
Under review as a conference paper at ICLR 2024

SUBGRAPH-TO-NODE TRANSLATION FOR EFFICIENT
REPRESENTATION LEARNING OF SUBGRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Subgraph representation learning has emerged as an important problem, but it is
by default approached with the graph neural networks (GNNs) on a large global
graph, an approach that demands extensive memory and computational resources.
We argue that resource requirements can be reduced by designing an efficient data
structure to store and process subgraphs. In this paper, we propose Subgraph-To-
Node (S2N) translation, a novel formulation to learn representations of subgraphs
efficiently. Specifically, given a set of subgraphs in the global graph, we construct
a new graph by coarsely transforming subgraphs into nodes. We theoretically and
empirically show that S2N significantly reduces memory and computational costs
compared to using state-of-the-art models with conventional data structures. We
also suggest Coarsened S2N (CoS2N), which combines S2N with graph coars-
ening methods for improved results in a data-scarce setting where there are not
sufficient subgraphs to cover the global graph. Our experiments on four real-
world benchmarks demonstrate that fined-tuned models with S2N translation can
process 183 – 711 times more subgraph samples than state-of-the-art models at a
similar or better performance level.

1 INTRODUCTION

Subgraph representation learning has been shown to be useful for various real-world prob-
lems (Alsentzer et al., 2020; Ju et al., 2023). Current research uses the default data structures for
graph-level tasks, treating the subgraph as just a subset of the global graph. Existing studies on sub-
graph representation learning focus on developing graph neural networks (GNNs) specialized for
subgraphs (Alsentzer et al., 2020; Wang & Zhang, 2022). However, specialized models suffer from
large memory and computational requirements by performing complex operations on a large global
graph. In this paper, we pose a more basic but underexplored question for subgraph representation
learning prior to designing the models: How can we effectively and efficiently store and process
subgraphs as data?

In this paper, we propose ‘Subgraph-To-Node (S2N)’, a novel data structure to solve subgraph-level
prediction tasks efficiently. This data structure is a new graph translated from the original global
graph and subgraphs, where its nodes are the original subgraphs, and its edges are the relations
among the original subgraphs. Then, we can get the results of the subgraph-level tasks by performing
node-level tasks from these node representations.

For example, in a knowledge graph where subgraphs are diseases, nodes are symptoms, and edges
are relations between symptoms based on knowledge in the medical domain, the goal of the diag-
nosis task is to predict the type of a disease (Alsentzer et al., 2020). Using S2N translation, we can
make a new graph of diseases, nodes of which are diseases and edges of which are relations between
them (e.g., whether two diseases share symptoms).

As a benefit in return, the S2N translation enables efficient subgraph representation learning. The
number of nodes in the S2N graph is decreased to the number of original subgraphs. The edges of the
S2N graph are also significantly reduced, which we theoretically prove and empirically confirm in
the real-world datasets. We can load large batches of subgraphs on the GPU memory and parallelize
the training and inference. Since S2N translation does not interfere with model selection, even
simple GNNs without complex operations can encode node representations in the translated graph.

1

Under review as a conference paper at ICLR 2024

There can be various implementations of S2N translation, and here, we create new edges as the
number of shared edges across a pair of subgraphs. This method approximates the structure of the
global graph into weighted edges between subgraphs; thus, part of the structural information held
by the global graph is lost. We can obtain a coarse graph sufficiently informative for the task by
properly normalizing edge weights. Also, we can reduce information loss by preserving the internal
structure of subgraphs, which practically requires negligible computational and memory resources.

Furthermore, we address S2N’s challenge when there are not sufficient samples available, specifi-
cally, representing parts of the global graph not covered by existing subgraphs. We introduce the
Coarsened S2N (CoS2N), which uses graph coarsening to create ‘virtual’ subgraphs that summa-
rize the global structure. The CoS2N allows message-passing between distant subgraphs with labels
without compromising efficiency. We also theoretically show that CoS2N can reduce the approxi-
mation error in S2N’s representations.

We conduct experiments with four real-world datasets to evaluate the performance and efficiency of
S2N translation. We investigate the number of parameters, max allocated GPU memory, throughput
(samples per second), and latency (seconds per forward pass) for efficiency (Dehghani et al., 2022).
We demonstrate that models with S2N translation are more efficient than the existing approach
without a performance drop. Specifically, while best-tuned models with S2N can process 183 – 711
times as many samples, their performance shows 99.9 – 102.9% of the state-of-the-art model.

The rest of the paper is organized as follows. First, we present a Subgraph-To-Node (S2N) trans-
lation, a novel way to generate an efficient data structure for subgraph representation learning (§3).
This section includes Coarsened S2N (CoS2N), the combination with graph coarsening to tackle a
data-scarce setting. Second, we theoretically show that S2N reduces the computational complexity
and approximates subgraph representations from the original global graph (§4). Third, we demon-
strate the efficiency of S2N compared to the state-of-the-art approaches, specifically enabling up to
711 times the throughput while maintaining the performance of at least 99.9% (§5, §6).

2 RELATED WORK

Our S2N translation tackles representation learning of subgraphs, and this is closely linked to graph
coarsening methods. This section introduces these two fields and their connection with our study.

Subgraph Representation Learning There have been various approaches to use subgraphs for
expressiveness (Morris et al., 2019; Bouritsas et al., 2020), scalability (Hamilton et al., 2017;
Zeng et al., 2020), augmentation (Qiu et al., 2020; You et al., 2020), modeling long-range inter-
actions (Zhang et al., 2022; He et al., 2023), and representing meaningful clusters (Jin et al., 2018;
Ying et al., 2018; Fey et al., 2020). However, only a few studies deal with learning representa-
tions of subgraphs themselves. Some works have strong assumptions on the subgraph, making it
difficult to generalize (Meng et al., 2018; Kim et al., 2022). The Subgraph Neural Network (Sub-
GNN) (Alsentzer et al., 2020) is the first approach to subgraph representation learning using topol-
ogy, positions, and connectivity. The GNN with LAbeling trickS for Subgraph (GLASS) (Wang
& Zhang, 2022) uses a labeling trick to distinguish nodes inside and outside the subgraph and en-
hance the expressive power of representations. However, both SubGNN and GLASS have model
designs depending on the large global graph, so high memory and computation costs are needed.
Our method allows efficient learning of subgraph representations without a complex model design.
We describe the detailed architectural differences in Appendix A.1.

Graph Coarsening Our S2N translation summarizes subgraphs into nodes, and in that sense, it is
related to graph coarsening (or summarization) methods (Loukas & Vandergheynst, 2018; Loukas,
2019; Jin et al., 2020; Deng et al., 2020; Cai et al., 2021; Huang et al., 2021; Zhou et al., 2021;
Jin et al., 2022). These methods are similar to our work that aims to handle large-scale graphs effi-
ciently. However, the perspective of graph coarsening has not been applied to subgraph-level tasks.
They focus on creating coarse graphs while preserving specific properties in a given graph (e.g.,
spectral similarity). In addition, the super-nodes in coarse graphs are not given to existing graph
coarsening methods; thus, algorithms to decide on super-nodes are required. In S2N translation, we
treat subgraphs as super-nodes and can create coarse graphs with nominal costs.

2

Under review as a conference paper at ICLR 2024

̂vi = Tv(𝒮i)

̂vj

𝒮i

𝒮j

̂eij = Te(𝒮i, 𝒮j)

𝒮k ̂vk

(a) The S2N translation. Subgraphs Si and Sj

are transformed into nodes v̂i and v̂j by Tv , and
an edge êij between them is formed by Te.

X̂[i,:]

X̂[j,:]

X̂[k,:]

S2N Graph
Encoder

Node-level Encoder Prediction

Shared

Node-level Encoder

Node-level Encoder Ŷ = ĤW

(b) Models for graphs translated by S2N. We apply a
node-level encoder first (weighted sum for S2N+0 and
GNN plus readout for S2N+A), then an S2N graph en-
coder (GNN) to their outputs for the prediction.

Figure 1: Overview of the Subgraph-To-Node (S2N) translation and models for translated graphs.

3 DATA STRUCTURES FOR SUBGRAPH REPRESENTATION LEARNING

We introduce three data structures for subgraph representation learning including our proposed
Subgraph-To-Node (S2N) translation.

Notations We first summarize the notations in the subgraph representation learning, particularly
in the classification task. Let G = (V,A,X) be a global graph where V is a set of nodes (|V| = N),
A ∈ {0, 1}N×N is an adjacency matrix, and X ∈ RN×F0 is a node feature matrix. A subgraph
S = (Vsub,Asub) is a graph formed by subsets of nodes and edges in the global graph G. For the
subgraph classification task, there is a set of M(< N) subgraphs S = {S1,S2, ...,SM}, and for
Si = (Vsub

i ,Asub
i), the goal is to learn its representation hi ∈ RF and the logit vector yi ∈ RC

where F and C are the numbers of hidden features and classes, respectively.

3.1 CONVENTIONAL DATA STRUCTURES: SEPARATED AND CONNECTED FORMS

The existing GNN-based approach employs two types of data structures when solving subgraph-
level tasks. This paper refers to these two as Separated and Connected forms. The Separated form
treats each subgraph as a separate graph, applying the GNN instance-wise for each graph. Existing
studies express these separated graphs as standalone or segregated graphs and use this separated
form as the main baseline. The Connected form represents subgraphs by applying the GNN on the
whole global graph and pooling node representations. The separated form preserves only the internal
structure, and the connected form retains all information in the global graph. For this reason, using
the connected form requires more memory and computational resources. Since incorporating the
structures in the global graph is essential in learning subgraphs, we design a new data structure that
can approximate the global graph without significant costs.

3.2 SUBGRAPH-TO-NODE (S2N) TRANSLATION

The S2N translation reduces memory and computational costs in training and inference by con-
structing a new coarse graph that summarizes the original subgraph into a node. As in Figure 1a, for
each subgraph Si ∈ S in the global graph G, we create a node v̂i = Tv(Si) in the translated graph
Ĝ; for all pairs (Si,Sj) of subgraphs in G, we assign an edge êij = Te(Si,Sj) between correspond-
ing nodes in Ĝ. Here, Tv and Te are translation functions for nodes and edges in Ĝ, respectively.
Formally, the S2N translated graph Ĝ = (V̂, Â) where |V̂| = M and Â ∈ RM×M , is defined by

V̂ = {v̂i|v̂i = Tv(Si), Si ∈ S}, Â[i,j] = êij = Te(Si,Sj). (1)

We can choose any function for Tv and Te. For example, Te can be simple heuristics (e.g., the dis-
tance between subgraphs) or modeled with neural networks to learn the graph structure (Franceschi
et al., 2019; Kim & Oh, 2021; Fatemi et al., 2021).

In this paper, we choose two versions of S2N functions with negligible translation costs: S2N+0 and
S2N+A. For both versions, we use the same Te to make an edge and its weight as the number of
edges between two subgraphs Si and Sj , which is defined as follows:

Te(Si,Sj) =
∑

vi∈Vsub
i

∑
vj∈Vsub

j
A[vi,vj]. (2)

When using edge weights as input, if the range of the values is too wide, learning may be unstable.
So, we normalize and clamp the edge weights to between 0 to 1 by selecting edges in a specific

3

Under review as a conference paper at ICLR 2024

range of standard scores (a – b where a, b are hyperparameters).

normalize(Â) = clamp
(

(Â−mean(Â))/std(Â)−a
b−a

)
where clamp(x) = max (0,min (1, x)) . (3)

For Tv , we use different functions for S2N+0 and S2N+A. The difference between the two is whether
it maintains the internal structures Asub

i of the subgraph Si = (Vsub
i ,Asub

i). S2N+0 uses Tv that
ignores Asub

i and treats the node as a set (i.e., Vsub
i). In contrast, S2N+A’s Tv retains all information

of nodes and edges in the subgraph:

S2N+0: Tv(Si) = Vsub
i , S2N+A: Tv(Si) = (Vsub

i ,Asub
i). (4)

Note that their names originated from whether the adjacency matrix is a zero matrix (0) or not (A).

In some cases, the S2N translation provides a more intuitive description of real-world problems than
a form of subgraphs. For a fitness social network (EM-User) (subgraphs: users, nodes: workouts,
edges: whether multiple users complete workouts), it will be translated into a network of users
connected if they complete the same workouts. This graph directly expresses the relation between
users and follows the conventional approach to describe social networks where nodes are users.

3.3 MODELS FOR S2N TRANSLATED GRAPHS

We propose simple but strong models for S2N (Figure 1b): node-level encoder ENCnode + S2N graph
encoder ENCS2N. First, ENCnode takes Tv(S) as an input and produces x̂i ∈ RF , input vector for the
node in the S2N graph. Then, ENCS2N takes X̂ = [x̂1, ..., x̂M]⊤ ∈ RM×F and Â as inputs, and
produces representations Ĥ = [ĥ1, ..., ĥM]⊤ ∈ RM×F and logits Ŷ = [ŷ1, ..., ŷM]⊤ ∈ RM×C .

For ENCnode, we use different models for S2N+0 and S2N+A. Since the node in S2N+0 is a set of
original nodes in Si, we take a set of node features in Vi as an input and generate a weighted sum
of them. For S2N+A, we apply a GNN model to each subgraph as an individual graph, then apply a
weighted sum for readout. Formally,

S2N+0: x̂i =
∑

v∈Vsub
i
ωvi ·X[v,:], S2N+A: x̂i =

∑
v∈Vsub

i
ωvi · GNNnode(X[Vsub

i ,:],A
sub
i)[v,:], (5)

where ωvi is a weight corresponding to the node v and the subgraph Si. These weights can be either
learnable or constants (e.g., ω∗,∗ = 1 means that x̂ is the sum of features).

Given Â and X̂ of S2N+0 and S2N+A, we apply the S2N graph encoder ENCS2N which is another
GNNS2N to generate the final node representations Ĥ and logits Ŷ for prediction, That is,

Ĥ = GNNS2N(X̂, Â), Ŷ = ĤW where W ∈ RF×C is a matrix of parameters. (6)

We can take any GNNs that perform message-passing between nodes. This node-level message-
passing on translated graphs is analogous to message-passing at the subgraph level in Sub-
GNN (Alsentzer et al., 2020).

3.4 S2N WITH GRAPH COARSENING FOR A DATA-SCARCE SETTING

𝒮i

𝒮j

̂vi

̂vj
1. Virtual

Subgraphs by
Coarsening

2. Coarsened S2N

Input

Figure 2: Overview of Subgraph-To-
Node Translation with virtual sub-
graphs generated by graph coarsening.

By design, the S2N graph Ĝ can approximate the global
graph G covered by subgraphs, but cannot reflect parts of
G where subgraphs do not exist. When a pair of subgraphs
is distant on the global graph, they exist as unconnected
nodes in S2N graphs as illustrated in Figure 2. These iso-
lated subgraphs are likely to occur when the subgraph sam-
ples are scarce. In this case, GNNs cannot exchange super-
vised signals between subgraphs.

To solve this problem, we apply graph coarsening methods
to the global graph G to generate a partition of nodes in G.
That is, graph coarsening summarizes G by assigning one
super-node to each node in G. We construct induced subgraphs Sco = {Sco

1 ,Sco
2 , ...,Sco

M co} of the
global graph per a super-node. Here, we call them ‘virtual subgraphs’. Using the original (labeled)
subgraphs S as is, the virtual subgraphs are merged with S to form the Coarsened S2N (CoS2N)
graph, formally,

Sco = Coarsening(G), Âco
[i,j] = Te(Si,Sj) where (Si,Sj) ∈ (S ∪ Sco)× (S ∪ Sco). (7)

4

Under review as a conference paper at ICLR 2024

Training of CoS2N is done similarly to semi-supervised node classification. The virtual (unlabeled)
subgraphs act as bridges to pass messages between labeled subgraphs. These allow S2N to better
approximate the global graph that the existing set of subgraphs does not cover. We also show that
adding virtual subgraphs to S2N can reduce the approximation error between representations of S2N
and the global graph (Proposition 3).

The graph coarsening does not impair the efficiency for two reasons. First, it is performed only once
before the training. Second, we can create a small CoS2N graph by tuning coarsening methods and
their hyperparameters (e.g., the coarsening ratio).

4 THEORETICAL ANALYSIS ON S2N’S EFFICIENCY AND REPRESENTATION

This section analytically compares the efficiency and the representation quality between S2N and
the original graph. We first show how much S2N reduces computational complexity. Then, we
analyze the error bound of representations between S2N and the original graph when using graph
convolutional networks (GCNs) (Kipf & Welling, 2017). All proofs are provided in Appendix A.3.

4.1 HOW MUCH DOES S2N REDUCE COMPUTATIONAL COMPLEXITY?

We first introduce more notations for this analysis. For the global graph G and the S2N graph Ĝ, the
numbers of edges are E and Ê. Across a set S of subgraphs, the average numbers of nodes and edges
are N sub and Esub. Note that N is the number of nodes in G and M is the number of subgraphs.

In Proposition 1, we compare the time complexity of single-layer GLASS (the state-of-the-art
model) (Wang & Zhang, 2022), Connected form, S2N+0, and S2N+A.

Proposition 1. The time complexity of the 1-layer GLASS, Connected form, S2N+0, and S2N+A is

GLASS & Connected S2N+0 S2N+A

O
(
EF +MN subF +NF 2

)
O
(
ÊF +MN subF +MF 2

)
O
(
ÊF +MEsubF +MN subF 2

)
Considering that N ≪ E in real-world graphs (Chung, 2010), the significant difference between
baselines and S2N is that E becomes Ê. We can know that Ê cannot be higher than M2. The smaller
N sub, the smaller Ê since it lowers the number of possible connections between nodes in subgraphs.
However, it is difficult to directly compare Ê and E without assumptions of the global graph and
subgraphs. In particular, when unimportant edges of small weights are removed by normalization
(Equation 3), Ê can be smaller than the original one.

Instead, we can gain insight from what Â takes in simple random graph models since Ê is the num-
ber of positive elements in Â. Specifically, we employ the Configuration Model (CM) as a global
graph with independent and identically distributed (i.i.d.) subgraphs. The CM graph of N nodes
is randomly generated from a given degree sequence [d1, d2, ..., dN] (Newman, 2018). We choose
CM since the distribution of S2N’s edge weights can be derived from the degree distribution of the
global graph. See Appendix A.2 for a detailed explanation. We now demonstrate the probability
that an edge weight is higher than a certain value.
Proposition 2. For Configuration Model of a degree sequence [d1, d2, ..., dN] as G and i.i.d. sam-
pled subgraphs where the average size is N sub, the probability that the weight Â[i,j] of an edge (i, j)

in Ĝ is bigger than c > 0 is P (Â[i,j] ≥ c) ≤ (N sub)2E[d]
cN where E[d] is an average degree.

It is well-known that degrees follow a power-law distribution in many real-world graphs (Barabási
& Albert, 1999). Most nodes have a low degree; thus, the average degree E[d] has a small value.
Proposition 2 implies that edges with small weights are more likely to appear in S2N, and the edge
normalization can make the S2N graph sparse (i.e., small Ê). We also empirically confirm that edges
in S2N are fewer than those of the global graph in Figure 3.

4.2 HOW DOES S2N APPROXIMATE SUBGRAPH REPRESENTATIONS WHEN USING GCNS?

For this subsection, we define the mapping matrix M ∈ {0, 1}N×M , where M[v,i] is 1 if and only
if the node v belongs to the subgraph Si (i.e., Â = M⊤AM). Degree matrices of G and Ĝ are
D = diag(d1, d2, ..., dN) and D̂ = diag(d̂1, d̂2, ..., d̂M). Also, ∥·∥ is the Frobenius norm.

5

Under review as a conference paper at ICLR 2024

This analysis aims to analytically compare node representations Ĥ ∈ RM×F of the S2N graph Ĝ
and subgraph representations of the global graph G. Since outputs of GNN with the global graph are
original nodes’ representations H ∈ RN×F , we apply the readout to pool nodes in the subgraph:

READOUT(H) = R⊤H ∈ RM×F where R ∈ RN×M is a readout matrix. (8)

In this paper, we adopt a degree-dependent readout matrix R inspired by configuration-based recon-
struction (Zhou et al., 2021; 2023), which is defined as follows:

R = D
1
2MD̂− 1

2 ∈ RN×M i.e., R[v,i] = (dv/d̂i)
1
2 . (9)

We now demonstrate that the S2N’s node representations Ĥ approximate the global graph’s sub-
graph representations R⊤H , particularly when the model is a single-layer GCN. The error bound
between Ĥ and R⊤H is introduced in Proposition 3. We also conduct a similar analysis for a
variant of Graph Isomorphism Networks (Xu et al., 2019) in Corollary 1 (Appendix A.3).

Proposition 3. Using the single-layer GCN parametrized by W , subgraph representations R⊤H

of the global graph G can be approximated by node representations Ĥ of the S2N graph Ĝ, that is,
Ĥ ≈ R⊤H . The error between two representations is bounded by:

∥R⊤H − Ĥ∥ ≤ M
1
2 ∥X −RX̂∥ · ∥W ∥. (10)

The error between representations is bounded by the error between input features X and RX̂ . As in
Zhou et al. (2023), if we use the initial features X̂ = R⊤X for S2N, RX̂ is (RR⊤)X . The matrix
RR⊤ ∈ RN×N has rank M , which is smaller than N , then RX̂ is a low-rank approximation of
X . Since R is given by subgraphs, RX̂ may not sufficiently approximate X for the downstream
task. In particular, when there are only a few subgraph samples (i.e., very small rank M), the
expressiveness of S2N can be weakened. This theoretical observation implies that the proposed
CoS2N (§3.4) better approximates X for a data-scarce setting.

5 EXPERIMENTS

This section describes the experimental setup, including datasets, training, evaluation, and models.

Datasets We use four real-world datasets (PPI-BP, HPO-Neuro, HPO-Metab, and EM-User) and
four synthetic datasets (Density, Cut-Ratio, Coreness, and Component) introduced in Alsentzer et al.
(2020). The task is subgraph classification where the global graph G and subgraphs S are given in
datasets. The input node features X are pre-trained embedding from Wang & Zhang (2022) for
real-world datasets, and constant features and Random Walk Positional Encoding (Dwivedi et al.,
2022) for synthetic datasets. Dataset statistics and descriptions are in Table 4, 5 and Appendix A.4.

Training and Evaluation In the original setting from Alsentzer et al. (2020), evaluation (i.e.,
validation and test) subgraphs cannot be seen during the training stage. Following this protocol, we
create different S2N graphs for each stage using train and evaluation sets of subgraphs (Strain and
Seval). For the S2N translation, we use Strain only in the training stage and use both Strain ∪ Seval in
the evaluation stage. We predict unseen nodes based on structures translated from Strain ∪Seval in the
evaluation stage. In this respect, node classification on S2N-translated graphs is inductive.

Models We use two well-known GNNs for GNNS2N: GCN (Kipf & Welling, 2017) and GC-
NII (Chen et al., 2020). Note that GCNII performs well in non-homophilous graphs. For the node-
level encoder GNNnode in S2N+A, we use the same kind of GNN as GNNS2N. See Appendix A.5 for
their hyperparameters. We also test these models for Connected and Separated forms.

Baselines We use basic and state-of-the-art models for subgraph classification tasks as baselines:
Sub2Vec (Adhikari et al., 2018), GBDT (Chen & Guestrin, 2016), SubGNN (Alsentzer et al., 2020),
and GLASS (Wang & Zhang, 2022). We report the best performance among the three variants of
Sub2Vec and the performance of SubGNN with pre-trained embedding by GIN. All baseline results
are reprinted from Alsentzer et al. (2020) and Wang & Zhang (2022).

6

Under review as a conference paper at ICLR 2024

Table 1: Mean performance in micro F1-score over ten runs. For the top 50% of results, the higher
the performance, the darker the blue color. The unpaired t-test result between S2N and the best is
denoted by superscripts (∼: no significant difference at a level of 0.01). We mark with daggers the
reprinted results from Alsentzer et al. (2020) (†) and Wang & Zhang (2022) (‡).

Model Data Structure PPI-BP HPO-Neuro HPO-Metab EM-User

Sub2Vec Best† 30.9±2.3 22.3±6.5 13.2±4.7 85.9±1.4

GBDT‡ 44.6±0.0 51.3±0.0 40.4±0.0 69.4±0.0

SubGNN† 59.9±2.4 63.2±1.0 53.7±2.3 81.4±4.6

GLASS‡ 61.9±0.7 68.5±0.5 61.4±0.5 88.8±0.6

GCN Separated 61.4±2.0 67.6±1.0 60.1±2.8 84.5±4.1

GCNII Separated 61.3±1.2 67.7±0.6 59.4±2.7 84.7±4.1

GCN Connected 62.6±1.7 65.7±0.8 60.6±2.0 85.9±2.8

GCNII Connected 63.5±2.0 66.7±0.8 61.7±2.7 85.5±4.8

GCN S2N+0 63.0∼±2.3 66.4±0.7 62.0∼±1.6 85.7±2.9

GCNII S2N+0 63.5∼±2.4 66.4±1.1 61.6∼±1.7 86.5∼±3.2

GCN S2N+A 63.3∼±2.3 68.3∼±0.9 62.0∼±3.0 86.5±2.3

GCNII S2N+A 63.7∼±2.3 68.4∼±1.0 63.2∼±2.7 89.0∼±1.6

Efficiency Measurement We use the best hyperparameters (including batch sizes) for each model
and take the mean wall-clock time over 50 epochs. Throughput and latency are all measured using
training and validation sets for each stage. We count the number of all trainable parameters, includ-
ing node embeddings. The maximum allocated GPU VRAM is measured by the PyTorch API. We
fix the computation device as Intel(R) Xeon(R) CPU E5-2640 v4 and a single GeForce GTX 1080
Ti in measuring efficiency metrics. We describe details in Appendix A.6.

Data-Scarce Experiments Experiments in a data-scarce setting are conducted on the smallest and
largest graphs (PPI-BP and EM-User), and we set the number of training samples per class to 5, 10,
20, 30, and 40. To coarse the global graph, we employ the Variation Edges method (Loukas, 2019)
and select the coarsening ratio that generates subgraphs smaller than average sizes. All experiments
use the GCNII model, which performs well across datasets in a fully supervised setting.

6 RESULTS AND DISCUSSIONS

We analyze the characteristics of S2N graphs and compare our models and baselines on classifica-
tion performance and efficiency. We show that S2N translation results in graph compression (§6.1),
which results in a negligible decrease in classification accuracy (§6.2) but leads to significant im-
provements in efficiency in terms of computation and memory (§6.3). Finally, we study Coarsened
S2N (CoS2N)’s performance and efficiency in a data-scare setting (§6.4).

6.1 ANALYSIS OF S2N-TRANSLATED GRAPHS

102 103 104 105

Nodes

102

103

104

105

106

107

Ed

ge
s

Data structure
S2N+0
S2N+A
Original

Dataset
PPI-BP
HPO-Neuro
HPO-Metab
EM-User

Figure 3: The number of nodes and
edges of real-world graphs before and af-
ter S2N translation.

Figure 3 summarizes the number of nodes and edges be-
fore and after S2N translation. These statistics are from
S2N graphs (S2N+0 and S2N+A) tuned for the best per-
formance on GCN and GCNII. The translated graphs
have a smaller number of nodes (×0.006 – ×0.27) and
edges (×10−4 – ×0.45) than the original graphs (i.e.,
the connected form). We also find that they are non-
homophilous, meaning many connected node pairs dif-
fer in their class. The edge homophily of S2N graphs
is 0.25 ± 0.01 for PPI-BP, 0.20 ± 0.03 for HPO-Neuro1,
0.24±0.01 for HPO-Metab, and 0.51±0.01 for EM-User.

6.2 PERFORMANCE

Real-World Datasets In Table 1, we report the mean and standard deviation of the micro F1-score
over ten runs. We confirm that S2N with simple GNN models is similar to or outperforms GLASS,

1We propose multi-label edge homophily for multi-label datasets (HPO-Neuro). They generalize the existing
multi-class homophily, and we discuss more in Appendix A.7.

7

Under review as a conference paper at ICLR 2024

Table 2: Mean performance in micro F1-score on synthetic datasets over 10 runs. We mark with
daggers the reprinted results from Alsentzer et al. (2020) (†) and Wang & Zhang (2022) (‡).

Model Density Cut-Ratio Coreness Component

Sub2Vec‡ 45.9±1.2 35.4±1.4 36.0±1.9 65.7±1.7

SubGNN† 91.9±1.6 62.9±3.9 65.9±9.2 95.8±9.8

GLASS‡ 93.0±0.9 93.5±0.6 84.0±0.9 100.0±0.0

GCNII / S2N+0 67.2±2.4 56.0±0.0 57.0±4.9 100.0±0.0

GCNII / S2N+A 93.2±2.6 56.0±0.0 85.7±5.8 100.0±0.0

GCNII / S2N+0 + RWPE 74.8±3.6 85.2±5.1 56.1±3.0 100.0±0.0

GCNII / S2N+A + RWPE 93.6±2.0 89.2±2.6 77.4±9.1 100.0±0.0

Table 3: The attributes that affect the subgraph properties (labels) of synthetic datasets.
Density Cut-Ratio Coreness Component
Internal structure Border structure Internal structure, border structure & position Internal & external position

the state-of-the-art model. In 16 experiments (4 datasets and 4 models), S2N models outperform
GLASS in 9 cases, and SubGNN in all 16 cases. Moreover, S2N models are on par with the SOTA
in 13 of 16 experiments, that is, have no significant difference from the unpaired t-test at the level
of 0.01. The best models with S2N show 102.9% (PPI-BP), 99.9% (HPO-Neuro), 102.9% (HPO-
Metab), and 100.2% (EM-User) of the performance of GLASS. We interpret that message-passing
between subgraphs in S2N improves performance by capturing distant interactions that cannot occur
in message-passing between nodes in the global graph. Plus, S2N+A outperforms S2N+0, that is,
internal structure also contributes to subgraph representation. However, the importance of internal
structures varies across datasets. Where the separated form shows relatively high performance (HPO-
Neuro), the performance improvement of S2N+A over S2N+0 is high compared to other datasets.

Synthetic Datasets In Table 2, we summarize the performance of S2N models with GCNII and
baselines on synthetic datasets. S2N+A outperforms the state-of-the-art (GLASS) on Density, Core-
ness, and Component datasets. S2N+0 shows the same performance as GLASS only in Component.
As illustrated in Table 3, the attributes that affect the subgraph properties (i.e., labels of synthetic
datasets) are known. Because S2N compresses the global graph structure, it is challenging to learn
Cut-Ratio, which requires exact information about the border (or global) structure. Learning the den-
sity and coreness of subgraphs requires their internal structures. Therefore, S2N+0, which does not
maintain internal structure, relatively underperforms baselines.

We can add structural encoding to the input features, particularly Random Walk Positional Encoding
(RWPE) (Dwivedi et al., 2022) to address this issue. The efficiency of S2N is maintained since the
RWPE is computed once before training and only requires the memory complexity of O(N). As
shown in the last two rows of Table 2, RWPE allows S2N to significantly improve the performance
of Density and Cut-Ratio , but not of Coreness. We interpret that RWPE for subgraphs can encode
internal and border structures well but cannot encode border positions. We leave the development
of structural encoding for S2N as future work.

6.3 EFFICIENCY

In Figure 4, we show throughput (subgraphs / second), latency (seconds / forward pass), the number
of parameters, and the maximum allocated GPU VRAM of two models with three data structures
and state-of-the-art baselines. We cannot experiment on PPI-BP with SubGNN since it takes more
than 48 hours in pre-computation. We make the following five observations from these results.

S2N models show significantly high throughput (Figure 4a). The best S2N models can process
×183 – ×711 more samples than the state-of-the-art model (GLASS) for the same training time. At
the evaluation stage, they show 7 – 56 times higher throughput than GLASS. This difference is not
as large as the training stage, but S2N is still significantly more efficient than GLASS. In addition,
S2N shows higher training throughput than connected and separated forms.

S2N models even with full batch show lower latency than others with small batch size (Fig-
ure 4b). Comparing the best S2N model and GLASS, the training latency is ×0.05 – ×0.17 and
evaluation latency is ×0.16 – ×0.43. Note that measuring latency ignores the parallelism from large

8

Under review as a conference paper at ICLR 2024

101 102 103 104 105

Train Throughput (#/s)

101

102

103

104

105

Ev
al

 T
hr

ou
gh

pu
t (

#/
s)

Dataset = HPO-Metab

101 102 103 104 105

Train Throughput (#/s)

Dataset = HPO-Neuro

101 102 103 104 105

Train Throughput (#/s)

Dataset = EM-User

101 102 103 104 105

Train Throughput (#/s)

Dataset = PPI-BP
Data structure

S2N+0
S2N+A
Connected
Separated
Baseline

Model
GCN
GCNII
SubGNN
GLASS

I
’ x12
I

+- !- - - -1- - - ..
■ x183

웅,' X14
I

+-

- - - !. ＿ __ L,
• x303

I x56

+--f---.i--- 』

x7마1

I

i
I

I

I

, x7
I-'- - - -1- - - ..

x205

(a) The throughput (the number of subgraphs / second) at training and evaluation stages. The higher, the better.

0.0 0.1 0.2 0.3 0.4
Train Latency (s/forward)

0.00

0.05

0.10

0.15

Ev
al

 L
at

en
cy

 (s
/fo

rw
ar

d)

Dataset = HPO-Metab

0.0 0.1 0.2 0.3 0.4
Train Latency (s/forward)

Dataset = HPO-Neuro

0.0 0.1 0.2 0.3 0.4
Train Latency (s/forward)

Dataset = EM-User

0.0 0.1 0.2 0.3 0.4
Train Latency (s/forward)

Dataset = PPI-BP
Data structure

S2N+0
S2N+A
Connected
Separated
Baseline

Model
GCN
GCNII
SubGNN
GLASS

x0 • 43--..
x0.1

7
’

I X0 • 36
x0.-11| ’

- -r. - ..- -
: x0 .16
I,

,- - - - - - -

x0 • 05 |
- - - - - - - - - I .. ,-,-

- - - - . - ..- --

’ x0 .26 x0 .07 - --

(b) The latency (seconds / forward pass) at training and evaluation stages. The lower, the better.

106 107

parameters

101

102

103

104

M
ax

 A
llo

ca
te

d
VR

AM
 (M

B)

Dataset = HPO-Metab

106 107

parameters

Dataset = HPO-Neuro

106 107

parameters

Dataset = EM-User

106 107

parameters

Dataset = PPI-BP
Data structure

S2N+0
S2N+A
Connected
Separated
Baseline

Model
GCN
GCNII
SubGNN
GLASS

+--
X0 • 45 I

�9- ..
xl.05

· -
I

I X0. 2
I

- ..

--
I

I X0. 2
I

- ..

(c) The number of parameters and maximum allocated GPU VRAM. The lower, the better.

Figure 4: Efficiency of S2N models and baselines on real-world datasets. The ratio of each metric
of the best S2N model and the state-of-the-art model is notated in the figure (dashed lines).

batch sizes. S2N’s superiority over other data structures can be underestimated in latency rather than
throughput because it requires full batch computation. Note that existing models should use small
batch sizes by intensive memory requirements (SubGNN) or model design (GLASS).

S2N models require less memory even with a similar level of parameters (Figure 4c). For a
given dataset, the number of parameters of each model does not vary much, but the GPU VRAM in
the actual runtime varies by a large margin. The best models with S2N need less memory (×0.2 –
×0.45) than GLASS except for HPO-Neuro. For HPO-Neuro, which has a large number of subgraphs,
requires the same level of memory (×1.05). In particular, since S2N does not employ a large global
graph, S2N works with only ×0.13 memory on average compared to the connected form.

S2N+A does not show a significant difference from S2N+0 in efficiency. Recall that S2N+A
differs from S2N+0 by using the internal edges of subgraphs. However, the number of internal
edges is negligible compared to the original global edges, as in Table 4. Consequently, the added
internal edges require only a small amount of additional computation and memory, allowing S2N+A
to perform training and inference efficiently.

Overall, S2N models outperform baselines in all computational and memory efficiency metrics.
Models with S2N process many samples faster (i.e., higher throughput and lower latency), and
require less GPU memory than other data structures and state-of-the-art models. The separated form,
which does not use a global graph, shows a similar level of efficiency as S2N in some experiments
but loses performance by ignoring the global structure completely.

6.4 PERFORMANCE AND EFFICIENCY OF COARSENED S2N IN A DATA-SCARCE SETTING

This section reports the performance and efficiency of data structures: connected, separated forms,
and Coarsened S2N (CoS2N). Figure 5 summarizes the performance, training and evaluation

9

Under review as a conference paper at ICLR 2024

5 10 20 30 40
training samples / class

0.3

0.4

0.5

Pe
rfo

rm
an

ce

(a) Performance

5 10 20 30 40
training samples / class

103

104

Tr
ai

n
Th

ro
ug

hp
ut

 (#
/s

, L
og

)

(b) Training Throughput

5 10 20 30 40
training samples / class

104

2 × 104

3 × 104

Ev
al

 T
hr

ou
gh

pu
t (

#/
s,

Lo
g)

(c) Eval Throughput

5 10 20 30 40
training samples / class

101

102

103

M
ax

 A
llo

ca
te

d
VR

AM
 (M

B,
 L

og
)

Data structure
CoS2N+0
CoS2N+A
Connected
Separated

(d) Max allocated VRAM

Figure 5: Performance and efficiency on PPI-BP of CoS2N, connected, and separated forms by the
number of training samples in a data-scarce setting.

throughput, and max allocated VRAM by the number of training samples on PPI-BP. In Ap-
pendix A.10, we discuss the results of the other dataset and ablation study on the coarsening ratio.

Subgraphs created by coarsening contribute to performance improvements of S2N (Figure 5a).
CoS2N+A outperforms the separated form in all conditions. Note that the separated form in a data-
scarce setting is identical to S2N+A without coarsening, which is the weakest baseline that investi-
gates the effectiveness of coarsening. This implies that virtual subgraphs created by coarsening help
to pass messages between nodes in S2N, resulting in better representations. Moreover, CoS2N+A
shows similar performance to the connected form and even outperforms when the number of samples
is 20. We confirm that CoS2N approximates representations of the global graph well, even though
the virtual subgraphs created through coarsening do not follow the distribution of real subgraphs.

CoS2N has higher throughput (Figures 5b, 5c) and uses less memory (Figure 5d) than using
the global graph. Although the virtual subgraphs by coarsening are added, both CoS2N methods
show higher throughput than using the global graph (i.e., the connected form). CoS2N+0 even
shows higher throughput than the separated form in all stages. CoS2N+A shows higher throughput
than the separated form in the evaluation stage, where there are a larger number of subgraphs to be
processed. The training throughput increases as more training samples are used since the full batch
parallelization of GPUs can efficiently process additional samples.

Like computational requirements, CoS2N uses less memory than the connected form. This is be-
cause graph coarsening can create a number of subgraphs smaller than the size of the global graph.
For CoS2N and the connected form, the memory consumption is constant or fluctuates with respect
to the training set size. The memory bottleneck of the connected form and CoS2N is the largest
component of each dataset: the global graph and coarsened nodes. Adding training samples does
not substantially affect memory demand.

7 CONCLUSION

Subgraph-To-Node (S2N) translation is a novel, efficient way to learn representations of subgraphs.
S2N takes the original subgraphs, and creates a new graph where the nodes are the subgraphs and the
edges are the relations between the subgraphs, thereby performing subgraph-level tasks as node-level
tasks. We empirically and theoretically show that S2N translation significantly reduces memory and
computation costs without performance degradation. Specifically, the best-performing models with
S2N on real-world datasets show ×183 − ×711 of throughput and achieve at least 99.9% of the
state-of-the-art models for classification performance. One future direction is to sample subgraphs
to construct S2N graphs when there are too many subgraphs. We expect sampling subgraphs to
prune less informative nodes and edges in S2N and further enhance efficiency.

10

Under review as a conference paper at ICLR 2024

8 REPRODUCIBILITY STATEMENT

To reproduce the results, we open our code public. Our code is available at supplementary_
materials. The GitHub link to the code will be visible after the acceptance. Datasets, including
the downloadable link from Alsentzer et al. (2020), are described in Appendix A.4. All proofs of
theoretical claims are provided in Appendix A.3.

REFERENCES

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature learn-
ing for subgraphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.
170–182. Springer, 2018.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631,
2019.

Emily Alsentzer, Samuel G Finlayson, Michelle M Li, and Marinka Zitnik. Subgraph neural net-
works. Proceedings of Neural Information Processing Systems, NeurIPS, 2020.

Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael
Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool
for the unification of biology. Nature genetics, 25(1):25–29, 2000.

Albert-László Barabási. Network science. Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, 371(1987):20120375, 2013.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improv-
ing graph neural network expressivity via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252, 2020.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=uxpzitPEooJ.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-
volutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pp. 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/
2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.

Fan Chung. Graph theory in the information age. Notices of the AMS, 57(6):726–732, 2010.

Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic
acids research, 47(D1):D330–D338, 2019.

Mostafa Dehghani, Yi Tay, Anurag Arnab, Lucas Beyer, and Ashish Vaswani. The efficiency
misnomer. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=iulEMLYh1uR.

Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. Graphzoom: A multi-
level spectral approach for accurate and scalable graph embedding. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
r1lGO0EKDH.

11

supplementary_materials
supplementary_materials
https://openreview.net/forum?id=uxpzitPEooJ
https://openreview.net/forum?id=uxpzitPEooJ
http://doi.acm.org/10.1145/2939672.2939785
https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=r1lGO0EKDH
https://openreview.net/forum?id=r1lGO0EKDH

Under review as a conference paper at ICLR 2024

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019. URL https:
//github.com/PyTorchLightning/pytorch-lightning.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves struc-
ture learning for graph neural networks. Advances in Neural Information Processing Systems, 34,
2021.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
International Conference on Learning Representations Workshop on Representation Learning on
Graphs and Manifolds, 2019.

Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical inter-message passing for learning
on molecular graphs. arXiv preprint arXiv:2006.12179, 2020.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In International conference on machine learning, pp. 1972–1982.
PMLR, 2019.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Taila Hartley, Gabrielle Lemire, Kristin D Kernohan, Heather E Howley, David R Adams, and
Kym M Boycott. New diagnostic approaches for undiagnosed rare genetic diseases. Annual
review of genomics and human genetics, 21:351–372, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In International Conference on Machine Learning, pp.
12724–12745. PMLR, 2023.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neu-
ral networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 675–684, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensa-
tion for graph neural networks. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=WLEx3Jo4QaB.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Yu Jin, Andreas Loukas, and Joseph JaJa. Graph coarsening with preserved spectral properties. In
International Conference on Artificial Intelligence and Statistics, pp. 4452–4462. PMLR, 2020.

Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu, Qingqing Long, Ziyue Qiao, Yifang Qin, Jianhao Shen,
Fang Sun, Zhiping Xiao, et al. A comprehensive survey on deep graph representation learning.
arXiv preprint arXiv:2304.05055, 2023.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design
with self-supervision. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Wi5KUNlqWty.

12

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://openreview.net/forum?id=WLEx3Jo4QaB
https://openreview.net/forum?id=Wi5KUNlqWty

Under review as a conference paper at ICLR 2024

Dongkwan Kim, Jiho Jin, Jaimeen Ahn, and Alice Oh. Models and benchmarks for representation
learning of partially observed subgraphs. In Proceedings of the 31st ACM International Confer-
ence on Information & Knowledge Management, pp. 4118–4122, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Sebastian Köhler, Leigh Carmody, Nicole Vasilevsky, Julius O B Jacobsen, Daniel Danis, Jean-
Philippe Gourdine, Michael Gargano, Nomi L Harris, Nicolas Matentzoglu, Julie A McMurry,
et al. Expansion of the human phenotype ontology (hpo) knowledge base and resources. Nucleic
acids research, 47(D1):D1018–D1027, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34, 2021.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 20:1–42, 2019.

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller
graphs. In International Conference on Machine Learning, pp. 3237–3246. PMLR, 2018.

Changping Meng, S Chandra Mouli, Bruno Ribeiro, and Jennifer Neville. Subgraph pattern neural
networks for high-order graph evolution prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Dylan Mordaunt, David Cox, and Maria Fuller. Metabolomics to improve the diagnostic efficiency
of inborn errors of metabolism. International journal of molecular sciences, 21(4):1195, 2020.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609,
2019.

Mark Newman. Networks. Oxford university press, 2018.

Jianmo Ni, Larry Muhlstein, and Julian McAuley. Modeling heart rate and activity data for person-
alized fitness recommendation. In The World Wide Web Conference, pp. 1343–1353, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, pp.
8026–8037, 2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1e2agrFvS.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1150–1160, 2020.

Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert,
Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander, et al.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expres-
sion profiles. Proceedings of the National Academy of Sciences, 102(43):15545–15550, 2005.

13

https://openreview.net/forum?id=S1e2agrFvS

Under review as a conference paper at ICLR 2024

Xiyuan Wang and Muhan Zhang. GLASS: GNN with labeling tricks for subgraph representation
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=XLxhEjKNbXj.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. Advances in Neural Information Processing Systems, 35:21171–21183,
2022.

Houquan Zhou, Shenghua Liu, Kyuhan Lee, Kijung Shin, Huawei Shen, and Xueqi Cheng. Dpgs:
Degree-preserving graph summarization. In Proceedings of the 2021 SIAM International Confer-
ence on Data Mining (SDM), pp. 280–288. SIAM, 2021.

Houquan Zhou, Shenghua Liu, Danai Koutra, Huawei Shen, and Xueqi Cheng. A provable frame-
work of learning graph embeddings via summarization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 4946–4953, 2023.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33:7793–7804, 2020.

Marinka Zitnik, Rok Sosic, and Jure Leskovec. Biosnap datasets: Stanford biomedical network
dataset collection. Note: http://snap. stanford. edu/biodata Cited by, 5(1), 2018.

14

https://openreview.net/forum?id=XLxhEjKNbXj
https://openreview.net/forum?id=XLxhEjKNbXj
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=BJe8pkHFwS

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DETAILED DESCRIPTIONS OF ARCHITECTURAL DIFFERENCES

A.1.1 COMPARISON WITH SUBGNN AND GLASS

SubGNN (Alsentzer et al., 2020), GLASS (Wang & Zhang, 2022), and S2N improve different parts
of the machine learning pipeline to solve subgraph-level tasks. SubGNN designs a whole model,
GLASS augments input data through a labeling trick, and S2N uses a new data structure.

SubGNN performs message-passing between subgraphs (or patches). Through this, the properties of
internal and border structures for three channels (position, neighborhood, and structure) are learned
independently. To learn a total of 6 (2 × 3) properties, SubGNN designs patch samplers, patch
representation, and similarity (weights of messages) for each property in an ad hoc manner. To learn
internal positions, for example, SubGNN patches nodes inside the subgraph uses its representation
as a message, and uses distance-based similarity as weights. By the complex model design, SubGNN
requires a lot of computational resources for data pre-processing, model training, and inference.

GLASS uses plain GNNs but labels input nodes as to whether they belong to the subgraph (the label
of one) or not (the label of zero). Separate node-level message-passing is performed for each label to
distinguish the internal and border structures of the subgraph. GLASS’s labeling trick is effective,
but hard to handle multiple labels from multiple subgraphs in a batch. Although the authors of
GLASS propose a max-zero-one trick to address this issue, small batches are still recommended. In
addition, using a large global graph requires significant computational and memory resources.

In comparison, our proposed S2N uses the new data structure that stores and processes subgraphs
efficiently. By compressing the global graph, computational and memory resource requirements are
reduced. There are no restrictions on batch learning so we can train S2N graphs in the full batch.

A.1.2 COMPARISON WITH DIFFPOOL

DiffPool (Ying et al., 2018) learns the hierarchy of a graph to obtain graph-level representations.
DiffPool softly assigns each node to a cluster during training by optimizing the downstream task
loss. To stabilize the soft clustering assignment, the authors of DiffPool employ link prediction loss
and entropy regularization loss. The problem is that the assignment matrix must be maintained in
GPU memory, which requires quadratic memory complexity regarding the number of nodes. In
other words, we cannot apply DiffPool to large graphs such as global graphs in our use cases.

We aim to perform subgraph representation learning efficiently by compressing data and reduc-
ing GPU load. Memory-intensive graph coarsening, such as DiffPool’s soft clustering assignment,
should not be used to keep CoS2N efficient. Instead, we can secure the efficiency of CoS2N by
performing graph coarsening before training the model, relying only on the structure of the global
graph.

A.1.3 COMPARISON WITH JT-VAE

Junction Tree Variational Autoencoder (JT-VAE) (Jin et al., 2018) decomposes a molecular graph
into a junction tree, where a node corresponds to the motif (particularly a ring of atoms), and edges
link the nodes that share the nodes. This method is a graph generation model to learn the ring
substructure well in chemical tasks but has not been used in subgraph-level tasks. Due to the nature
of the Junction Tree algorithm, only the ring (or cycle) structure of input graphs is used as subgraphs,
and the output is restricted to trees, which leads to limited usage.

Our proposed S2N’s primary contribution is to explore the fundamental question of subgraph rep-
resentation learning and propose a novel perspective. In addition, S2N can be generally applied to
graphs and subgraphs of any structure.

A.2 JUSTIFICATION FOR THE CHOICE OF THE RANDOM GRAPH MODEL

The complexity of S2N strongly depends on the distribution of translated edge weights. Thus, we
need a random graph model that can analytically calculate the distribution of edge weights (i.e.,

15

Under review as a conference paper at ICLR 2024

the number of shared edges in two subgraphs). When using the configuration model (CM), the
distribution of S2N’s edge weights can be derived from the degree distribution of the global graph.
This is possible because CM calculates the probability of edge existence through the degrees of
a pair of nodes. Note that CM is frequently used in analytically calculating numerous network
measures (Barabási, 2013).

We also emphasize that CM only requires a degree sequence or a distribution. That means CM
can also generate graphs generated by other random graph models. For example, when the degree
distribution is Poisson distribution, CM generates graphs close to the Erdős–Rényi model. CM can
also generate degree distributions with other distributions, for example, power-law distributions. See
Newman (2018) for more details.

A.3 PROOF OF THEORETICAL ANALYSIS

Proposition 1. The time complexity of the 1-layer GLASS, Connected form, S2N+0, and S2N+A is

GLASS & Connected S2N+0 S2N+A

O
(
EF +MN subF +NF 2

)
O
(
ÊF +MN subF +MF 2

)
O
(
ÊF +MEsubF +MN subF 2

)
Proof. Let G = (V,A,X) be a global graph where V is a set of nodes (|V| = N), A ∈ {0, 1}N×N

is an adjacency matrix, and X ∈ RN×F0 is a node feature matrix. A subgraph S = (Vsub,Asub) is
a graph formed by subsets of nodes and edges in the global graph G. For the subgraph classification
task, there is a set of M subgraphs S = {S1,S2, ...,SM}, and for Si = (Vsub

i ,Asub
i), the goal is to

learn subgraph representations Ĥ ∈ RM×F .

Baselines and S2N models are computed by following steps:

• GLASS & Connected: Ĥ = R⊤GNN(X,A) where R ∈ RN×M is a readout matrix.

• S2N+0: Ĥ = GNNS2N(X̂, Â) where X̂[i] =
∑

v∈Vsub
i
ωvi ·X[v,:].

• S2N+A: Ĥ = GNNS2N(X̂, Â) where X̂[i] =
∑

v∈Vsub
i
ωvi · GNNnode(X[Vsub

i ,:],A
sub
i)[v,:].

Graph neural networks (GNNs) that use the message-passing mechanism to learn subgraph rep-
resentations can be decomposed into feature transformation (FT), feature propagation (FP), and
subgraph-level readout (SR). Feature transformation requires O(the number of nodes × F 2) com-
putations and feature propagation by sparse implementation requires O(the number of edges × F)
computations. Plus, for the readout of representations or input features, we need the computations
of O(the total number of nodes in subgraphs × F).

• GLASS & Connected: O(EF) from FP, O(MN subF) from SR, and O(NF 2) from FT.

• GLASS: O(MN sub) from the node labeling trick (Wang & Zhang, 2022).

• S2N+0: O(ÊF) from FP, O(MN subF) from SR, and O(MF 2) from FT.

• S2N+A: O(ÊF) and O(MEsubF) from FP in GNNS2N and GNNnode, O(MN subF) from
SR, and O(MF 2) and O(MN subF 2) from FT in GNNS2N and GNNnode.

By adding up all the terms, we can get the final result.

Proposition 2. For Configuration Model of a degree sequence [d1, d2, ..., dN] as G and i.i.d. sam-
pled subgraphs where the average size is N sub, the probability that the weight Â[i,j] of an edge (i, j)

in Ĝ is bigger than c > 0 is P (Â[i,j] ≥ c) ≤ (N sub)2E[d]
cN where E[d] is an average degree.

16

Under review as a conference paper at ICLR 2024

Proof. We first note that the probability of edge (u, v) in the Configuration Model for large E is
dudv

2E and E = 1
2

∑
k dk = 1

2NE[d] (Newman, 2018).

P (Â[i,j] ≥ c) ≤ E[Â[i,j]]/c (∵ Markov’s inequality) (11)

= E[
∑

u∈Vsub
i

∑
v∈Vsub

j
A[u,v]]/c (12)

= E[
∑

u∈Vsub
i

∑
v∈Vsub

j

dudv

2E]/c (13)

= E(i,j)∈S×S[
∑

u∈Vsub
i

∑
v∈Vsub

j
E[d]2]/(2cE) (14)

=
(N subE[d])2

2cE
(15)

=
(N sub)2E[d]

cN
(16)

To prove Proposition 3, we first introduce Lemma 1.
Lemma 1.

R⊤D− 1
2AD− 1

2R = D̂− 1
2 ÂD̂− 1

2 (17)

Proof.

R⊤D− 1
2AD− 1

2R (18)

= (D
1
2MD̂− 1

2)⊤D− 1
2AD− 1

2D
1
2MD̂− 1

2 (19)

= D̂− 1
2M⊤D

1
2D− 1

2AD− 1
2D

1
2MD̂− 1

2 (20)

= D̂− 1
2M⊤AMD̂− 1

2 (21)

= D̂− 1
2 ÂD̂− 1

2 . (22)

Proposition 3. Using the single-layer GCN parametrized by W , subgraph representations R⊤H

of the global graph G can be approximated by node representations Ĥ of the S2N graph Ĝ, that is,
Ĥ ≈ R⊤H . The error between two representations is bounded by:

∥R⊤H − Ĥ∥ ≤ M
1
2 ∥X −RX̂∥ · ∥W ∥. (23)

Proof.

∥R⊤H − Ĥ∥ (24)

= ∥R⊤D− 1
2AD− 1

2XW − D̂− 1
2 ÂD̂− 1

2 X̂W ∥ (25)

= ∥R⊤D− 1
2AD− 1

2XW −R⊤D− 1
2AD− 1

2RX̂W ∥ (∵ Lemma 1) (26)

= ∥R⊤(D− 1
2AD− 1

2)(X −RX̂)W ∥ (27)

≤ ∥R⊤∥∥D− 1
2AD− 1

2 ∥∥X −RX̂∥∥W ∥ (28)

≤ M
1
2 ∥X −RX̂∥ · ∥W ∥. (29)

Although Proposition 3 is analyzed using GCN models only, it is not limited to GCN in its applica-
bility. Intuitively, when sufficient subgraph samples are not available, message-passing in any GNNs
fails in the global graph not covered by existing subgraphs. Moreover, we can obtain theoretical re-
sults similar to Proposition 3 for other GNNs. However, we might not get the approximation bound
analytically depending on GNN architectures. For Graph Isomorphism Network (GIN) (Xu et al.,
2019) as an example, the non-linearity in multi-layer perceptron (MLP) makes it hard to analytically
compare the GIN outputs of S2N and the original graph. Instead, we introduce an approximation

17

Under review as a conference paper at ICLR 2024

Table 4: Statistics of real-world datasets in original forms (before S2N translation).

PPI-BP HPO-Neuro HPO-Metab EM-User
nodes in G 17,080 14,587 14,587 57,333
edges in G 316,951 3,238,174 3,238,174 4,573,417
internal edges in subgraphs 9,627 217,555 390,450 86,648
subgraphs 1,591 4,000 2,400 324
Density of G 0.0022 0.0304 0.0304 0.0028
Average density of subgraphs 0.216±0.188 0.767±0.141 0.757±0.149 0.010±0.006

Average # nodes / subgraph 10.2±10.5 14.8±6.5 14.4±6.2 155.4±100.2

Average # components / subgraph 7.0±5.5 1.5±0.7 1.6±0.7 52.1±15.3

classes 6 10 6 2
Single- or multi-label Single-label Multi-label Single-label Single-label
Train/Valid/Test splits 80/10/10 80/10/10 80/10/10 70/15/15

error bound on ‘GIN Sum-1-Layer’, a less powerful variant of GINs that replaces MLP with single-
layer perceptron (SLP).

GIN: H = MLP ((A+ (1 + ϵ) · I) ·X) , (30)
GIN Sum-1-Layer: H = SLP ((A+ (1 + ϵ) · I) ·X) . (31)

The error bound between S2N’s node representations and the global graph’s subgraph representa-
tions is demonstrated in Proposition 4. Here, we use the sum-readout READOUT(H) = M⊤H to
get subgraph representations.
Proposition 4. Using the single-layer GIN Sum-1-Layer parametrized by W , subgraph represen-
tations M⊤H of the global graph G can be approximated by node representations Ĥ of the S2N
graph Ĝ, that is, Ĥ ≈ M⊤H . The error between two representations is bounded by:

∥M⊤H − Ĥ∥ ≤
(
(MN subE)

1
2 ∥X −MX̂∥+ (1 + ϵ)∥M⊤X − X̂∥

)
· ∥W ∥. (32)

Proof.

∥M⊤H − Ĥ∥ (33)

= ∥M⊤(A+ (1 + ϵ)IN)XW − (Â+ (1 + ϵ)IM)X̂W ∥ (34)

= ∥M⊤(A+ (1 + ϵ)IN)XW − (M⊤AM + (1 + ϵ)IM)X̂W ∥ (35)

= ∥M⊤A(X −MX̂)XW + (1 + ϵ)(M⊤X − X̂)W ∥ (36)

≤ ∥M⊤∥∥A∥∥X −MX̂∥∥W ∥+ (1 + ϵ)∥M⊤X − X̂∥∥W ∥ (37)

≤
(
(MN subE)

1
2 ∥X −MX̂∥+ (1 + ϵ)∥M⊤X − X̂∥

)
· ∥W ∥, (38)

where IN is an identity matrix of size N .

If we set the initial features of S2N as a sum of the original features (i.e., X = M⊤X), Corollary 1
then follows from Proposition 4.
Corollary 1. Using the single-layer GIN Sum-1-Layer parametrized by W , subgraph represen-
tations M⊤H of the global graph G can be approximated by node representations Ĥ of the S2N
graph Ĝ, that is, Ĥ ≈ M⊤H . If the initial feature matrix of S2N is X̂ = M⊤X , the error between
two representations is bounded by:

∥M⊤H − Ĥ∥ ≤ (MN subE)
1
2 ∥X −MX̂∥ · ∥W ∥. (39)

A.4 DATASETS

All real-world subgraph datasets (PPI-BP, HPO-Neuro, HPO-Metab, and EM-User) and synthetic sub-
graph datasets (Density, Cut-Ratio, Coreness, and Component) are proposed in Alsentzer et al. (2020).

18

Under review as a conference paper at ICLR 2024

Table 5: Statistics of synthetic datasets in original forms (before S2N translation).

Density Cut-Ratio Coreness Component
nodes in G 5,000 5,000 5,000 19,555
edges in G 29,521 83,969 118,785 43,701
subgraphs 250 250 221 250
Density of G 0.0024 0.0067 0.0095 0.0002
Average density of subgraphs 0.232±0.146 0.945±0.028 0.219±0.062 0.150±0.161

Average # nodes / subgraph 20.0±0.0 20.0±0.0 20.0±0.0 74.2±52.8

Average # components / subgraph 3.8±3.7 1.0±0.0 1.0±0.0 4.9±3.5

classes 3 3 3 2
Single- or multi-label Single-label Single-label Single-label Single-label
Train/Valid/Test splits 80/10/10 80/10/10 80/10/10 80/10/10

They can be downloaded from the author’s GitHub repository2. Pre-trained embeddings can be
downloaded from the GitHub repository3 of Wang & Zhang (2022). We describe their nodes, edges,
subgraphs, tasks, and references in the following paragraphs. Note that the number of edges in the
real-world datasets compared to datasets referred to as large-scale (Lim et al., 2021) is at a similar
level; thus, similar scalability is required to model real-world graphs using GNNs.

PPI-BP The global graph of PPI-BP (Zitnik et al., 2018; Subramanian et al., 2005; Consortium,
2019; Ashburner et al., 2000) is a human protein-protein interaction (PPI) network; nodes are pro-
teins, and edges are whether there is a physical interaction between proteins. Subgraphs are sets of
proteins in the same biological process (e.g., alcohol bio-synthetic process). The task is to classify
processes into six categories.

HPO-Neuro and HPO-Metab These two HPO (Human Phenotype Ontology) datasets (Hartley
et al., 2020; Köhler et al., 2019; Mordaunt et al., 2020) are knowledge graphs of phenotypes (i.e.,
symptoms) of rare neurological and metabolic diseases. Each subgraph is a collection of symp-
toms associated with a monogenic disorder. The task is to diagnose the rare disease: classifying the
disease type among subcategories (ten for HPO-Neuro and six for HPO-Metab).

EM-User EM-User (Users in EndoMondo) dataset is a social fitness network from Endomondo (Ni
et al., 2019). Here, subgraphs are users, nodes are workouts, and edges exist between workouts
completed by multiple users. Each subgraph represents the workout history of a user. The task is to
profile a user’s gender.

Density, Cut-Ratio, Coreness, and Component For these synthetic datasets, the task is to predict
the properties of subgraphs: density, cut ratio, average core number, and the number of components,
respectively. Refer to (Alsentzer et al., 2020) for details to generate the synthetic graphs. We use a
vector of 64 dimensions initialized to 1 or its L1-normalized vector as input node embedding. When
using RWPE, we allocate 1/2 or 1/4 of the total embedding dimension.

A.5 MODELS

This section describes the hyperparameter details and the tuning method. All models are imple-
mented with PyTorch (Paszke et al., 2019), PyTorch Geometric (Fey & Lenssen, 2019), and PyTorch
Lightning (Falcon & The PyTorch Lightning team, 2019).

We tune hyperparameters using TPE (Tree-structured Parzen Estimator) algorithm in Optuna (Akiba
et al., 2019) by 400 trials: learning rate (5 × 10−4 – 10−2), weight decay (10−9 – 10−6), the num-
ber of layers in GNN (1 – 2), dropout of channels and edges ({0.0, 0.1, ..., 0.5}), gradient clipping
({0.0, 0.1, ..., 0.5}), the readout matrix (ωvi = R[v,i] in Equation 9 or ωvi = M[v,i]), and whether
to use batch normalization (Ioffe & Szegedy, 2015) and skip-connection (He et al., 2016). Hyperpa-
rameters specialized on GCNII are also tuned: α ({0.1, 0.2, ..., 0.9}), θ ({0.1, 0.2, ..., 2.0}), weight

2https://github.com/mims-harvard/SubGNN
3https://github.com/Xi-yuanWang/GLASS

19

https://github.com/mims-harvard/SubGNN
https://github.com/Xi-yuanWang/GLASS

Under review as a conference paper at ICLR 2024

sharing (True or False). For S2N translation, we tune edge normalization range (a and b = a+∆ in
Equation 3, a ∈ {1.0, 1.25, ..., 4.0}, ∆ ∈ {0.5, 1.0, 1.5, 2.0}).

All hyperparameters are reported in the code.

A.6 EFFICIENCY MEASUREMENT

We compute throughput (subgraphs per second) and latency (seconds per forward pass) by following
equations. In addition, we use torch.cuda.max memory allocated to measure the maxi-
mum allocated GPU VRAM4.

Training throughput =
of training subgraphs

training wall-clock time (seconds) / # of epochs
, (40)

Evaluation throughput =
of validation subgraphs

validation wall-clock time (seconds) / # of epochs
, (41)

Training latency =
training wall-clock time (seconds)

of training batches
, (42)

Evaluation latency =
validation wall-clock time (seconds)

of validation batches
. (43)

A.7 GENERALIZATION OF HOMOPHILY TO MULTI-LABEL CLASSIFICATION

Node (Pei et al., 2020) and edge homophily (Zhu et al., 2020) are defined by,

hedge =
|{(u, v)|(u, v) ∈ A ∧ yu = yv}|

|A|
, hnode =

1

|V|
∑
v∈V

|{(u, v)|u ∈ N (v) ∧ yu = yv}|
|N (v)|

, (44)

where yv is the label of the node v. In the main paper, we define multi-label node and edge ho-
mophily by,

hedge, ml =
1

|A|
∑

(u,v)∈A

|Lu ∩ Lv|
|Lu ∪ Lv|

, hnode, ml =
1

|V|
∑
v∈V

 1

|N (v)|
∑

u∈N (v)

|Lu ∩ Lv|
|Lu ∪ Lv|

 . (45)

If we compute r = |Lu∩Lv|
|Lu∪Lv| for single-label multi-class graphs, r = 1

1 = 1 for nodes of same classes,
and r = 0

2 = 0 for nodes of different classes. That makes hedge, ml = hedge and hnode, ml = hnode for
single-label graphs.

A.8 PERFORMANCE OF DIFFERENT GNN LAYERS

In Table 6, we demonstrate the performance of S2N models using additional GNN layers: Graph
Isomorphism Networks (GIN) (Xu et al., 2019) and Graph Attention Networks V2 (GATv2) (Brody
et al., 2022).

GIN and GATv2 (S2N+0 and S2N+A) outperform GLASS on PPI-BPbut perform worse than
GLASS on EM-User. We confirm that S2N outperforms classic data structures: separated and con-
nected forms. For GATv2, we cannot experiment with the connected form on EM-User due to the
requirements of large GPU memory. Nonetheless, all S2N models with GIN and GATv2 outperform
SubGNN on all datasets.

Compared to GCNII, which showed the best performance in our paper, GIN and GATv2 generally
perform worse. This implies that architectures designed for node or link-level tasks are sub-optimal
for subgraph-level tasks. We suggest further studies on model architectures for learning subgraph
representations.

A.9 ABLATION STUDY OF HYPERPARAMETERS

We conduct ablation studies on the readout method (Equation 8) (sum, mean, max, and degree-
dependent) and the number of layers in GNNS2N (0, 1, 2, 4). We report the performance of S2N+0
and S2N+A with GCNII by the readout method in Table 7 and the number of layers in Table 8.

4https://pytorch.org/docs/1.9.0/generated/torch.cuda.max memory allocated.html

20

https://pytorch.org/docs/1.9.0/generated/torch.cuda.max_memory_allocated.html

Under review as a conference paper at ICLR 2024

Table 6: Mean performance in micro F1-score over 10 runs. We mark with daggers the reprinted
results from Alsentzer et al. (2020) (†) and Wang & Zhang (2022) (‡).

Model Data Structure PPI-BP EM-User
Sub2Vec Best† 30.9±2.3 85.9±1.4

SubGNN† 59.9±2.4 81.4±4.6

GLASS‡ 61.9±0.7 88.8±0.6

GCNII Separated 61.3±1.2 84.7±4.1

GCNII Connected 63.5±2.0 85.5±4.8

GCNII S2N+0 63.5±2.4 86.5±3.2

GCNII S2N+A 63.7±2.3 89.0±1.6

GIN Separated 60.6±2.1 82.2±6.6

GIN Connected 61.0±3.3 83.7±4.8

GIN S2N+0 63.3±1.6 84.9±5.3

GIN S2N+A 62.2±1.9 83.1±1.6

GATv2 Separated 61.4±2.6 84.7±4.9

GATv2 Connected 61.0±1.5 OOM
GATv2 S2N+0 62.8±1.7 84.9±2.4

GATv2 S2N+A 62.6±1.4 86.7±3.2

Table 7: Mean performance in micro F1-score over 10 runs using GCNII models with different
readout methods.

Data Structure Readout PPI-BP HPO-Neuro HPO-Metab EM-User

S2N+0

Sum 63.5±2.4 66.4±1.1 61.6±1.7 86.5±3.2

Mean 59.9±2.0 63.9±0.5 62.0±1.0 85.3±3.9

Max 48.6±2.8 54.1±1.0 51.8±2.2 72.2±7.1

Degree 60.3±2.2 65.6±1.0 58.8±2.3 83.1±2.9

S2N+A

Sum 63.7±2.3 68.4±1.0 63.2±2.7 88.8±2.1

Mean 59.6±1.5 66.6±1.0 60.8±1.1 88.0±3.2

Max 58.5±1.7 59.6±2.0 59.4±2.7 81.2±3.1

Degree 63.1±2.2 68.4±0.9 61.0±2.0 89.0±1.6

Generally, the sum-readout performs best, and the max-readout performs the worst, as illustrated
in Table 7. The performance of mean-readout and degree-dependent readout varies by dataset. In
S2N+A, degree-dependent readout performs similarly to sum-readout and slightly outperforms on
EM-User.

In Table 8, we find that using message-passing (i.e., the number of layers > 0) always increases
the performance on all datasets. That is, modeling the S2N graph structures helps to learn the
representation of subgraphs. The performance improvement by GNNS2N in S2N+0 is higher than
in S2N+A, which leverages internal structures. The performance decreases when we use a deeper
GNNS2N than the optimum; that is, an over-smoothing effect exists in GNNS2N (Li et al., 2018).

A.10 PERFORMANCE AND EFFICIENCY OF COARSENED S2N IN A DATA-SCARCE SETTING

For experiments in a data-scare setting, we narrow the search space of hyperparameters. Specifically,
we fix to use batch normalization but not skip-connections. We use a coarsening ratio that creates
virtual subgraphs smaller than the average size: [0.2, 0.3, 0.4, 0.5, 0.6] for PPI-BP and [0.8, 0.9] for
EM-User. We follow the same tuning procedures in Appendix A.5 for the remaining details.

As stated in §6.4, we summarize performance and efficiency on EM-User in Figure 6. Overall, results
on EM-User do not show a notable difference from trends in data-scarce experiments on PPI-BP at
§6.4. The difference is that while S2N+0 underperforms the baselines, S2N+A outperforms the
rest by a large margin in all experiments. This suggests that the internal structures in subgraphs
are essential to EM-User. The observation that the performance of connected and separated forms is
similar also supports this. Nevertheless, the results of S2N+A confirm that message-passing between
subgraphs improves representation quality.

21

Under review as a conference paper at ICLR 2024

Table 8: Mean performance in micro F1-score over 10 runs using GCNII models with different
numbers of layers of GNNS2N.

Data Structure # layers PPI-BP HPO-Neuro HPO-Metab EM-User

S2N+0

0 57.7±1.6 65.2±1.6 55.5±1.9 77.6±9.4

1 61.1±2.4 66.4±1.1 61.6±1.7 79.2±9.2

2 63.5±2.4 65.6±1.4 59.4±1.0 86.5±3.2

4 62.8±2.0 65.8±0.8 61.1±1.7 79.2±7.9

S2N+A

0 59.7±2.2 68.2±0.8 61.8±1.7 87.1±3.5

1 63.7±2.3 68.4±1.0 61.9±2.0 89.0±1.6

2 61.8±1.4 68.0±0.8 63.2±2.7 86.3±4.9

4 61.6±1.7 67.7±0.8 62.0±1.6 86.3±5.2

5 10 20 30 40
training samples / class

0.5

0.6

0.7

0.8

0.9

Pe
rfo

rm
an

ce

(a) Performance

5 10 20 30 40
training samples / class

102

103

104

Tr
ai

n
Th

ro
ug

hp
ut

 (#
/s

, L
og

)

(b) Training Throughput

5 10 20 30 40
training samples / class

102

103

104

Ev
al

 T
hr

ou
gh

pu
t (

#/
s,

Lo
g)

(c) Eval Throughput

5 10 20 30 40
training samples / class

102

103

104

M
ax

 A
llo

ca
te

d
VR

AM
 (M

B,
 L

og
)

Data structure
CoS2N+0
CoS2N+A
Connected
Separated

(d) Max allocated VRAM

Figure 6: Performance and efficiency on EM-User of CoS2N, connected, and separated forms by the
number of training samples in a data-scarce setting.

We report the performance on PPI-BP and EM-User with respect to the coarsening ratio in Figure 7.
Although there are differences depending on the number of training samples, we can conclude that
finding the optimal coarsening ratio for each dataset can increase the performance. In addition, when
the training samples are too small, the difference between S2N+0 and S2N+A by the coarsening ratio
change is not noticeable.

22

Under review as a conference paper at ICLR 2024

0.2 0.3 0.4 0.5 0.6
Coarsening ratio

0.3

0.4

Pe
rfo

rm
an

ce

samples / class = [5]

0.2 0.3 0.4 0.5 0.6
Coarsening ratio

samples / class = [10]

0.2 0.3 0.4 0.5 0.6
Coarsening ratio

samples / class = [20]

0.2 0.3 0.4 0.5 0.6
Coarsening ratio

samples / class = [30]

0.2 0.3 0.4 0.5 0.6
Coarsening ratio

samples / class = [40]

Data structure
CoS2N+0
CoS2N+A

(a) Performance on PPI-BP by coarsening ratio.

0.8 0.9
Coarsening ratio

0.6

0.8

Pe
rfo

rm
an

ce

samples / class = [5]

0.8 0.9
Coarsening ratio

samples / class = [10]

0.8 0.9
Coarsening ratio

samples / class = [20]

0.8 0.9
Coarsening ratio

samples / class = [30]

0.8 0.9
Coarsening ratio

samples / class = [40]

Data structure
CoS2N+0
CoS2N+A

(b) Performance on EM-User by coarsening ratio.

Figure 7: Performance of CoS2N on PPI-BP and EM-User by coarsening ratio.

23

	Introduction
	Related Work
	Data Structures for Subgraph Representation Learning
	Conventional Data Structures: Separated and Connected Forms
	Subgraph-To-Node (S2N) Translation
	Models for S2N Translated Graphs
	S2N with Graph Coarsening for a Data-Scarce Setting

	Theoretical Analysis on S2N's Efficiency and Representation
	How much does S2N reduce computational complexity?
	How does S2N approximate subgraph representations when using GCNs?

	Experiments
	Results and Discussions
	Analysis of S2N-Translated Graphs
	Performance
	Efficiency
	Performance and Efficiency of Coarsened S2N in a Data-Scarce Setting

	Conclusion
	Reproducibility Statement
	Appendix
	 Detailed Descriptions of Architectural Differences
	 Comparison with SubGNN and GLASS
	 Comparison with DiffPool
	 Comparison with JT-VAE

	 Justification for the Choice of the Random Graph Model
	Proof of Theoretical Analysis
	Datasets
	Models
	Efficiency Measurement
	Generalization of Homophily to Multi-label Classification
	 Performance of Different GNN Layers
	 Ablation Study of Hyperparameters
	Performance and Efficiency of Coarsened S2N in a Data-Scarce Setting

