number of basis
functions. We use the logarithm of the KL divergence to emphasize that PISA performs at least
one order of magnitude better than the other methods Meng et al. (2022) and DDPD Zhao & Jiang
(2023a). We see that Meng et al. (2022) performs better initially due to its linear solution to the PDE
but its performance deteriorates rapidly. PISA retains relatively much better performance over a
longer time horizon. In Figure 3(c), we take a closer look at the performance of PISA for different
choices of basis functions l. We see that a choice of l ≥ 10 is required to achieve good performance.
We use feedforward neural networks with 3 hidden layers for Aiθ, Giγ and NNiδ .

-5 0 5
-8

-6

-4

-2

0

2

4

6

8

Final
Initial

x2

x1

(a)

0 0.5 1 1.5 2

10!2

100

102

104

l = 20
l = 10
l = 5
l = 2
Meng et al. (2022)
DPDD

lo
g
D
(ρ̂
t
∥ρ
t
)

time

(b)

0 1 2 3

0.1

0.2

0.3

0.4

0.5

l = 20
l = 10
l = 5
l = 2

D
(ρ̂
t
∥ρ
t
)

time

(c)

Figure 3: Experiments on the ten dimensional score-based generative model Song et al. (2020). (a)
Data samples of diffusion model. Blue points of the standard Gaussian are the initial points in the
reverse process. Red points denote samples from the unknown final distribution. (b) Comparison
of performance of PISA with different choices of basis functions l, Meng et al. (2022) and DPDD
on testing dataset. PISA performs an order of magnitude better for any choice of basis function. (c)
Comparison of PISA with different choices of basis functions l. A choice of l ≥ 10 is required to
achieve the best performance.

3.3 UCY PEDESTRIAN DATASET

Here, we show the effectiveness of PISA on physical data where the transfer operator is not constrictive
and the dynamics are not Markov. We apply PISA on the UCY pedestrian dataset Lerner et al. (2007)
to predict the movement of pedestrians by estimating the evolution of the density of pedestrians. The
dataset consists of videos of pedestrians walking in several regions as depicted in Figure 4(a). We
use the Zara01 subsection of the dataset in our experiments. We obtained pre-processed data from
the code repository of Salzmann et al. (2020), where the video was processed to obtain the x and y
coordinates of the position of the pedestrians. As pedestrians are walking everywhere in state space,
the constrictive property no longer holds. Further, pedestrians enter and exit the scene which results
in highly stochastic behavior in the density. Given these complications, we show that PISA still
performs better than other methods that learn transfer operators. We assume that every pedestrian is
identical and their movement is governed by the dynamics given in (2). Both DDPD and Meng et al.
(2022) require Markovian dynamics of the density, however we show that PISA can perform well
even when this assumption fails.

Given the positions of pedestrians as depicted in Figure 4(a), we approximate the probability density
of the pedestrians as depicted in Figure 4(b). In Figure 4(c), we once again compare PISA with the
exponential model Meng et al. (2022) on the test data for the first 400 time samples. We choose
l = 5 and feedforward neural networks with 3 hidden layers for Aiθ, Giγ and NNiδ. Here, we see
that the initial time period in which the exponential model works better than PISA is significantly
shorter due to the model inaccuracy. However, PISA continues to perform well over a longer time
horizon. It is also important to note that both models have significantly higher estimation errors in the
testing performance for this experiment compared to performance in experiments on the Gymnaisum
Lunar Lander model and the score-based generative model. This is due to the stochasticity of the
data and the assumption we make about the nature of the pedestrians. Better density approximation

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review

algorithms that are suited for stochastic data and for incorporating jumps in the probability density
can be employed to obtain an improvement in the performance.

(a) Snapshot from dataset

x2

x1

(b) Estimated density ρk

0 50 100 150 200
0

100

200

300

400

500

600
PISA
Meng et al. (2022)

D
(ρ̂

t
∥ρ

t
)

time
(c) Comparison with Meng et al. (2022)

Figure 4: Experiments on the UCY pedestrian dataset. (a) A snapshot from the dataset. (b) Corre-
sponding estimated probability density. (c) Comparison between PISA and Meng et al. (2022) in the
estimation of future probability densities.

4 THEORETICAL FOUNDATIONS OF SPECTRAL DECOMPOSITION

If the Markov transfer operator P is constrictive, it pushes forward the probability distribution ρk(x)
to a stationary distribution ρ∗(x) corresponding to the attractors of dynamical systems. This evolution
of the probability distribution is in fact a Markov Process (see Appendix A). For Markov operators
with the constrictive property, we have the following spectral decomposition theorem.

Lemma 2 (Lasota & Mackey (2013)) Let P be a constrictive Markov operator. Then there exists
an integer l, two sequences of non-negative functions gi(x) ∈ L1 and hi(x) ∈ L∞, i = 1, 2, · · · , l,
and an operator Q : L1 7→ L1 such that for all ρ(x) ∈ L1, P ◦ ρ(x) can be written in the form

P ◦ ρ(x) =
l∑
i=1

ai(ρ)gi(x) +Q ◦ ρ(x), (14)

where
ai(ρ) =

∫
ρ(x)hi(x)dx.

The functions gi(x) and the operator Q have the following properties:

1) Each gi(x) is normalized to one and

gi(x)gj(x) = 0, for all i ̸= j, (15)

i.e., the density functions gi(x) have disjoint supports;

2) For each integer i there exists a unique integer α(i) such that

P ◦ gi(x) = gα(i)(x). (16)

where α(i) ̸= α(j) for i ̸= j. Thus, P just permutes the functions gi(x);

3) Moreover,
∥PnQ ◦ ρ(x)∥ → 0 (17)

as n→∞ for every ρ(x) ∈ L1.

Lemma 2 states that the action of the PF operator can be decomposed into l components through the
functionals ai(ρ) and the functions gi(x). Here l is a finite integer that serves as a measure of the
model complexity of PISA. Further, the operator Q captures the effect of the terminal density on
ρ(x). As t→∞, the action of Q on ρ(x) decays to 0. This drives our motivation to use Q ◦ ρ(x) as

Q ◦ ρk(x) =
1

l

l∑
i=1

ρk−l+i(x)−
1

l

l∑
i=1

gi(x). (18)

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review

Further, as t→∞, we can see that

ρ∗(x) =
1

l

l∑
i

gi(x). (19)

This implies that the density functions gi serve as a basis for the stationary terminal density ρ∗. It is
easy to verify for (19) that P ◦ ρ∗(x) = ρ∗(x) through the permutation property. Given the Lemma 2,
(18), and (19), we provide a sufficient condition on the output of our algorithm PISA.

Theorem 1 For systems (2) that have a stationary terminal density, there exists a finite l, an operator
Q, l non-negative functionals Aiθ(ρ) and l densities Gγ(x) such that the loss L(θ, γ) = 0.

Proof 1 We provide a brief overview of the proof. Lemma 2 guarantees the existence of l functions
ai(ρ) and gi(x) that exactly decompose the action of the PF operator. These are approximated
using neural networks Aiθ(ρ) and Giγ(x), respectively. The cost function L is designed to satisfy the
properties of ai and gi. The first term in the cost function L addresses the propagation of the PF
operator. The second term addresses the orthogonality property of every gi and the last term captures
the permutative property gi. ■

5 CONCLUSION AND BROADER DISCUSSION

While this paper introduces the PISA framework for predicting the behavior of AI-driven agents
and demonstrates its advantages over existing methods, there remain several broader considerations
regarding its applicability, interpretability, and limitations in the context of understanding AI systems.

5.1 COMPARISON WITH OTHER METHODS

PISA leverages spectral decomposition to approximate the Markov transfer operator, providing a
theoretically grounded approach for both short-term prediction and asymptotic behavior estimation.
Compared to alternative methods, such as direct neural network-based approximations (e.g., Meng
et al. (2022)) or dynamic mode decomposition approaches (e.g., Zhao & Jiang (2023b)), PISA shows
superior long-term prediction accuracy. However, these advantages are subject to the following
trade-offs:

• Interpretability: The spectral decomposition framework provides a clearer interpretative
advantage by explicitly decomposing density evolution into orthogonal components. In
contrast, purely neural network-based methods, while often achieving strong performance,
lack this interpretability due to their black-box nature.

• Prediction Accuracy: While PISA outperforms existing methods in long-term predictions,
its accuracy is sensitive to the number of basis functions (l) used in the decomposition. This
dependency introduces a trade-off between computational complexity and predictive fidelity,
which needs careful tuning based on the specific task.

• Flexibility in Non-Markovian Systems: PISA assumes a Markovian setting for density
evolution. Though it can perform well in approximately Markovian or partially observable
systems (as shown in the UCY pedestrian dataset), its performance may degrade when the
dynamics deviate significantly from this assumption.

5.2 KERNEL DENSITY ESTIMATION AND BROADER LIMITATIONS

The conclusion section highlights KDE as a potential limitation due to its dependency on kernel
choice and bandwidth parameters. While KDE is computationally efficient and widely applicable, it
introduces the following challenges:

• Scalability in High Dimensions: KDE struggles in high-dimensional settings due to the
curse of dimensionality, which can limit its applicability to complex systems with large state
spaces.

• Sensitivity to Parameters: The choice of kernel bandwidth directly impacts the quality of
density estimates, necessitating careful tuning that may not generalize across tasks.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review

Alternative density estimation methods, such as normalizing flows or diffusion-based models, could
be integrated into the PISA framework to mitigate these issues. However, such methods may increase
computational overhead and reduce interpretability.

5.3 UNDERSTANDING AI SYSTEMS IN BROADER CONTEXT

The stated goal of this work is to provide tools to understand AI systems. While PISA contributes to
this understanding by predicting density evolution and terminal behavior, several broader challenges
remain:

• Alignment with System-Level Interpretability: The focus on density evolution offers
macroscopic insights but may not fully address questions about individual trajectory behav-
iors or their implications for safety and alignment in AI systems.

• Trade-offs Between Generality and Specificity: PISA’s general approach enables its appli-
cation across diverse domains, but domain-specific adaptations (e.g., customized kernels,
task-tailored loss terms) might be needed to achieve maximum predictive accuracy and
insight.

• Broader Metrics for Evaluation: While KL divergence is used as the primary metric for
performance evaluation, incorporating additional metrics, such as sensitivity to outliers,
robustness to noise, or interpretability indices, could offer a more comprehensive assessment
of the framework’s effectiveness.

5.4 FUTURE DIRECTIONS

To fully situate PISA in the broader landscape of methods for understanding AI systems, future
research could:

• Investigate hybrid approaches that combine the interpretability of spectral methods with the
flexibility of neural network-based approximations.

• Explore non-Markovian extensions of PISA to capture more complex dynamics and interac-
tions.

• Develop methods to quantify and compare interpretability and alignment performance across
different prediction frameworks.

• Incorporate task-specific constraints, such as physical feasibility or safety guarantees, di-
rectly into the framework.

In conclusion, while PISA represents a significant step forward in modeling the statistical behavior of
AI agents, its success in udnerstanding such systems requires continued exploration of these broader
considerations. By addressing the interpretability, flexibility, and scalability of methods, future work
can further contribute to the development of trustworthy AI systems.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review

REFERENCES

Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018.

Robert B Ash. Information theory. Courier Corporation, 2012.

Tim Baarslag, Mark JC Hendrikx, Koen V Hindriks, and Catholijn M Jonker. Learning about
the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling
techniques. Autonomous Agents and Multi-Agent Systems, 30:849–898, 2016.

Haoyu Bai, Shaojun Cai, Nan Ye, David Hsu, and Wee Sun Lee. Intention-aware online pomdp
planning for autonomous driving in a crowd. In 2015 ieee international conference on robotics
and automation (icra), pp. 454–460. IEEE, 2015.

Randall D Beer. A dynamical systems perspective on agent-environment interaction. Artificial
intelligence, 72(1-2):173–215, 1995.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 4. Athena scientific,
2012.

Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz. Modern koopman theory for
dynamical systems. arXiv preprint arXiv:2102.12086, 2021.

Y.-C. Chen. A tutorial on kernel density estimation and recent advances, 2017.

T. De Ryck and S. Mishra. Generic bounds on the approximation error for physics-informed (and)
operator learning. Advances in Neural Information Processing Systems, 35:10945–10958, 2022.

Grégoire Déletang, Jordi Grau-Moya, Miljan Martic, Tim Genewein, Tom McGrath, Vladimir
Mikulik, Markus Kunesch, Shane Legg, and Pedro A Ortega. Causal analysis of agent behavior
for ai safety. arXiv preprint arXiv:2103.03938, 2021.

Das Dipta, Ihsan Ibrahim, and Naoki Fukuta. Observing and understanding agent’s characteristics
with environmental changes for learning agents. In 2022 12th International Congress on Advanced
Applied Informatics (IIAI-AAI), pp. 424–429. IEEE, 2022.

Prashant Doshi and Piotr J Gmytrasiewicz. A particle filtering based approach to approximating
interactive pomdps. In AAAI, pp. 969–974, 2005.

M. Everett, G. Habibi, C. Sun, and J. P. How. Reachability analysis of neural feedback loops. IEEE
Access, 9:163938–163953, 2021.

Sam Ganzfried and Tuomas Sandholm. Game theory-based opponent modeling in large imperfect-
information games. In The 10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2, pp. 533–540, 2011.

Crispin Gardiner. Stochastic methods, volume 4. Springer Berlin Heidelberg, 2009.

D. Goswami, E. Thackray, and D. A. Paley. Constrained ulam dynamic mode decomposition:
Approximation of the perron-frobenius operator for deterministic and stochastic systems. IEEE
control systems letters, 2(4):809–814, 2018.

T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of statistical learning: data mining,
inference, and prediction, volume 2. Springer, 2009.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Bret Hoehn, Finnegan Southey, Robert C Holte, and Valeriy Bulitko. Effective short-term opponent
exploitation in simplified poker. In AAAI, volume 5, pp. 783–788, 2005.

Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. In Proceedings 2002 IEEE International Conference on Robotics and
Automation (Cat. No. 02CH37292), volume 2, pp. 1398–1403. IEEE, 2002.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

A. Lasota and M. C. Mackey. Chaos, fractals, and noise: stochastic aspects of dynamics, volume 97.
Springer Science & Business Media, 2013.

Seong Jae Lee and Zoran Popović. Learning behavior styles with inverse reinforcement learning.
ACM transactions on graphics (TOG), 29(4):1–7, 2010.

Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. A survey on motion prediction and risk
assessment for intelligent vehicles. ROBOMECH journal, 1:1–14, 2014.

A. Lerner, Y. Chrysanthou, and D. Lischinski. Crowds by example. In Computer graphics forum,
volume 26, pp. 655–664. Wiley Online Library, 2007.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, and A. Anandkumar.
Physics-informed neural operator for learning partial differential equations. ACM/JMS Journal of
Data Science, 2021.

Y. Meng, D. Sun, Z. Qiu, M. T. B. Waez, and C. Fan. Learning density distribution of reachable
states for autonomous systems. In Proceedings of the 5th Conference on Robot Learning, volume
164 of Proceedings of Machine Learning Research, pp. 124–136. PMLR, 08–11 Nov 2022.

Kumpati S Narendra and Kannan Parthasarathy. Neural networks and dynamical systems. Interna-
tional Journal of Approximate Reasoning, 6(2):109–131, 1992.

R. A. Norton, C. Fox, and M. E. Morrison. Numerical approximation of the frobenius–perron operator
using the finite volume method. SIAM Journal on Numerical Analysis, 56(1):570–589, 2018.

Shokoofeh Pourmehr and Chitra Dadkhah. An overview on opponent modeling in robocup soccer
simulation 2d. RoboCup 2011: Robot Soccer World Cup XV 15, pp. 402–414, 2012.

Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. Understanding pedestrian behavior in complex
traffic scenes. IEEE Transactions on Intelligent Vehicles, 3(1):61–70, 2017.

H Risken. The fokker-planck equation, 1996.

Francesca Rossi and Nicholas Mattei. Building ethically bounded ai. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp. 9785–9789, 2019.

Nicholas A Roy, Junkyung Kim, and Neil Rabinowitz. Explainability via causal self-talk. Advances
in Neural Information Processing Systems, 35:7655–7670, 2022.

T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. Trajectron++: Dynamically-feasible
trajectory forecasting with heterogeneous data. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16, pp. 683–700. Springer,
2020.

Peter J Schmid. Dynamic mode decomposition and its variants. Annual Review of Fluid Mechanics,
54(1):225–254, 2022.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative
modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.

Wesley Suttle, Vipul Kumar Sharma, Krishna Chaitanya Kosaraju, Sivaranjani Seetharaman, Ji Liu,
Vijay Gupta, and Brian M Sadler. Sampling-based safe reinforcement learning for nonlinear
dynamical systems. In International Conference on Artificial Intelligence and Statistics, pp.
4420–4428. PMLR, 2024.

M Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. De Cola, T. Deleu, M. Goulão, A. Kallinteris,
M. Krimmel, A. KG, et al. Gymnasium: A standard interface for reinforcement learning environ-
ments. arXiv preprint arXiv:2407.17032, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review

Pete Trautman, Jeremy Ma, Richard M Murray, and Andreas Krause. Robot navigation in dense
human crowds: Statistical models and experimental studies of human–robot cooperation. The
International Journal of Robotics Research, 34(3):335–356, 2015.

C. Zhang, W. Ruan, and P. Xu. Reachability analysis of neural network control systems. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 15287–15295, 2023.

M. Zhao and L. Jiang. Data-driven probability density forecast for stochastic dynamical systems.
Journal of Computational Physics, 492:112422, 2023a.

Meng Zhao and Lijian Jiang. Data-driven probability density forecast for stochastic dynamical
systems. Journal of Computational Physics, 492:112422, 2023b.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review

A OPERATOR THEORY AND STATISTICAL MECHANICS

The study of density evolution from a macroscopic perspective is rooted in the principles of statistical
mechanics, which bridge the microscopic behavior of individual components and the macroscopic
properties of complex systems. Foundational works, such as those by Lasota & Mackey (2013)
and Risken (1996), have established frameworks for examining how distributions of states evolve
over time in systems governed by stochastic dynamics. This perspective is particularly valuable in
systems with high-dimensional, nonlinear dynamics, such as AI-driven agents, where direct analysis
of individual trajectories is impractical.

The macroscopic approach shifts focus from tracking each particle or agent to analyzing the aggregate
behavior of a population. By modeling the evolution of probability densities, this framework
enables predictions about the statistical behavior of the system as a whole, revealing regularities that
emerge despite underlying stochasticity and chaos. A crucial simplification in this framework is the
assumption of independence among trajectories.

Assumption 1 (Ash (2012)) (Independent Particles Approximation) In our basic problem setting, we
assume that there are N trajectories indexed by n and each trajectory Xn = [χn0 , χ

n
1 , χ

n
2 , · · · , χnK] ∈

RM×(K+1) is generated independently and governed by the identical systems dynamics as shown in
(2).

This assumption, inspired by the ideal gas model in thermodynamics, allows the collective behavior of
the system to be captured using a single probabilistic model. This i.i.d. (independent and identically
distributed) assumption significantly reduces analytical complexity. While it assumes independence,
it remains applicable in practical scenarios where trajectories exhibit weak correlations, a common
feature in many real-world systems. For instance, trajectories can be treated as independent samples
from multiple agents or as repeated simulations of the same agent under varying initial conditions.

By adopting this assumption, we unify the analysis into a single macroscopic model: the stochastic
process {ρk(x)}∞k=0, which represents the evolution of probability densities over time. This abstrac-
tion allows us to study the system’s collective behavior at a higher level, avoiding the need to track
each particle or agent individually.

As shown in Section 1.3 and Lemma 1, for trajectories collection we consider in this paper, the density
evolution chain {ρk(x)}∞k=0 forms a Markov process (Markov chain). Next, we will introduce some
basic properties of Markov processes (chains) and Markov operators.

Definition 1 (Ash (2012); Lasota & Mackey (2013)) In probability theory and statistics, a (dis-
crete) Markov chain or Markov process is a stochastic process {ρk(x)}∞k=0 describing the evolution
of states x ∈ RM , in which the state at time instant k depends only on the state attained in
the previous event xk−1. In operator theory, a Markov operator propagates densities as, that is
P ◦ ρk(x) = ρk+1(x). Here, P is a linear operator on a certain function space (positive L1 function
space) that conserves the L1 norm (the so-called Markov property).

In other words, for the corresponding Markov transfer operator P that propagates the density ρk(x)
forward, we have that [Lasota & Mackey (2013)]

• P is a linear operator;
• P ◦ ρ(x) is non-negative if ρ(x) is non-negative;
• Integral invariance: For ρ(x) ≥ 0,∫

P ◦ ρ(x)dx =

∫
ρ(x)dx;

Many practical systems, especially those involving controlled stochastic dynamics, exhibit a special
property known as constrictiveness. A constrictive Markov process is one that asymptotically
converges to a group of periodical densities {gi(x)}li=1 [Lasota & Mackey (2013)]. It is obvious
that this class of Markov chains have a stationary density ρ∗(x) = 1

l

∑l
i=1 gi(x) and this stationary

density satisfies the fixed-point equation [Lasota & Mackey (2013)]:

P ◦ ρ∗(x) = ρ∗(x).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review

This stationary density represents the long-term behavior of the system, encapsulating its equilibrium
state. For instance, in a controlled robotic system, ρ∗(x) might describe the distribution of stable
states achieved under a given control policy. The existence of ρ∗(x) has profound implications:

• It provides a concrete representation of the system’s asymptotic behavior.
• It enables assessment of system alignment with desired objectives. For example, a generative

AI model trained to sample from a specific distribution can be evaluated by comparing its
stationary density ρ∗(x) to the target distribution.

This macroscopic approach to density evolution has broad applications in AI and robotics. By
focusing on the evolution of probability densities, we can predict and analyze the behavior of complex
systems without explicitly modeling individual components. For example:

• Robotics: Assessing the stability and reliability of control policies.
• Generative AI: Evaluating sampling processes in diffusion-based models.
• Crowd Dynamics: Understanding collective motion in human or animal groups.

Furthermore, this framework offers computational advantages. Directly tracking individual trajec-
tories in high-dimensional systems is often infeasible due to the curse of dimensionality. Instead,
modeling the evolution of densities provides a scalable and efficient alternative.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review

B HYPERPARAMETER OF PISA IN EXPERIMENTS

Hyperparameters of PISA in Different Experiments
Hyperparameter Lunar Lander Score-Based Genera-

tive Model
UCY Pedestrian

λ 5× 10−4 5× 10−4 5× 10−4

µ 5× 10−4 5× 10−4 5× 10−4

l 5 5 (2, 10, 20 for com-
parison)

5

Nepochs 1000 1000 1000
Optimization Method Adam Adam Adam
Learning Rate 5× 10−3 5× 10−3 5× 10−3

K 100 500 600
Hidden Layers of
Aiθ(ρ) and Giγ(x)

3 3 3

Kernel used in KDE Gaussian Kernel Gaussian Kernel Gaussian Kernel
Bandwidth 1.0 0.8 0.6
Number of Sample
Trajectories (N)

3000 5000 400

Number of Reference
Points (Nref) for
KDE

3000 3000 3000

Remark 4 (On the Role of Hyperparameters λ and µ) The hyperparameters λ and µ in the cost
function L(θ, γ) play a pivotal role in the PISA algorithm by governing the balance between short-
term prediction accuracy and the correct estimation of terminal behavior. Specifically, these hyperpa-
rameters are associated with the following terms in the loss function:

• λ
∑
i̸=j⟨G

γ
i (x), G

γ
j (x)⟩: This term enforces orthogonality among the learned basis func-

tions Gγ
i (x), which is crucial for the spectral decomposition of the Markov transfer operator.

A higher λ ensures better orthogonality, improving the ability to capture stationary behavior
at the cost of possibly overfitting to long-term properties.

• µ
∑l
r=1 D

(∑l
i=1 A

θ
i (G

γ
r)G

γ
i (x) ∥G

γ
r+1(x)

)
: This term captures the cyclic property of

the Markov operator in its spectral decomposition. A larger µ emphasizes the role of
capturing the long-term asymptotic behavior of the densities.

In this work, we choose relatively small values for λ and µ (5 × 10−4) across all experiments,
as detailed in the table. This choice reflects a higher emphasis on achieving accurate short-term
predictions of the density evolution, as these predictions are critical for evaluating immediate
system behavior in tasks like autonomous control, generative modeling, and human-robot interaction.
However, such a choice represents a trade-off: while short-term predictions are improved, the
accuracy in estimating the terminal behavior, including the stationary density, may be reduced.

Applications that require detailed insights into long-term stability or alignment properties, such as
analyzing the terminal density of reinforcement learning agents or validating generative models,
might benefit from larger values of λ and µ. Increasing these parameters enhances the algorithm’s
sensitivity to asymptotic properties of the Markov transfer operator but might reduce the fidelity of
short-term density predictions.

The values of λ and µ can thus be tailored to the specific requirements of the application at hand.
For instance:

• In tasks where short-term predictions dominate the performance metrics (e.g., predicting
pedestrian motion or robot trajectory planning), lower values of λ and µ are preferable.

• For tasks focused on evaluating system alignment or ensuring stability over long time
horizons, higher values may be more appropriate.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review

This flexibility allows the PISA framework to adapt to a wide range of applications by adjusting the
relative weighting of short-term and long-term considerations in the loss function.

19

	Introduction
	Related Work
	Statistical Modeling of AI Agents
	Behavior Prediction and Reachability Analysis
	Generative Modeling and Diffusion Processes
	Limitations of Existing Approaches

	Our Contributions
	Statistical Behavior Perspective and the Fokker-Planck Equation
	From Samples to Densities

	Prediction Informed by Spectral-decomposition Algorithm (PISA) for Learning Markov transfer Operators
	Numerical Experiments
	Lunar Lander (Continuous)
	Predicting Behavior of Score-Based Generative Model
	UCY Pedestrian Dataset

	Theoretical Foundations of Spectral Decomposition
	Conclusion and Broader Discussion
	Comparison with Other Methods
	Kernel Density Estimation and Broader Limitations
	Understanding AI Systems in Broader Context
	Future Directions

	Operator theory and statistical mechanics
	Hyperparameter of PISA in Experiments

