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ABSTRACT

Deep graph neural networks (GNNs) have gained increasing popularity, while
usually suffer from unaffordable computations for real-world large-scale appli-
cations. Hence, pruning GNNs is of great need but largely unexplored. A re-
cent work (Chen et al., 2021) studies lottery ticket learning for GNNs, aiming
to find a subset of model parameters and graph structure that can best maintain
the GNN performance. However, it is tailed for the transductive setting, failing
to generalize to unseen graphs, which are common in inductive tasks like graph
classification. In this work, we propose a simple and effective learning paradigm,
Inductive Co-Pruning of GNNs (ICPG), to endow graph lottery tickets with in-
ductive pruning capacity. To prune the input graphs, we design a predictive model
to predict importance scores for each edge based on the input; to prune the model
parameters, it views the weight’s magnitude as their importance scores. Then we
design an iterative co-pruning strategy to trim the graph edges and GNN weights
based on their importance scores. Although it might be strikingly simple, ICPG
surpasses the existing pruning method and can be universally applicable in both
inductive and transductive learning settings. On ten graph-classification and two
node-classification benchmarks, ICPG achieves the same performance level with
14.26%∼43.12% sparsity for graphs and 48.80%∼91.41% sparsity for the model.

1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling, 2016; Veličković et al., 2017; Zhou et al., 2018)
have become a prevalent solution for machine learning tasks on graph-structured data. Such success
is usually ascribed to the powerful representation learning of GNN, which incorporates the graph
structure into the representations, such as aggregating neural messages from the neighboring nodes
to update the ego node’s representation (Veličković et al., 2017; Kipf & Welling, 2016).

As the field grows, there is an increasing need of building deeper GNN architectures (Li et al.,
2020a; 2021) on larger-scale graphs (Hu et al., 2020). While deepening GNNs shows potentials on
large-scale graphs, it also brings expensive computations due to the increased scale of graph data
and model parameters, limiting their deployment in resource-constrained applications. Taking fraud
detection in a transaction network as an example, the scale of user nodes easily reaches millions or
even larger, making a GNN-detector model prohibitive to stack deep layers and predict the malicious
behaviors in real time. Hence, pruning over-parameterized GNNs is of great need, which aims to
answer the question: Can we co-sparsify the input graphs and model parameters, while preserving
or even improving the performance?

Recently, the pruning approach for GNNs, UGS, (Chen et al., 2021), is proposed to find graph lottery
tickets (GLTs) — smaller subsets of model parameters and input graphs. At its core is Lottery Ticket
Hypothesis (LTH) (Frankle & Carbin, 2018) speculating that any dense, randomly-initialized neural
network contains a sparse subnetwork, which can be trained independently to achieve a matching
performance as the dense network. Specifically, UGS employs trainable masks on each edge in the
input graph and each weight in the model parameters, to specify their importance. When training the
model with the masks, the strategy of iterative magnitude-based pruning (IMP) (Frankle & Carbin,
2018) is used to discard the edges and weights with the lowest mask values at each iteration.

Despite effectiveness, there exist the following limitations: (1) UGS focuses solely on providing
the transductive graph masks by generating a painstakingly customized mask for a single edge
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individually and independently. That is, the edge masks are limited to the given graph, making
UGS infeasible to be applied in the inductive setting, since the edge masks hardly generalize to
unseen edges or entirely new graphs. (2) Applying a mask for each edge alone only provides a local
understanding of the edge, rather than the global view of the entire graph (e.g., in node classification)
or multiple graphs (e.g., in graph classification). Moreover, the way of creating trainable edge masks
will double the parameters of GNNs, which violates the purpose of pruning somehow. As a result,
these edge masks could be suboptimal to guide the pruning. (3) The unsatisfactory graph pruning
will negatively influence the pruning of model weights. Worse still, low-quality weight pruning will
amplify the misleading signal of edge masks in turn. They influence each other and form a vicious
circle. We ascribe all these limitations of UGS to its transductive nature. Hence, conducting the
combinatorial pruning in the inductive setting is crucial to high-quality winning tickets.

In this work, we emphasize the inductive nature within the combinatorial pruning of input graphs and
GNN parameters and present our framework, Inductive Co-Pruning of GNNs (ICPG). It is an ex-
tremely simple but effective pruning framework that is applicable to any GNN in both inductive and
transductive settings. Specifically, for the input graphs, we design a generative probabilistic model
(termed AutoMasker), which learns to generate edge masks from the observed graphs. It is param-
eterized with an additional GNN-based encoder, whose parameters are shared across the population
of observed graphs. As a consequence, AutoMasker is naturally capable to specify the significance
for each edge and extract core-subgraphs from a global view of the entire observations. For the
model parameters, we simply exploit the magnitude of a model weight to assess whether it should
be pruned, rather than training an additional mask (Chen et al., 2021). Having established the edge
masks and weight magnitudes, we can obtain high-quality GLTs by pruning the lowest-mask edges
and lowest-magnitude weights. Experiments on ten graph-classification and two node-classification
benchmarks consistently validate our framework ICPG by identifying high-quality GLTs. The visu-
alizations show that ICPG always retains decisive subgraphs, such as edges located on digital pixels
in MNIST graphs, which further illustrates the effectiveness and rationality. Moreover, we inspect
the graph- and GNN-level transferability of GLTs, which promises for deploying our ICPG in the
pre-training and fine-tuning paradigm. Our main contributions can be summarized as follows:

• We proposed a simple but effective pruning framework, ICPG, to prune the GNN model and input
graphs simultaneously. It can identify high-quality GLTs in diverse tasks of graph representation
learning, under both inductive and transductive settings.

• For graph classification tasks, ICPG can locate GLTs from small-scale (TUDataset), medium-
scale (Superpixel graphs) to challenging large-scale datasets (OGB) with graph sparsity from
22.62%∼43.12% and GNN sparsity from 67.23%∼91.41% with no degradation on performance.

• For node classification tasks, ICPG can effectively develop on both transductive learning (Cora
dataset) and inductive learning (PPI dataset), which identifies the GLTs with graph sparsity from
22.62%∼26.49% and GNN sparsity from 67.23%∼73.79% without sacrificing performance.

• The proposed AutoMasker promises for both GNN-level and graph-level transferability, which
can achieve comparable or even better performance as compared with the original full graphs.
In-depth analyses with visual inspections further demonstrate the effectiveness and rationality.

2 RELATED WORK

Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Veličković et al., 2017; Xu et al., 2019;
Ying et al., 2018) have emerged as a powerful tool for learning the representation of graph-structured
data. The great success mainly comes from the structure-aware learning, which follows the iterative
message-passing scheme (Veličković et al., 2017). Specifically, we denote an undirected graph by
G = (A,X) with the node set V and edge set E . A ∈ {0, 1}|V|×|V| is the adjacency matrix, where
A[i, j] = 1 denotes the edge between node vi and node vj , otherwise A[i, j] = 0. X ∈ R|V|×d
is the matrix of node features, where xi = X[i, :] is the d-dimensional feature of the node vi ∈ V .
Given a K-layer GNN, its k-th layer generates the representation of node vi as:

a
(k)
i = AGGREGATION(k)({h(k−1)

j |j ∈ N (i)}), h(k)
i = COMBINE(k)(h

(k−1)
i ,a

(k)
i ), (1)

where h(k)
i and a

(k)
i are the representation of node vi and the message aggregated from its neighbor

nodes set N (i), respectively; the AGGREGATION and COMBINE operators are the message
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passing and update functions, respectively. After propagating through K layers, we get the final
representations of nodes, which facilitate downstream node-level tasks, such as node classification
and link prediction. As for graph-level tasks like graph classification and graph matching, we further
hire the READOUT function to generate the representation of the whole graph G:

ZG = READOUT({h(k)
i |vi ∈ V, k ∈ {1, · · · ,K}}). (2)

Various GNNs, such as GIN (Xu et al., 2019) and GAT (Veličković et al., 2017), implement different
AGGREGATION, COMBINE and READOUT functions, so as to refine the desired information
from graph structures.

Graph Sparsification or Sampling (Voudigari et al., 2016; Leskovec & Faloutsos, 2006) aims to
find small core-subgraphs from the original graph, which can remain effective for graph learning
tasks. Numerous strategies (Zeng et al., 2019; Franceschi et al., 2019; Ying et al., 2019; Hamil-
ton et al., 2017; Chen et al., 2018) are proposed to achieve efficient graph learning. For example,
GraphSAGE (Hamilton et al., 2017) samples and aggregates feature from a node’s local neighbor-
hood. FastGCN (Chen et al., 2018) adopts the global importance sampling, which is more efficient
for training. DropEdge (Rong et al., 2019) randomly drops edges from the input graph, which can
be seen as a data augmenter. Another research line selects the core-subgraph in an optimization
way. SGCN (Li et al., 2020b) adopts the ADMM optimization algorithm to sparsify the adjacency
matrix. UGS (Chen et al., 2021) utilizes a trainable mask for each edge to remove the potential
task-irrelevant edges. Distinct from them, our AutoMasker predicts the importance score of each
edge from a global view, thus having better generalization ability in the inductive settings.

Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018) states that a sparse subnetwork exists in
a dense randomly-initialized network that can be trained to achieve comparable performance to the
full models. LTH is explored in many fields such as computer vision and natural language processing
(Chen et al., 2020; Ma et al., 2021; Yin et al., 2020; Liu et al., 2019; Wang et al., 2020; Savarese et al.,
2020). Recently, Chen et al. (2021) extends the LTH to the GNNs and proposes the Graph Lottery
Ticket (GLT), which includes subgraph and subnetwork pairs that can be trained independently
to reach comparable performance to the dense pairs. However, due to the transductive nature of
graph-specific masks, UGS (Chen et al., 2021) can not develop on inductive learning settings, such
as graph classification tasks. To tackle the dilemma, we propose AutoMasker to globally learn the
significance of each edge from training graphs and predict importance scores for new coming graphs,
which is graph-independent and inductive.

3 METHODOLOGY

Here we first formulate the task of learning graph lottery tickets, and then present our inductive
strategy of co-pruning the input graphs and model weights.

3.1 INDUCTIVE GRAPH LOTTERY TICKET

Without loss of generality, we consider the inductive task of graph classification as an example.
Given a GNN classifier f(·,Θg0), it starts from the randomly-initialized parameters Θg0 before
training and arrives at the well-optimized parameters Θg after training. Once trained, it takes any
graph G = (A,X) as the input and yields a probability distribution over C classes ŷ = f(G,Θg).
Wherein, G is associated with the adjacency matrix A and the pre-existing node features X.

The goal of learning graph lottery tickets is to make the input graph G and the model weights Θg0
sparse to reduce the computational costs, while preserving the classification performance. Formally,
it aims to generate two masks mG and mΘ, which are applied on G and Θg0 correspondingly, so
as to establish the sparser input graph G′ = (mG � A,X) and initialized weights Θ′g0 = mΘ �
Θg0 . Hereafter, through retraining the subnetwork f(·,Θ′g0) on the sparse versions {G′} of training
graphs, we can get the new converged parameters Θ′g . If the well-optimized subnetwork can achieve
comparable performance with full graphs and network, we term the pair of G′ and f(·,Θ′g0) as graph
lottery tickets (GLTs).

Although a very recent study, UGS (Chen et al., 2021), has proposed an approach to learn the GLTs,
it focuses solely on the transductive setting but leaves the inductive setting untouched. Specifically,
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it assigns a trainable mask to each edge of the input graph and trains such graph-specific masks
individually and independently. As a consequence, these edge-dependent masks are limited to the
given graph, hardly generalizing to unseen edges or entirely new graphs. Distinct from UGS, we
aim to uncover GLTs in inductive learning settings.

3.2 AUTOMASKER

Instead of assigning mask to single edge, our idea is extremely simple: we take a collection of graph
instances and design a trainable model to learn to mask edges collectively. The key ingredient to-
wards this model is an additional GNN-based model, termed AutoMasker, whose parameters are
shared across the population of observed graphs. Here we represent AutoMasker as the combina-
tion of a graph encoder and a subsequent scoring function. Formally, given a graph G = (A,X),
AutoMasker applies a GNN-based graph encoder g(·) to create representations of all nodes as:

H = g(A,X), (3)

where H ∈ R|V×d| stores d-dimension representations of all nodes, whose i-th row hi represents the
representation of node vi; g(·) is a GNN following the message-passing paradigm in Equation 1. To
assess the importance score of edge (i, j) between node vi and node vj , AutoMasker builds a multi-
layer perceptron (MLP) upon the concatenation of node representations hi and hj , which yields the
score αij . In what follows, the sigmoid function σ(·) projects αij into the range of (0, 1), which
represents the probability of edge (i, j) being the winning ticket. The scoring function is represented
as follows:

sij = σ(αij), αij = MLP([hi,hj ]). (4)

By employing the scoring function over all possible edges, we are able to collect the matrix of
edge masks sG , where sG [i, j] = sij if edge (i, j) holds, otherwise sG [i, j] = 0. In a nutshell, we
summarize the AutoMasker function as follows:

sG = AutoMasker(G,Θa), (5)

where Θa is the trainable parameters of AutoMasker, covering the parameters of the GNN encoder
and the MLP.

Although the key ingredient of AutoMasker is simple, it has several conceptual advantages over
UGS: (1) Global view: Although edge masks derived from UGS might preserve the fidelity to local
importance, they do not help to delineate the general picture of the whole graph population. Distinct
from UGS, our AutoMasker takes a global view of the graph population, which enables us to identify
the edge coalitions. Specifically, as edges usually collaborate with each other to make predictions,
rather than working individually, they form a coalition like the functional groups of a molecule
graph, the community of a social network. Considering such coalition effects, AutoMasker is able to
measure the importance of edges more accurately. (2) Lightweight edge masks: When using UGS
to prune graph data with millions of edges or nodes, the cost of assigning local edge masks one-
by-one will be prohibitive with such a large-scale dataset in real-world scenarios. Moreover, UGS
introduces additional parameters, whose scale remains the same as the edge numbers

∑
G |E| and

is much larger than the original parameters being pruned. Hence, it somehow violates the purpose
of pruning. In our AutoMasker, the additional parameters are i.e., Θa in Equation 5 only and
remain invariant across the change of data scale. (3) Generalization: AutoMasker can generalize
the mechanism of mask generation to new graphs without retraining, making it more efficient to
prune unseen and large-scale graphs.

3.3 INDUCTIVE CO-PRUNING STRATEGY

Here we present the framework of Inductive Co-Pruning of GNNs (ICPG) to localize GLTs induc-
tively. Figure 1 demonstrates its overview, which consists of the following two steps:

• Step 1: Co-training AutoMasker and the GNN model of interest. Given an input graph G =
(A,X), AutoMasker first generates the edge mask sG via Equation 5. Then we apply sG to
the adjacency matrix A to create the masked graph Gs = (sG � A,X), which fully reflects
AutoMasker’s decision for the importance of each edge, such that less important edges are prone
to have lower mask values. Finally, we feed the masked graphs into the GNN model to co-train the
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Figure 1: The Inductive Co-Pruning of GNNs (ICPG) framework to find the GLTs.

AutoMasker and the model. The GNN model adopts the masked graph to learn the representation
and make predictions, which can be viewed as the supervision signals to guide the AutoMasker
to achieve a more accurate decision. The detailed co-training process is shown in Algorithm 1 of
Appendix A1.1. When the training is done, we conduct Step 2 to perform the pruning.

• Step 2: Co-sparsifying the input graphs and GNN model. Having obtained the well-trained
AutoMasker and GNN model, we can apply the knowledge learned from numerous graphs to co-
sparsify the graphs and the model. For graphs, we adopt AutoMasker to predict the importance
of all the edges for each graph. Then the edges of a certain graph are sorted based on the mask
values, and the edges with 5% the lowest values are pruned to obtain the binary graph mask mG .
For GNN, we sort the parameters based on the weight magnitude and prune 20% the lowest-
magnitude parameters to obtain the binary model mask mΘ. Under the current sparsity level, we
now successfully obtain the sparsified graph G′ = (mG �A,X) and the sparsified mask mΘ for
the model. Finally, we need to check whether the sparsity meets our condition. If the sparsity is
satisfied, the algorithm is completed; if not, we need to reuse the found GLT to update the original
graphs and GNN model, and iteratively use Step 1 and Step 2 (dotted arrow in Figure 1) until the
condition is met. In Appendix A1.1, Algorithm 2 offers the detailed algorithm of ICPG.

4 EXPERIMENTS

In this section, we conduct extensive experiments on diverse benchmarks to validate the effective-
ness of the ICPG. We first introduce the experimental settings in Section 4.1, and explore the exis-
tence of GLTs in graph classification and node classification in Sections 4.2 and 4.3, respectively.
We also validate the transferability of the AutoMasker in Section 4.4. More ablation studies and
visualizations are provided in Sections 4.5 and 4.6, respectively.

4.1 EXPERIMENTAL SETTINGS

Datasets. For graph classification, we use two biological graphs (NCI1, MUTAG), four social
graphs (COLLAB, RED-B, RED-M5K, RED-M12K) (Morris et al., 2020), two superpixel graphs
(MNIST, CIFAR-10) (Knyazev et al., 2019), and two large-scale Open Graph Benchmark (ogbg-
ppa and ogbg-code2) (Hu et al., 2020). For node classification, we choose the transductive learning
dataset: Cora, and the inductive learning dataset: PPI. More details are provided in Appendix A1.

Models and Training Details. We adopt the same architecture for the GNN model and GNN
encoder for AutoMasker. For all graph classification datasets and Cora dataset, we adopt the GCN
(Kipf & Welling, 2016) model with different layers and hiddens. For the PPI dataset, we choose the
GAT (Veličković et al., 2017) network to achieve a better baseline performance as work (Veličković
et al., 2017). More details about models and training are provided in Appendix A1.4 and A1.5.
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Figure 2: Graph classification performance on achieved graph sparsity.

4.2 GRAPH LOTTERY TICKETS IN GRAPH CLASSIFICATION

We first conduct experiments to find the GLTs in graph classification tasks. The results are displayed
in Figure 2 and Figure 3. We also plot the random pruning (RP) for better comparison. Stars denote
the extreme sparsity, which is the maximal sparsity-level without performance degradation. More
results about GNNs sparsity are provided in Appendix A2.1. We make the following Observations:

Obs.1. GLTs extensively exist in graph classification tasks. Utilizing the ICPG, we can success-
fully locate the GLTs with different sparsity-levels from different types of graphs. For NCI1 and
MUTAG, we precisely identify GLTs with the extreme graph sparsity at 26.49% and 30.17%, GNN
sparsity at 73.79% and 79.03%, respectively. On four social network datasets, we find the GLTs
with graph sparsity of 22.62%∼51.23% and GNN sparsity-level in 67.23%∼95.60%. For MNIST
and CIFAR-10, the GLTs are achieved with graphs sparsity of 43.13% and 14.26%, GNN sparsity
of 91.41% and 48.80%. These results show that ICPG can locate the high-quality GLTs in graph
classification tasks with different graph types, and demonstrate the potential of efficient training or
inference with sparser graphs and lightweight GNNs without sacrificing performance.

Obs.2. AutoMasker has good generalization ability. The mainstream graph sparsification tech-
niques (Chen et al., 2021; Zheng et al., 2020; Li et al., 2020b) cannot inductively prune unseen
graphs. However, the AutoMasker can flexibly overcome this challenge. Compared with random
pruning (RP), our proposed ICPG can find more sparse subgraphs and subnetworks and keep a large
gap with RP. For instance, the RED-M5K and RED-M12K graphs pruned by ICPG can achieve
40.13% and 51.23% extreme graph sparsity, improving 25.87% and 41.48% compared with RP,
which keeps an extremely large superiority. The excellent results indicate that AutoMasker can pre-
cisely capture more significant core-patterns from the training graphs and have a good generalization
ability to predict the high-quality masks for unseen graphs.
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Figure 3: Graph classification performance over achieved
graph sparsity on large-scale datasets.

Obs.3. The extreme sparsity of GLTs
depends on the property of graphs.
Although ICPG achieves higher spar-
sity than RP on most graphs, the im-
provements are not obvious on a small
part of the graphs, such as biochemical
molecule graphs: NCI1 or MUTAG. We
make the following conjectures: Firstly,
most of the edges in these graphs are
important, such as a certain edge may
correspond to a crucial chemical bond,
which may drastically affect the chemi-
cal properties of the molecule if pruned.
Secondly, the graph size is relatively small, which just includes a few dozen nodes and edges, so it
is more sensitive to pruning. On the contrary, the larger social network datasets, such as RED-M5K
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or RED-M12K, contain hundreds or thousands of edges for each graph, so there may be plenty of
redundant edges that demonstrate the insensitivity to pruning.

Obs.4. AutoMasker can well tackle larger-size and larger-quantity graphs. Figure 3 demon-
strates the results on the challenging OGB datasets, which are consist of larger-size graphs (2266.1
edges and 243.4 nodes on average per graph for ogbg-ppa) and larger-quantity graphs (452,741
graphs for ogbg-code2). We surprisingly find the OGB datasets are so intractable that RP can only
locate 5% graph sparsity of GLT on the ogbg-ppa, and it is even impossible to find any sparser GLTs
on the ogbg-code2. Despite this, the proposed ICPG can locate the GLTs with 14.26% and 18.55%
graph sparsity, 48.80% and 59.40% GNN sparsity on ogbg-ppa and ogbg-code2, respectively. The
superior performance further verifies the strong scalability and generalization of the AutoMasker.

4.3 GRAPH LOTTERY TICKETS IN NODE CLASSIFICATION

Since ICPG can achieve excellent performance on diverse types and scales of graphs, we also want
to explore that if it can also tackle node-level tasks. To answer this question, we conduct experiments
on Core and PPI datasets, which are commonly used in transductive and inductive node classification
tasks. We also reproduce the recent work UGS (Chen et al., 2021) for Cora (cannot apply for
inductive setting) for better comparison. We can get the following Observations:
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Figure 4: Transductive and inductive node classification
performance on achieved graph sparsity.

Obs.5. ICPG can achieve excellent
performance on node classification
tasks. Firstly, for Cora, both ICPG and
UGS can find GLTs that are sparser than
RP, which demonstrates that both are
applicable to transductive node classifi-
cation. Secondly, ICPG can find sparser
GLTs than UGS (↑7.94%), while the
performance drop faster than UGS in the
later stage, we give the following con-
jectures: (1) UGS just adopts simple
trainable masks for edges without con-
sidering the global topological structure
of the entire graph, while AutoMasker is constructed based on a GNN-encoder, which can provide
a global understanding of the whole graph. Hence, the AutoMasker can predict more high-quality
masks than UGS. (2) ICPG is worse than UGS in the later stage. The reason is that AutoMasker has
found the most significant edges in advance, which consists of an extremely compact core-subgraph
at a certain critical point, so further pruning over that point will seriously degrade the performance.
Thirdly, as for the PPI dataset, the performance of ICPG still keeps a large gap with RP and can
achieve 22.62% graph sparsity and 67.23% GNN sparsity without sacrificing performance, which
further demonstrates the effectiveness of the ICPG on inductive learning.

4.4 THE TRANSFERABILITY OF THE AUTOMASKER

We consider two orthogonal perspectives to verify the transferability of the AutoMasker: GNN-level
transferability and graph-level transferability. From GNNs view, we transfer the sparse graphs found
by AutoMasker to the other two popular GNN models: GIN (Xu et al., 2019) and GAT (Veličković
et al., 2017). From graphs view, we first pre-train the AutoMasker on larger-scale RED-M12K
graphs and then transfer the well-trained AutoMasker to other two smaller-scale graphs: RED-B
and RED-M5K. Please notes that we keep the GNN models unpruned on transferred tasks. The
experimental results are provided in Figure 5 and Table 1. We make the following Observations:

Obs.6. AutoMasker has both GNN-level and graph-level transferability. For GNN-level, we can
observe from Figure 5 that GIN and GAT can achieve ranging 9.75%∼45.96% and 18.55%∼22.62%
extreme sparsity on NCI1 and RED-M12K without sacrificing performance. And AutoMasker also
outperforms RP and keeps a large gap. These results demonstrate that AutoMasker can effectively
extract the GNN-independent subgraphs. These sparse subgraphs represent significant semantic in-
formation and can be universally transferred to any GNN architecture without performance degrada-
tion. For graph-level, the performance of random pruning decreases as the graph sparsity increases.
For RED-B and RED-M5K, when the pruning sparsity increases from 0 to 55.99%, the performance
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Figure 5: Performance of diverse GNNs on the sparse graphs found by AutoMasker.

Table 1: Graph-level transferability performance. From RED-M12K to RED-B and RED-M5K
Settings Graph Sparsity

Dataset Method 0% (No pruning) 9.75 % 18.55 % 33.66 % 45.96 % 55.99 %

RED-B Random Pruning 92.15±1.59 90.60±1.22 89.75±1.75 86.75±2.41 85.15±3.92 85.34±1.67
AutoMasker 92.15±1.59 92.16±2.06 91.05±2.14 90.15±1.89 90.06±2.57 89.64±1.72

RED-M5K Random Pruning 56.63±0.93 56.33±1.59 55.85±1.08 54.81±2.17 54.19±2.27 54.95±1.79
AutoMasker 56.63±0.93 56.89±2.16 56.69±2.59 57.01±3.90 56.97±2.86 56.09±4.44

decreases by 7.39% and 2.97%, respectively. While AutoMasker can achieve consistent improve-
ment within all sparsity levels. Furthermore, the GNN model trained with more sparse graphs even
outperforms the GNN trained with the original dense graphs, such as RED-B at 9.75% and RED-
M5K at 9.75%∼45.96%. It demonstrates that the pre-trained AutoMasker can transfer the learned
knowledge to small-scale downstream tasks, with lower computational cost and better performance.
In summary, AutoMasker can learn model-independent, general and significant sparse subgraph
structures from the graphs, so that it has outstanding GNN-level and graph-level transferability.

4.5 ABLATION STUDY
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Figure 6: (Left): The performance of ICPG over achieved
graph sparsity with AutoMasker based on diverse encoders.
(Right): The comparison of different components in ICPG.

In this section, we investigate the
diverse encoder networks in Au-
toMasker and explore the two inde-
pendent components in ICPG. We
can make the following findings:

Encoder networks. AutoMasker is
designed on a GNN-based encoder,
which leads to a global understanding
of each edge from the entire graphs.
So we extensively investigate the im-
pact of the diverse encoders, such as
GNN-based or MLP-based encoders.
We can observe the results from Fig-
ure 6 (Left) that, for all the GNN-based encoders, AutoMasker can achieve good performance:
45.96% extreme sparsity for GCN and 51.23% for GIN and GAT, while MLP-based encoder only
achieves 33.66% extreme sparsity. It indicates that the message passing scheme of the GNN encoder
naturally considers the graph structure from a global view, while the MLP-based encoder does not.

Co-sparsification. To further study the effectiveness of each component in ICPG: mask-based prun-
ing for graphs (PG) and magnitude-based pruning for model (PM), we separate them and explore
their roles when applying on the graphs and the model independently. We also plot the performance
of random pruning only for graphs (RPG), only for models (RPM), both of all (RPGM), random
pruning for graphs with magnitude-based pruning for model (RPG-PM) for comparison. The results
are summarized in Figure 6 (Right). We can find that: PG can also find the matching subgraphs
(9.75% sparsity), which indicates that apply AutoMasker separately can also extract the significant
edges from each graph. PM can also locate the matching subnetworks at 14.26% sparsity, which is
consistent with the LTH (Frankle & Carbin, 2018) in the computer vision field. ICPG significantly
outperforms RPGM and RPG-PM, and the gap gradually widens as the sparsity increases. We also
observe that ICPG is even better than PG (↑12.87%), we made the following conjectures: (1) As for
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Original Image Original Graph RP Graph ICPG Graph

(a) MNIST

Original Image Original Graph RP Graph ICPG Graph

(b) CIFAR-10

Figure 7: Visualization of the subgraphs extracted by AutoMasker from MNIST (a) and CIFAR-10
(b) superpixel graphs. Original images and graphs are displayed on the first and second columns in
(a) and (b), respectively. The sparsity of RP and ICPG in (a) and (b) is 64.15%.

PG, with the sparsity gradually increasing, the graphs also become more simple. If we still train the
over-parameterized GNN model with simple graphs, it may cause over-fitting. (2) Slightly pruning
the over-parameterized GNN through PM can be regarded as a kind of regularization, which will
improve the performance, and it is consistent with LTH (Frankle & Carbin, 2018). Further, the
regularized GNN can additionally provide AutoMasker with more precise supervision signals from
the gradient in backpropagation to make more wise decisions. To summary, we should co-train the
AutoMasker and GNN and co-sparsify the input graphs and model to achieve better performance.

4.6 VISUALIZATION AND ANALYSIS

To better illustrate the significant subgraphs extracted by the AutoMasker, we visualize the matching
subgraphs in GLTs found by the ICPG. We select graphs with 64.15% sparsity level from the MNIST
and CIFAR-10 superpixel datasets. For better comparison, we also plot the original images, original
graphs, random pruning graphs, which are depicted in Figure 7. More wonderful visualizations are
provided in Figure A11 and Figure A12. We can make the following findings:

For MNIST and CIFAR-10, the edges between nodes that locate on the digitals and objects pix-
els (the dark blue nodes) should be denser, which are conducive to the graph classification tasks.
RP evenly prunes the significant edges or structures without considering any important reference,
which makes the core-subgraphs destroyed and seriously deteriorates the performance. ICPG uti-
lizes AutoMasker to learn the significance of each edge from a global view and can precisely prune
redundant edges. As the ICPG graph in Figure 7 (a) shows, the pruned edges are mainly located
on non-digital pixels, such as the upper-left, lower-right corners and the center part of the number
0; the lower-left corner of the number 8, while the remaining edges or nodes are mainly located on
digital pixels, which demonstrate that AutoMasker can indeed extract significant patterns.

5 CONCLUSION

In this work, we endow the graph lottery tickets with inductive pruning capacity. We propose a
simple and effective pruning framework ICPG, to co-sparsify the input graphs and GNN model. For
graphs, we propose a generative probabilistic model to generate the importance score for each edge.
It provides a global understanding of edge importance from the entire graph topological structure
to guarantee high-quality graph masks and has strong generalization ability and transferability in
inductive learning settings. For the model, we adopt the GNN weight’s magnitude to estimate their
importance scores. Then we co-sparsify the input graphs and GNN model based on their impor-
tant scores to find the graph lottery tickets. Extensive experiments on diverse types (biochemical
molecules, social networks, superpixel graphs, citation networks) and scales (small, medium, large)
of graphs, diverse learning settings (inductive, transductive) and diverse tasks (graph classification,
node classification) consistently validate the effectiveness of the ICPG.
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6 ETHICS STATEMENT

In recent years, graph neural networks (GNNs) have been widely applied in learning and process-
ing graph-structured data, such as recommendation systems and drug discovery. With the rapidly
growing size of graphs, deep graph neural networks will inevitably confront expensive computa-
tional costs and slow response times in the training and inference stage. Hence, it is challenging
to implement deep GNNs in real-world large-scale graphs. However, the current GNNs pruning
methods cannot solve the inductive learning settings, which are common in real-world scenes, such
as dynamic social networks learning. Fortunately, the proposed co-pruning framework provides an
effective and practical solution to reduce computational costs, which can be universally applied to
both transductive and inductive graph learning. Furthermore, the proposed AutoMasker also gives a
novel pre-training perspective to save the computational cost in downstream tasks.

7 REPRODUCIBILITY STATEMENT

We promise that all results in this paper are reproducible. The models, datasets, and training and
inference settings in this paper have been given in the main text and Appendix A1. To help readers
easily reproduce our results, we provide a more detailed explanation. Codes available at https:
//anonymous.4open.science/r/Inductive_Lottery_Ticket_Learning-1419

(1) Models. For simplicity, we keep the same GNN architecture for the proposed AutoMasker and
the following GNN model. Please note that AutoMasker usually requires fewer hidden units. The
GNN encoder network of AutoMasker can also be changed as needed and we have already given an
example of replacing GCN based encoder with GIN or GAT in the ablation study. All the results
in this paper are based on the GCN model, except for the PPI dataset. According to the suggestion
of (Veličković et al., 2017), GAT (Veličković et al., 2017) network can achieve a better baseline
performance on PPI dataset. More detailed model settings such as the number of layers or hidden
units have been summarized in Appendix A1.4 and Table A3.

(2) Datasets. We conduct all the experiments on common graph learning benchmarks (Dwivedi
et al., 2020; Xu et al., 2019; Veličković et al., 2017; Kipf & Welling, 2016; You et al., 2020; Hu
et al., 2020). We have summarized the detailed information of the datasets in Appendix A1.2, the
statistics of the datasets in Table A2, the method of the datasets splitting in Appendix A1.3.

(3) Baselines. We adopt the following two baselines for comparison: random pruning (RP) and UGS
(Chen et al., 2021). For random pruning, we simply adopt a completely random selection strategy
to prune the edges of the graph or the parameters of the GNN model. For UGS, we reproduce the
results of the original paper (Chen et al., 2021) based on the released code.

(4) Training and inference settings. We extensively refer to the training settings for numerous
literature in the field of graph learning (Chen et al., 2019; Xu et al., 2019; Dwivedi et al., 2020;
Chen et al., 2021; Veličković et al., 2017), and configure the training hyperparameters according
to their suggestions. The detailed training settings have been given in the Appendix A1.5. As for
inference settings, we adopt the method consistent with (Chen et al., 2021; Xu et al., 2019; Hu et al.,
2020). For the TUDataset, we adopt the 10-fold cross validation and report the mean and standard
deviation. For the OGB datasets, we follow the official method (Hu et al., 2020) to report the results.
For other datasets, we report the test accuracy at the epoch with the best validation accuracy.
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A1 MORE IMPLEMENTATION DETAILS

A1.1 ALGORITHMS

We summarize the detailed implementation of the proposed ICPG in Algorithm 2. The Algorithm 1
represents the co-training and co-sparsifying for a single iteration in ICPG.

Algorithm 1: Mask & Magnitude Pruning
Input: D, f(·,Θg0), AutoMasker(·,Θa0),

M, mΘ, Epoch T .
Output: Sparsified masks {m′Gi}

N
i=1, m′Θ.

1 for t = 0 to T − 1 do
2 for Gi ∈ D and mGi ∈M do
3 Gi ← (mGi �Ai,Xi)
4 sGi ← AutoMasker(Gi,Θat)
5 Gi ← (sGi �Ai,Xi)
6 Forward f(Gi,mΘ �Θgt)
7 Backward to update Θat+1

, Θgt+1

8 end
9 end

10 for Gi ∈ D do
11 sGi ← AutoMasker(Gi,ΘaT )
12 Set 5% of the lowest mask values in sGi

to 0 and others to 1, creating m′Gi .
13 end
14 Prune 20% of the lowest magnitude

parameters in ΘgT , creating m′Θ.

Algorithm 2: Finding GLTs by ICPG

Input: Graphs D = {Gi = (Ai,Xi)}Ni=1,
f(·,Θg0), AutoMasker(·,Θa0),
sparsity levels sd, sθ.

Output: GLT {G′i = (mGi �Ai,Xi)}Ni=1,
f(·;mΘ �Θg0).

1 Initialize masks setM← {mGi ← Ai}Ni=1

2 Initialize GNN mask mΘ ← 1 ∈ R‖Θg0‖0

3 while the sparsity ofM < sd, mΘ < sθ do
4 Sparsify the GNN f(·;Θg0) with mΘ

and dataset D = {Gi = (Ai,Xi)}Ni=1
with the mask setM and get the new
masks as presented in Algorithm 1.

5 UpdateM← {mGi ←m′Gi}
N
i=1

6 Update mΘ ←m′Θ
7 Rewind AutoMasker’s weight to Θa0 .
8 Rewind GNN’s weight to Θg0 .
9 end

A1.2 DATASETS DETAILS

As for graph classification, we conduct the experiments with three scale levels: small-scale, medium-
scale and large-scale. We provide the following details:

• Small-scale: We adpot the TUDataset (Morris et al., 2020), which is a collection of benchmark
datasets for graph classification and regression. We choose two biological graphs: NCI1, MU-
TAG and four social graphs: COLLAB, Reddit-Binary (RED-B), Reddit-Multi-5K (RED-M5K),
Reddit-Multi-12K (RED-M12K) as numerous works (Xu et al., 2019; You et al., 2020; Dwivedi
et al., 2020) does.

• Medium-scale: We use MNIST and CIFAR-10 superpixel graphs. The original MNIST and
CIFAR-10 images are converted to graphs using superpixels, which represent small regions of
homogeneous intensity in images and can be extracted with the SLIC (Achanta et al., 2012) tech-
nique. These datasets are commonly used in numerous graph representation learning researches
(Dwivedi et al., 2020; You et al., 2020; Knyazev et al., 2019).

• Large-scale, we adopt the Open Graph Benchmark (OGB) (Hu et al., 2020), which is a collec-
tion of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs. We
choose two commonly used large-scale graph property prediction dataset: ogbg-ppa and ogbg-
code2. The ogbg-ppa dataset is a set of undirected protein association neighborhoods extracted
from the protein-protein association networks of 1,581 different species that cover 37 broad taxo-
nomic groups and span the tree of life. The ogbg-code2 dataset is a collection of Abstract Syntax
Trees (ASTs) obtained from approximately 450 thousands Python method definitions.

As for node classification, we use the commonly used citation network Cora dataset for semi-
supervised learning and the popular inductive learning dataset PPI. The task for PPT is classifying
protein functions across various biological protein-protein interaction (PPI) graphs. These datasets
are commonly used in transductive learning (Kipf & Welling, 2016; Veličković et al., 2017) and in-
ductive learning (Hamilton et al., 2017; Zheng et al., 2020) researches. All the detail statistics about
theaforementioned datasets are summerized in Table A2.
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Table A2: Datasets statistics.
Datasets Category Graphs Avg. Nodes Avg. Edges Avg. Degree Classes

NCI1 Biochemical Molecules 4,110 29.87 32.30 1.08 2
MUTAG Biochemical Molecules 188 17.93 19.79 1.10 2

COLLAB Social Networks 5,000 74.49 2457.78 32.99 3
RED-B Social Networks 2,000 429.63 494.07 1.15 2

RED-M5K Social Networks 4,999 508.52 594.87 1.17 5
RED-M12K Social Networks 11,929 391.41 456.89 1.16 11

MNIST Superpixel Graphs 70,000 70.57 564.56 8.00 10
CIFAR-10 Superpixel Graphs 60,000 117.63 941.04 8.00 10

ogbg-ppa OGB Dataset 158,100 243.4 2,266.1 9.31 37
ogbg-code2 OGB Dataset 452,741 125.2 124.2 0.99 -

Cora Citation Network 1 2708 5429 2.00 7
PPI Biological Protein 24 2372.67 34113.16 14.38 121

A1.3 DATASETS SPLITTING

TUDataset: We perform the commonly used 10-fold cross validation. Consistent with the work
(Chen et al., 2019; Xu et al., 2019), we select the epoch with the best cross-validation accuracy
averaged over the 10 folds and report the average and standard deviation of test accuracies at the
selected epoch over 10 folds.

Superpixel dataset: Consistent with (Dwivedi et al., 2020), we split them to 55000 train/5000 vali-
dation/10000 test for MNIST, and 45000 train/5000 validation/10000 test for CIFAR10, respectively.
We report the test accuracy at the epoch with the best validation accuracy.

OGB dataset: We adopt the official dataset splitting method for ogbg-ppa and ogbg-code2 in
the following links: https://ogb.stanford.edu/docs/graphprop/#ogbg-ppa and
https://ogb.stanford.edu/docs/graphprop/#ogbg-code2.

Cora: Following the work (Chen et al., 2021), we use 140 labeled data for training, 500 nodes
for validation and 1000 nodes for testing and report the test accuracy at the epoch with the best
validation accuracy.

PPI: We adopt the same splitting as works (Hamilton et al., 2017; Veličković et al., 2017). The
dataset contains 20 graphs for training, 2 for validation and 2 for testing. Critically, testing graphs
remain completely unobserved during training.

A1.4 MODEL CONFIGURATIONS

TUDataset: we adopt the ResGCN (Chen et al., 2019) with 3 layers and 128 hidden dimensions.
Superpixel dataset: we use GCN with 4 layers and 146 hidden dimensions as work (Dwivedi et al.,
2020). OGB dataset: we use five-layer GCN model with 300 hidden dimensions for all experiments.
Cora dataset: we adopt two-layer GCN network with 512 hidden dimensions as work (Chen et al.,
2021). PPI dataset: we adopt two-layer GAT network with 256 hidden and 4 attention heads as work
(Veličković et al., 2017). For GCN encoder in AutoMasker, we use the same structure with different
hidden dimensions as the GNN model. More details are summarized in Table A3.

A1.5 TRAINING DETAILS

All training hyper-parameters such as epochs, learning rate for GNN model and AutoMasker, opti-
mizer, batch size, weight decay are summarized in Table A3.
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Table A3: Implementation details of graph classification and node classification.
Task Graph Classification Node Classification

Dataset TUDataset Superpixel ogbg-ppa ogbg-code2 Cora PPI

Epoch 100 100 100 25 200 100
Optimizer Admm Admm Admm Admm Admm Admm
Batch Size 128 128 32 128 1 1

Weight Decay 0 0 0 0 5e-4 0
Model Layer-hidden 3-128 4-146 5-300 5-300 2-512 2-256

AutoMasker Layer-hidden 3-64 4-146 5-300 5-300 2-128 2-128
Model LR 1e-3 1e-3 1e-3 1e-3 1e-2 5e-3

AutoMasker LR 1e-4 5e-3 1e-3 1e-3 1e-2 1e-3

A2 MORE EXPERIMENTAL RESULTS

A2.1 GRAPH LOTTERY TICKETS IN GRAPH CLASSIFICATION

The graph classification performance with different GNN sparsity levels is shown in Figure A8. The
performance on large-scale datasets is provided in Figure A9.
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Figure A8: Graph classification performance over achieved GNN sparsity.
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Figure A9: Graph classification performance over achieved GNN sparsity on large-scale datasets.

A15



Under review as a conference paper at ICLR 2022

A2.2 GRAPH LOTTERY TICKETS IN NODE CLASSIFICATION

More results about the transductive and inductive node classification on achieved GNN sparsity are
shown in Figure A10. We can observe that ICPG can achieve 73.79% GNN sparsity for transductive
node classification and 67.23% GNN sparsity for inductive node classification.
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Figure A10: Transductive and inductive node classification performance on achieved GNN sparsity.

A3 MORE VISUALIZATION RESULTS

More visualization results about the MNIST and CIFAR-10 superpixel graphs are shown in Figure
A11 and Figure A12. For MNIST, the important subgraphs are mainly located on the digital pixel
area. We can observe that RP evenly prunes the connections between any two nodes without consid-
ering any important information. While the proposed AutoMasker mainly prunes the insignificant
edges that locate on non-digital pixel background. For CIFAR-10, objects are critical information
for classification, so the edges between the nodes that locate on the objects (the dark blue nodes)
should be denser. We can observe that RP prunes on both the objects and the background, which also
makes all the vital edges become sparse. As a comparison, the subgraphs extracted by AutoMasker
remain most of the edges located on objects while the sparsify edges are located on the backgrounds.
In summary, the AutoMasker effectively extracts the significant core patterns while filter out the re-
dundant edges from dense graphs, which necessarily leads to less degradation on performance even
the graphs are heavily pruned.
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Original Image Original Graph RP Graph ICPG Graph

Figure A11: Visualization of the subgraphs at 64.15% sparsity from MNIST superpixel graphs.
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Original Image Original Graph RP Graph ICPG Graph

Figure A12: Visualization of the subgraphs at 64.15% sparsity from CIFAR-10 superpixel graphs.
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