
Deeper Insights Without Updates:
The Power of In-Context Learning Over Fine-Tuning

Anonymous ACL submission

Abstract

Fine-tuning and in-context learning (ICL) are001
two prevalent methods in imbuing large lan-002
guage models with task-specific knowledge. It003
is commonly believed that fine-tuning can sur-004
pass ICL given sufficient training samples as it005
allows the model to adjust its internal param-006
eters based on the data. However, this paper007
presents a counterintuitive finding: For tasks008
with implicit patterns, ICL captures these pat-009
terns significantly better than fine-tuning. We010
developed several datasets featuring implicit011
patterns, such as sequences determining an-012
swers through parity or identifying reducible013
terms in calculations. We then evaluated the014
models’ understanding of these patterns under015
both fine-tuning and ICL across models ranging016
from 0.5B to 7B parameters. The results indi-017
cate that models employing ICL can quickly018
grasp deep patterns and significantly improve019
accuracy. In contrast, fine-tuning, despite utiliz-020
ing thousands of times more training samples021
than ICL, achieved only limited improvements.022
We also proposed circuit shift theory from a023
mechanistic interpretability’s view to explain024
why ICL wins.025

1 Introduction026

Adapting pre-trained models to specific tasks or027

domains is commonly achieved through fine-tuning028

(Hu et al., 2023; Peters et al., 2019) or in-context029

learning (Gan and Mori, 2023). Fine-tuning, a030

well-established method, involves further training031

a pre-trained model on a smaller, domain-specific032

dataset, directly updating the model’s parameters033

to retain improvements across various contexts and034

scenarios. In contrast, in-context learning (ICL)035

enhances task performance by incorporating task-036

specific examples into prompts, guiding the model037

in task completion without altering its parameters038

during training.039

There has been much debate about the pros and040

cons of fine-tuning and in-context learning. Fine-041

3×(1+2)-(2-2)×(4+1) 3×(1+2)-(2-2)×(4+1) 3×3-0×5 9

Solution with formal computation

3×(1+2)-(2-2)×(4+1)
Ignore terms that
multiplied by zero

Solution with implicit pattern

93×3-0

3×(1+2)-(2-2)×(4+1) LLM

example × n

4×(1+3)-(4-4)×(5+2) Acc

3×(1+2)-(2-2)×(4+1) LLM 4×(1+3)-(4-4)×(5+2) Acc

Full-Param Fine-tuning PEFT (e.g. LoRA, QLoRA)

(a)

(b)

Figure 1: (a) A simple example of an implicit pattern de-
tection task. The given problem (arithmetic expression
calculation task in this figure) can be solved in either a
formal way, e.g., directly calculating, or by exploiting
the detected implicit pattern as a shortcut. (b) Illustra-
tion of implicit pattern detection for in-context learning
and fine-tuning. For ICL, several examples with an-
swers are given in context, and a further new question is
used to test accuracy. For fine-tuning, LLM learns from
single examples using parameter update methods like
full-parameter fine-tuning or PEFT methods.

tuning is praised for its ability to bring permanent 042

memorization to models (Hu et al., 2023), and it 043

can perform well even with a small amount of train- 044

ing data (Liu et al., 2022). However, critics argue 045

that fine-tuning demands substantial computational 046

resources (Hu et al., 2021) and can encounter issues 047

such as catastrophic forgetting (Zhai et al., 2023). 048

This conserves computational resources but neces- 049

sitates longer prompts and incurs higher inference 050

costs. 051

How about ICL? It is favored for its training- 052

free nature (Dong et al., 2022), allowing prompts 053

to be easily changed for adaptation to other do- 054

mains without re-training (Min et al., 2022). Other 055

works(Bhattamishra et al., 2023) showed that ICL 056

can help the model uniquely identify a discrete 057

function sample-efficiently. (Reddy, 2023) showed 058

1

that ICL is driven by the abrupt emergence of an059

induction head, which subsequently competes with060

in-weights learning. (Shen et al., 2024) observes061

that ICL and gradient descent modify the output062

distribution of language models differently. De-063

spite these advantages, ICL is limited by context064

length restrictions and incurs higher costs during065

each inference stage due to the longer prompts re-066

quired.067

Essentially, the primary distinction between fine-068

tuning and ICL lies in parameter updating; all fine-069

tuning methods modify the model’s parameters. It070

might seem, therefore, that ICL’s impact is less pro-071

found. However, our research reveals a counterintu-072

itive finding: for datasets with implicit patterns,073

ICL is more adept at uncovering these latent074

patterns than fine-tuning.075

To investigate this phenomenon, we designed076

datasets containing implicit patterns across various077

domains, including two mathematical tasks: expres-078

sion calculation and boolean function, one textual079

task: relation reasoning, and one code reading task.080

These domains share a common trait: the pres-081

ence of implicit patterns that can simplify problem-082

solving. We evaluated LLMs’ capability to recog-083

nize such patterns with these datasets. Our findings084

include: (1) Both fine-tuning and ICL could detect085

and utilize implicit patterns, resulting in increased086

test accuracy. (2) ICL performed much better than087

fine-tuning in implicit pattern detection, e.g., ICL-088

based models enjoyed higher test accuracy. (3) ICL089

also showed strong performance in robustness tests090

and OOD data tests. Our experiments demonstrate091

that the ability of LLMs to leverage implicit pat-092

terns significantly enhances their problem-solving093

capabilities, providing a clear advantage for tasks094

involving complex data structures.095

Understanding the operational principles of096

LLMs is crucial for their safety and ethical im-097

plications and can further promote improvements.098

Therefore, we delved deeper into the mechanisms099

behind this phenomenon. From a mechanistic in-100

terpretability perspective (Reddy, 2023), we pro-101

posed the Circuit Shift theory. Circuits are certain102

groups of attention heads and MLP layers (Conmy103

et al., 2023). A shift in circuits typically represents104

the model adopting a different method in problem-105

solving. Our findings indicated that ICL resulted in106

a larger-scale circuit shift compared to fine-tuning,107

which means that with ICL, the model changed108

its problem-solving method more significantly for109

implicit pattern detection and utilization. We also110

provided a visualized heatmap of circuits for de- 111

tailed observation. In summary, our contributions 112

are threefold: 113

Implicit Pattern Detection dataset. We defined 114

and illustrated the implicit pattern detection task, 115

then developed a dataset across mathematics (ex- 116

pression calculation, boolean function), textual rea- 117

soning (relation test) and code (output guessing). 118

Ability Comparison. We presented a counter- 119

intuitive finding: LLMs with in-context learning 120

detected implicit patterns much better than fine- 121

tuned ones. We extensively tested this capability 122

on models ranging from 0.5B to 7B parameters. 123

Mechanism explanation. We analyzed the prin- 124

ciples behind the implicit finding mechanism. And 125

we proposed circuit shift theory to explain why ICL 126

finds implicit patterns better than fine-tuning. 127

2 Background 128

Transformer. Transformer (Vaswani et al., 2017) 129

is the cornerstone architecture for LLMs nowadays, 130

with its breathtaking ability in parallel training 131

and sota performance. One Transformer model 132

ftrf usually consists multiple of Transformer lay- 133

ers flayer and an embedding layer femb. For an 134

input sequence (typically IDs after tokenization) 135

X0 ∈ Rn×1 with length n, it first passes through 136

an embedding layer femb with hidden state size 137

d, then passes all the Transformer layers, and fi- 138

nally gets an output Ol ∈ Rn×d with l layers: 139

Ol = ftrf(X0) =
(
⃝l

i=1f
(i)
layer

)
(X0), where for 140

each layer flayer, it usually contains an Attention 141

block and an MLP block: 142

Oatt
i = Xi +Attn(Norm(Xi)), (1) 143

Oi = Oatt
i +MLP(Norm(Oatt

i)). (2) 144

Here, Xatt
i is the output of the attention block, and 145

X
mlp
i is the output of the MLP block for layer i, 146

with residual connections preventing it from gra- 147

dient disappearance and normalization (typically 148

pre-norm) for stabilizing the training process. 149

Fine-tuning. Fine-tuning is a process where a 150

pre-trained LLM is further trained on a specific task 151

or dataset to improve its performance for that partic- 152

ular application. Suppose there exists a pre-trained 153

Transformer model ftrf with learnable parameters 154

θpre. The goal of fine-tuning is to adjust these pa- 155

rameters to minimize a task-specific loss function 156

2

3×(1+2)-(2-2)×(4+1) 3×(1+2)-0
Find the

zero term
9

 import

Function 1

Function 2

print(Function_1(x))

 import

Function 1

print(Function_1(x))

Find the unused
function

only calculate Function 1

A - B, B - C, D - F, F - E,
E - K, K - L, L - S, B - G

if A, B and G are connected?
Find the

simplified path
Yes

True or (False and True)
or (True or False)

if there is a "True or"
or "False and"?

Find the
decisive term

True

(a) Expression Calculation

(b) Code Reading

(c) Relation Reasoning

(d) Boolean Function

Figure 2: Examples of implicit pattern detection for four reasoning tasks. The implicit pattern, once detected, can
reward the model with reduced computation to arrive at the answer.

Ltask on a new dataset Dtask. During fine-tuning,157

the parameters θfine of the model are updated using158

gradient descent or one of its variants. The update159

rule for the parameters at each iteration t can be160

expressed as:161

θ
(t+1)
fine = θ

(t)
fine−η∇θLtask(ftrf(Xt; θ

(t)
fine),Yt), (3)162

where η is the learning rate, Xt represents the input163

data in iteration t, Yt represents the target labels in164

iteration t, and ∇θfineLtask denotes the gradient of165

the loss function with respect to the model parame-166

ters. Fine-tuning typically requires substantial com-167

putational resources. For instance, full-parameter168

fine-tuning of LLaMA-3 with 8 billion parame-169

ters and an 8K context using the Adam optimizer170

and gradient checkpointing demands a minimum171

of 152 GB of VRAM (Rasley et al., 2020), which172

equates to at least two A100 80 GB GPUs with173

parallel training. While parameter-efficient fine-174

tuning (PEFT) is less resource-intensive compared175

to full-parameter fine-tuning, it still requires 16 GB176

of VRAM (QLoRA with a 1K context (Dettmers177

et al., 2024)), necessitating at least one RTX 3090178

GPU. Additionally, some studies have shown that179

PEFT can result in a noticeable drop in the model’s180

performance (Pu et al., 2023; Zou et al., 2023).181

In-Context Learning In-Context Learning (ICL)182

in LLMs is an emergent capability where the model183

uses the provided context to perform tasks. Given184

a special task F and a series of prompt inputs185

x1, · · · ,xn, ICL happens when these inputs and186

their answers y1 = F (x1) are given in multi-shot,187

i.e., (x1,y1, · · · ,yn,xn+1). In this scenario, the188

goal for LLM to do ICL is to learn the task F189

and accurately predict yn+1. This phenomenon190

allows the model to adaptively handle a variety 191

of tasks, such as translation, question-answering, 192

and more, simply through appropriate prompt en- 193

gineering. ICL happens in inference-stage without 194

explicit re-training, thus resulting in more friendly 195

requirements for GPUs (Yin et al., 2024; Hong 196

et al., 2023). Even LLaMA-3 70B could run on 197

a single 3090 GPU with PowerInfer (Song et al., 198

2023). 199

3 Implicit Pattern Detection Test 200

Through detailed observation and thinking, humans 201

could detect some underlying, non-explicit patterns 202

within the data. This enables us to solve problems 203

more efficiently. Implicit pattern detection refers 204

to the ability of models to recognize underlying, 205

non-explicit patterns within data, enabling them 206

to solve problems more efficiently. This concept 207

is illustrated through tasks such as arithmetic cal- 208

culations, where the model can bypass complex 209

operations by identifying simplifying patterns. For 210

instance, in mathematical expressions (see Figure 1 211

and Figure 2), a model might detect that certain 212

terms have negligible impact and can be ignored, 213

leading to quicker computations. We will give a 214

detailed description of our dataset design and ex- 215

perimental settings in the following sections. 216

3.1 Tasks 217

To effectively assess the ability of LLMs to iden- 218

tify implicit patterns in data, we have constructed 219

a variety of questions that frequently arise in real- 220

world application scenarios. When the same type 221

of question recurs, we can discover a specific im- 222

plicit pattern within it to simplify the computational 223

3

process.224

Task 1: Expression Calculation (Imani et al.,225

2023; Yuan et al., 2023; Yue et al., 2023; He-226

Yueya et al., 2023) In the arithmetic calculation227

task, the primary focus is on determining whether228

certain operations within a given expression can be229

disregarded to reduce the complexity of the compu-230

tation. The operations considered for these simpli-231

fications are limited to addition(+), subtraction(−),232

multiplication(×), and division(/). By exploring233

these operations, the model may find that several234

terms are multiplied by a continued-to-be-zero235

term, and ignoring them could simplify the cal-236

culation process and improve the accuracy.237

Task 2: Code Reading (Fang et al., 2024) In238

the code reading task, LLMs need to analyze and239

predict the output of a given piece of code without240

executing it, where multiple functions are defined.241

Some functions will not influence the final output,242

so the key challenge is to determine which func-243

tions are essential for producing the output and244

which can be disregarded without affecting the re-245

sult.246

Task 3: Boolean Functions (Zhang et al., 2024)247

In the Boolean functions task, the primary objec-248

tive is to optimize logical expressions to simplify249

their structure without altering the resultant truth250

value. The expressions involve logical operators251

such as AND (∧), OR (∨), and NOT (¬). Within252

these scenarios, there are specific segments that are253

either tautologies, i.e., always true, or contradic-254

tions, i.e., always false. The model must identify255

these segments and bypass their computation.256

Task 4: Relation Reasoning (Li et al., 2024) In257

the task of relation reasoning, the focus is on de-258

termining the relationships between multiple enti-259

ties, such as reachability and relative magnitude.260

Although the set of relationships involved can be261

complex, all queries target fixed entities whose rela-262

tionships are relatively straightforward. Therefore,263

most of the complex relationships can be disre-264

garded, simplifying the problem-solving process.265

3.2 Settings266

Accuracy. Our tasks were constructed such that267

implicit patterns can help solve problems more268

easily. For example, if an LLM identifies a term269

that continues to be zero in arithmetic calculations,270

it can ignore terms multiplied by it, thereby saving271

computation. Therefore, we evaluate the model’s 272

performance with Accuracy. 273

Misleading Data. LLMs can detect the inner im- 274

plicit patterns in data and utilize them for simpli- 275

fying problem-solving. The misleading data is de- 276

signed to test if LLMs can tackle situations in the 277

absence of implicit patterns. While implicit pat- 278

terns are still provided in training or ICL data, mis- 279

leading data, i.e., , data with no implicit patterns, 280

is provided for testing accuracy. We name this ac- 281

curacy Misleading Accuracy, while the testing re- 282

sults of data with implicit patterns are named Clean 283

Accuracy. Detailed experimental procedures can 284

be found in Appendix B. 285

Out-Of-Distribution Data. The training data are 286

sampled from a certain distribution, e.g., , for ex- 287

pression tasks, there are no more than 10 terms in 288

each expression. Our out-of-distribution (OOD) 289

data are designed to evaluate the model’s perfor- 290

mance when encountering OOD data during the 291

evaluation phase. Detailed experimental proce- 292

dures can be found in Appendix C. 293

Models. We select open-sourced models in sizes 294

of 0.5B level e.g., Qwen1.5-0m5B, 1B level 295

e.g., GPTNeo-1.3B (Black et al., 2021), Pythia- 296

1.4B (Biderman et al., 2023), Qwen1.5-1.8B (Bai 297

et al., 2023), and 7B level e.g., Mistral-7B (Jiang 298

et al., 2023), Qwen1.5-7B (Bai et al., 2023), Yi- 299

6B (Young et al., 2024). Model weights are down- 300

loaded from Huggingface and follow the official 301

implementations. 302

Data Format. For fine-tuning, the data is pro- 303

vided in a single example without supervised in- 304

struction. A simple description, the question, and 305

the answer are given in order. We prepared 1,600 306

data points for fine-tuning. For in-context learn- 307

ing, we constructed the input in multi-shot, ranging 308

from 0-shot, i.e., directly answer one question, to 309

32-shot i.e., 32 examples with their answers first 310

given, then a new question in the same kind re- 311

quired to answer. The detailed example of our data 312

format could be found in Appendix A. 313

Training Details. The training process was con- 314

ducted using a sequence length of 512 and a batch 315

size of 8 with a total of 1 epoch. A warmup phase of 316

20 steps was implemented, starting with a learning 317

rate of 1e-6 and peaking at 2e-5, followed by a lin- 318

ear decay. The AdamW optimizer was used. This 319

configuration ensured the model’s performance and 320

4

Model Expression Code Relation Boolean

Baseline Full-ft ICL Baseline Full-ft ICL Baseline Full-ft ICL Baseline Full-ft ICL

0.5B level
Qwen1.5-0.5B 22.2% 88.4% 50.1% 16.6% 2.0% 32.2% 48.8% 48.5% 60.1% 54.8% 51.7% 65.3%
1B level
GPTNeo-1.3B 24.3% 46.6% 55.6% 27.6% 17.7% 44.5% 20.5% 34.7% 37.4% 53.8% 53.7% 54.3%
Qwen1.5-1.8B 16.2% 89.9% 63.4% 54.3% 53.7% 58.2% 20.1% 21.3% 35.6% 66.3% 66.3% 68.1%
Pythia-1.4B 5.0% 45.4% 53.7% 37.6% 46.5% 53.1% 20.5% 31.3% 44.4% 61.3% 63.7% 68.5%
7B level
Yi-6B 12.5% 88.2% 48.2% 51.2% 78.7% 80.9% 48.0% 52.5% 98.0% 55.7% 64.1% 68.3%
Qwen1.5-7B 78.0% 89.3% 67.9% 57.6% 72.0% 86.8% 48.0% 78.8% 98.0% 71.9% 41.7% 79.8%
Mistral-7B 32.6% 75.2% 76.3% 14.1% 72.0% 82.8% 48.5% 72.5% 90.9% 45.7% 54.5% 74.3%

Table 1: Experimental results of implicit pattern detection tasks. We conducted experiments from 0.5B to 7B across
6 models. The highest accuracy was highlighted with boldsymbol.

0.00 0.25 0.50 0.75 1.00
Accuracy (Clean)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(M

is
le

ad
in

g)

Expression

0.00 0.25 0.50 0.75 1.00
Accuracy (Clean)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(M

is
le

ad
in

g)

Code

0.00 0.25 0.50 0.75 1.00
Accuracy (Clean)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(M

is
le

ad
in

g)

Boolean

0.00 0.25 0.50 0.75 1.00
Accuracy (Clean)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(M

is
le

ad
in

g)

Relation

Mistral-7B (FT)
Qwen-1.5-7B (FT)

Yi-6B (FT)
Qwen-1.5-1.8B (FT)

GPTNeo-1.3B (FT)
Pythia-1.4B (FT)

Qwen-1.5-0.5B (FT)
Mistral-7B (ICL)

Qwen-1.5-7B (ICL)
Yi-6B (ICL)

Qwen-1.5-1.8B (FT)
GPTNeo-1.3B (FT)

Pythia-1.4B (FT)
Qwen-1.5-0.5B (FT)

Figure 3: Robustness test of implicit pattern detection test. The horizontal axis represents the accuracy under clean
input, and the vertical axis represents the accuracy under misleading input. Relatively speaking, the closer the
results are to the bottom right corner, the worse the method’s resistance to misleading data. The closer the results
are to the top left corner, the better it is.

stability, allowing it to effectively learn and identify321

hidden patterns in the data.322

4 Results and Analysis323

In this section, we present our results for the im-324

plicit pattern finding tasks following the experi-325

mental setting in Section 3.2. We show that ICL326

achieved an overall higher level of accuracy over327

fine-tuning on these four tasks. We also show328

that the improvement of accuracy with ICL mainly329

comes from the detection of those implicit patterns330

in Section 5 and refsec:circuit.331

4.1 ICL v.s. Fine-tuning: Accuracy332

The results of accuracy test are shown in Table 1333

and Table 2. Both ICL and fine-tuning(including334

full-param fine-tuning and PEFT methods) bring335

improvements to the performace of each task. How-336

ever, it is easily noticed that ICL wins at most terms337

like relation, code reading and boolean functions,338

with 2% to even more than 30% improvements339

at most. On the flip side, fine-tuning only shows340

Method Type Expression Code Relation Boolean

Baseline 27.5% 54.3% 20.1% 66.3%

Full-Param FT 89.9% 53.7% 21.3% 66.3%
LoRA 46.5% 53.3% 20.1% 64.3%
QLoRA 46.2% 51.6% 20.5% 61.3%
GaLoRA 47.1% 52.5% 20.5% 66.4%

ICL 63.4% 58.2% 35.6% 68.1%

Table 2: Experimental comparison of different PEFT
methods. We compared the results on Qwen1.5-1.8B. It
is obvious that PEFT shows no significant improvement
compared to full-param fine-tuning and seems to have
limited performance.

slight advantages in expression calculations in only 341

Qwen-series models. As for different model size1, 342

we found that a larger model seems be able to evoke 343

stronger ICL ability above linearly growth (see 344

Table 1), where the scaling of fine-tuning perfor- 345

mance is limited. 346

1See Qwen1.5 series in Table 1 from 0.5B to 7B

5

OOD Type Expression Code Relation Boolean

Baseline 27.5% 54.3% 20.1% 66.3%

FT 89.9% 53.7% 21.3% 66.3%
FT + Test OOD 32.1% 34.2% 0.1% 0.1%
(FT+Test) OOD 88.2% 42.7% 11.3% 12.4%

ICL 63.4% 58.2% 35.6% 68.1%
ICL + Test OOD 34.5% 44.2% 12.3% 24.7%
(ICL+Test) OOD 62.3% 51.7% 34.5% 71.4%

Table 3: Experimental comparison of different PEFT
methods. Here FT/ICL + Test OOD means we only
applied OOD data in test phase, while (FT/ICL) OOD
represents that both training/in-context learning and test
phase were using OOD data.

4.2 ICL v.s. Fine-tuning: Robustness without347

Implicit Pattern348

In Section 3.2, we introduced the metrics of clean349

accuracy and misleading accuracy by adding mis-350

leading data to test both ICL and fine-tuning’s ro-351

bustness against general data without implicit pat-352

terns. The results are shown in Figure 3. For each353

task, we draw a scatter plot where the x- and y-axis354

represent the clean accuracy and the misleading ac-355

curacy, respectively. The results show that ICL can356

better exploit the implicit patterns in the demonstra-357

tion data, while at the same time not compromising358

general reasoning abilities.359

4.3 ICL v.s. Fine-tuning: Out-Of-Distribution360

Implicit Patterns361

Out-of-Distribution (OOD) data is a widely exam-362

ined problem nowadays. The training data of our363

implicit pattern detection tasks also samples from364

certain distributions (see Appendix C for details).365

In this subsection, we hope to compare how ICL366

and fine-tuning perform if we provide cases outside367

of the training distribution. For ICL, all examples368

given are divided into two types: in-distribution369

examples and OOD examples. For fine-tuning, we370

directly provide OOD problems to test the accuracy.371

We performed this experiment on Qwen1.5-1.8B372

and the results are demonstrated in Table 3. It is373

worth noticing that fine-tuning generally performs374

worse when the test data is OOD, while ICL per-375

forms fairly well comparing to the baseline method.376

4.4 How Much Fine-tuning Do We Need?377

In this experiment, we hope to figure out whether378

fine-tuning has reached its limit for implicit pattern379

detection or there will still be improvement if more380

data is utilized for fine-tuning. Therefore, we visu-381

0 50 100 150 200 250
Time Step

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Va
lu

e

Loss and Accuracy Over Time

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Real Loss Values
Smoothed Loss Values
Accuracy

Figure 4: The progression of loss and accuracy over
time during the fine-tuning of implicit pattern tasks.
The Real Loss Values (dashed blue line) show the loss
during training. To mitigate this noise, the Smoothed
Loss Values (solid blue line) provide a clearer trend of
the overall loss reduction. We also show the average
test accuracy over all tasks (solid green line).

alized the fine-tuning process of Qwen1.5-1.8B. At 382

the onset of training, there is a steep decline in the 383

loss value, suggesting that the model quickly learns 384

basic patterns in the data. This rapid improvement 385

is typical, as the model captures the most evident 386

features. The Accuracy (solid green line) also in- 387

creases sharply, corroborating the initial learning 388

phase where the model transitions from random 389

guessing to meaningful predictions. However, after 390

around 50 time steps, both the loss and accuracy 391

curves begin to stabilize. This period of stabiliza- 392

tion suggests diminishing returns from further train- 393

ing, as the fine-tuned model failed to capture further 394

implicit patterns. After 100 time steps, the curves 395

indicate that the model has reached a plateau. The 396

accuracy remains relatively constant, and the loss 397

value shows minimal fluctuations around a stable 398

trend. This behavior signifies that the model has 399

learned the underlying patterns to a satisfactory 400

extent, and additional fine-tuning yields marginal 401

improvements. 402

4.5 Comparison of Fine-tuning with PEFT 403

Methods 404

Lastly, we examine whether there is a significant 405

difference between various fine-tuning methods 406

e.g., vanilla full-parameter fine-tuning, and pa- 407

rameter efficient fine-tuning (PEFT) methods like 408

LoRA (Hu et al., 2021), QLoRA (Dettmers et al., 409

2024) and GaLoRE (Zhao et al., 2024). Although 410

PEFT needs much less parameters for training, and 411

several studies criticized its ability (Pu et al., 2023; 412

Zou et al., 2023), there are still evidences that PEFT 413

sometimes achieves ICL-level performance. We 414

6

LLM

Circuits A

Task w/ Implicit Patterns
Activation Patching Circuits Shift

Comparison

Clean Input Corrupted Input

LLM

FT/ICL

Circuits B

Figure 5: Illustration of circuit shift comparison. LLMs are first detected circuits with activation patching. Then we
compare how much their circuits changed after fine-tuning and in-context learning.

0 155 10

0

5

10

15

20

Head

La
ye
r

0 155 10

0

5

10

15

20

Head

La
ye
r

0 155 10

0

5

10

15

20

Head

La
ye
r

Figure 6: Visualization of attention head sensitivity in GPTNeo-1.3B. The more the color leans towards blue, the
more important a specific attention head is to the implicit pattern detection task. Left: baseline model. Middle:
fine-tuned model. Right: ICL model. It is clear that compared to fine-tuning, ICL brings significant circuit shifts.

followed the experimental settings in previous sec-415

tions on Qwen1.5-1.8B with PEFT methods. The416

experimental results can be found in Table 2. It417

is clear that in the implicit pattern detection tasks,418

PEFT methods show no obvious advantages com-419

pared to full-param fine-tuning, thus they still failed420

to win ICL in accuracy in all tests.421

5 Explanation of ICL’s Victory: Circuits422

Shift Theory423

Understanding the inner mechanisms of LLMs424

greatly benefits their ethical use and safety. We425

have found that ICL performs much better than426

fine-tuning on implicit pattern detection, and in427

this section, we try to explain why.428

From a mechanistic interpretability perspective,429

we investigate this problem using circuits. Circuits430

are specific pathways (typically combinations of431

attention heads and MLP layers) within a model432

responsible for processing and interpreting partic-433

ular patterns or tasks. The change in circuits for434

LLMs represents a shift in their inner mechanisms,435

revealing that LLMs choose different ways to solve436

problems. Based on this viewpoint, we propose a437

theory: Circuits Shift, to explain this phenomenon.438

We will first provide a method for probing circuits,439

explaining what they are and the types of circuits440

we found in ICL-based and fine-tuning-based mod- 441

els. Then we will show that the reason ICL per- 442

forms better than fine-tuning is that the circuits 443

in models experience a more significant shift. A 444

detailed explanation of circuits and experimental 445

settings can be found in Appendix D. 446

5.1 Method for Identifying Circuit Shift 447

In Figure 5, we present our framework and method- 448

ology for probing circuit shifts. We begin by se- 449

lecting an implicit pattern detection task (in this 450

study, we utilize an expression task). Subsequently, 451

we use models employing different methods, i.e., 452

ICL or fine-tuning, for inference. During this pro- 453

cess, we introduce corrupt input to randomly dis- 454

rupt a portion of the activation to assess whether 455

the corresponding attention heads or MLP layers 456

significantly contribute to the final outcome. If a 457

significant contribution exists, the disruption will 458

result in considerable perturbation of the final log- 459

its, which is depicted as sensitivity in the figure. 460

5.2 Circuits Shift in LLMs for Implicit 461

Pattern Detection 462

We first visualized and ranked circuits in GPTNeo- 463

1.3B zero-shot, after fine-tuned, and ICL with 32- 464

shot with expression calculation task (see Figure 6 465

7

Circuits Zero-shot Baseline ICL w/o Implicit Patterns ∆ After Fine-tuning ∆ After ICL ∆

L17 H12, L18 H0 L17 H12, L16 H1 L17 H12, L18 H0 L11 H5, L10 H6
Attention L22 H1, L16 H7 L18 H0, L15 H2 2 L22 H1, L16 H7 1 L11 H2, L15 H10 6

L18 H15, L14 H5 L18 H15, L22 H1 L18 H15, L12 H6 L17 H12, L 18 H5

L9 L9 L9 L17
MLP L17 L17 0 L18 0 L14 2

L18 L18 L17 L15

Table 4: Top 6 Rankings of Attention Heads and top 3 rankings of MLP Layers in baseline (zero-shot) model,
fine-tuned model, and ICL model. L is layer and H is head. ∆ shows how many different heads or MLPs changed
after fine-tuning or ICL. A larger ∆ represents a more significant circuit shift in certain processes.

and Table 4). In Figure 6, we use the heatmap466

to illustrate the sensitivity of each attention head467

in implicit pattern detection test. From the figure,468

we can observe that, compared to the baseline and469

fine-tuning scenarios, ICL exhibits a significant470

shift when learning implicit patterns. Firstly, more471

shallow heads are involved in the task. Secondly,472

some deep heads that previously played a dominant473

role have now lost their leadership positions. This474

indicates that during the ICL process, the model475

significantly transforms its approach to solving the476

task, adapting to a form more suitable for implicit477

patterns, a phenomenon not observed with other478

methods.479

We can further validate our hypothesis in Table 4.480

We selected the six attention heads and MLP lay-481

ers2 with the highest sensitivity, i.e., those that482

contributed the most to the final result. Using the483

baseline, which is the zero-shot approach for han-484

dling implicit pattern detection tasks, as the stan-485

dard, we counted how many new attention heads486

entered the top six highest contributors when the487

method changed, denoted by Delta. The results are488

very clear: compared to fine-tuning, ICL exhibits489

more significant changes, indicating a more thor-490

ough Circuit Shift during ICL. This suggests that491

ICL captures the characteristics of implicit patterns492

better than fine-tuning and adapts its processing493

method accordingly.494

To rule out the inherent impact of ICL itself, we495

also conducted multi-shot experiments on a set of496

data without implicit pattern characteristics. The497

results showed that it is not multi-shot alone that498

induces this change, but rather the combined effect499

of ICL and implicit patterns.500

2See A Mathematical Framework for Transformer Circuits
for details.

6 Related Work 501

Implicit Pattern Discovery Previous works have 502

designed benchmarks to test the LLMs reasoning 503

ability (Barrett et al., 2018; Tang et al., 2023; Gen- 504

dron et al., 2024). However, the benchmarks rarely 505

include two-level questions where at one level, they 506

can be solved by brutal force, at another level it 507

can be solved by exploiting implicit patterns. The 508

closest related work we know is Efrat et al. (2021), 509

which involves solving cryptic crossword puzzles. 510

To help the model find patterns in data, Prior work 511

Sun et al. (2024); Zhu et al. (2024) proposes a two- 512

stage induction-deduction process that first summa- 513

rizes the common patterns explicitly, then reasons 514

from the patterns. 515

ICL v.s. Fine-tuning Difference Previous works 516

have also compared fine-tuning and in-context 517

learning. Shen et al. (2024) shows that ICL is 518

likely not an algorithmic equivalence to gradient 519

descent for real LLMs. Reddy (2023) demonstrates 520

that ICL is implemented by an induction head and 521

analyzes its emergence phenomenon. Bhattamishra 522

et al. (2023) shows that ICL and vanilla training im- 523

plement two distinct algorithms that don’t transfer 524

to each other. However, it has been proven that fine- 525

tuning shows better performance in generalization 526

to OOD tasks than in-context learning (Mosbach 527

et al., 2023). 528

7 Conclusion 529

In conclusion, our research demonstrates that In- 530

Context Learning (ICL) significantly outperforms 531

fine-tuning in capturing implicit patterns within 532

specific tasks. Through our experimental evalu- 533

ations, we observed that ICL not only enhances 534

task performance more effectively but also exhibits 535

greater adaptability in problem-solving approaches, 536

as evidenced by the notable shifts in model circuits. 537

8

https://transformer-circuits.pub/2021/framework/index.html

Limitations538

Our study on the effectiveness of in-context learn-539

ing in capturing implicit patterns compared to fine-540

tuning faces several limitations. Primarily, the541

generalizability of our findings is constrained by542

the specific nature of the implicit pattern detec-543

tion tasks, which are limited to certain domains544

like arithmetic calculations, code reading, Boolean545

functions, and relation reasoning. Additionally, our546

analysis of Circuit Shift, which underpins the supe-547

rior performance of ICL, relies on activation patch-548

ing and sensitivity analysis, methods that, while549

insightful, require further refinement and valida-550

tion across different models and tasks to confirm551

their robustness and applicability. Furthermore, the552

computational resources required for fine-tuning,553

especially with large models, may limit the feasi-554

bility of such experiments in broader settings, and555

a detailed cost-benefit analysis comparing ICL and556

fine-tuning in terms of computational efficiency557

and performance is needed.558

References559

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,560
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei561
Huang, et al. 2023. Qwen technical report. arXiv562
preprint arXiv:2309.16609.563

David G. T. Barrett, Felix Hill, Adam Santoro, Ari S.564
Morcos, and Timothy Lillicrap. 2018. Measuring565
abstract reasoning in neural networks. Preprint,566
arXiv:1807.04225.567

Satwik Bhattamishra, Arkil Patel, Phil Blunsom, and568
Varun Kanade. 2023. Understanding in-context learn-569
ing in transformers and llms by learning to learn dis-570
crete functions. Preprint, arXiv:2310.03016.571

Stella Biderman, Hailey Schoelkopf, Quentin Gregory572
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-573
lahan, Mohammad Aflah Khan, Shivanshu Purohit,574
USVSN Sai Prashanth, Edward Raff, et al. 2023.575
Pythia: A suite for analyzing large language mod-576
els across training and scaling. In International577
Conference on Machine Learning, pages 2397–2430.578
PMLR.579

Sid Black, Leo Gao, Phil Wang, Connor Leahy,580
and Stella Biderman. 2021. GPT-Neo: Large581
Scale Autoregressive Language Modeling with Mesh-582
Tensorflow. If you use this software, please cite it583
using these metadata.584

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch,585
Stefan Heimersheim, and Adrià Garriga-Alonso.586
2023. Towards automated circuit discovery for mech-587
anistic interpretability. Advances in Neural Informa-588
tion Processing Systems, 36:16318–16352.589

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 590
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning 591
of quantized llms. Advances in Neural Information 592
Processing Systems, 36. 593

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy- 594
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and 595
Zhifang Sui. 2022. A survey on in-context learning. 596
arXiv preprint arXiv:2301.00234. 597

Avia Efrat, Uri Shaham, Dan Kilman, and Omer Levy. 598
2021. Cryptonite: A cryptic crossword benchmark 599
for extreme ambiguity in language. In Proceedings 600
of the 2021 Conference on Empirical Methods in Nat- 601
ural Language Processing, pages 4186–4192, Online 602
and Punta Cana, Dominican Republic. Association 603
for Computational Linguistics. 604

Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin 605
Liu, Ruoyu Zhang, Ruijie Fang, Asmita, Ryan Tsang, 606
Najmeh Nazari, Han Wang, and Houman Homayoun. 607
2024. Large language models for code analysis: Do 608
llms really do their job? Preprint, arXiv:2310.12357. 609

Chengguang Gan and Tatsunori Mori. 2023. A few- 610
shot approach to resume information extraction via 611
prompts. In International Conference on Applica- 612
tions of Natural Language to Information Systems, 613
pages 445–455. Springer. 614

Gaël Gendron, Qiming Bao, Michael Witbrock, and 615
Gillian Dobbie. 2024. Large language mod- 616
els are not strong abstract reasoners. Preprint, 617
arXiv:2305.19555. 618

Joy He-Yueya, Gabriel Poesia, Rose E. Wang, and 619
Noah D. Goodman. 2023. Solving math word prob- 620
lems by combining language models with symbolic 621
solvers. Preprint, arXiv:2304.09102. 622

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xi- 623
uhong Li, Jun Liu, Kangdi Chen, Hanyu Dong, and 624
Yu Wang. 2023. Flashdecoding++: Faster large 625
language model inference on gpus. arXiv preprint 626
arXiv:2311.01282. 627

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 628
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 629
and Weizhu Chen. 2021. Lora: Low-rank adap- 630
tation of large language models. arXiv preprint 631
arXiv:2106.09685. 632

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee- 633
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po- 634
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters: 635
An adapter family for parameter-efficient fine- 636
tuning of large language models. arXiv preprint 637
arXiv:2304.01933. 638

Shima Imani, Liang Du, and Harsh Shrivastava. 2023. 639
Mathprompter: Mathematical reasoning using large 640
language models. Preprint, arXiv:2303.05398. 641

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 642
sch, Chris Bamford, Devendra Singh Chaplot, Diego 643

9

https://arxiv.org/abs/1807.04225
https://arxiv.org/abs/1807.04225
https://arxiv.org/abs/1807.04225
https://arxiv.org/abs/2310.03016
https://arxiv.org/abs/2310.03016
https://arxiv.org/abs/2310.03016
https://arxiv.org/abs/2310.03016
https://arxiv.org/abs/2310.03016
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.18653/v1/2021.emnlp-main.344
https://doi.org/10.18653/v1/2021.emnlp-main.344
https://doi.org/10.18653/v1/2021.emnlp-main.344
https://arxiv.org/abs/2310.12357
https://arxiv.org/abs/2310.12357
https://arxiv.org/abs/2310.12357
https://arxiv.org/abs/2305.19555
https://arxiv.org/abs/2305.19555
https://arxiv.org/abs/2305.19555
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2303.05398
https://arxiv.org/abs/2303.05398
https://arxiv.org/abs/2303.05398

de las Casas, Florian Bressand, Gianna Lengyel, Guil-644
laume Lample, Lucile Saulnier, et al. 2023. Mistral645
7b. arXiv preprint arXiv:2310.06825.646

Zhiming Li, Yushi Cao, Xiufeng Xu, Junzhe Jiang,647
Xu Liu, Yon Shin Teo, Shang wei Lin, and Yang648
Liu. 2024. Llms for relational reasoning: How far649
are we? Preprint, arXiv:2401.09042.650

Ziquan Liu, Yi Xu, Yuanhong Xu, Qi Qian, Hao Li,651
Xiangyang Ji, Antoni Chan, and Rong Jin. 2022. Im-652
proved fine-tuning by better leveraging pre-training653
data. Advances in Neural Information Processing654
Systems, 35:32568–32581.655

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,656
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-657
moyer. 2022. Rethinking the role of demonstra-658
tions: What makes in-context learning work? arXiv659
preprint arXiv:2202.12837.660

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Di-661
etrich Klakow, and Yanai Elazar. 2023. Few-shot662
fine-tuning vs. in-context learning: A fair comparison663
and evaluation. arXiv preprint arXiv:2305.16938.664

Matthew E Peters, Sebastian Ruder, and Noah A Smith.665
2019. To tune or not to tune? adapting pretrained666
representations to diverse tasks. arXiv preprint667
arXiv:1903.05987.668

George Pu, Anirudh Jain, Jihan Yin, and Russell Ka-669
plan. 2023. Empirical analysis of the strengths and670
weaknesses of peft techniques for llms. Preprint,671
arXiv:2304.14999.672

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and673
Yuxiong He. 2020. Deepspeed: System optimiza-674
tions enable training deep learning models with over675
100 billion parameters. In Proceedings of the 26th676
ACM SIGKDD International Conference on Knowl-677
edge Discovery & Data Mining, pages 3505–3506.678

Gautam Reddy. 2023. The mechanistic basis of data679
dependence and abrupt learning in an in-context clas-680
sification task. Preprint, arXiv:2312.03002.681

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi.682
2024. Do pretrained transformers learn in-context by683
gradient descent? Preprint, arXiv:2310.08540.684

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.685
2023. Powerinfer: Fast large language model serv-686
ing with a consumer-grade gpu. arXiv preprint687
arXiv:2312.12456.688

Wangtao Sun, Haotian Xu, Xuanqing Yu, Pei Chen,689
Shizhu He, Jun Zhao, and Kang Liu. 2024. Itd:690
Large language models can teach themselves induc-691
tion through deduction. Preprint, arXiv:2403.05789.692

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng,693
Song-Chun Zhu, Yitao Liang, and Muhan Zhang.694
2023. Large language models are in-context semantic695
reasoners rather than symbolic reasoners. Preprint,696
arXiv:2305.14825.697

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 698
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 699
Kaiser, and Illia Polosukhin. 2017. Attention is all 700
you need. Advances in neural information processing 701
systems, 30. 702

Qingyu Yin, Xuzheng He, Xiang Zhuang, Yu Zhao, 703
Jianhua Yao, Xiaoyu Shen, and Qiang Zhang. 2024. 704
Stablemask: Refining causal masking in decoder- 705
only transformer. arXiv preprint arXiv:2402.04779. 706

Alex Young, Bei Chen, Chao Li, Chengen Huang, 707
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng 708
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi: 709
Open foundation models by 01. ai. arXiv preprint 710
arXiv:2403.04652. 711

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, 712
and Songfang Huang. 2023. How well do large lan- 713
guage models perform in arithmetic tasks? Preprint, 714
arXiv:2304.02015. 715

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen- 716
hao Huang, Huan Sun, Yu Su, and Wenhu Chen. 717
2023. Mammoth: Building math generalist mod- 718
els through hybrid instruction tuning. Preprint, 719
arXiv:2309.05653. 720

Yuexiang Zhai, Shengbang Tong, Xiao Li, Mu Cai, Qing 721
Qu, Yong Jae Lee, and Yi Ma. 2023. Investigating the 722
catastrophic forgetting in multimodal large language 723
models. arXiv preprint arXiv:2309.10313. 724

Yu Zhang, Hui-Ling Zhen, Zehua Pei, Yingzhao Lian, 725
Lihao Yin, Mingxuan Yuan, and Bei Yu. 2024. Dila: 726
Enhancing llm tool learning with differential logic 727
layer. Preprint, arXiv:2402.11903. 728

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang 729
Wang, Anima Anandkumar, and Yuandong Tian. 730
2024. Galore: Memory-efficient llm training 731
by gradient low-rank projection. arXiv preprint 732
arXiv:2403.03507. 733

Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou, 734
Jian Tang, Dale Schuurmans, and Hanjun Dai. 2024. 735
Large language models can learn rules. Preprint, 736
arXiv:2310.07064. 737

Wentao Zou, Qi Li, Jidong Ge, Chuanyi Li, Xiaoyu 738
Shen, Liguo Huang, and Bin Luo. 2023. A com- 739
prehensive evaluation of parameter-efficient fine- 740
tuning on software engineering tasks. Preprint, 741
arXiv:2312.15614. 742

10

https://arxiv.org/abs/2401.09042
https://arxiv.org/abs/2401.09042
https://arxiv.org/abs/2401.09042
https://arxiv.org/abs/2304.14999
https://arxiv.org/abs/2304.14999
https://arxiv.org/abs/2304.14999
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2310.08540
https://arxiv.org/abs/2310.08540
https://arxiv.org/abs/2310.08540
https://arxiv.org/abs/2403.05789
https://arxiv.org/abs/2403.05789
https://arxiv.org/abs/2403.05789
https://arxiv.org/abs/2403.05789
https://arxiv.org/abs/2403.05789
https://arxiv.org/abs/2305.14825
https://arxiv.org/abs/2305.14825
https://arxiv.org/abs/2305.14825
https://arxiv.org/abs/2304.02015
https://arxiv.org/abs/2304.02015
https://arxiv.org/abs/2304.02015
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2402.11903
https://arxiv.org/abs/2402.11903
https://arxiv.org/abs/2402.11903
https://arxiv.org/abs/2402.11903
https://arxiv.org/abs/2402.11903
https://arxiv.org/abs/2310.07064
https://arxiv.org/abs/2312.15614
https://arxiv.org/abs/2312.15614
https://arxiv.org/abs/2312.15614
https://arxiv.org/abs/2312.15614
https://arxiv.org/abs/2312.15614

A Data Format and Example743

We provided examples of tasks and prompts. We744

provided data as 2-shot (code in zero-shot to restrict745

content length) for illustrating how ICL works. For746

fine-tuning we will use the same format but zero-747

shot in both training and inference.748

Expression:749
750

1 Now you need to calculate the answer of751
some mathematic equations.752

2 Here are some examples:753
3 (1+6) +(-3+3) *(-1-3+9-5)=7754
4 (2+3) +(-1-4+5) *(10+6+2 -8) =5755
5 (8) +(0) *(0 -6+9 -6)=756757

Listing 1: Example

Code:758
759

1 Now you need to give me the printed760
result after running this python761
code . Here are some examples:762763

Listing 2: Example

764
1 def function1(x):765
2 y = x ** 9766
3 for i in range(1, 13):767
4 y = y * i - (y // (i + 9))768
5 return y769
6770
7 def function2(z, a):771
8 return z / 10772
9773

10 input_value = int(input())774
11 result = function2(input_value ,775

function1(input_value))776
12 print(result)777778

Listing 3: Example

779
1 The input is 10, so the output is780781

Listing 4: Example

Relation:782
783

1 Here are some cities expressed as A, B,784
C, etc. I will show some connection785
relations , and you need to tell me786
if city A and city Z are connected (787
Answer True or False).788

2 Here are some examples:789
3 A is connected with G790
4 F is connected with J791
5 J is connected with C792
6 C is connected with B793
7 B is connected with H794
8 H is connected with E795
9 E is connected with G796

10 G is connected with I797
11 I is connected with D798
12 So 'the city A and Z is connected ' is799

False800
13 A is connected with B801
14 H is connected with I802
15 I is connected with G803

16 G is connected with F 804
17 F is connected with E 805
18 E is connected with J 806
19 J is connected with B 807
20 B is connected with C 808
21 C is connected with D 809
22 B is connected with Z 810
23 So 'the city A and Z is connected ' is 811

True 812
24 A is connected with H 813
25 J is connected with I 814
26 I is connected with E 815
27 E is connected with F 816
28 F is connected with H 817
29 H is connected with G 818
30 G is connected with D 819
31 D is connected with C 820
32 C is connected with B 821
33 So 'the city A and Z is connected ' is 822823

Listing 5: Example

Boolean: 824
825

1 Here are some boolean expressions , you 826
need to directly tell me the result. 827
If it is true , print True , else 828

print False. Here are some examples: 829
2 (True and False) and (True or False) and 830

(False and False)\n The result is: 831
False 832

3 (False and False) or (True and True) and 833
(False and False)\n The result is: 834

False 835
4 (True or True or True) and (False and 836

True) and (True or True)\n The 837
result is: 838839

Listing 6: Example

B Misleading Data Construction 840

Expression. For the expression task, the inherent 841

implicit pattern is an element that remains zero. 842

When constructing the misleading dataset, we set 843

this element to be non-zero. i.e., 844

(3 + 2) + (4− 1 + 5− 6)× (23− 54 + 2) =? 845

we constructed it as misleading data as: 846

(3 + 2) + (4− 1 + 5− 7)× (23− 54 + 2) =? 847

Code. Here we provided two example about how 848

to construct misleading code. 849
850

1 def function1(x): 851
2 y = x ** 19 852
3 for i in range(1, 23): 853
4 y = y * i - (y // (i + 19)) 854
5 return y 855
6 856
7 def function2(z, a): 857
8 return z / 20 858
9 859

10 input_value = int(input()) 860

11

Name Type Problem Example Answer Answer Type

Expression Mathematic Calculation (6− 1) + (6− 6) ∗ (−10 + 1 + 2 + 13) = 5 Number

Code Code Reading import math \n \n def function1(x): \n \n
[TRUNCATED] return result \n print(result)

3.5 Number

Relation Textual Reasoning A is connected with G\n F is connected[TRUNCATED]
connected with Z, ’the city A and Z is connected’ is False Boolean

Boolean Mathematical Reasoning (False or False) and (False or True) and False = False Boolean

Table 5: Examples of four implicit pattern detection tasks.

11 result = function2(input_value ,861
function1(input_value))862

12 print(result)863864

Listing 7: For implicit pattern

865
1 def function1(x):866
2 y = x ** 19867
3 for i in range(1, 23):868
4 y = y * i - (y // (i + 19))869
5 return y870
6871
7 def function2(z, a):872
8 return z / 20873
9874

10 input_value = int(input())875
11 result = function2(function1(input_value876

), function1(input_value))877
12 print(result)878879

Listing 8: For misleading

Relation. In the relation task, we generate mis-880

leading data by not setting shortcuts similar to A-G881

or G-Z.882
883

1 A is connected with B884
2 D is connected with B885
3 B is connected with H886
4 H is connected with F887
5 F is connected with J888
6 J is connected with I889
7 I is connected with C890
8 C is connected with G891
9 G is connected with E892

10 B is connected with Z893894

Listing 9: For implicit pattern

Here A-B-Z is a implicit pattern as shortcut for895

quick solving this problem. We remove this with a896

complex one:897
898

1 A is connected with B899
2 D is connected with B900
3 B is connected with H901
4 H is connected with F902
5 F is connected with J903
6 J is connected with I904
7 I is connected with C905
8 C is connected with G906
9 G is connected with E907

10 F is connected with Z908

909

Listing 10: For misleading

Boolean. In the boolean task, we use combina- 910

tions of OR + true and AND + false for quick 911

evaluation. In the misleading data, we remove this 912

characteristic. 913
914

1 (False and True) or (False or False) or 915
True 916917

Listing 11: For implicit pattern

918
1 (False and True) or (False or False) and 919

True 920921

Listing 12: For misleading

C OOD data Construction 922

Min Terms Max Terms Range (abs value)

baseline 1 3 10
OOD 2 4 20

Table 6: Expression OOD

Functions Need Calculation Shortcut Nodes

baseline 1 3 (A to Any to G)
OOD 2 Unlimited

Table 7: Code OOD and Relation OOD

If All AND or OR Num of Terms

baseline Yes 4
OOD No 6

Table 8: Code OOD and Relation OOD

D Circuits 923

Circuits In mechanistic interpretability, our goal 924

is to delineate how model components correlate 925

12

with human-understandable concepts, an endeavor926

for which circuits provide a useful abstraction. Con-927

ceptualizing a model as a computational graph M ,928

where nodes represent components like neurons,929

attention heads, and embeddings, and edges de-930

note interactions such as residual connections and931

projections, a circuit C is defined as a subgraph932

of M responsible for a specific behavior, such as933

performing a task. This is a more coarse-grained934

approach compared to the feature-based.935

Activation Patching Activation patching is a936

technique used to determine the importance of spe-937

cific components within a model by manipulating938

their latent activations during model runs. The pro-939

cess involves three key steps: first, a clean run940

where the model processes a clean prompt, Xclean941

(e.g., The Eiffel Tower is in), and associated answer942

r (Paris), during which activations of critical com-943

ponents such as MLP or attention heads are cached;944

second, a corrupted run where the model is run on a945

corrupted prompt, Xcorrupt (e.g., The Colosseum is946

in), to record baseline outputs; and third, a Patched947

run where the model is run on Xcorrupt again, but948

with specific cached activations from the Xclean run949

restored. This setup allows for the evaluation of the950

patching effect, which measures the restoration of951

model performance by comparing outputs from the952

Corrupted and Patched runs. The patching effect is953

quantitatively assessed using different metrics with954

probability gap:955

Ppatched(r)− Pcorrupt(r) (4)956

and logit difference:957

LD(r, r′) = log

(
P (r)

P (r′)

)
patched

−log

(
P (r)

P (r′)

)
corrupt

(5)958

This technique is crucial for understanding and959

improving model reliability and performance by960

highlighting the roles of individual model compo-961

nents.962

E A detailed Definition of Implicit963

Pattern Detection964

Consider a problem P characterized by a fixed965

complexity function CP . For each input x in the966

domain D, there exists a solution y. A implicit pat-967

tern for problem P , denoted as Pshortcut, is defined968

as follows:969

• Pshortcut is either a subproblem of P or an inde- 970

pendent problem where the domain Dshortcut 971

is a subset of D (i.e., Dshortcut ⊆ D). 972

• For any input x in Dshortcut, the output yshortcut 973

of Pshortcut approximates the output y of P . 974

• The complexity of solving Pshortcut, CPshortcut , 975

is significantly less than CP (i.e., CPshortcut ≪ 976

CP). 977

If these conditions are met, then Pshortcut is consid- 978

ered a shortcut of P . We define its complexity Cf 979

in terms of the accuracy of a LLM performing on 980

f . Let Accf represent the accuracy of the LLM on 981

task f , then the complexity CT f can be defined as: 982

CT = 1−Accf The complexity Cf ranges from 0 983

(no complexity, as the task is perfectly solved) to 1 984

(maximum complexity, as the task is not solved at 985

all). 986

This definition implies that the higher the LLM’s 987

accuracy on a task, the lower the complexity of 988

the task. This measure allows us to quantify task 989

complexity based on the performance capabilities 990

of state-of-the-art language models. 991

13

	Introduction
	Background
	Implicit Pattern Detection Test
	Tasks
	Settings

	Results and Analysis
	ICL v.s. Fine-tuning: Accuracy
	ICL v.s. Fine-tuning: Robustness without Implicit Pattern
	ICL v.s. Fine-tuning: Out-Of-Distribution Implicit Patterns
	How Much Fine-tuning Do We Need?
	Comparison of Fine-tuning with PEFT Methods

	Explanation of ICL's Victory: Circuits Shift Theory
	Method for Identifying Circuit Shift
	Circuits Shift in LLMs for Implicit Pattern Detection

	Related Work
	Conclusion
	Data Format and Example
	Misleading Data Construction
	OOD data Construction
	Circuits
	A detailed Definition of Implicit Pattern Detection

