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Abstract

To address the high communication costs of distributed machine learning, a large
body of work has been devoted in recent years to designing various compression
strategies, such as sparsification and quantization, and optimization algorithms
capable of using them. Recently, Safaryan et al. [2021] pioneered a dramatically
different compression design approach: they first use the local training data to form
local smoothness matrices and then propose to design a compressor capable of
exploiting the smoothness information contained therein. While this novel approach
leads to substantial savings in communication, it is limited to sparsification as it
crucially depends on the linearity of the compression operator. In this work, we
generalize their smoothness-aware compression strategy to arbitrary unbiased
compression operators, which also include sparsification. Specializing our results
to stochastic quantization, we guarantee significant savings in communication
complexity compared to standard quantization. In particular, we prove that block
quantization with n blocks theoretically outperforms single block quantization,
leading to a reduction in communication complexity by an O(n) factor, where n
is the number of nodes in the distributed system. Finally, we provide extensive
numerical evidence with convex optimization problems that our smoothness-aware
quantization strategies outperform existing quantization schemes as well as the
aforementioned smoothness-aware sparsification strategies with respect to three
evaluation metrics: the number of iterations, the total amount of bits communicated,
and wall-clock time.

1 Introduction

Training modern machine learning models is typically cast in terms of (regularized) empirical risk
minimization problem and requires increasingly more training data to make empirical risk closer to
the true risk [Schmidhuber, 2015, Vaswani et al., 2019]. This natural requirement makes it harder (and
in some scenarios impossible) to collect all data in one place and carry out the training using a single
data source. As a result, we reconciled with a flock of datasets disseminated across various compute
nodes holding the actual training data [Bekkerman et al., 2011, Vogels et al., 2019]. However, such
divide-and-conquer approach of handling vast amount of data means that local updates need to be
communicated among the nodes (or through some central server orchestrating the process), which
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often forms the main bottleneck in modern distributed systems [Zhang et al., 2017, Lin et al., 2018].
This issue is further exacerbated by the fact that modern highly performing models are typically
overparameterized [Brown et al., 2020, Narayanan et al., 2021].

1.1. Distributed training. In this paper, we consider distributed training formalized as the following
optimization problem

min
x∈Rd

f(x) +R(x), where f(x)
def
= 1

n

n∑
i=1

fi(x), (1)

and where d is the number of parameters of model x ∈ Rd to be trained, n is the number of
machines/nodes participating in the training, fi(x) is the loss/risk associated with the data stored on
machine i ∈ [n]

def
= {1, 2, . . . , n}, f(x) is the empirical loss/risk, and R(x) is a regularizer.

Because of the communication constraints, large body of work has been devoted in recent years to
the design of various compression strategies, such as sparsification [Konečný and Richtárik, 2018,
Wangni et al., 2018, Alistarh et al., 2018], quantization [Goodall, 1951, Roberts, 1962, Alistarh
et al., 2017], low-rank approximation [Vogels et al., 2019], three point compressor [Richtárik et al.,
2022], and optimization algorithms capable of using them, such as Distributed Compressed Gradient
Descent (DCGD) [Khirirat et al., 2018], QSGD [Alistarh et al., 2017, Faghri et al., 2020], NUQSGD
[Ramezani-Kebrya et al., 2021], DIANA [Mishchenko et al., 2019, Horváth et al., 2019], PowerSGD
[Vogels et al., 2019], signSGD [Bernstein et al., 2018, Safaryan and Richtárik, 2021], intSGD
[Mishchenko et al., 2021], ADIANA [Li et al., 2020], MARINA [Gorbunov et al., 2021].

1.2. From scalar smoothness to matrix smoothness. Typically, distributed optimization algo-
rithms in the literature that employ compressed communication, including all methods from the
aforementioned works, use only shallow smoothness information of the loss function such as scalar
L-smoothness [Nesterov, 2004].
Definition 1 (Scalar Smoothness). Differentiable function φ : Rd → R is called L-smooth if there
exists a non-negative scalar value L ≥ 0 such that

φ(x) ≤ φ(y) + 〈∇φ(y), x− y〉+ L
2 ‖x− y‖

2, ∀x, y ∈ Rd. (2)

As pointed out by Safaryan et al. [2021], smoothness constant L reflects small part of the rich
smoothness information often easily available through the training data. In their recent work,
Safaryan et al. [2021] pioneered a dramatically different compression design approach. First, they
propose to use the local training data to form local smoothness matrices, which they claim contain
much more useful information than standard smoothness constants.
Definition 2 (Matrix Smoothness). Differentiable function φ : Rd → R is called L-smooth if there
exists a symmetric positive semidefinite matrix L � 0 such that

φ(x) ≤ φ(y) + 〈∇φ(y), x− y〉+ 1
2‖x− y‖

2
L, ∀x, y ∈ Rd. (3)

Intuitively, the usefulness of L-smoothness over the standard L-smoothness is the tighter upper bound
for functional growth. In other words, if for a function φ we have the tightest scalar smoothness L
and the tightest matrix smoothness L parameters, then L = λmax(L) and, hence, upper bound (3)
is better than (2). To understand the relationship deeper, consider the functional growth of φ along
the direction e ∈ Rd (without loss of generality assume ‖e‖ = 1). Let x = y + te, where t > 0 is a
positive scaling parameter, and consider the quadratic terms t2

2 L of (2) and t2

2 〈e,Le〉 of (3) bounded
the functional growth. Obviously, depending on the direction e, the quadratic form 〈e,Le〉 can be
much smaller than L = λmax(L) = sup{〈e,Le〉 : ‖e‖ = 1}.
Non-uniform functional growths over different directions hints to design optimization algorithms
that are aware of such properties of the objective. Several works on randomized coordinate descent
have successfully exploited this approach [Richtárik and Takáč, 2016, Qu and Richtárik, 2016a,b,
Hanzely and Richtárik, 2019, Hanzely and Richtárik, 2019]. For example, the ‘NSync algorithm of
Richtárik and Takáč [2016] uses the smoothness matrix to estimate smaller, so-called ESO (Expected
Separable Overapproximation) parameters for each coordinate, leading to larger stepsizes for the
update rule and improved complexity for the algorithm. Note that randomized coordinate descent can
be viewed as compressed gradient descent with random sparsification (n = 1 number of workers).

In the context of distributed optimization, using smoothness matrices Li of all local loss functions
fi(x), i ∈ [n], Safaryan et al. [2021] design a compressor capable of exploiting the smoothness
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Table 1: Summary of main theoretical results of this work. Below constants and log 1
ε factors are

hidden, n is the number of nodes, d is the model size, Lmax = maxi Li, Li = λmax(Li), the
expected smoothness constant Lmax is defined in (4), the variance of generic compression operator is
denoted by ω, parameters ν and ν1 are defined in (8). See Table 3 in the Appendix for the notations.
We discuss some limitations of the proposed algorithms in Section A.3.

Regime ∇fi(x∗) ≡ 0 arbitrary∇fi(x∗)

Original Methods DCGD [Khirirat et al., 2018] DIANA [Mishchenko et al., 2019]

Iteration Complexity L
µ + ωLmax

nµ ω + Lmax
µ + ωLmax

nµ

Communication Complexity
Standard Quantization (ω = O(n)) dLmax

µ nd+ dLmax
µ

Redesigned Methods DCGD+ (Algorithm 1)
with general compression

DIANA+ (Algorithm 2)
with general compression

Iteration Complexity L
µ + Lmax

nµ ωmax + L
µ + Lmax

nµ

Communication Complexity
Block Quantization (n = O(

√
d))

d
n
Lmax
µ

(if ν, ν1 are O(1))

nd+ d√
nd

Lmax
µ

(if ν, ν1 are O(1))

Communication Complexity
Quantization with varying steps

d
n
Lmax
µ + d

d
Lmax
µ

(if ν, ν1 are O(1))

nd+ d
n
Lmax
µ + d

d
Lmax
µ

(if ν, ν1 are O(1))

Theorems 1, 3, 5 2, 4, 6

Speedup factor (up to) min(n, d) min(n, d)

information contained within the smoothness matrices. In particular, under certain heterogeneity
conditions on the smoothness matrices Li, their new compressor reduces total communication cost
by a factor of O(min(n, d)).

While this novel approach leads to substantial savings in communication, it is limited to random
sparsification as it crucially depends on the linearity of the compression operator. It is not clear
whether this approach can be useful in the design of other smoothness-aware compression techniques.

2 Summary of Contributions

Motivated by the above mentioned development, in this work, we made the following contributions.

2.1. Extending matrix-smoothness-aware sparsification to general compression schemes. First,
we generalize the smoothness-aware sparsification strategy [Safaryan et al., 2021] to arbitrary unbi-
ased compressors. Instead of sparsification operator, we consider the generic class Bd(ω) of (possibly
randomized) unbiased compression operators C : Rd → Rd with bounded variance ω ≥ 0, i.e.,

E [C(x)] = x, E
[
‖C(x)− x‖2

]
≤ ω‖x‖2, ∀x ∈ Rd.

This class is quite broad including random sparsification and various quantization schemes. To
benefit from the matrix smoothness information with general compressor C, we propose the following
modification in the communication protocol. If x ∈ Rd is the vector to be communicated, instead of
applying compressor C directly to x and sending C(x), we compress it by C(L†1/2x) and decompress
it by multiplying L1/2. Overall, the receiver estimates the original x by L1/2C(L†1/2x).

2.2. Distributed compressed methods with improved communication complexity. To highlight
the appropriateness of our generalization, we redesign two distributed compressed methods—DCGD
[Khirirat et al., 2018] and DIANA [Mishchenko et al., 2019]—to effectively utilize both matrix
smoothness information and general compression operators leading to new methods, which we call
DCGD+ (Algorithm 1) and DIANA+ (Algorithm 2). The key notion we introduce that enables the
technical analysis is the following quantity describing interaction between compression operator
C ∈ Bd(ω) and smoothness matrix L � 0:

L(C,L)
def
= inf

{
L ≥ 0: E‖C(x)− x‖2L ≤ L‖x‖2

}
≤ ωλmax(L).

This quantity generalizes the one defined in Safaryan et al. [2021] for sparsification, and provides
means for tighter theoretical guarantees (Theorems 1 and 2) and better compression design.
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2.3. Block quantization. As we are no longer constrained to sparsification to exploit matrix smooth-
ness, we consider more aggressive quantization schemes to further reduce the communication cost.
Our first extension of standard quantization [Alistarh et al., 2017] is block quantization, where each
block is allowed to have a separate quantization parameter. Notably, we show theoretically that our
block quantization with n blocks outperforms single block quantization and saves in communication
by a factor of O(n) for both DCGD+ (Theorem 3) and DIANA+ (Theorem 4) when n = O(

√
d).

2.3. Quantization with varying steps. In our second extension of standard quantization, we go even
further and allow all coordinates to have their own quantization steps. This extension turns out to be
more efficient in practice than block quantization and provides savings in communication cost by a
factor of O(min(n, d)) for both DCGD+ (Theorem 5) and DIANA+ (Theorem 6).

2.4. Experiments. Finally, we perform extensive numerical experiments using LibSVM data [Chang
and Lin, 2011] and provide clear numerical evidence that the proposed smoothness-aware quantization
strategies outperform existing quantization schemes as well the aforementioned smoothness-aware
sparsification strategies with respect to three evaluation metrics: the number of iterations, the total
amount of bits communicated, and wall-clock time (see Section 6 and the Appendix).

3 Smoothness-Aware Distributed Methods with General Compressors

In this section we extend methods DCGD+ and DIANA+ of Safaryan et al. [2021] to handle arbitrary
unbiased compression operators. We consider the problem (1) with matrix smoothness assumption
for all local losses fi(x) and with strong convexity of loss function f(x).

Assumption 1 (Matrix smoothness). The functions fi : Rd → R are differentiable, convex, lower
bounded and Li-smooth. Besides, f is L-smooth with the scalar smoothness constant L def

= λmax(L).

First, note that lower boundedness of fi(x) is not needed once Li � 0 is invertible. This part of
the assumption is not a restriction in applications as all loss function are lower bounded. Regarding
the relation between L and Li, notice that (1) implies L � 1

n

∑n
i=1 Li. This means that while

1
n

∑n
i=1 Li can serve as a smoothness matrix for f , there might be a tighter estimate, which we

denote by L. Clearly, matrix smoothness provides much more information about the loss function
than scalars smoothness. However, estimating dense smoothness matrix L could be expensive
for problems beyond generalized linear models because of the d2 number of entries and lack of
closed-form expression. On the other hand, estimating sparse, such as diagonal, smoothness matrix
Diag(L1, L2, . . . , Ld) should be feasible. Lastly, if L is a smoothness matrix (could be dense,
diagonal or any structure) of f , then any matrix L̃ � L is also a smoothness matrix for f . This
implies that our theory would still work if the smoothness matrix is over-approximated.

Assumption 2 (µ-convexity). The function f : Rd → R is µ-convex for some µ > 0, i.e.,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µ
2 ‖x− y‖

2, ∀x, y ∈ Rd.

This assumption is rather standard in the literature, sometimes referred to as strong convexity.

3.1. DCGD+ with arbitrary unbiased compression. In our version of DCGD+, each node i ∈ [n]
is allowed to control its own compression operator Ci ∈ Bd(ω) independent of other nodes. Denote

Lmax
def
= max1≤i≤n Li, where Li

def
= L(Ci,Li). (4)

Furthermore, as the compressor Ci can be random, denote by Cki a copy of Ci generated at iteration k.

Algorithm 1 DCGD+ WITH ARBITRARY UNBIASED COMPRESSION

1: Input: Initial point x0 ∈ Rd, step size γ > 0, compression operators {Ck1 , . . . , Ckn}
2: on server
3: send xk to all nodes
4: get compressed updates Cki (L

†1/2
i ∇fi(xk)) from all nodes i ∈ [n]

5: update the model to xk+1 = proxγR(xk − γgk), where gk = 1
n

∑n
i=1 L

1/2
i Cki (L

†1/2
i ∇fi(xk))
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Similar to the standard DCGD method, convergence of DCGD+ is linear up to some oscillation
neighborhood. However, for the interpolation regime this neighborhood vanishes and the method
converges linearly to the exact solution.
Theorem 1. Let Assumptions 1 and 2 hold and assume that each node i ∈ [n] generates its own
copy of compression operator Cki ∈ Bd(ωi) independently from others. Then, for the step-size
0 < γ ≤ 1

L+ 2
nLmax

, the iterates {xk} of DCGD+ (Algorithm 1) satisfy

E
[
‖xk − x∗‖2

]
≤ (1− γµ)

k ‖x0 − x∗‖2 +
2γσ∗+
µn , (5)

where σ∗+
def
= 1

n

∑n
i=1 Li‖∇fi(x∗)‖2L†i

. In particular, for the interpolation regime (i.e.,∇fi(x∗) = 0

for all i ∈ [n]), then DCGD+ converges linearly with iteration complexity

O
(
(Lµ + Lmax

nµ ) log 1
ε

)
. (6)

We show later that the iteration complexity (6) of DCGD+ can be much better than one of
DCGD. However, the size of the neighborhood of DCGD+ might be bigger than of DCGD.
In case of standard (scalar) smoothness (i.e. Li = LiI) the size of the neighborhood would
be σ∗

def
= 1

n

∑n
i=1 ωi‖∇fi(x∗)‖2, which might be smaller than σ∗+. Even though we have

Li ≤ ωiλmax(Li) from the definition of Li, it does not imply LiL†i � ωiI. Thus, with matrix-
smoothness-aware compression we ensure faster linear convergence at the cost of a possibly larger
oscillation radius. This is not an issue for the interpolation regime, which can interpolate the whole
training data with zero loss. Moreover, next we present an algorithmic solution to remove the
neighborhood using the DIANA method.

3.2. DIANA+ with arbitrary unbiased compression. The mechanism allowing to remove the
neighborhood in DIANA+ is based on the DIANA method, which was initially introduced for ternary
quantization by Mishchenko et al. [2019], and then extended to arbitrary unbiased compression
operators by Horváth et al. [2019]. The high level idea is to learn the local optimal gradients∇fi(x∗)
by estimates uki for all nodes i ∈ [n] in a communication efficient manner. Nodes use these estimates
uki to progressively construct better local gradient estimates gki reducing the variance induced from
the compression.

Algorithm 2 DIANA+ WITH ARBITRARY UNBIASED COMPRESSION

1: Input: Initial point x0 ∈ Rd, initial shifts u0i ∈ range(Li) and u0 def
= 1

n

∑n
i=1 u

0
i , step size

parameters γ > 0 and α > 0, compression operators {Ck1 , . . . , Ckn}
2: for each node i = 1, . . . , n in parallel do
3: get xk from the server and compute local gradient∇fi(xk)

4: send compressed update ∆k
i = Cki (L

†1/2
i (∇fi(xk)− uki )) to the server

5: update local gradient and shift ∆k
i = L

1/2
i ∆k

i , g
k
i = uki + ∆k

i , u
k+1
i = uki + α∆k

i
6: end for
7: on server
8: get all sparse updates ∆k

i , i ∈ [n] and ∆k = 1
n

∑n
i=1 ∆k

i = 1
n

∑n
i=1 L

1/2
i ∆k

i , g
k = ∆k + uk

9: update the global model to xk+1 = proxγR(xk − γgk) and global shift to uk+1 = uk + α∆k

We prove in the Appendix that both iterates xk and all local gradient estimates uki converge linearly
to the exact solution x∗ and ∇fi(x∗) respectively.
Theorem 2. Let Assumptions 1 and 2 hold and assume that each node i ∈ [n] generates its own copy
of compression operator Cki ∈ Bd(ωi) independently from others. Then, if ωmax = max1≤i≤n ωi
and the step-size γ = 1

L+ 6
nLmax

, DIANA+ (Algorithm 2) converges linearly with iteration complexity

O
(
(ωmax + L

µ + Lmax

nµ ) log 1
ε

)
. (7)

Notice that the cost of removing the neighborhood is the extra O(ωmax log 1
ε ) iterations, which is

negligible in the overall complexity (7) above. Another interesting observation is the second order
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flavor of the gradient learning technique employed by DIANA+. Let, for concreteness, matrices Li be
invertible and Cki (−x) = −Cki (x) for all x ∈ Rd (both random sparsification and quantization satisfy
this). Typically, the learning procedure of the original DIANA method, uk+1

i = uki − αCki (uki −
∇fi(xk)), can be interpreted as a single step of CGD applied to the problem of minimizing the
convex quadratic function ϕki (u)

def
= 1

2

∥∥u−∇fi(xk)
∥∥2 , which changes in each iteration because

the gradient changes. In contrast, we observe that the learning mechanism of DIANA+ can be
interpreted as a single step of a (damped) Newton’s method with compressed gradients and with
the true Hessian. Indeed, fix the iteration counter k and denote ϕki (u)

def
= 1

2

∥∥u−∇fi(xk)
∥∥2
L
−1/2
i

.

Then, the update rule of shifts uki in DIANA+ can be rewritten as uk+1
i = uki − αL

1/2
i C(L

−1/2
i (uki −

∇fi(xk))) = uki −α
[
∇2ϕi(u

k
i )
]−1 Cki (∇ϕi(uki )). This might serve as an extra explanation on why

incorporating smoothness matrices properly can improve the performance of first order methods with
communication compression.

3.3. Baselines for the original methods. To make the theoretical comparison against DCGD and
DIANA more transparent, we fix the following baselines using the standard quantization scheme.

• Baseline for DIANA. The iteration complexity of DIANA is T = Õ(ω + Lmax

µ + ωLmax

nµ ). When
applying standard quantization from [Alistarh et al., 2017], the amount of bits each node commu-
nicates is b = O(s2 + s

√
d) = max(s2, s

√
d) = O( dω ) since ω = min( ds2 ,

√
d
s ) = d

max(s2,s
√
d)

(Lemma 3.1., Alistarh et al. [2017]). Thus, the total communication complexity of DIANA is
n · T · b = Õ(nd+ ndLmax

ωµ + dLmax

µ ). Thus, the optimal total communication complexity of DIANA

is Õ(nd+ dLmax

µ ), which is attained when ω = O(n).

• Baseline for DCGD. Based on the iteration complexity2 Õ(Lµ + ωLmax

nµ ) of DCGD (in case
∇fi(x∗) = 0 for all i ∈ [n]), we fix the same level of compression ω = O(n), which results in
Õ(Lmax

µ ) iterations complexity. From the estimate of quantization variance ω = min
(
d
s2 ,
√
d
s

)
we

conclude that s = O(
√
d
n ) should be used. Finally, with this choice of s, each node communicates

O(s2 + s
√
d) = O( dn ) amount of bits. Thus, total communication complexity (i.e. how many bits

flows through the central server) of DCGD is Õ(dLmax

µ ).

To compare the proposed methods with these baselines and highlight improvement factors, define
parameters ν and ν1 describing local smoothness matrices Li as follows

ν
def
=

∑n
i=1 Li

maxi∈[n] Li
, ν1

def
= maxi∈[n]

∑d
j=1 Li;j

maxj∈[d] Li;j
, (8)

where Li = λmax(Li), Lmax
def
= max1≤i≤n Li and Li;j is the jth diagonal element of matrix

Li. Parameters ν ∈ [1, n] and ν1 ∈ [1, d] describe the level of heterogeneity over the nodes and
coordinates respectively. If Li matrices coincide, then ν = n and ν1 = d. On the other extreme,
when the values of Li are extremely non-uniform, we have ν � n and ν1 � d.

Notice that the quantity Lmax

µn in (6) and the quantity ωmax + Lmax

µn in (7) depend on compression
operators Cki applied by the nodes. For the rest of the paper we are going to minimize these quantities
with respect to the choice of Cki in such a way to minimize total communication complexity of the
proposed distributed methods. We specialize compressors Ci to two different extensions of standard
quantization and optimize with respect to compression parameters.

4 Block Quantization

We now present our first extension to standard quantization in order to properly capture the matrix
smoothness information. Instead of having a single quantization parameter (e.g. number of levels)
for all coordinates, here we divide the space Rd into B ∈ {1, 2, . . . , d} blocks as Rd = Rd1 ×Rd2 ×
· · · × RdB and for each subspace Rdl , l ∈ [B] we apply standard quantization independently from

2this can be shown by specializing Theorem 1 or Theorem 2 of Safaryan et al. [2021] to scalar smoothness
setup and interpolation regime, namely Li = LiI and ‖∇fi(x∗)‖ = 0 for all i ∈ [n].
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other blocks with different number of levels sl. Thus, for any l ∈ [B] we allocate one parameter sl for
lth block of x ∈ Rd. Hence quantization is applied block-wise: for each block we send the norm ‖xl‖
of the block xl ∈ Rdl and all entries within this block are quantized with levels {0, 1

sl
, 2
sl
, . . . , 1}. In

the special case of B = 1, we get the standard quantization of Alistarh et al. [2017].

To get rid of the constraints on sl to be integers, instead of working with the number of levels sl, we
introduce the size of the quantization step hl = 1

sl
and allow them to take any positive values (even

bigger than 1). Thus, for each block l ∈ [B] we quantize with respect to levels {0, hl, 2hl, . . . }.
Definition 3 (Block Quantization). For a given number of blocks B ∈ [d] and fixed quantization
steps h = (h1, . . . , hB), define block-wise quantization operator QBh : Rd → Rd as follows:[

QBh (x)
]
t

def
= ‖xl‖ · sign(xt) · ξl

(
|xt|
‖xl‖

)
,

where t = (l−1)B+j, x ∈ Rd, j ∈ [dl], l ∈ [B] and ξl(v) for v ≥ 0 is defined via the quantization
levels {0, hl, 2hl, . . . } as follows: if khl ≤ v < (k + 1)hl for some k ∈ {0, 1, 2, . . . }, then

ξl(v)
def
=
{ khl with probability k+1− v

hl
,

(k+1)hl with probability v
hl
−k. (9)

Note that QBh is an unbiased compression operator as E [ξj(v)] = v for any v ≥ 0. To communicate
a vector of the form QBh (x), we encode each block

[
QBh (x)

]l ∈ Rdl using Elias ω-coding as in
the standard quantization scheme [Alistarh et al., 2017]. Hence, for each block l ∈ [B] we need to
send Õ( 1

h2
l

+
√
dl
hl

) bits and one floating point number for ‖xl‖. Overall, the number of encoding

bits for QBh (x) (up to constant and log factors) can be given by
∑B
l=1( 1

h2
l

+
√
dl
hl

) + B. As for the

compression noise, we prove in the Appendix the following upper bound for L(QBh ,L):

L(QBh ,L) ≤ max1≤l≤B hl‖Diag(Lll)‖, (10)

where Lll is the lth diagonal block matrix of L with sizes dl × dl. Next, we are going to minimize
communication complexity of DCGD+ and DIANA+ by optimizing parameters of block quantization.

4.1. DCGD+ with block quantization. We fix the number of blocks B ∈ [d] for all nodes i ∈ [n]
and allow each node to apply different block quantization operator QBhi with quantization steps
hi = (hi,1, . . . , hi,B). To minimize communication complexity of DCGD+, we need to minimize
Lmax subject to the communication constraint mentioned above. Since Lmax = maxi∈[n] L(Ci,Li),
each node i ∈ [n] can minimize the impact of its own compression by minimizing L(Ci,Li) based
on local smoothness matrix Li. This leads to the following optimization problem for finding optimal
values of hi for each node i ∈ [n]:

min
h∈RB

max1≤l≤B hl‖Diag(Llli )‖, s.t.
∑B
l=1( 1

h2
l

+
√
dl
hl

) +B = β, hl > 0, l ∈ [B], (11)

where β is the “budget” of communication: Larger β leads to finer quantization levels. Note
that the constraint in (11) depends monotonically from each hl. Therefore, the optimum is at-
tained when hl‖Diag(Llli )‖ is uniform over l ∈ [B]. Thus, the solution to this problem is
given by hi,l =

δi,B
‖Diag(Llli )‖

, where δi,B ≥ 0 is uniquely determined by the constraint equal-

ity of (11) as the only positive solution of δ2i,B − δi,B
dTi,B
β−B −

dT 2
i,1

β−B = 0, which implies δi,B =

dTi,B
2(β−B) +

√
d2T 2

i,B

4(β−B)2 +
dT 2
i,1

β−B ≤
d

β−BTi,B +
√

d
β−BTi,1, where Ti,B

def
= 1

d

∑B
l=1

√
dl‖Diag(Llli )‖.

If this solution of quantization steps hi is used by all nodes i ∈ [n], then we show reduction in
communication complexity by a factor of O(n).

Theorem 3. Assume n = O(
√
d) and both ν, ν1 are O(1). Then DCGD+ using block quan-

tization with B = n blocks, dl = O(d/n) block sizes for all l ∈ [n] and quantization steps
hi,l = δi,B/‖Diag(Llli )‖ with β = O(d/n) reduces overall communication complexity by a factor
of O(n) compared to DCGD using B = 1 single block quantization. Formally, to guarantee ε > 0

accuracy, the communication complexity of DCGD+ is O
(
d
n
Lmax

µ log 1
ε

)
, which is O(n) times

smaller over DCGD.
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4.2. DIANA+ with block quantization. For the rate (7) of DIANA+, we need to optimize ωmax +
Lmax

nµ part of the complexity under the same communication constraint used in (11). Since

maxi∈[n]

(
ωi + Li

nµ

)
≤ ωmax + Lmax

nµ ≤ 2 maxi∈[n]

(
ωi + Li

nµ

)
, (12)

we can decompose the problem into subproblems for each node i to optimize ωi + Li
nµ with respect to

its own quantization parameters hi. Analogously, this leads to the following optimization problem
for finding optimal values of hi for each node i ∈ [n]:

min
h∈RB

max1≤l≤B hl

(√
dl + 1

µn‖Diag(Llli )‖
)
, s.t.

∑B
l=1( 1

h2
l

+
√
dl
hl

) +B = β, hl > 0, (13)

which can be solved with a similar argument as done for (11). Details are deferred to the Appendix.

Theorem 4. Assume n = O(
√
d) and both ν, ν1 are O(1). Then DIANA+ using block quantization

with B = n blocks, dl = O(d/n) block sizes for all l ∈ [n] and hi,l quantization steps (solution to
(13)) with β = O(d/n) reduces overall communication complexity by a factor of O(n) compared
to DIANA using B = 1 single block quantization. Formally, to guarantee ε > 0 accuracy, the

communication complexity of DIANA+ is O
((
nd+

√
d
n
Lmax

µ

)
log 1

ε

)
, which (ignoring n summand

in the complexity) is O(n) times smaller over DIANA.

5 Quantization with Varying Steps

Our second extension of standard quantization scheme is to allow different quantization steps for all
coordinates {1, 2, . . . , d}. In other words, for each coordinate j ∈ [d] we quantize with respect to
levels {0, hj , 2hj , . . . }. The standard quantization [Alistarh et al., 2017] is the special case when
hj = 1

s for all j ∈ [d], where s is the number of quantization levels.

Definition 4 (Quantization with varying steps). For fixed quantization steps h = (h1, . . . , hd)
> ∈

Rd, define quantization operator Qh : Rd → Rd as follows:

[Qh(x)]j = ‖x‖ · sign(xj) · ξj
(
|xj |
‖x‖

)
, x ∈ Rd, j = 1, 2, . . . , d,

where ξj is defined via the quantization levels {0, hj , 2hj , . . . } as in (9).

Note that compression operator Qh is unbiased as E [ξj(v)] = v for any v ≥ 0 and is not a special
case of block quantization defined earlier. To understand how the number of encoding bits of Qh(x)
depends on h exactly seems challenging, since it depends on the actual encoding scheme (i.e. binary
representation of compressed information). Besides, even if we fix binary mapping, the closed form
expression of total amount of bits is too complicated to be utilized in the further analysis. We provide

theoretical arguments and clear numerical evidence that ‖h−1‖ =
√∑d

j=1 h
−2
j is a reasonable proxy

for the number of encoding bits for compressor Qh.
Assumption 3. For any input vector x ∈ Rd and quantization steps h ∈ Rd, compressed vector
Qh(x) can be encoded with O(‖h−1‖) number of bits.

First, consider the special case when all quantization steps are the same, i.e. hj = 1
s . Then

‖h−1‖ = s
√
d recovers the dominant part (provided s = O(

√
d)) in Õ(s2 + s

√
d) showing total

amount of bits for standard quantization scheme. Second, in the Appendix we present an encoding
scheme which (up to constant and log d factors) requires E [ψ(‖x̂‖0)] + ‖h−1‖ number of bits in
expectation to communicate x̂ = Qh(x), where ψ(τ)

def
= dH2(τ/d) + τ ≤ d log 3, if τ ∈ [0, d] and

H2 is the binary entropy function. Note that, based on the definition (9), increasing quantization steps
hj forces more sparsity in x̂ and hence reduces ‖x̂‖0. Thus, ‖x̂‖0 and hence ψ(‖x̂‖0) (notice that
ψ(0) = 0) are proportional to ‖h−1‖. Furthermore, we present a numerical experiment which shows
that the number of encoding bits of Qh(x) and ‖h−1‖ are positively correlated.

Hence, in the further analysis, we fix the number of encoding bits of Qh(x) by the constraint
‖h−1‖ = β for some parameter β > 0. As for the variance induced by the compression operator Qh,
we prove the following upper bound for L(Qh,L):

L(Qh,L) ≤ ‖Diag(L)h‖. (14)
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5.1. DCGD+ with varying quantization steps. Now, we optimize the rate (6) of DCGD+ with
respect to quantization steps hi = (hi;1, hi;2, . . . , hi;d) of compressor Qhi controlled by ith node
for all i ∈ [n]. The term in (6) affected by the compression is Lmax = maxi∈[n] L(Ci,Li), which
implies that each node i ∈ [n] can minimize the impact of its own compression by minimizing
L(Ci,Li) based on local smoothness matrix Li. Based on the upper bound (14) and communication
constraint given by ‖h−1‖ = β for some β > 0, we get the following optimization problem to choose
the optimal quantization parameters hi for node i ∈ [n]:

min
h∈Rd

‖Diag(Li)h‖, s.t. ‖h−1‖ = β, hj > 0, j ∈ [d]. (15)

This problem has the following closed form solution due to KKT conditions (see Appendix):

hi;j = 1
β

√∑d
t=1 Li;t
Li;j

, i ∈ [n], j ∈ [d]. (16)

With this choice of quantization steps we save O(min(n, d)) times in communication.
Theorem 5. Assume both ν, ν1 are O(1) and β = O(d/n). Then DCGD+ using quantization
with varying steps (25) for all i ∈ [n] reduces overall communication complexity by a factor of
O(min(n, d)) compared to the baseline of DCGD. Formally, the iteration complexity (6) can be

upper bounded as L
µ + Lmax

nµ ≤ ν
n
Lmax

µ + ν1
β
Lmax

nµ = O
(

1
n
Lmax

µ + 1
d
Lmax

µ

)
, which is min(n, d)

times smaller than the one for DCGD. As both methods communicate O(d/n) bits per node per
iteration, we get min(n, d) times savings in communication complexity.

5.2. DIANA+ with varying quantization steps. Based on (12), each node i ∈ [n] optimizes ωi+ Linµ
with respect to its quantization parameters hi, which is equivalent to the problem

min
h∈Rd

∑d
j=1

(
1 +A2

ij

)
h2j , s.t. ‖h−1‖ = β, hj > 0, j ∈ [d] (17)

where Aij
def
= Li;j/nµ. Due to the KKT conditions (see Appendix), we get the following solution

hi;j = 1
β

√∑d
t=1

√
1+A2

it√
1+A2

ij

. (18)

With this choice of quantization steps we save O(min(n, d)) times in communication.
Theorem 6. Assume both ν, ν1 are O(1) and β = O(d/n). Then DIANA+ using quantization
with varying steps (18) for all i ∈ [n] reduces overall communication complexity by a factor of
O(min(n, d)) compared to the baseline of DIANA. Formally, the iteration complexity (7) can be

upper bounded as ωmax + L
µ + Lmax

nµ ≤
√
2d
β + ν

n
Lmax

µ +
√
2ν1
βn

Lmax

µ = O
(
n+ 1

n
Lmax

µ + 1
d
Lmax

µ

)
,

which is min(n, d) times smaller than the one for DIANA (ignoring negligible term n).

6 Experiments

6.1. Setup. In this section we present two key experiments. Additional experiments can be found in
the Appendix. We conduct a range of experiments with several datasets from the LibSVM repository
[Chang and Lin, 2011] on the `2-regularized logistic regression problem (1):

min
x∈Rd

1
n

∑n
i=1 fi(x), fi(x) = 1

m

∑m
t=1 log(1 + exp(−bi,tA>i,tx)) + λ

2 ‖x‖
2,

where Ai,t are data points sorted based on their norms before allocating to local workers for the
heterogeneity. The experiments are performed on a workstation with Intel(R) Xeon(R) Gold 6246
CPU @ 3.30GHz cores. The gather and broadcast operations for the communications between
master and workers are implemented based on the MPI4PY library [Dalcín et al., 2005] and each
CPU core is treated as a local worker. For each dataset, we run each algorithm multiples times with 5
random seeds for each worker. Due to space limitations, we present only two of our experiments here
deferring the remaining experiments along with experimental details in the Appendix.

6.2. Comparison to standard quantization techniques. In our first experiment, we compare
smoothness-aware DCGD+ and DIANA+ methods with our varying-step quantization technique
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(quant+) to the original DCGD [Khirirat et al., 2018] and DIANA [Mishchenko et al., 2019] methods
with the standard quantization technique (quant) of Alistarh et al. [2017]. Figure 1 demonstrates
that DCGD+/DIANA+ with quant+ lead to significant improvement in both transmitted megabytes
and wall-clock time. An ablation study to disentangle the contributions of exploiting the smoothness
matrix and utilizing varying number of levels can be found in Appendix B.
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Figure 1: Comparison of smoothness-aware DCGD+/DIANA+ methods with varying-step quantiza-
tion (quant+) to original DCGD/DIANA methods with standard quantization (quant). Note that in
quant+ workers need to send L

1/2
i ∈ Rd×d and quantization steps hi ∈ Rd to the master before the

training. This leads to extra costs in communication bits and time, which are taken into consideration.

6.3. Comparison to matrix-smoothness-aware sparsification. Second experiment is devoted to
the performance of three smoothness-aware compression techniques —block quantization (block
quant+) of Section 4, varying-step quantization (quant+) of Section 5 and smoothness-aware
sparsification strategy (rand-τ+) of Safaryan et al. [2021]. All three compression techniques are
shown to outperform the standard compression strategies by at most O(n) times in theory. For
the sparsification, we use the optimal probabilities and the sampling size τ = d/n as suggested in
Section 5.3 of [Safaryan et al., 2021]. The empirical results in Figure 2 illustrate that the varying-step
quantization technique (quant+) is always better than the smoothness-aware sparsification [Safaryan
et al., 2021], in terms of both communication cost and wall-clock time. Our block quantization
technique also beats sparsification when the dimension of the model is relatively high.
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Figure 2: Comparison of three matrix-smoothness-aware compression techniques employed in
DIANA+ method: varying-step quantization quant+, our variant of block quantization block
quant+, and smoothness-aware sparsification rand-τ+ of Safaryan et al. [2021].
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