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ABSTRACT

Various self-supervised learning (SSL) methods have demonstrated strong capa-
bility in learning visual representations from unlabeled data. However, the current
state-of-the-art (SoTA) SSL methods largely rely on heavy encoders to achieve
comparable performance as the supervised learning counterpart. Despite the
well-learned visual representations, the large-sized encoders impede the energy-
efficient computation, especially for resource-constrained edge computing. Prior
works have utilized the sparsity-induced asymmetry to enhance the contrastive
learning of dense models, but the generality between asymmetric sparsity and
self-supervised learning has not been fully discovered. Furthermore, transferring
the supervised sparse learning to SSL is also largely under-explored. To address
the research gap in prior works, this paper investigates the correlation between in-
training sparsity and SSL. In particular, we propose a novel sparse SSL algorithm,
embracing the benefits of contrastiveness while exploiting high sparsity during
SSL training. The proposed framework is evaluated comprehensively with vari-
ous granularities of sparsity, including element-wise sparsity, GPU-friendly N :M
structured fine-grained sparsity, and hardware-specific structured sparsity. Ex-
tensive experiments across multiple datasets are performed, where the proposed
method shows superior performance against the SoTA sparse learning algorithms
with various SSL frameworks. Furthermore, the training speedup aided by the
proposed method is evaluated with an actual DNN training accelerator model.

1 INTRODUCTION

The early empirical success of deep learning was primarily driven by supervised learning with mas-
sive labeled data, e.g., ImageNet (Krizhevsky et al., 2012). To overcome the labeling bottleneck
of deep learning, learning visual representations without label-intensive datasets has been widely
investigated (Chen et al., 2020a; He et al., 2020; Grill et al., 2020; Zbontar et al., 2021). The re-
cent self-supervised learning (SSL) methods have shown great success and achieved comparable
performance to the supervised learning counterpart. The common property of various SSL designs
is utilizing different augmentations from the original images to generate contrastiveness, which re-
quires duplicated encoding with wide and deep models (Meng et al., 2022). The magnified training
effort and extensive resource consumption make the SSL-trained encoder infeasible for on-device
computing (e.g., mobile devices). The contradiction between label-free learning and extraordinary
computation cost limits further applications of SSL, also necessitating efficient sparse training tech-
niques for self-supervised learning.

For supervised learning, sparsification (a.k.a. pruning) has been widely explored, aiming to reduce
computation and memory costs by removing unimportant parameters during training or fine-tuning.
Conventional supervised pruning explores weight sparsity based on a pre-trained model followed
by additional fine-tuning to recover the accuracy (Han et al., 2016). For self-supervised learning,
recent work (Chen et al., 2021) also sparsified a pre-trained dense SSL model for the downstream
tasks with element-wise pruning. In addition to the fine-grained sparsity, MCP (Pan et al., 2022)
exploited the filter-wise sparsity on the MoCo-SSL (He et al., 2020) model. Both of these sparse
SSL works (Chen et al., 2021; Pan et al., 2022) exploit sparsity based on the pre-trained dense
model. However, compared to supervised learning, obtaining the pre-trained model via SSL requires
a significant amount of additional training effort (∼200 epochs vs. ∼1,000 epochs). Therefore,
exploring post-training sparsity via fine-tuning is not an ideal solution for efficient SSL.
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Figure 1: (a) Applying self-damaging scheme (Jiang et al., 2021) to SSL. (b) Applying prune-and-
regrow scheme (Liu et al., 2021) to SSL. (c) Proposed contrastiveness-aware sparse training.

On the other hand, sparsifying the model during supervised training (Dettmers & Zettlemoyer, 2019;
Evci et al., 2020) has emerged as a promising technique to elevate training efficiency while obtaining
a sparse model. To accurately localize the unimportant parameters, prior works investigated various
types of importance metrics, including gradient-based pruning (Dettmers & Zettlemoyer, 2019) and
the “prune-regrow” scheme (Liu et al., 2021). Compared to the post-training sparsification methods,
in-training sparsification for supervised training has achieved memory/computation reduction as
well as speedup of the training process. However, exploiting in-training sparsity for SSL models
that are trained from scratch is still largely under-explored.

In general, eliminating the unimportant parameters from the model often leads to biased perfor-
mance across different classes (Hooker et al., 2019), due to the distorted memorization caused by
the sparsified model architectures. As an exception, the sparsified “self-damaging” encoder in SD-
CLR (Jiang et al., 2021) creates the asymmetric learners SSL, where the enhanced contrastiveness
leads to improved performance with the non-salient samples. Nevertheless, such sparsity-aided con-
trastive learning mainly focuses on the performance enhancement of the SSL-trained dense model
(i.e., SimCLR (Chen et al., 2020a)), and whether such an asymmetric learning scheme works in
other SSL methods remains unclear. The expensive self-supervised learning and under-explored
sparse contrastiveness inspire us to investigate the following question: How to efficiently sparsify
the model during self-supervised training with the awareness of contrastiveness?

In this work, for the first time, we collectively investigate this question from the perspectives of both
self-supervised learning and sparse training. We first discover the challenges of the sparsity-induced
asymmetric SSL (Jiang et al., 2021), where the sparsity-induced “sparse-dense” asymmetric SSL
is not universally applicable for various SSL schemes. Applying SoTA sparse training techniques
of supervised training, such as “prune-and-regrow” (Liu et al., 2021), towards SSL is also chal-
lenging, because the pruning candidate in both encoders is frequently swapped by regrowing and
the unsynchronized sparsity, leading to the oscillated encoder architecture during training. When
such a technique is applied for sparse SSL training, it will further destabilize self-supervised learn-
ing. To address these challenges, we present Synchronized Contrastive Pruning (SyncCP), a novel
sparse training algorithm designed for self-supervised learning. To maximize the energy efficiency
of SSL training, SyncCP exploits in-training sparsity in both encoders. To avoid the “architecture
oscillation” caused by the “prune-and-regrow” scheme, the proposed SyncCP algorithm sparsifies
SSL while synchronizing the architecture asymmetry between encoders. Unlike the self-damaging
SimCLR (Jiang et al., 2021; Chen et al., 2020a), the proposed SyncCP gradually exploits high
in-training sparsity with contrastive synchronization and optimally-triggered sparsification, maxi-
mizing the training efficiency without hurting the contrastiveness of SSL. Furthermore, SyncCP
is compatible with various granularities of sparsity, including element-wise pruning, GPU-friendly
N :M sparsity, and structured pruning designed for a custom hardware accelerator. As shown in
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Figure 1, SyncCP collectively achieves high training efficiency, SSL compatibility, and outstanding
hardware feasibility. We validated the proposed method against previous SoTA sparsification algo-
rithms on CIFAR-10, CIFAR-100, and ImageNet datasets. Across various SSL frameworks, SynCP
consistently achieves SoTA accuracy in all experiments.

2 RELATED WORKS

2.1 CONTRASTIVE SELF-SUPERVISED LEARNING

Self-supervised learning recently has gained popularity due to its ability to learn visual representa-
tion without labor-intensive labeling. Specifically, pioneering research works (He et al., 2020; Chen
et al., 2020a) utilize the contrastive learning scheme (Hadsell et al., 2006) that aims to group the
correlated positive samples while repelling the mismatched negative samples (Oord et al., 2018).
The performance of the contrastive learning-based approaches largely depends on the contrastive-
ness between the positive and negative samples, which requires large-sized batches to support. As
indicated by SimCLR (Chen et al., 2020a), the performance of SSL is sensitive to the training batch
size, and the inflated batch size elevates training cost. MoCo (He et al., 2020; Chen et al., 2020b)
alleviates such issue with queue-based learning and momentum encoder, where the extensive queue-
held negative samples provide proficient contrastiveness, and the slow-moving average momentum
encoder derives consistent negative pairs. BYOL (Grill et al., 2020) simplifies and outperforms the
prior works by only learning positive samples, while the online latent features are projected by an
additional predictor qθ:

online prediction = qθ(gθ(fθ(X))) (1)

offline target = gξ(fξ(X
′)) (2)

Where f and g represent the encoder and projector of online (θ) and offline (ξ) paths with augmented
input X and X ′, respectively. The predictor qθ generates an alternative view of the projected positive
samples, and the offline momentum encoder provides consistent encoding for contrastive learning.
Overall, salient and consistent contrastiveness is essential to contrastive self-supervised learning.

2.2 SPARSE TRAINING

DNN sparsification has been widely investigated under the supervised learning domain, which can
be generally categorized based on the starting point of sparsification. Early works mainly focus
on post-training sparsification (Han et al., 2016; Evci et al., 2020; Jayakumar et al., 2020), which
removes the weights from the pre-trained model and then recovers the accuracy with subsequent
fine-tuning. Other works exploit weight sparsity prior to the training process (Wang et al., 2019; Lee
et al., 2018), and the resultant model is trained with the sparsified architecture.

In contrast to post-training or pre-training sparsification, exploiting sparsity during training gener-
ates the compressed model with one-time training from scratch, eliminating the requirement of a
pre-trained model or extensive searching process. With the full observability of the training pro-
cess, the magnitude of the gradient can be used to evaluate the model reflection with the exploited
sparsity. Motivated by this, GraNet (Liu et al., 2021) utilizes the “prune-and-regrow” technique to
periodically remove the unimportant non-zero weights from the sparse model and then regrow cer-
tain pruning candidates back. Given the targeted sparsity st and total prune ratio rt at iteration t,
unimportant weights w are removed based on the Top-K magnitude scores:

w
′
= TopK(|w|, rt) (3)

Subsequently, the sensitive weights are re-grown back based on the reflection of gradient gt:

w = w
′
+ TopK(gt

i!=w′ ,rt−st
) (4)

Since the gradient gt indicates the instant model sensitivity at iteration t, the optimal sparse model
architecture can be varied between two adjacent pruning steps.

2.3 CONTRASTIVE LEARNING WITH SPARSITY-INDUCED ASYMMETRY

As introduced in Section 2.1, salient and consistent contrastiveness is essential for contrastive SSL,
where the contrastiveness can be constructed via negative samples or the auxiliary predictors (Grill
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et al., 2020). Inspired by (Hooker et al., 2019), SDCLR (Jiang et al., 2021) amplifies the con-
trastiveness by pruning one encoder of SimCLR (Chen et al., 2020a) while keep the identical twin
dense. Such “sparsity-induced asymmetry” elevates the performance of SSL with the improved per-
formance of the dense model on the long-tailed data samples. However, SDCLR (Jiang et al., 2021)
is not designed for model compression or efficiency improvements. Furthermore, the generality of
such sparsity-induced asymmetry remains under-explored in other SSL frameworks.

3 CHALLENGE OF SPARSE SELF-SUPERVISED LEARNING

3.1 LIMITATIONS OF SPARSITY-INDUCED ASYMMETRY

It has been shown in SDCLR (Jiang et al., 2021) that the sparsity-induced “sparse-dense” asym-
metry is beneficial to contrastive SSL. SDCLR (Jiang et al., 2021) is specifically built upon the
SimCLR (Chen et al., 2020a) framework with shared encoders, where the pruned architectures have
the dense twin in the mirrored contrastive encoder. However, the generality of sparsity-induced
asymmetry remains unproved in other SSL methods, which motivates us to investigate the following
question:

Question 1: For contrastive self-supervised learning with non-identical encoders, will the sparsity-
induced asymmetric encoders still result in elevated performance for contrastive learning?

To answer the above question, we use MoCo-V2 (Chen et al., 2020b) and follow the procedure of
SDCLR (Jiang et al., 2021) to generate a highly-sparse online encoder prior to the training process.
Mathematically, we have:

online output = gθ(Mθ · fθ(X))) (5)

offline output = gξ(fξ(X
′)) (6)

The online encoder mask Mθ produces a sparse online encoder with initialized element-wise spar-
sity (Han et al., 2016) at 90%, while the offline encoder is updated by exponential moving aver-
age (EMA). Following the setup of SDCLR (Jiang et al., 2021), the sparsity is periodically updated
at the beginning of each epoch. Table 1 summarizes the linear evaluation accuracy on the CIFAR-
10 dataset with different static online sparsity values. As opposed to the performance of SimCLR
in (Jiang et al., 2021), directly applying the high sparsity-based perturbation to MoCo-V2 (Chen
et al., 2020b) is challenging, and leads to considerable performance degradation.

Table 1: Largely degraded performance of MoCo-V2 (Chen et al., 2020b) with self-damaging
SSL (Jiang et al., 2021) on CIFAR-10 dataset.

ResNet-18 Dense Model Acc. = 92.09%
Encoder Online Momentum Online Momentum

Fixed Sparsity 90% 0% 50% 0%
Linear Eval. Acc (%) 88.72 (-3.41%) 87.68 (-4.31%) 92.10 (+0.01%) 92.07 (-0.02%)

Summarizing these empirical results, our main observation is:

Observation 1: Compared to the online encoder, the EMA-updated momentum encoder has the
delayed architecture, which makes it unqualified to be the “competitor” as SDCLR (Jiang et al.,
2021). The directly-applied high sparsity overshoots the asymmetric learning, leading to degraded
self-supervised learning.

3.2 FREQUENT ARCHITECTURE CHANGING HINDERS SELF-SUPERVISED LEARNING

As depicted in Eq. 4, the “prune-and-regrow” scheme such as GraNet (Liu et al., 2021) uses instant
gradient magnitude to indicate the model sensitivity after magnitude pruning, removing the unimpor-
tant and insensitive weights while gradually achieving high sparsity. Observation 1 demonstrates
the incompatibility of the directly-applied high sparsity in SSL, then the following question raises:

Question 2: If we apply the gradually-increased sparsity for both encoders, will the “prune-and-
regrow” scheme also be feasible for self-supervised learning?
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Table 2: Sparse training with “prune-and-regrow” scheme on BYOL (Grill et al., 2020).

BYOL (Grill et al., 2020) CIFAR-10 Acc (%)
ResNet-18 Dense Model Acc. = 92.42%

Online Encoder Sparsity 0%→80% 0%→90%

Online Linear Eval. Acc (%) 91.20±0.02 90.13±0.06

Momentum Encoder Sparsity 0%→50% 0%→60%

Momentum Linear Eval Acc. (%) 91.31±0.07 90.09±0.04

Figure 2: (a) Layer-wise oscillation at different steps of pruning. “SC” stands for the shortcut
connection of ResNet-18 model. (b) Gradually-increased sparsity of GraNet (Liu et al., 2021) leads
to inconsistent asymmetry.

To address Question 2, we use the SoTA GraNet (Liu et al., 2021) as the example algorithm to ex-
ploit in-training sparsity on both encoders of BYOL (Grill et al., 2020), where the regrowing process
is only applied to the online encoder. Starting with the dense models, we gradually prune the online
and offline encoders to 90% and 60% sparsity in an element-wise fashion with periodically-updated
sparsity. For sparse SSL training, the results of such gently-increased sparsity scheme reported in
Table 2 outperforms those by (Jiang et al., 2021) (Table 1) by a significant margin. However, the
state-of-the-art supervised pruning algorithm still incurs 2.3% linear evaluation accuracy degrada-
tion with SSL on the CIFAR-10 dataset.

Compared to the self-damaging SSL with fixed sparsity (Jiang et al., 2021), the “prune-and-regrow”
method keeps swapping the pruning candidates to minimize the model sensitivity, oscillating the
encoder architecture during training. We quantifying such architecture oscillation by XORing the
masks generated from magnitude pruning MMP and gradient-based regrow Mg:

Gcor = MMP ⊕Mg ∈ {0, 1} (7)

Under the same sparsity ratio, the number of “1”s in Gcor indicates the amount of architecture
oscillation caused by the gradient-based regrow. During the early stage of training, almost all the
magnitude pruning candidates are replaced by the regrowing process, as shown in Figure 2(a). The
high degree of architecture oscillation implies drastic changes in the sparse model architecture. In
the meantime, gradually sparsifying two encoders with different target sparsity further destroys the
consistency of self-supervised learning, as shown in Figure 2(b). As a result, we have the following
observation for Question 2:

Observation 2: Sparsifying the model with frequently changing architecture hinders the contrastive-
ness and consistency of self-supervised learning and leads to degraded encoder performance.

As shown in Observation 1 and Observation 2, high sparsity-induced asymmetry is not directly-
applicable to sparse SSL, while the consistency requirements of SSL negates the plausibility of
gradual sparsification. The dilemma between self-supervised learning and sparse training derives
the following challenge:

How can we efficiently sparsify the model during self-supervised training while maximizing the
benefits of the sparsity-induced asymmetry?
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4 METHOD

To address the above challenge, we propose Synchronized Contrastive Pruning (SyncCP), which
successfully alleviates the contradiction between the needs of high sparsity and the requirements of
consistency in self-supervised learning.

4.1 SYNCHRONIZED SPARSIFICATION (SYNCS)

The rationale behind the sparsity-induced asymmetric SSL is that the perturbation generated by the
pruned encoder elevates the difference between contrastive features. As indicated by Observation 1
and Table 1, the high sparsity-induced asymmetry is not universally applicable, but the SSL can be
rewarded from the asymmetry incurred by lower sparsity (e.g., 50%), where the SSL-trained sparse
and dense encoders exhibit negligible accuracy degradation compared to the baseline. Motivated
by this, we propose the Synchronized Sparsification (SyncS) technique to exploit sparsity in both
contrastive encoders. Given the online and offline (momentum) encoder θ and ξ, the in-training
sparsification can be expressed as:

online output = gθ(Mθ · fθ(X))) (8)

offline output = gξ(Mξ · fξ(X ′)) (9)
Where Mθ and Mξ represent the online and offline (momentum) sparse masks with sparsity sθ and
sξ. The proposed SyncS scheme gradually exploits the sparsity in both encoders while maintaining
a consistent sparsity gap ∆s between them during SSL training. At each pruning step t, we have:

stθ = sfθ + (siθ − sfθ )(1−
t− t0
n∆t

)3 (10)

stξ = sfξ + (siξ − sfξ )(1−
t− t0
n∆t

)3 (11)

s.t |stθ − stξ| = ∆s, for t ∈ {t0, t0 +∆t, ..., t0 + n∆t} (12)
The synchronized sparsification with the constraints of ∆s prevents the exceeding asymmetry be-
tween contrastive encoders while minimizing the distortion caused by the changing sparsity. In
practice, ∆s is treated as a tunable hyperparameter initialized by Erdos Renyi Kernel (ERK) (Evci
et al., 2020), and impacts the final sparsity of both online and offline encoders. To guarantee the
consistency of the contrastive sparsity, both sθ and sξ are initialized with respect to ∆s.

4.2 CONTRASTIVE SPARSIFICATION INDICATOR (CSI)

Achieving high sparsity requires gentle sparsification, but as presented in Observation 2, the incon-
sistent architecture difference deteriorates the contrastiveness of SSL. On the other hand, the popular
EMA-based update (He et al., 2020) allows the momentum encoder to generate consistent latent rep-
resentation, but the lagged architecture makes the momentum encoder become an unqualified “com-
petitor” to the online encoder, which violates the findings of (Jiang et al., 2021). To address such
conflict, we propose the Contrastive Sparsification Indicator (CSI), a simple-yet-effective method
that automatically selects the starting point of sparsification based on the learning progress of SSL.

During the self-supervised training, CSI first generates the pseudo pruning decisions of both en-
coders based on element-wise magnitude pruning with respect to the target sparsity sfθ and sfξ :

M∗
θ = 1{|wθ| ∈ TopK(|wθ|, sfθ )} (13)

M∗
ξ = 1{|wξ| ∈ TopK(|wξ|, sfξ )} (14)

Where 1 represents the indicator function, and the resultant pseudo masks of M∗
θ and M∗

ξ will not be
applied to the weights. Subsequently, CSI XORs the pseudo pruning masks to generate G (Eq. 15),
and the number of “1”s in G is equivalent to the architecture inconsistency I (Eq. 16). Instead of
using cosine similarity, the bit-wise XOR can be easily implemented on hardware to quantify the
architecture difference during training.

G = M∗
θ ⊕M∗

ξ (15)

I = 1−
∑

1{G = 0}
|G|

(16)
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Figure 3: Sparse BYOL training process (a) without SyncS and (b) with SyncS.

Table 3: Performance comparison of BYOL on CIFAR-10 dataset with/without SyncS.

Method Online Encoder Spars. Momentum Encoder Spars. Online Linear Eval. Acc. (%)
CSI + SyncS 50%→80% 20%→50% 92.24%

CSI Only 50%→80% 20%→20% (Fixed) 91.64%

Given the sparsity gap ∆s defined by SyncS, CSI activates the sparsity increment when I equals to
∆s, and this moment is defined as the CSI checkpoint. In other words, when the architecture differ-
ence between online and offline encoders is mainly caused by the sparsity difference, it is the optimal
moment to start exploiting the in-training sparsity with the gradually-increased sparsity. With the
ability to automatically select the starting point of sparsification, the proposed CSI method auto-
matically sparsifies the model with the full awareness of the SSL process. For the SSL framework
with shared encoder (Zbontar et al., 2021), the architecture inconsistency I is computed based on
the sparse architecture of two consecutive epochs, and the sparsification process is activated when I
is less than a pre-defined threshold τ (e.g., τ = 0.9).

Figure 3 shows the sparsification scheme with and without SyncS. As summarized in Table 3, hold-
ing the sparse momentum architecture after the CSI checkpoint interrupts the consistency between
the online and momentum encoders. Although the momentum encoder retains the low sparsity at
20%, the absence of consistent asymmetry from synchronized contrastive pruning (SCP) causes the
degraded model performance.

On top of the proposed SyncS and CSI schemes, we adopt the prune-and-regrow scheme (Liu et al.,
2021) with modifications to exploit sparsity during SSL training. To further alleviate the contrastive-
ness oscillation caused by changing sparsity, we slowly average the gradient magnitude by exponen-
tial moving average (EMA) with gentle momentum, instead of using the instant score. The detailed
pseudo code of the proposed algorithm is summarized in Appendix A.

5 EXPERIMENTAL RESULTS

In this section, we validate the proposed sparse training scheme and compare it with the current
SoTA sparse training schemes. Unlike the work by (Jiang et al., 2021), the proposed scheme ex-
ploits in-training sparsity in both contrastive paths (encoders) and aims to achieve energy-efficient
self-supervised learning. The proposed method is applied to multiple mainstream SSL frameworks,
including EMA-based methods (Chen et al., 2020b; Grill et al., 2020) and SSL with shared en-
coder (Zbontar et al., 2021). The linear evaluation accuracy and training cost reduction are reported
for multiple datasets, including CIFAR-10, CIFAR-100, and ImageNet-2012. Furthermore, this
work exploits in-training sparsity with various sparsity granularities, including element-wise spar-
sity, N :M sparsity (Zhou et al., 2020), and structural sparsity for a custom hardware accelerator.

CIFAR-10 and CIFAR-100 Table 4 summarizes the linear evaluation accuracy of the proposed
method on CIFAR-10 and CIFAR-100 datasets with element-wise sparsity. We use ResNet-18 (1×)
as the backbone and train the model from scratch by 1,000 epochs. Following the typical high spar-
sity results reported with supervised learning, we report the model performance with 80% and 90%
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Table 4: Linear evaluation comparison on CIFAR-10/100 datasets with element-wise sparsity.

Dataset CIFAR-10 Acc (%) CIFAR-100 Acc (%)
Encoder ResNet-18 (1×) ResNet-18 (1×)

Element-wise Sparsity 0% 80% 90% 0% 80% 90%

MoCo-V2
(Chen et al., 2020b)

This work 92.09 91.77±0.08 91.31±0.04 67.72 67.56±0.04 66.78±0.07

GraNet-MoCo
(Liu et al., 2021) 92.09 90.66±0.07 90.05±0.08 67.72 67.17±0.05 64.92±0.06

SD-MoCo
(Jiang et al., 2021) 92.09 90.26±0.05 87.68±0.06 67.72 65.04±0.04 61.33±0.05

BYOL
(Grill et al., 2020)

This work 92.42 92.26±0.06 92.03±0.05 68.80 68.69±0.06 67.73±0.04
GraNet-BYOL

(Liu et al., 2021) 92.42 91.20±0.02 90.13±0.03 68.80 67.17±0.05 65.85±0.08

SD-BYOL
(Jiang et al., 2021) 92.42 90.33±0.07 87.38±0.04 68.80 66.13±0.08 62.20±0.10

Barlow Twins
(Zbontar et al., 2021)

This work 91.74 91.67±0.09 90.84±0.07 68.62 68.75±0.13 68.48±0.12
GraNet-Barlow

(Liu et al., 2021) 91.74 91.23±0.03 90.44±0.12 68.62 68.40±0.10 68.15±0.14

SD-Barlow
(Jiang et al., 2021) 91.74 90.09±0.03 88.41±0.07 68.62 66.42±0.07 61.77±0.04

Table 5: Linear evaluation accuracy comparison on CIFAR-10/100 datasets with N :M structured-
fine-grained sparsity.

Datasets CIFAR-10 Acc (%) CIFAR-100 Acc (%)
Encoder ResNet-18 (1×) ResNet-18 (1×)

N :M Sparse Pattern 2:4 1:4 2:4 1:4

MoCo-V2
(Chen et al., 2020b) 91.99±0.07 91.53±0.04 67.58±0.05 67.11±0.05

BYOL
(Grill et al., 2020) 92.61±0.05 91.83±0.02 68.69±0.02 68.09±0.07

Barlow Twins
(Zbontar et al., 2021) 91.68±0.04 90.97±0.03 68.26±0.07 68.19±0.06

Inference time reduction (s) 1.40× 2.08× 1.40× 2.08×

target sparsity. To sparsify both encoders during SSL training, we initialize the sparsity of online and
offline (momentum) encoders as 30% and 0%, where the ∆s is set to 30%. The initialized sparse
encoders reduce the overall memory footprint throughout the entire training process. We rigor-
ously transfer the SoTA GraNet Liu et al. (2021) to SSL based on its open-sourced implementation,
the proposed method outperforms GraNet-SSL with 1.26% and 1.86% accuracy improvements on
CIFAR-10 and CIFAR-100 datasets, respectively. In all experiments, we report the average accuracy
with its variation in 3 runs.

In addition to element-wise sparsity, the recent Nvidia Ampere architecture is equipped with the
Sparse Tensor Cores to accelerate the inference computation on GPU with N :M structured fine-
grained sparsity (Zhou et al., 2020), where the N dense elements remain within an M -sized group.
Powered by the open-sourced Nvidia-ASP library, SyncCP sparsifies BYOL training (Grill et al.,
2020) by targeting 100% N :M sparse groups in online encoders. Starting from scratch, the per-
centage of the N :M sparse groups is initialized as 30% and 0% in online and momentum encoders
with ∆s=30%. After the CSI checkpoint, the percentage of N :M groups gradually increases. Ap-
pendix A describes the detailed pruning algorithm of N :M sparsification. Table 5 summarizes linear
evaluation accuracy and inference time reduction on the CIFAR-10 and CIFAR-100 datasets. The
resultant model achieves up to 2.08× inference acceleration with minimum accuracy degradation.
The inference time is measured on an Nvidia 3090 GPU with FP32 data precision.

ImageNet-2012 Since the BYOL (Grill et al., 2020) learning scheme achieves the best perfor-
mance with CIFAR datasets, we further evaluate the proposed method with ResNet-50 on ImageNet
based on the BYOL framework (Grill et al., 2020). Following the typical high sparsity results re-
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Table 6: ImageNet-2012 accuracy and training cost comparison with SoTA works on ResNet-50
with BYOL (Grill et al., 2020).

ImageNet Top-1
Accuracy (%)

FLOPS
(Training)

Top-1
Accuracy (%)

FLOPS
(Training)

Dense Baseline 66.16 5.29e+18 (1×) 66.16 5.29e+18 (1×)

Element-wise Sparsity 80% 90%

BYOL
(Grill et al., 2020)

This work 64.89 0.64× 63.76 0.58×
GraNet-BYOL

(Liu et al., 2021) 63.65 0.59× 62.55 0.51×

SD-BYOL
(Jiang et al., 2021) 61.64 0.68× 59.04 0.63×

ported in Table 4, we report the model performance with 80% and 90% element-wise sparsity. The
data augmentation setup is adopted from the open-sourced library (Costa et al., 2022). Starting from
scratch, the model is trained by 200 epochs, where both online and momentum encoders are ini-
tialized by ERK with ∆s = 30%. While we believe a more fine-grained hyperparameter tuning and
extended training efforts could lead to better accuracy, we choose the above scheme for simplicity
and reproducibility. Table 6 shows the comparison of linear evaluation accuracy on ImageNet-2012
dataset. Compared to the self-damaging scheme (Jiang et al., 2021) and GraNet (Liu et al., 2021),
the proposed algorithm achieves the same highly-sparse network with 4.72% and 1.21% Top-1 in-
ference accuracy improvements, respectively. GraNet exploits in-training sparsity throughout the
entire training process, but the inconsistent contrastiveness hampers the model performance. On the
other hand, the dense encoder limits the efficiency of the self-damaging scheme (Jiang et al., 2021)
scheme, and the static high sparsity degrades the model performance.

Table 7: Hardware training acceleration of the proposed structured sparse SSL training algorithm.

BYOL+ResNet-18 Top-1
Accuracy (%)

Training
Speed-up

Top-1
Accuracy (%)

Training
Speed-up

Dense Baseline 92.42 1× 92.42 1×
Target Structured Sparsity 80% 90%

BYOL
(Grill et al., 2020) This work 92.16 1.74× 91.77 1.91×

Hardware-based Structured Pruning The hardware practicality of element-wise sparsification
is often limited by the irregularity of fine-grained sparsity and index requirement. To that end, we
employ structured sparsity based on group-wise EMA scores towards achieving actual hardware
training acceleration. The encoders are initialized by ERK with 30% and 0% sparse groups while
keeping ∆s = 30%. The structured sparsity starts to gradually increase after the CSI checkpoint. We
adopt the training accelerator specifications from (Venkataramanaiah et al., 2022) and choose Kl (#
of output channels) × Cl (# of input channels) = 8×8 as the sparse group size. Table 7 evalautes the
training speedup of BYOL (Grill et al., 2020) aided by the structured sparse training. The proposed
algorithm achieves up to 1.91× training acceleration with minimal accuracy degradation.

6 CONCLUSION

In this paper, we propose a novel sparse training algorithm designed for self-supervised learn-
ing (SSL). As one of the first studies in this area, we first point out the imperfections of the sparsity-
induced asymmetric self-supervised learning, as well as the incompatibility of the supervised sparse
training algorithm in SSL. Based on the well-knit conclusions, we propose a contrastiveness-aware
sparse training algorithm, consisting of synchronized contrastive pruning (SCP) and contrastive spar-
sification indicator (CSI). The proposed method outperforms the SoTA sparse training algorithm
on both CIFAR and ImageNet-2012 datasets with various mainstream SSL frameworks. We also
demonstrate the actual training and inference hardware acceleration with structured sparsity and
N :M structured fine-grained pattern.
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A APPENDIX A

A.1 PSEUDO CODE OF SYNCCP WITH ELEMENT-WISE SPARSITY

Algorithm 1: Synchornized Contrastive Pruning (SyncCP)
Initialize Sparse online encoder fθ, Sparse offline encoder fξ, EMA updater, Momentum γ,
SyncS density gap ∆s, CSI threshold τ (Default=∆s).
Initial sparsity s0θ, s0ξ , such that |s∗θ − s∗ξ | = ∆s

Target sparsity s∗θ , s∗ξ , such that |s∗θ − s∗ξ | = ∆s

Initial mask M0
θ, M0

ξ .
Pruner udpate frequency Φ
while t < Total Iterations do

Draw augmented data (X,X ′);
Forward pass: online encoding = fθ(Mθ · θ,X) ;
Forward pass: offline encoding = fξ(Mξ · ξ,X ′);
Update Exponential Moving Average (EMA) gradient score based on Eq. 17 ;
if End Epoch then

Get pseudo masks M∗
θ and M∗

ξ based on magnitude pruning;
Compute layer-wise G and I based on Eq. 15 and Eq. 16;
if I = ∆s then

Prune=True
end

end
if t % Φ = 0 then

if Prune=True then
Update sparsity stθ, stξ based on Eq. 10 and Eq. 11;
Maintain the SyncS constraint ∆s;
Inside fθ and fξ, prune stθ, and stξ elements with least magnitude score;
Prune extra rtθ elements of the unpruned elements, then regrow rθ elements with

hights EMA-gradient score;
Update Mt

θ, Mt
ξ based on Eq. 3 and Eq. 4;

else
end

end

A.2 EMA-BASED PRUNE AND REGROW

As aforementioned, the findings of Observation 2 implies the incompatibility of the instant gradient
and magnitude score. Together with the proposed SyncS and CSI methods, weight importance is
measured by the magnitude score, while the sensitivity of the model is quantified by the gently
averaged gradient magnitude with EMA:

ḡt = γ × ḡt−1 + (1− γ)× |g|t (17)

Table 8 summarizes the linear evaluation accuracy of ResNet-18 trained by BYOL (Grill et al.,
2020). We initialize s0θ and s0ξ as 40% and 10%, where the ∆s is set to 30%, the EMA momentum
is set to 0.1 for gentle gradient score averaging.

Metric Prune Regrow EMA Online Linear Eval. Acc. (%)
This work ✓ ✓ ✓ 91.88

Prune-and-regrow ✓ ✓ ✗ 91.52

Magnitude Pruning ✓ ✗ ✗ 90.99

Table 8: Peformance comparison between different sparsification metrics.
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A.3 PSEUDO CODE OF SYNCCP WITH N :M SPARSITY

Algorithm 2: Synchornized Contrastive Pruning (SyncCP) with N :M Sparsity
Initialize Sparse online encoder fθ, Sparse offline encoder fξ, EMA updater, Momentum γ,
SyncS density gap ∆s, CSI threshold τ (Default=∆s).
Group size M , Number of dense element per group N .
Initial percentage p0θ of N :M groups in fθ, Initial percentage p0ξ of N :M groups in fξ;
Such that |p0θ − p0ξ | = ∆s;
Target percentage p∗θ = 100%, p∗ξ = p∗θ −∆s;
Initial mask M0

θ, M0
ξ .

Pruner udpate frequency Φ.
while t < Total Iterations do

Draw augmented data (X,X ′);
Forward pass: online encoding = fθ(Mθ · θ,X) ;
Forward pass: offline encoding = fξ(Mξ · ξ,X ′);
Update Exponential Moving Average (EMA) weight gradient score based on Eq. 17 ;
if End Epoch then

Get pseudo masks M∗
θ and M∗

ξ based on magnitude pruning;
Compute layer-wise G and I based on Eq. 15 and Eq. 16;
if I = ∆s then

Prune=True
end

end
if t % Φ = 0 then

if Prune=True then
Update sparsity ptθ, ptξ based on Eq. 10 and Eq. 11;
Maintain the SyncS constraint ptθ, ptξ = ptθ −∆s;
Inside fθ and fξ, pick ptθ, and ptξ M-sized groups with least sum of magnitude score;
Inside each group, prune the N-M elements with smallest magnitude score;
Update Mt

θ, Mt
ξ based on Figure 4;

else
end

end

(a) (b)

Figure 4: Group-wise (a) prune and (b) regrow algorithm based on EMA gradient score. SyncCP
sparsifies M −N elements inside each group, while keep pt N :M groups inside f .
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A.4 PSEUDO CODE OF SYNCCP WITH STRUCTURED SPARSITY

Algorithm 3: Synchornized Contrastive Pruning (SyncCP) with Structured Sparsity
Initialize Sparse online encoder fθ, Sparse offline encoder fξ, EMA updater, Momentum γ,
SyncS density gap ∆s, CSI threshold τ (Default=∆s).
Group size Kl (# of output channels) × Cl (# of input channels) = g × g.
Initial percentage p0θ of sparse groups in fθ, Initial percentage p0ξ of sparse groups in fξ;
Such that |p∗θ − p∗ξ | = ∆s;
Initial structured sparsity s0θ, s0ξ , such that |s∗θ − s∗ξ | = ∆s

Target structured sparsity s∗θ , s∗ξ , such that |s∗θ − s∗ξ | = ∆s

Initial mask M0
θ, M0

ξ .
Pruner udpate frequency Φ.
while t < Total Iterations do

Draw augmented data (X,X ′);
Forward pass: online encoding = fθ(Mθ · θ,X) ;
Forward pass: offline encoding = fξ(Mξ · ξ,X ′);
Update Exponential Moving Average (EMA) gradient score based on Eq. 17;
if End Epoch then

Get pseudo masks M∗
θ and M∗

ξ based on magnitude pruning;
Compute layer-wise G and I based on Eq. 15 and Eq. 16;
if I = ∆s then

Prune=True
end

end
if t % Φ = 0 then

if Prune=True then
Update structured sparsity stθ, stξ based on Eq. 10 and Eq. 11;
Maintain the SyncS constraint stθ, stξ = stθ −∆s;
Inside fθ and fξ, pick stθ, and stξ groups with least sum of magnitude score;
Outside the sparsified groups of fθ, prune rtθ more groups with least sum of

magnitude score;
Among the sparsified groups fθ, regrow the rtθ groups back with highest sum of

EMA gradient score;
Update Mt

θ, Mt
ξ;

end
end

end

B DETAILED EXPERIMENTAL SETUP OF SYNCCP

B.1 LINEAR EVALUATION PROTOCOL

As in (Kolesnikov et al., 2019; Kornblith et al., 2019; Chen et al., 2020a), we use the standard linear
evaluation protocol on CIFAR-10/100 and ImageNet-2012 datasets, which training a linear classifier
on top of the frozen SSL-trained encoder. During linear evaluation, we apply spatial augmentation
and random flips. The linear classifier is optimized by SGD with cross-entropy loss.

B.2 CIFAR-10/100 EXPERIMENTS

The training hyper-parameters of the compared individual sparse training works are same for
CIFAR-10 and CIFAR-100. We provide the detailed training setup of different self-supervised learn-
ing frameworks as follow:
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MoCo-V2 The ResNet-18 (×) encoder is trained by MoCo-V2 (Chen et al., 2020b) from scratch
by 1,000 epochs with SGD optimizer and 256 batch size. The learning rate is set to 0.3 with Co-
sine learning rate decay and 10 epochs warmup. The detailed data augmentation is summarized in
Table 9.

Parameter X X ′

Random crop size 32 × 32 32 × 32

Horizontal flip probability 0.5 0.5

Color jitter probability 0.8 0.8

Brightness adjustment probability 0.4 0.4

Contrast adjustment probability 0.4 0.4

Saturation adjustment probability 0.2 0.2

Hue adjustment probability 0.1 0.1

Gaussian blurring probability 0.0 0.0

Solarization probability 0.0 0.0

Table 9: Detailed image augmentation settings for MoCo-V2 (Chen et al., 2020b) on CIFAR-10/100.

BYOL The ResNet-18 (×) encoder is trained by BYOL (Grill et al., 2020) from scratch by 1,000
epochs with LARS-SGD optimizer (You et al., 2017). The predictor is constructed with 4096 hidden
features and 256 output dimension. We use 256 batch size along with 1.0 learning rate. The Cosine
learning rate scheduler is used with 10 epochs warmup training. The detailed data augmentation is
summarized in Table 10.

Parameter X X ′

Random crop size 32 × 32 32 × 32

Horizontal flip probability 0.5 0.5

Color jitter probability 0.8 0.8

Brightness adjustment probability 0.4 0.4

Contrast adjustment probability 0.4 0.4

Saturation adjustment probability 0.2 0.2

Hue adjustment probability 0.1 0.1

Gaussian blurring probability 0.0 0.0

Solarization probability 0.0 0.2

Table 10: Detailed image augmentation settings for BYOL (Chen et al., 2020b) on CIFAR-10/100.
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Barlow Twins The ResNet-18 (×) encoder is trained by Barlow Twins (Zbontar et al., 2021) from
scratch by 1,000 epochs with LARS-SGD optimizer (You et al., 2017). We use 256 batch size along
with 0.3 learning rate and 1e − 4 weight decay. The Cosine learning rate scheduler is used with 10
epochs warmup training. The detailed data augmentation is summarized in Table 11.

Parameter X X ′

Random crop size 32 × 32 32 × 32

Horizontal flip probability 0.5 0.5

Color jitter probability 0.8 0.8

Brightness adjustment probability 0.4 0.4

Contrast adjustment probability 0.4 0.4

Saturation adjustment probability 0.2 0.2

Hue adjustment probability 0.1 0.1

Gaussian blurring probability 0.0 0.0

Solarization probability 0.0 0.2

Table 11: Detailed image augmentation settings for Barlow Twins (Zbontar et al., 2021) on CIFAR-
10/100.

B.3 IMAGENET EXPERIMENTS

Starting from scratch, the proposed SyncCP algorithm exploits in-training sparsity with the BYOL
framework (Grill et al., 2020) on ImageNet-2012 dataset. The ResNet-50 encoder is trained by
LARS-SGD (You et al., 2017) with 0.45 learning rate and a momentum of 0.9. We uses 0.1 for
the for EMA-averaged gradient score. We use 128 batch size along with 1e-6 weight decay. The
detailed image augmentations are summarized in Table 12.

Parameter X X ′

Random crop size 224 × 224 224 × 224

Horizontal flip probability 0.5 0.5

Color jitter probability 0.8 0.8

Brightness adjustment probability 0.4 0.4

Contrast adjustment probability 0.4 0.4

Saturation adjustment probability 0.2 0.2

Hue adjustment probability 0.1 0.1

Gaussian blurring probability 1.0 0.1

Solarization probability 0.0 0.2

Table 12: Detailed image augmentation settings for BYOL (Grill et al., 2020) on ImageNet.
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