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Abstract

When training autoregressive models to forecast dynamical systems, a critical question arises:
how far into the future should the model be trained to predict? In this work, we address this
question by analyzing the relationship between the geometry of the loss landscape and the
training time horizon. Using dynamical systems theory, we prove that loss minima for long
horizons generalize well to short-term forecasts, whereas minima found on short horizons
result in worse long-term predictions. However, we also prove that the loss landscape becomes
rougher as the training horizon grows, making long-horizon training inherently challenging.
We validate our theory through numerical experiments and discuss practical implications for
selecting training horizons. Our results provide a principled foundation for hyperparameter
optimization in autoregressive forecasting models.

1 Introduction

Forecasting the future state of dynamical systems is a fundamental challenge in scientific and engineering
disciplines, from climate modeling to robotics. A central objective is to generate accurate predictions as far
into the future as possible. Auto-regressive (AR) models, which iteratively feed their own predictions back
as inputs, are a standard tool for this task in both traditional scientific computing and machine learning
(Petropoulos et al., 2022; Lai & Lu, 2017; Azencot et al., 2020; Van den Oord et al., 2016; Lam et al., 2023).

Traditional AR models were linear and limited to low-dimensional time series (Petropoulos et al., 2022; Lai &
Lu, 2017). Modern AR models, with nonlinear features and trained via gradient descent, have emerged as
powerful alternatives due to their ability to capture nonlinear dynamics in high-dimensional systems. Such
nonlinearity is ubiquitous across scientific domains, including physics (Levien & Tan, 1993), robotics (Iqbal
et al., 2014), ecology (Benincà et al., 2009; Huisman & Weissing, 1999), and climate science (Houghton
et al., 2001). Consequently, AR models have demonstrated success in climate prediction (Lam et al., 2023;
Kochkov et al., 2024), physics-informed dynamical systems emulation (Azencot et al., 2020; Erichson et al.,
2019; Li et al., 2020; Miller et al., 2022), and robotic control (Sasagawa et al., 2021; Williams et al., 2017;
Heetmeyer et al., 2023). Beyond forecasting, AR models can be used for generative tasks like or code
generation by enhancing their architecture with hidden states in RNNs (Hochreiter, 1997) or context windows
in transformers (Vaswani et al., 2017).

A critical yet understudied challenge in training AR is selecting an appropriate temporal horizon for prediction.
Common approaches either use a single-step prediction scheme (Van den Oord et al., 2016; Azencot et al.,
2020; Miller et al., 2022; Brown et al., 2020) or adopt longer horizons without rigorous justification (Lam
et al., 2023; Kochkov et al., 2024; Price et al., 2025; Cornille et al., 2024). Currently, no theoretical framework
exists to guide this choice. This gap extends to mechanistic modeling with differential equations or discrete
maps, where methods like piecewise regression (Pisarenko & Sornette, 2004; Doya et al., 1992; Boussange
et al., 2024) and multiple shooting (Bock, 1981; England, 1983; Aydogmus & Tor, 2021), which similarly lack
principled criteria for horizon selection.

In this work, we rigorously analyze how the training temporal horizon affects AR model performance.
We derive practical guidelines for selecting this horizon based on the underlying system dynamics. Our
contributions include:
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• a theoretical analysis linking the training horizon to the geometry of the loss landscape,
• an empirical validation of these relationships across different dynamical systems,
• practical recommendations for horizon selection in both data-driven and mechanistic modeling.

The remainder of this paper is organized as follows. We first situate our work within the existing literature.
Next, we introduce necessary background and notation. We then present our theoretical analysis of how
temporal horizons shape the loss landscape, that we illustrate with numerical experiments. We examine the
practical implications of our theoretical findings under the presence of noise, and how it connects with the
task of fitting mechanistic models. Finally, we discuss broader implications and future research directions.

2 Related works

AR models can be implemented with a wide range of architectures including feedforward networks, transformers
or recurrent neural networks (RNNs). While feedforward models are the state of the art in tasks such as
weather prediction (Lam et al., 2023) or autonomous vehicles (Kaufmann et al., 2023), and transformers
are the undisputed state of the art in generative tasks or time series processing (Feng et al., 2024), most
of the theoretical literature on general time series forecasting has focused on recurrent neural networks
(RNNs) (Grossberg, 2013). RNNs, such as LSTMs (Hochreiter, 1997), leverage recurrent connections to
maintain memory of past inputs, enabling them to capture temporal dependencies.

Many learning sequence processing tasks require computing gradients from many past inputs, which led to
the development of backpropagation through time (BPTT), where gradients are computed across sequences
whose length corresponds to the temporal horizon. However, this process is often hampered by the vanishing
or exploding gradient problem (EVGP) (Pascanu, 2013; Hochreiter et al., 2001; Bengio et al., 1994). Common
strategies to mitigate EVGP include architectural modifications (e.g., gated mechanisms (Hochreiter, 1997)),
specialized weight initializations (Narkhede et al., 2022), gradient clipping (Goodfellow, 2016; Zhang et al.,
2020), and constrained dynamics (e.g., unitary RNNs (Arjovsky et al., 2016; Chang et al., 2019; Erichson
et al., 2020)). However, focusing on gradient stability can limit expressivity (Orhan & Pitkow, 2019; Schmidt
et al., 2021; Mikhaeil et al., 2022). From a theoretical perspective, recent works have proposed adjusting
the BPTT horizon based on system properties like Lyapunov exponents (Mikhaeil et al., 2022), though such
approaches still lag behind feedforward AR networks in practice, and suggest that exploding or vanishing
gradients are not the only problem (Zucchet & Orvieto, 2024).

More generally, AR models lack a robust theoretical framework connecting their training horizon to the
underlying system dynamics. Yet, the importance of choosing it is reflected on practical works. Some select a
time horizon during training, for example in fitting ecology models (Boussange et al., 2024), chaotic time
series forecasting (Pisarenko & Sornette, 2004), and transformer training (Gloeckle et al., 2024; Cornille et al.,
2024). Others implicitly control it via discount factors – which reduce the relevance of long time horizons
–, for example in weather forecasting (Lam et al., 2023) and financial time series modeling (Bernaciak &
Griffin, 2024). Similar approaches appear in reinforcement learning, where the effective horizon influences
model success, for example through discount factors in techniques like λ-returns (Sutton, 1995; Anand &
Precup, 2021). Model predictive control also requires careful horizon selection (Hewing et al., 2020). Similarly,
neural PDE solvers often prioritize high-frequency components, which are inherently tied to shorter temporal
dependencies (Wiener, 1930; Lippe et al., 2023; Kurth et al., 2023). Even in language modeling, recent
empirical results suggest that multi-token prediction improves performance (Gloeckle et al., 2024; Cornille
et al., 2024). Yet, in many of those works, the theoretical basis remains unclear.

3 Background and Notation

3.1 Dynamical systems

Dynamical systems consist of a state space X in which the system has one position x, and a mathematical
function that describes how x changes with respect to t. As the state of the system evolves in time, it defines
a trajectory. Trajectories show a variety of patterns. For example, they can converge to an attractor, diverge
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from a point of manifold, remain within a manifold indefinitely. Some cases are inherently easy to predict – for
trajectories converging to a fixed point – , or inherently impossible – for unstable systems, as the trajectories
are constantly in a new state, and thus out of distribution.

Two particularly interesting families of trajectories, limit cycles and chaotic attractors, appear exclusively in
non-linear systems and are neither trivially predictable nor impossible to predict, and will be the focus of
this work.

• Limit cycles are orbits that repeat themselves, and can be characterized by the a closed line that
defines their orbit and by their period p or their frequency ω = 2π

p , which represents the time it
takes for them to come back to a previous point, such that x(t + p) = x(t) (Brin & Stuck, 2002). .

• Chaotic trajectories on the other hand never repeat any point in the trajectory, and can be
defined by their chaotic attractor – the set of points towards which the system will evolve. In
chaotic trajectories the Lyapunov exponent λ measures how two points that are initially close in
the attractor diverge with time by the relationship |x(t)− x′(t)| ≈ eλt|x(0)− x′(0)|, where x(0) is
infinitesimally close to x′(0)(Brin & Stuck, 2002).

Crucially, both chaotic or limit cycle systems are practically impossible to forecast very far into the future, as
small differences between the model and the system being modeled will make long term predictions essentially
random (see A.5).

3.2 Examples of dynamical systems

In order to develop and illustrate our theory, we will use the following examples of dynamical systems: A
Lorenz attractor, a double pendulum, a simple limit cycle, and a food web model Hastings (1991). The
Lorenz attractor, food web and the Double pendulum are classical examples of chaotic attractors. All the
systems are described in detail in appendix C.

3.3 Autoregressive models

Trajectories in discrete time dynamical systems – or continuous dynamical systems whose trajectories are
sampled at fixed intervals – can be characterized by a function that expresses how the system evolves in a
single timestep,

x(m) = ϕ(x(m− 1)) (1)

where m is the temporal index. Under this formulation, the dynamics of the system can be captured by a
function f , such that for a given state x(m), f(x(m), θ) gives the next state x(m + 1) or an approximation
thereof.

Since f is by construction made to output vectors with the same dimensionality as the input, we can generate
a future state x(m + T ) by simple composition of the model

x(m + T ) = f ◦ · · · ◦ f (x(m), θ) = fT (x(m), θ) . (2)

where one composition of f corresponds to a time step of unit length. This composition constitutes the
simplest definition of AR – using its own predictions to generate further predictions –, and we will thus refer
to the model implementing f as autoregressive and T as the temporal horizon. Note we can extend the
output vectors to include hidden states or context windows (see A.20), thus covering RNNs and Transformers.
However, doing so would require significantly more mathematical machinery we leave it for future work (see
remark A.21).

To simplify our theory we will focus on models where the function f is implemented by a feedforward neural
network which we will refer to as Autoregressive Neural Network (ARNN). Furthermore, to simplify our
experiments we will focus on Multi-Layer Perceptrons (see appendix F for details about the models).
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3.4 Loss functions for ARNNs

Consider a time series of discrete states x = [x(0), x(1), . . . , x(M)] sampled at times [0, 1, 2, ..., M ]. We can
define the ARNNs loss as

Lx(θ, T ) = 1
M − T

M−T∑
m=1

1
T

T∑
τ=1
∥x(m + τ)− fτ (x(m), θ)∥ . (3)

where τ indexes the number of prediction steps and T is the temporal horizon, which here determines the
extent to which future states influence learning. Note that it is possible to have different temporal horizons
(T s) for training and testing. Unless explicitly stated, we will focus our study on the temporal horizon during
training (not testing).

3.5 Theoretical assumptions and model set-up

To make our derivations we make three main assumptions:

• We assume that the loss function is smooth, which implies differentiability and we can therefore use
gradient descent.

• We assume that our dynamical systems are ergodic (and therefore stationary), and deterministic.
We also assume that our systems are fully observable, and as a consequence Markovian.

• We assume that we have enough data during training. In terms of dynamical systems, this means
that we have sample trajectories that are long enough to evaluate various temporal horizons, and
that the data provides a comprehensive coverage of the full state of the model.

Those assumptions allow us to derive our main results, but might not be realized in the real world. In
section 4.4 we discuss how and when those assumptions can be relaxed and how to extend our results to
other architectures such as RNNs and Transformers.

4 Temporal horizons and loss landscapes

In this section, we derive a connection between the gradient loss and the training temporal horizon, and
exploit it to understand the geometry of the loss landscape. Full proofs of our theorems and their corollaries
are presented in the appendix A; in the main text we only provide an outline. We provide simulations to
illustrate all our theorems.

4.1 The building blocks to link dynamics and training loss

The following definition helps us characterize the region on the parameter space where the model f(·, θ) is a
reasonable approximation of the true dynamics ϕ.
Definition 4.1 (ϵ-bounded region). For ϵ > 0, an ϵ-bounded region of the parameter space Θϵ for a model
trained to forecast a dynamical system with a bounded stationary distribution is a convex set within the
space of parameters of the model such that

∥f(x + ϵr⃗, θ)− (f(x, θ) + Jϕ(x)r⃗ϵ)∥ < ϵ2 ∀x ∈ Conv(x)

where Jϕ is the Jacobian matrix of ϕ(·), r⃗ is a unitary random vector and Conv(x) is the convex hull of the
states x.

We note that ϵ-bounded regions exist for arbitrarily small ϵ (lemma A.1), and have bounded loss (lemma A.7).
Importantly, a small ϵ can only be achieved in models that have been partially trained, so that they are
already a good approximation of the system dynamics. Thus, our theory applies to models that have been at
least partially trained, not to models at initialization.
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Now we can connect the dynamics of the system to the loss of a model trained to forecast the system.
Consider the function

g(T ) = ∥∇θLx(θ, T )∥
∥∇θLx(θ, 1)∥ (4)

which represents the relative scaling of the gradient with respect to T . The following proposition and its
validation in fig. 1 shows how g evolves with T .
Proposition 4.2 (Loss gradient growth). Consider a dynamical system which is either chaotic, contains
locally unstable trajectories or limit cycles, and a corresponding model with an ϵ-bounded region of the
parameter space Θϵ − {Θρ

min} where Θρ
min are all the balls of radius ρ ≪ ϵ around the minima of the loss.

For a sufficiently small ϵ, when the forecasting horizon T is large, g(T ) scales with T as

g(T ) =
{
O(eλT ), for chaotic/unstable
O(ωT ), for limit cycles.

(5)

Proof sketch. The Jacobian of the system over a time window T will scale exponentially or linearly with λ or
ω. Furthermore, within definition 4.1, the Jacobian of the model remains close to the Jacobian of the true
system (lemma A.6). The Jacobian of the model is always contained in the expression for ∇θLx(θ, T ), and
thus it scales with T . See A.8 for the full proof. Note that we removed the minima in {Θρ

min} to avoid zeros,
which would lead to a divergence of g. We will treat them in the next corollary.
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Figure 1: Gradient scaling: We measured the relative L2-norm of the gradients (g(T )) as a function of T
for MLPs g(T ) during training. As expected from proposition 4.2, we observe an exponential increase of g(T )
for the lorenz system and the double pendulum, and a linear one for the limit cycle and the food web. Notice
that we used the temporal units of the system dynamics as a unit to make our results independent of the
choice of timestep size.

An important limitation of proposition 4.2 is that it does not inform us about the minima of the loss. Yet,
we can use it to gain insights into the Hessian of the system around those same minima.
Corollary 4.3. Consider a dynamical system which is either chaotic or a limit cycle, and a corresponding
model with with minima in an ϵ-bounded region of the parameter space Θϵ. For a sufficiently small ϵ, when
the forecasting horizon T is large, the Hessian around a minima scales with T as

∥H(θ, T )∥∗

∥H(θ, 1)∥∗ =
{
O(eλT ), for chaotic systems
O(ωT ), for limit cycles

(6)

where ∥ · ∥∗ is the sum of the eigenvalues of the Hessian, also known as the nuclear norm.

Proof sketch. As the gradient grows with T , the second derivative must necessarily grow. To make this
formal, we consider small balls around the minima, and use the divergence theorem, where the gradient is the
vector field.

Corollary 4.3 lends itself to two interpretations:
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• Classical statistics suggest that having a minimum with a high Fisher information – a quantity that
scales with the Hessian – means that the model extracts a lot of information from the data Ly et al.
(2017). This would suggest that it is better to pick a high T as it would make any minima found
very precise.

• Flat minima seem to be better at generalization, because any difference in parameters (for example
due to differences between training and testing data) will have little effect on the loss Hochreiter &
Schmidhuber (1997); Keskar et al. (2016). This would suggest that it is better to pick a low T to
improve generalization.

Clearly, both intuitions are at odds with each other. To gain further insights we will study the geometry of
the loss landscape.

4.2 Generalization across temporal horizons

A key problem in comparing models trained with high and low T is that different time horizons correspond
to different forecasting problems, and therefore we should not directly compare their performance in terms
of their minima. Instead, we need a metric that directly relates the performance of a model trained to one
temporal horizon to its performance in another temporal horizon.

We thus start by asking whether a minima found for a given time horizon will work for another time horizon.
We formalize this notion as the ratio between two minima for different time horizons,

r(Th, Tl) = Lx(θmin
h , Th)− Lx(θmin

l , Th)
Lx(θmin

l , Tl)− Lx(θmin
h , Tl)

(7)

where the parameter values θmin
h , θmin

l are two minima found with losses evaluated at Tl and Th respectively
with Tl < Th (l stands for low and h for high).

Note that different temporal horizons could have different numbers of minima and those might be clustered
in different regions of parameter space, and therefore we need to restrict r to comparable minima. Thus,
we will focus on specific pairs (θmin

h , θmin
l ), which we define as being in each other basin of attraction: if the

model is initialized with parameters θmin
h and trained with the temporal horizon Tl, then it would converge

to θmin
l , and conversely, if the model starts with parameters θmin

l , it would converge to θmin
h , if trained at Th.

Theorem 4.4 (Minima with long forecasting horizons generalize to lower horizons). Consider a model f(·, θ)
with θ in an ϵ-bounded region. We assume the existence of two minima θmin

l and θmin
h for the losses Lx(θ, Tl)

and Lx(θ, Th) respectively with Th > Tl, which are both within each other’s basin of attraction. Then the
difference in the change in losses follows

r(Th, Tl) =
{
O(eλ(Th−Tl)), for chaotic/unstable
O(ω(Th − Tl)), for limit cycles

(8)

Proof Sketch. Since the two minima are on each other’s basin of attraction, we can follow the gradient of the
loss for Th or Tl, between the two minima. The change in loss is the integral of that gradient, which scales as
proposition 4.2. Taking the ratio of the aforementioned change in loss yields our result. See A.10 for the full
proof.

Intuitively, the theorem reflects the fact that long temporal predictions rely on shorter predictions, implying
that models that are able to make predictions over long temporal horizons must also make good predictions
over short time horizons. However, the converse is not necessarily true, and valid short-term predictions
might diverge in the long run, suggesting that θmin

h might capture better the global dynamics of the system
than θmin

l .
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Figure 2: Performance ratios for longer temporal horizons: We measured the ratio of the difference
between losses on connected minima found at different temporal horizons r(Th, Tl)), and plotted it against
the difference between those temporal horizons. We computed the loss by training a single model for Tl = 1,
and then we trained that model further with higher Th. As expected from theorem 4.4, we observe an
upward trend for all the systems, with the limit cycle seemingly linear, the double pendulum and food web
being similar to an exponential and the Lorenz attractor being somewhat inconclusive. Notice that here the
difference in losses is implicitly linked to the accuracy of the minima we find, which depends on the optimizer
and the randomness of the system, thus it is expected that we do not find a perfect match to our theory.

4.3 Loss landscape roughness and the temporal horizon

Although theorem 4.4 would suggest that we should train models with a long T , we need to beware that such
training might be extremely hard. We quantify this through a notion of roughness, which we take as the
number of maxima and minima of the loss z(T, θ1, θ2) found over a line in parameter space

−−→
θ1θ2, and prove

that it scales with the temporal horizon in theorem 4.5, which is validated empirically in fig. 3.

Theorem 4.5 (Loss landscape roughness). For any two points θ1, θ2 in an ϵ-bounded region of the parameter
space that are not in a connected region of zero loss1, the number of minima and maxima along the line
segment that connects them will grow as

z(T, θ1, θ2) =
{
O(eλT ∥θ1 − θ2∥), for chaotic/unstable
O(ωT∥θ1 − θ2∥), for limit cycles

(9)

Proof Sketch. Consider two arbitrary elements θ1, θ2 in an ϵ-bounded region. We consider the variation in the
loss function through a line segment l connecting θ1 and θ2, which takes the form of an integral dependent on
|∂lLx(l, T )|. This derivative is the projection of ∇θLx(l, T ) onto u⃗θ1→θ2 , the unit vector of the line segment,
and thus grows with T as shown in proposition 4.2. As T grows, the loss variation grows beyond the maximum
possible loss Lmax

ϵ , thus it must go up and down, and hence have a minimum or maximum. By letting T
grow further, it will have more and more minima and maxima. See A.12 for the full proof.

Remark 4.6. Notice that the minima and maxima in this theorem are defined as local minima in the line
between θ1 and θ2, not local minima of the loss function in its full dimensionality. It would possible to have
the same number of local minima as T grows. For example, in a valley with a single minima winding around
the line segment. The theorem does refer to local minima in single parameter training (see section 5.3).

A curious corollary from this theorem shows that as the temporal horizon grows towards T →∞, the loss
landscape becomes a fractal (A.13). Since a fractal is non-differentiable, this result implies that gradient
descent methods would inevitably fail. In the more realistic case of T <∞, theorem 4.5 simply states that
the loss landscape becomes harder to navigate as T grows.

1such scenario is not covered in the assumptions on proposition 4.2, and in this case there is no learning
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Figure 3: Loss landscape roughness: We counted the number of minima and maxima on a cross-section
between two parameter sets θ1, θ2 achieving low losses, for different T values, denoted as z(T ). To find θ1, θ2,
we trained a single model with T = 1, and we took late late training stages which had low loss but with
training epochs in-between to ensure that there is a distance between the two. As expected from theorem 4.5,
we see a clear increase in the number of zeros found. Note the number of minima and maxima that we can
detect is limited by how finely we can discretize the line between θ1 and θ2, and since we have to evaluate the
loss at each point in that line, our results underestimate the number of cross-section minima. This explains
the saturation seen in the Double Pendulum and the Lorenz attractor which is not expected from our theory.

4.4 Limitations, generalizations and implications

To develop our theory we assumed the forecasting is applied to fully observable systems that are deterministic
and where we have data covering all the relevant state space. Such assumptions make our theory concise and
amenable to experimental verification, but are often invalid in realistic scenarios. In this section we discuss
how and when our assumptions can be relaxed.

First, we acknowledge that some assumptions such as ergodicity, stationarity and broad state coverage are
fundamentally linked to statistical learning, and thus cannot be avoided in a mathematical treatment of
forecasting (see appendix B).

In partially observable dynamical systems it might be impossible to make forecasts from single observations
(ex: we cannot infer the speed of an object from a single observation of its position). However, multiple
delayed observations can contain enough information to recover the full state of the system Takens (1981b;a).
In machine learning, this can be done through context windows, as used by Transformers (see lemma A.16).
Another approach is to use hidden states, which can keep information from past observations to recover the
state, as done in RNNs (see lemma A.18). Extending our theory to those architectures would thus relax this
assumption (see proposition A.20).

A more fundamental problem is that we assume deterministic dynamics, but real data is often stochastic. Yet,
stochasticity is not an all-or-nothing phenomena, as there are systems that are very stochastic, and systems
that are almost deterministic. Our theory should partially hold for systems with sufficiently small noise, but
not for systems that are too noisy to be predicted even with T = 1 in the first place. More specifically, our
theory remains approximately valid within a time window given by the noise level and the system dynamics
(see proposition A.14), after which the system is too random to be forecast. We verify this in the ecology
model, where we observe that indeed the noise limits the optimal forecasting horizon (see appendix G).

Finally, we discuss the practical implications of our theory. Our loss surface analysis suggests that increasing
T will lead to better minima by theorem 4.4. However, as a result of theorem 4.5, we would expect that a
large value of T will render learning impractical. In the next section we explore in more depth this trade-off,
how it applies to real data, and other related implications.
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Figure 4: Performance of residual MLPs trained to predict four dynamical systems with MSE
on the y-axis and the temporal horizon T used in training on the x-axis. For each model we took
the minimum validation MSE. Each line in the figure is associated with a given evaluation horizon marked by
Tl. Each point as one goes along the line represents the median performance of a model (with interquartile
range error bars) trained with an increasing training horizon T when evaluated Tl time into the future. That
is, if we have a model f(x, θT ) trained on T , the points above T on the graph are ∥x(Tl)− fnt(x(0), θT )∥
where nt is the number of auto-regressive steps to get to Tl. As expected, the loss grows with Tl, the loss is
convex, and the optimal predictive horizon for training rarely coincides with Tl.

5 Practical insights

To demonstrate the connection of our theory to practice, we evaluate the forecasting performance of MLPs for
different temporal horizons. We focus on three main points: (1) investigating the effects of training temporal
horizon T on performance, (2) challenges in choosing the training temporal horizon T and the factors that
affect it, and (3) the application of our theory to fitting the parameters of mechanistic models in physical or
biological systems.

5.1 The temporal horizon as an hyper-parameter

We trained residual MLPs with different training temporal horizons for the four dynamical systems presented
in appendix C until they appeared to reach convergence or a large total wall time cutoff. We evaluated their
performance in forecasting using the mean square error (MSE), which corresponds to the testing loss in
eq. (3).

Based on our theory, we would expect to observe the following set of behaviors: (1) an initial increase in
the performance of models with larger prediction horizons (theorem 4.4) but (2) worse performance for
models trained on time horizons sufficiently long such that the loss landscape becomes harder to navigate
(theorem 4.5). We find the expected U-shaped curve in all the dynamical systems considered, as seen in fig. 4.
Importantly, the optimal training horizon is neither one nor the time that we wish to use for forecasting,
suggesting that setting the temporal horizon for training naively would have adverse effects on performance.

To evaluate whether our theory applies beyond the original synthetic dynamical systems, we trained MLPs
on three real-world datasets:

• The ClimSIM dataset (see appendix D for details), which is a complex deterministic simulation of
weather patterns.

• The National Oceanographic Atmospheric Administration Sea Surface Temperature dataset (NOAA
SST, Huang et al. (2021)), which comes from real world measurements and thus contains noise.

• The AMZN (Amazon) stocks from 1997 to 2017 (Kouroupetroglou, 2019), which contains a short
dataset that is noisy and non-stationary.
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Figure 5: Performance of various architectures trained with different training horizons on the
ClimSim, NOAA SST, and AMZN stocks datasets. We evaluated the average performance 5 time
steps into the future for both tasks, which correspond to 50 days in the case of SST and 100 minutes in the
case of ClimSim. We plotted the median of the MSE with upper and lower quartiles. The loss is convex with
respect to the temporal horizon in training, and the optimal training horizon is not the evaluation horizon.
Note that the AMZN stock shows high forecasting variability, as expected from a noisy, non-stationary time
series

Together, the three datasets contain an example where dynamics fulfill all of our original assumptions but are
very complex (the ClimSIM dataset), a dataset that is well behaved (stationary, ergodic, full coverage) but
noisy (the NOAA SST dataset), and a dataset where our core assumptions are not valid (the AMZN stock
dataset; financial data is considered non-stationary, and the range of stock values goes beyond those in the
training data). In all cases we find that the optimum training horizon is longer than a single step-ahead.

Crucially, the optimal training time horizons are not equivalent to the testing horizon, further suggesting
that the optimal training horizons are inextricably linked to the system’s dynamics rather than the desired
prediction horizon. This was found not only on our simple dynamical systems, but also on more complex
benchmark datasets on climate modeling (an adapted version of the ClimSim Yu et al. (2023), the sea surface
temperature data National Oceanic and Atmospheric Administration Huang et al. (2021), and the Amazon
stock prices Kouroupetroglou (2019)).

As we show the existence of a non-trivial optimal T for both synthetic and realistic datasets, the next natural
question is how to find it. We discuss this problem in the next section.

5.2 Optimal temporal horizons

Our theory suggests that the upper limit on T (theorem 4.5) is set by the roughness of the loss landscape.
As a consequence, increasing the compute should lead to higher optimal temporal horizons. We tested this in
appendix H for the ecology system, finding that the computing time used for training does indeed correlate
with the temporal horizon for training T .

This finding is problematic, because a temporal horizon T is only optimal for a given compute budget,
making naive hyperparameter search methods very expensive. For example, grid search methods usually
train models with different parameter values and a limited compute budget, and use then extract the relevant
hyperparameters that can be used for a deeper training with more compute. However, this process becomes
very expensive if the hyperparameter depends on the compute budget. In the grid search case, we would
need to spend a comparable amount of compute during each test in the grid search than during the final
training afterwards. Thus, if we want to spend c ressources on the final training, we would need to allocate
cT ∗ ressources to find the optimal T ∗.

A potential solution would be to use an iterative algorithm that slowly increases T . As a preliminary step, we
designed a simple scheme following this logic, (see appendix I) and applied it to the synthetic datasets, (see
algorithm 1). The scheme did improve the performance over the one-step prediction, and it outperformed
even a fixed optimal T ∗ for limit cycles. In more chaotic systems, the scheme performs worse than an optimal
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Figure 6: Normalized values of Lx(θ, T ) from eq. (3) when altering one dimension of θ for different values of
T in several dynamical systems models. The loss is normalized for each T so that its maximum value is 1.
For all the systems, the loss is generally flat with a single minima for low T and becomes steeper and has
more minima for high T . Notice that exact models can approximate the system much better than neural
networks, thus it is possible to reach zero loss, and the differences between model and data become evident at
long timescales.

fixed temporal horizon, but it is important to notice that the optimal temporal horizon is not known, so the
comparison is not fair to the iterative algorithm.

5.3 Loss landscape geometry for mechanistic models

Even though we focused on neural networks, AR models include mechanistic models such as differential
equations, where the processes driving the dynamics of the system under study are known and already
encoded in the model’s structure, but where the parameters of the model are unknown. Here we extend the
insights form our theory to this setting

We used the same systems as in the theory section, but this time we used the models described in appendix C,
both to generate time series data and as models to train, where the parameters are unknown. We study the
geometry of the forecasting loss from eq. (3) in fig. 6, where we changed a single parameter per model and
evaluated the loss function at multiple temporal horizons. Notice that the T that we use are much larger
than in the previous sections, because the models here capture the time series perfectly, thus it takes a much
longer for the divergence to become high enough to affect training. A more complete view over all parameters
is presented for the Lorenz system in appendix E.

All models achieve a zero-loss when the parameters of the model are the same as those that generated the
data, because the model is a perfect copy of the original data-generating equations. Thus, the generalization
ratio r(Tl, Th) in theorem 4.4 is undetermined because both long and short T provide a loss of zero, implying
that a short T generalizes as well as a long T for the true optima. In contrast, we observe that the loss
landscape becomes rougher as T grows, in line with theorem 4.5, and for extremely large T the loss is similar
across almost all parameters, as per lemma A.5.

Thus, our theory would suggest that it is always better to train with the smallest possible T , when the
system is known and perfectly deterministic. However, this statement should be contrasted with the practical
limitations of mechanistic models, which are often not perfect, and real observations, which are contaminated
with noise. Indeed, empirical studies considering noise and imperfect models suggest that there is a trade-off
in the choice of T similar to the one we found with MLPs (Pisarenko & Sornette, 2004; Boussange et al.,
2024). Thus, an adapted version of our theory for dynamical systems should include imperfections or noise
where the loss is never exactly zero thus we do not get the indeterminacy. This could be done by using
proposition A.14 as a starting building block and derive a variant of theorem 4.4.

6 Discussion

Our work establishes a fundamental connection between the training temporal horizon T and the underlying
dynamics of the system. This connection goes beyond simple analysis of gradient properties, and is reflected
into the geometry of the loss landscape. From the practical standpoint, we show that common training
paradigms—such as single-step prediction or matching the testing horizon—are rarely optimal. Instead, the
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ideal T depends on the system’s intrinsic dynamics (e.g., Lyapunov exponent λ), but practical considerations
like model capacity, compute budget, and stochasticity also play a role. Although our theory is designed for
idealized systems and feed-forward architectures, the principles and general trends hold for realistic time
series and more complex architectures such as RNNs and Transformers.

Our findings motivate a principled approach to hyperparameter search, where T is selected based on the
system’s dynamical properties, or updated during training. Future works should investigate this further, for
example by jointly optimizing T and the learning rate by leveraging loss landscape curvature, building on
ideas from Roulet et al. (2024). Such an approach could extend beyond static horizons: many systems exhibit
time-varying predictability (e.g., intermittent chaos or quasi-periodicity Zhou et al. (2006)), where a dynamic
T could sharpen the trade-off between learnability and generalization. For instance, shorter horizons might
allow training on unpredictable regions, while longer horizons can refine learning in more ordered regions.
This could unlock more efficient training for complex, non-stationary systems.
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A Proofs for propositions and theorems

In the following subsections, we provide full proofs or sketches for all of the non-trivial mathematical claims
made in the main text. Note that these subsections have been arranged so that the relevant theorems or
propositions follow the same order as in the main text.

A.1 Existence of neural network for epsilon-regions

Lemma A.1. For any ϵ > 0 and any real p ∈ [0, 1], there exits a number of observations Mϵ and a sufficiently
large neural network that has an ϵ-bounded region with a probability p

Proof. By ergodicity, for a sufficiently large M , the distribution of samples will converge to the stationary
distribution. At some point there will be enough points in the (bounded) stationary distribution to guarantee
that all points have a neighbour at a distance of ϵ with a probability larger than p. With a sufficiently large
neural network, we can set the parameters such that every point x in the neighborhood of x(t) gets sent to
x(t + 1). By construction, this will always map f(x + ϵr⃗, θ) onto either f(x) or a close neighbour which will,
by the compressive nature of the projection, fulfill the conditions of our definition.

Lemma A.2. In a multi-layer perceptron with at least one hidden variable, the training loss that can be
achieved decreases with the size of the hidden layers.

Proof. Consider a multi-layer perceptron with at least one hidden layer and Nl neurons per hidden layer and
trajectory of length M in a system with D variables where the MLP achieves a training error per sample
of e(m) = ∥x(m) − f(x(m − 1, θ)∥. Then add D + 1 neurons to the first hidden layer and one neuron to
any subsequent layers. We can create a bounding box with the extra D + 1 neurons for the sample mmax
corresponding to the maximum e(mmax) , and have one neuron in any subsequent layer whose only task is to
transfer that signal to the output layer, correcting the error.

Lemma A.3. For a stochastic dynamical system of the form ẋ = ϕ(x) + ξ, where

∥f(x + ϵr⃗, θ)− (f(x, θ) + Jϕ(x)r⃗ϵ)∥ < ϵ2 (10)

and ξ is a random random vector such that Pr [∥ξ∥ > b] < α,

Pr
[
∥f(x + ϵr⃗, θ)− (f(x, θ) + Jϕ(x)r⃗ϵ)∥ < ϵ2 + b

]
< α ∀x ∈ Conv(x),

Proof. We are simply adding the noise term to the definition of ϵ-bounded region, and note that since the
noise is unrelated to the dynamics, the errors add up.

Remark A.4. If b is small with α approaching one, then the system is effectively deterministic in the short
term horizon.
Lemma A.5. Consider a model that approximates a dynamical system that is not stable and has a bounded
state space in its stationary distribution. For an initial position x(0), the forecasting error as T →∞ behaves
as a random variable with expected value

Ex(0)
[
∥fτ (T )− x (T |x(0)) ∥2] =

{
0 If the model perfectly predicts the system
O (VarX [x(t)]) If the model is not strictly perfect

(11)

where x (T |x(0)) is the state of the system at time T for a starting position x(0) and VarX [x(t)] is the
variance of the dynamics.

Proof. The gist of our argument is that as the model and the system are ergodic, their difference is also
ergodic (if they are different) or non-existent (if the model is perfect). Thus, for infinite time horizons the
error in the forecasting follows a 0-1 law. If the model perfectly captures the dynamics, the error is clearly 0.
If the model is not perfect at any region in the stationary distribution of the dynamical system, there will
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be a perturbation of the trajectory. Such perturbations will not fade away since our system is not stable.
Because the system is bounded but the trajectory is infinitely long, any region will be visited infinite times.
Thus the error in the trajectory will accumulate. Eventually, any correlation between the model and the
dynamical system will disappear. By ergodicity, the model and the system will generate points that are
effectively independent with a variance of order VarX [x(t)]. The expected value of the difference between two
random variables is the sum of their variances, and since the model is similar to the system, the variances are
within the same order of magnitude.

A.2 The model captures the dynamics

Lemma A.6 (Approximate Jacobian). For ϵ→ 0, in an ϵ-bounded region of the parameter space the Jacobian
of the model converges to the Jacobian of the true dynamics

lim
ϵ→0
∥Jϕ(x)− Jf (x)∥OP = 0 (12)

where ∥∥OP is the operator norm.

Proof. By using the equation in the definition of ϵ-bounded region,∥∥f(x +
√

ϵr⃗, θ)−
(
f(x, θ) + Jϕ(x)r⃗

√
ϵ
)∥∥ =

∥∥(f(x +
√

ϵr⃗, θ)− f(x, θ)
)
− Jϕ(x)r⃗

√
ϵ
∥∥ < ϵ

and taking the a Taylor expansion,∥∥(f(x +
√

ϵr⃗, θ)− f(x, θ)
)
− Jϕ(x)r⃗

√
ϵ
∥∥ ≈ ∥Jf (x)r⃗

√
ϵ− Jϕ(x)r⃗

√
ϵ∥ < ϵ

which converges to an equality in the limit ϵ→ 0, yielding

∥Jf (x)r⃗
√

ϵ− Jϕ(x)r⃗
√

ϵ∥ =
√

ϵ∥Jf (x)r⃗ − Jϕ(x)r⃗∥ < ϵ

∥Jf (x)r⃗ − Jϕ(x)r⃗∥ <
√

ϵ

A.3 Bounded loss

Lemma A.7 (Bounded loss). In an ϵ-bounded region of the parameter space, the loss is bounded by

L(θ, T ) ≤
(

max
x1,x2∈X0

∥x1 − x2∥2
2 + 2ϵ

)
= Lmax

ϵ ∀T (13)

Proof. For any dynamical system with a bounded state space, there is a maximum distance between its two
farthest points. Since the model itself is also at a maximum distance from any point in the original system,

L(θ, T ) ≤ max
x1,x2∈Xϵ

∥x1 − x2∥2
2 ≤

(
max

x1,x2∈X0
∥x1 − x2∥2

2 + 2ϵ

)
= Lmax,ϵ ∀T (14)

Note that for ϵ→ 0, the upper bound is the variance of the ergodic distribution of the system.

A.4 Relating gradients and temporal horizons

Theorem A.8 (Unbounded loss gradient). Consider a dynamical system which is either chaotic, contains
locally unstable trajectories or contains limit cycles, and a corresponding model with an ϵ-bounded region of
the parameter space Θϵ with non-zero loss. When the forecasting horizon T is large, the expected gradient
magnitude grows with T as

∥∇θL(θ, T )∥
∥∇θL(θ, 1)∥ =

{
O(eλT ), for chaotic systems
O(ωT ), for limit cycles

(15)

where ∥ · ∥ is the Euclidean norm.
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Proof. We start by analyzing the loss given in eq. (3), which is a function of the parameters θ given the true
trajectory at any time t by x(t). To understand how learning operates under this loss function, we study how
the landscape induced by L(θ, T ) varies under different choices of T . We can get the gradient of eq. (3), our
loss function, by evaluating

∇θL(θ, T ) = αT

M − T

M−T∑
k=1

T∑
τ=1

∂fτ (x, θ)
∂θ

∣∣∣∣
x(k),θ

(x(k + τ)− fτ (x(k), θ)) , (16)

where we must still compute the partial derivatives of the function fτ . For τ = 1, we denote the derivatives
of f1 = f(x, θ) as

Jθ(x, θ) = ∇θf(x, θ), Jx(x, θ) = ∇xf(x, θ) (17)

Using the chain rule, we obtain the expression

Jτ
θ (x, θ) = ∇θfτ (x, θ) =

τ∑
l=1

J l
x(fτ−l(x), θ)Jθ

(
f l(x), θ

)
, (18)

where Jk
x (x, θ) =

∏τ
k=1 Jx(fk(x), θ). To analyze eq. (16) and thus eq. (3), we can use some knowledge we

have about the properties of the state space and parameter space Jacobians involved in eq. (18). Specifically,
the state space Jacobian, Jx(x, θ), is directly dependent on the trajectories of the system and indirectly
dependent on the parameters. The notable implication of this is that any set of parameters where the model
captures the dynamics reasonably well, the Jacobian in the state space of the model will be very closely
aligned with the Jacobian of the system dynamics, which is given by the data (see Lemma A.6). In contrast,
the Jacobian of the parameters Jθ(x, θ) depends on the model and its parametrization.

We can therefore compute the ratio of gradients, ∥∇θL(θ, T )∥
∥∇θL(θ, 1)∥ for a given θ as

1
M−T

∑M−T
k=1

1
T

∑T
τ=1

∑τ
l=1 J l

x(fτ−l(x), θ)Jθ

(
f l(x), θ

)
(x(k + τ)− fτ (x(k), θ))

1
M−1

∑M−T
k=1 Jθ(x(k), θ) (x(k + 1)− f (x(k), θ))

(19)

and here we can assume that ∥x(k + τ)− fτ (x(k), θ) ∥ ≥ ∥x(k + 1)− f (x(k), θ) ∥ for the simple reason that
a prediction that passes through τ iterations of the model is likelly to be worse than a prediction that passes
only once. Furthermore, the value of Jθ is applied to the same values and with M ≫ T , we get the estimate
of the ratio as

∥∇θL(θ, T )∥
∥∇θL(θ, 1)∥ = O

(
1
T

T∑
τ=1
∥Ey

[
JT

x

]
∥

)
(20)

Where Ey
[
JT

x

]
is the expectation of the norm of the Jacobian.

Now the main question is to estimate the values of Jx. If a system is chaotic, at least one Lyapunov exponent
must be positive (Wolf et al., 1985), meaning that

lim
τ→∞

1
τ

ln
(

τ∏
l=1

Jx(f l(x), θ)
)

= λ > 0. (21)

Hence the term Jτ
x (x, θ) in Eq. 18, and thus Ey

[
JT

x

]
, grows exponentially with τ →∞. For locally unstable

trajectories, we can simply note that the largest eigenvalue of the Jacobian follows

Re [ln (λ (Jx(x, θ)))] > 0 (22)

and therefore term Jτ
x (x, θ) will also grow exponentially.

We also analyze limit cycles by focusing on the phase of the rotation. A trajectory produced by fτ (x, θ)
where the period is not exactly the same as in the original dynamical system will slowly drift as the phases

19



Under review as submission to TMLR

will change move at slightly different angular speeds. In more formal terms, if we parameterize the limit cycle
by the phase φ and ignore its support we obtain

Jτ
θ (φ, θ) =

τ∑
l=1

[
τ∏

m=l+1
Jφ(fm(x), θ)

]
Jθ

(
(f l(φ), θ

)
=

τ∑
l=1

Jθ

(
f l(φ), θ

)
(23)

where the position is repeated for large τ (this is a limit cycle), with a difference given by the quality of the
approximation. To make this simple, we can consider the growth per cycle, and count the cycles,

Jτ
θ (φ, θ) ≈ c

∫ 2π

0
Jθ (φ, θ) dφ = τω

∫ 1

0
Jθ (a, θ) da (24)

where the integral gives the average Jacobian through the cylce, and c = τ
p = 1

2π τω is the number of cycles
(notice the change of variable in the integral.

As such with chaotic behavior and locally unstable trajectories, the norm of the Jacobian grows exponentially
with τ . For limit cycles, we know Jτ

θ (φ, θ) grows at least linearly with ωτ .

Corollary A.9. For the models considered in A.8, the hessian of the model around its minima grows as

∥H(θ, T )∥∗

∥H(θ, 1)∥∗ =
{
O(eλT ), for chaotic systems
O(ωT ), for limit cycles

(25)

where ∥ · ∥∗ is the Nuclear norm.

Proof. The gist of the proof is to show that as the gradient grows with T , the second derivative must also
grow to keep up. We build this connection between the gradient and the Hessian through the divergence
theorem.

Consider the gradient of the loss ∇L(θ, T ) as a vector field in the space of parameters. Pick a minima of the
loss θmin

T , and a ball around it denoted by Bθmin
T

and its spherical boundary Sθmin
T

. Then, by the divergence
theorem, ∫

Bθmin
T

div∇L(θ, T )dV =
∫

Sθmin
T

∇L(θ, T )dS⃗ (26)

where dS⃗ is a vector normal to the sphere scaled by a differential surface element, and dV a differential
element of volume. Since θmin

T is a minima, for a small enough ball the gradient of the loss is always pointing
towards the inside, hence the product with d⃗S will have a constant sign. Thus,∫

Bθmin
T

div∇L(θ, T )dV =
∫

Sθmin
T

∥∇L(θ, T )dS⃗∥. (27)

Now, note that the divergence of the gradient is the trace of the Hessian,∫
Bθmin

T

Tr [H(θ, T )] dV =
∫

Sθmin
T

∥∇L(θ, T )dS⃗∥. (28)

Now we simply need to remember that the ball was relatively small and the loss smooth, so that we can use
the approximation

Tr [H(θ, T )] ≈ Tr
[
H(θmin

T , T )
]
∀θ ∈ Bθmin

T
, (29)

and noticing that the trace is sum of eigenvalues of a matrix, which is the nuclear norm,

Tr
[
H(θmin

T , T )
] ∫

Bθmin
T

dV = ∥H(θmin
T , T )∥∗

∫
Bθmin

T

dV =
∫

Sθmin
T

∥∇L(θ, T )dS⃗∥. (30)
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and if we apply this for T = 1 and divide,

∥H(θmin
T , T )∥∗

∥H(θmin
1 , 1)∥∗ =

∫
Sθmin

T

∥∇L(θ, T )dS⃗∥∫
Sθmin

1

∥∇L(θ, 1)dS⃗∥
=
{
O(eλT ), for chaotic systems
O(ωT ), for limit cycles

, (31)

where the last step comes from proposition 4.2,

A.5 Minima with longer forecasting horizons generalize better

Theorem A.10 (Minima with longer forecasting horizons generalize better). Consider a model f(·, θ) with
θ in an ϵ-bounded region. Now consider two parameter sets θmin

l and θmin
h that minimize the losses L(θ, Tl)

and L(θ, Th) respectively with Th > Tl, and which are both within each other’s basin of attraction, meaning
that θmin

l would converge θmin
h by following the gradient of L(θ, Th) and vice versa. Then the difference in the

change in losses

L(θmin
h , Th)− L(θmin

l , Th)
L(θmin

l , Tl)− L(θmin
h , Tl)

=
{
O(eλ(Th−Tl)), for chaotic or unstable systems
O(Th − Tl), for limit cycles

(32)

Proof. Consider the path p of the gradient between the minima θmin
T for the temporal horizon T and another

point θbasin on the basin of attraction of θmin
T . On this path we can compute the change in loss,

L(θmin
T , T )− L(θbasin, T ) =

∫
θ∈p

⟨∇L(θ, T ), u⃗(θ, p)⟩dθ =
∫

θ∈p

∥∇L(θ, T )∥dθ (33)

=
∫

θ∈p

∥∇L(θ, 1)∥∥∇L(θ, T )∥
∥∇L(θ, 1)∥ dθ (34)

where u⃗(θ, p) is the unit vector on the direction of the path of the gradient, and since the path is defined
by the gradient itself, ⟨∇L(θ, T ), u⃗(θ, p)⟩ = ∥∇L(θ, T )∥. By proposition 4.2, the ratio of loss norms in the
integral either grows exponentially or linearly with T . By substituting T = Th and Tl then taking the fraction
in eq. (32) we complete the proof.

A.6 Loss landscape roughness

Lemma A.11. Consider a continuous differentiable function g(s) on an interval s ∈ [sa, sb] bounded from
above and below,

gmin < g(s) < gmax (35)
with a variation in value

vg =
∫ zb

za

∣∣∣∣dg(s)
dz

∣∣∣∣ ds > 2n(gmax − gmin), n ∈ N+. (36)

then g(s) has at least n minima and n maxima in the interval considered.

Proof. Assume without loss of generality that g is initially increasing. That is, dg(sa)
ds > 0. Further define,

vg(s) =
∫ s

sa

∣∣∣∣dg(s)
ds

∣∣∣∣ ds (37)

which we know to be a semi-positive monotonically increasing function with range [0, U ] where U >
2n(gmax − gmin). Consider the first point z1 such that vg(s1) > gmax − gmin. Assume for contradiction that g
does not have a maxima on the interval [sa, s1]. We know that,

g(s1) = g(sa) +
∫ s1

sa

dg(s′)
ds′ ds′. (38)
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By assumption, dg(s′)
ds′ is semi-positive and must not change sign on the interval. As such,

g(s1) = g(sa) +
∫ s1

sa

∣∣∣∣dg(s′)
ds′

∣∣∣∣ ds′ > g(sa) + gmax − gmin ⇒ g(s1)− g(sa) > gmax − gmin. (39)

This implies that g(s1)− g(sa) > gmax− gmin, which is a contradiction. Therefore on the interval [sa, s1] there
must exist a maximum s∗

1. Applying the same logic to the interval [s∗
1, s2] such that vg(s2) > 2(gmax − gmin)

proves there must be a minimum on that interval. Further applying these two arguments n− 1 more times
shows g must have at least n minima and n maxima on [sa, sb].

Theorem A.12 (Loss landscape roughness). For any two points θ1, θ2 in an ϵ-bounded region of the parameter
space that are not in a connected region of zero loss2, the number of minima and maxima along the line
segment that connects them will grow as

z(T ) =
{
O(eλT ∥θ1 − θ2∥), for chaotic or unstable systems
O(T∥θ1 − θ2∥), for limit cycles

(40)

Proof. Let us look at arbitrary elements of the parameter space θ1, θ2 ∈ Θ. By lemma A.7, the difference in
their loss is bounded,

|L(θ1, T )− L(θ2, T )| ≤ Lmax
ϵ . (41)

We now consider the variation in the loss function that goes from θ1 to θ2 through a straight line,

vT (θ1, θ2) =
∫ θ2

l=θ1

∣∣∣∣∂L(l, T )
∂l

∣∣∣∣ dl, (42)

where l is the variable that represents points in a line from θ1 to θ2. We note that the derivative of the loss is
a projection of the gradient onto the line,

∂L(l, T )
∂l

= ⟨∇θL(l, T ), u⃗θ1→θ2⟩ (43)

where u⃗θ1→θ2 is the unitary vector of the line going from θ1 to θ2. By proposition 4.2, the value of this
projection grows exponentially in a chaotic or locally unstable trajectory. In a limit cycle, the growth is or
linearly with T . Thus, we only need linear growth in eq. (43) for an unbounded value of vT (θ1, θ2). Taking
the integral over the line,

O

[∫ θ2

l=θ1

∣∣∣∣∂L(l, T )
∂l

∣∣∣∣ dl

]
=
{

eλT ∥θ1 − θ2∥, for chaotic or unstable systems
T∥θ1 − θ2∥, for limit cycles

(44)

and by lemma A.11, we then have that z(T ) must grow with lower bound given by eq. (44), thus completing
the proof.

Corollary A.13 (The loss function is a fractal). For an ϵ-bounded region of the parameter space, in the
limit T →∞, the surface of the loss is a fractal occupying a volume that converges to

|Θϵ|
√

Var [x ∈ X ]
M

< V < |Θϵ|
√

Var [x ∈ X ] + ϵ2

M
(45)

where |Θϵ| is the area of the ϵ-bounded region and Var [x ∈ X ] is the variance of the invariant probability
distribution in the dynamical system.

2This case is not covered in the assumptions on proposition 4.2, but if we are in such a region there is no learning
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Proof. We will use the notion that if a curve has a box counting dimension that is higher than its topological
dimension, it is a fractal Mandelbrot (1983); Edgar & Edgar (2008). The topological dimension is N , the
number of parameters. For the box counting dimension, we consider a cover of the parameter space by
infinitesimally small open balls. For each one of those balls, however, the loss function has unbounded
gradients and thus it is a space-filling curve. Hence, we would need N + 1 dimensions to cover the loss
landscape surface. From the dynamics perspective, any parameter setting where L(θ, 1) > 0 implies that there
is at least some cases where the model deviates from the system. For some high value of t∗, the deviations
accumulate until the position of the model is uncorrelated with the position of the dynamical system observed
as x(t∗). If T ≫ t∗, the observations are uncorrelated with the model, and thus we are sampling a variable
with variance Var [x ∈ X ]. We have M samples and a margin of error of ϵ, which gives us the term in the
square root. The multiplication by Θϵ is simply because we need to consider all the parameter sets. Note
that even if some parameters result in a zero-loss, they form surfaces of lower dimensionality and thus have
zero volume.

A.7 Effects of noise

Our theory builds on the assumption that the ϵ in proposition 4.2 is small enough so that models with θ ∈ Θϵ

will approximate the system dynamics well (lemma A.6). In stochastic systems the ϵ is bounded away from
zero, meaning that in large temporal horizons any model is effectively a random guess (A.5). However, there
is often a temporal horizon in which the noise is still small enough so that predictions are possible (A.14)
Proposition A.14 (Temporal horizon limits on systems with noise). In a dynamical system whose dynamics
are given by limit cycle or chaos, and where there is an extra term inducing random noise with a variance
uniform in all dimensions and with value σ2 (per dimension), there is a maximum temporal horizon Tmax
after which forecasting is effectively a random guess given by

Tmax =


O
(

ln(S)− ln(σ)
λ

)
, for chaotic or unstable systems

O
(

L

σ

)
, for limit cycles

(46)

where L is the length of the limit cycle and S the maximum radius of the state space in the chaotic system.

Proof. The gist is that in any dynamical system where the noise accumulates, at some point the contribution
of the noise to the current state of the system is going to be as large as the contribution of the deterministic
dynamics. For a chaotic system a perturbation of size σ will scale exponentially as σeλT , and when σeλT > S,
the effect of that perturbation is as large as the state space. For a limit cycle we can apply the same logic,
except that the noise grows as Tσ and we use the length of the limit cycle.

A.8 Generalization to partially observable systems and recurrent networks

We develop our theory using mostly autoregressive neural networks in systems with full observability. However,
we can extend it to the more general settings of non-fully observable models. However, this requires either
recurrent networks or models with a context window. In the following, we prove that any neural network that
forecasts with high precision needs to have access to a representation of the state of the dynamical system
which captures all of it (an embedding). Then we show that enhancing feed-forward networks with hidden
states or context can provide that representation. We note that we don’t believe that those results are new,
but we could not find a direct reference, so we add it here for completeness.

The first step is to prove that an arbitrarily small forecast requires a representation of the state of the system
that captures it fully. This is effectively the converse of A.6.
Lemma A.15. Consider a smooth deterministic, ergodic, discrete dynamical system, defined by x(m) =
ϕ (x(m− 1)), an observation function h ∈ Rd and a function f that forecasts it with a precision of ϵ ≥
∥f(h(x))− φ(x)∥. For a sufficiently small ϵ, d must be higher or equal than the topological dimension of the
dynamical system, and in the limit of ϵ = 0, h(x) must be an embedding of x.
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Proof. f maps the potential precursors of each point to a prediction that is at a distance of ϵ. We can
thus define a partition of the dynamical system, where each point is in a ball of radius ϵ that contains its
prediction. As ϵ goes to zero, this partition gives a unique value to each point in the system. To do so, the
topological dimensions need to match. The fact that this converges to an embedding in the limit of small ϵ is
straightforward, since every point corresponds to one image of h.

This proves that such architectures need that representation. In the next steps we prove that context windows
or recurrent connections in the hidden layer are sufficient to do that.

The gist of our proofs relies on having a neural network that reconstructs the original dynamical system
from observations of the current and past (partial) observations of the system, following Taken’s theorem.
This can then be replaced by a recurrent neural network using a construction that is presented in Deco &
Schürmann (2012). Note that for simplicity we will assume a single observable variable per system, but the
results are valid for more.
Lemma A.16. Consider a deterministic dynamical system sampled at fixed time intervals, so that x(m) =
ϕ (x(m− 1)) and an observation function o(x) ∈ R that is smooth and coupled to every dimension of x such
that ∂o(x(m))

∂xi(m−k) ̸= 0 for some k. If there exist a neural network f(·, θ) such that

∥fT (x(m), θ)− x(m + T )∥2 < ϵf (47)

then for every error ϵf < ϵg there exist a neural network g(·, κ) with parameters κ and input dimension
d ≤ 2b + 1 where b is the box counting dimension of the invariant manifold of x such that

∥gT ([o(x(m)), o(x(m− 1)), o(x(m− 2))...o(x(m− k))] , κ)− o(x(m + T ))∥2 < ϵg. (48)

Proof. Note that the conditions on the dynamical system and the observation function are pre-
cisely those of the Taken’s theorem Takens (1981a), which states that there is an embedding of
[o(x(m)), o(x(m− 1)), o(x(m− 2))...o(x(m− k))] that captures the full attractor of the original dynami-
cal system. As a consequence of the embedding, we can construct a smooth function ν which takes
[o(x(m)), o(x(m− 1)), o(x(m− 2))...o(x(m− k))] and maps it to x(m).

A function such as ν can be approximated with arbitrary precision by a neural network h(·, ι) with parameters
ι, by the universal approximation theorem.

Thus, we can use h to recover x from o(x), and then compose the results with the original neural network f ,
giving us g(·, κ) = f(h([o(x(m)), o(x(m− 1)), o(x(m− 2))...o(x(m− k))] , ι), θ) which is a composition of the
reconstruction and the original f . The error on each timestep will be a composition of the errors induced by
h and f .

Remark A.17. Note that the transformer architecture fulfills the conditions of the theorem, where the context
window corresponds to the previous observations. The context window in a transformer is often longer than
the time series itself, but this simply makes transformers more general.
Lemma A.18. Consider a discrete deterministic dynamical system defined by x(m) = ϕ (x(m− 1)) and an
observation function o(x) ∈ R that is smooth and coupled to every dimension of x. If there exist a neural
network f(·, θ) such that

∥fT (x(m), θ)− x(m + T )∥2 < ϵf , (49)

then for all ϵg > ϵf there exist a recurrent neural network g(·, h, κ) where h is the hidden state of dimension
d ≤ 2b + 1 with b being the box counting dimension of the invariant manifold of x such that if the inputs to g
have been [o(x(m)), o(x(m− 1)), o(x(m− 2))...o(x(m− k))] then

∥gT (o(x(m)), h, κ)− o(x(m + T ))∥2 < ϵg. (50)

Proof. We use a similar argument as presented in (Deco & Schürmann, 2012). We build a hidden layer with
recurrent connections hi → hi+1, and the input o(x)→ h1. Then the hidden states save the last d inputs,
and we can apply lemma A.16.
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Remark A.19. Note that the construction simply proves the existence of such a network, not that it needs
to be build in this manner. Other architectures like vanilla recurrent neural networks or long-short term
memory networks could implement this construction, but it does not need to be the best solution.

Now we put together lemma A.15, lemma A.16, and lemma A.18.
Proposition A.20. Assume the existence of a smooth neural network that forecasts a deterministic dynamical
system with precision ϵ from a partial observation of the state o(x) and a hidden state or context window
h(x). For a sufficiently small ϵ, [o(x), h(x)] is an embedding of the dynamical system, for which we can define
the functions g, e such that

e(x(m + τ)) = g ◦ · · · ◦ g (e(x(m)), θ) = gτ (e(x(m)), θ) , (51)

where e(x) is an embedding of x.

Proof. Lemma lemma A.15 makes the embedding necessary, and lemmas A.16 and A.18 prove that RNNs
and transformers can have it (respectively). g is then simply a function equivalent to f in eq. (2), but applied
to the embedding e.

Remark A.21. Rewriting our proofs with the extended state space would be cumbersome, because the loss
would only refer to part of the state space. We would have to then create a surrogate loss covering the
extended space, and bound it to the loss on the observed space. This would include extra definitions and
clarifications for each theorem, and compromise readability.
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B Necessary assumptions

Some of the assumptions in our theory are necessary to have any form of statistical learning. Here we explain
why.

Stationarity: In dynamical systems, stationarity refers to the property where the statistical characteristics
of a system’s behavior remain constant over time. This means that the system’s "behavior" or patterns don’t
change, regardless of when you observe them. It is impossible to make forecasts based on statistical learning
if the statistics of the system are not known (or change). Thus, this assumption is unavoidable.

Ergodicity: In dynamical systems, ergodicity describes a system’s behavior where the time average of a
property along a trajectory is equal to the space average of that property. Essentially, a system is ergodic if a
single trajectory visits all parts of the system’s phase space (or a significant portion of it) in a statistically
representative way over a long period. Since we need to be able to apply statistical learning, some form
of ergodicity is necessary to guarantee that the data seen during training is also representative of the data
during testing.

Uniform state coverage: The last critical assumption is that the training data should capture all the
relevant state space seen during testing. It is in principle impossible to prove forecasting capacity in states
that have never been observed before without prior knowledge on the dynamics of the system, because one
could always imagine some extremely convoluted dynamics happening only on that unobserved region of the
state space. If we have some prior information though, we might be able to leverage it. In the extreme, this
is corresponds to mechanistic models where the physics of the system are known, but the specific parameters
are not. We will address the validity of our theory in this setting in section 5.3.

Finally, note that it is possible to partially relax those assumptions, for example by having quasi-stationary
systems or mesastability. However, this makes proofs significantly more cumbersome, and introduces subtle
mathematical notions that are not easy to asses.
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C Dynamical systems equations

Here we describe the differential equations governing the four dynamical systems used in the main text.

C.1 Lorenz attractor

The Lorenz attractor is a three dimensional dynamical system described by the following equations

dx

dt
= σ(y − x), dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz (52)

where we take σ = 10.0, ρ = 28.0 and β = 8
3 . The system was originally described by Edward Lorenz and is a

simplification of hydrodynamic flows. We note that its trajectories are bounded and non-periodic (Lorenz,
1963).

C.2 Double pendulum

The double pendulum is a simple mechanical system that exhibits chaotic behavior Gupta et al. (2014). It
consists of two masses rigidly linked to each other, both can rotate freely around their anchor point. The first
mass is connected to a center point and the second mass is linked to the first mass.

The dynamics are determined by applying the standard equations of motion from Newtonian mechanics,
resulting in eq. (53)ff.

x1 = l

2 sin θ1 (53)

y1 = − l

2 cos θ1 (54)

x2 = x1 + l2 sin θ2 (55)
y2 = y1 − l2 cos θ2 (56)

C.3 Pood web model

We consider a generalized 7-species food-web model inspired by Hastings (1991); McCann & Yodzis (1994);
Klebanoff & Hastings (1994); Post et al. (2000); Åkesson et al. (2021), where species interact through trophic
and competitive relationships.

Denoting the abundance of species i by Ni, and defining N = (N1, . . . , N7), the generalized community model
can be expressed as

1
Ni

d

dt
Ni = ri(u(t))−

7∑
j=1

Nj

[
αi,j + [F (N)]i,j − [F (N)]j,i

]
. (57)

In eq. (57), the first two terms capture intrinsic growth rate and intra- and interspecific competition. The
last two terms capture growth and loss due to trophic interactions.

The per capita growth rate ri may depend on a time-dependent environmental forcing u(t). The competition
coefficient between species i and j is denoted by αi,j . The feeding rate [F (N)]i,j of species i on j follows a
functional response of type II

[F (N)]i,j = qi,jWi,j

1 + qi,jHi,j

∑7
k=1 Wi,kNk

, (58)
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where qi,j and Hi,j represent the attack rate and handling time of species i when feeding on species j,
respectively. We used the biologically realistic parameter values with r(u(t)) being constant. If one lets
ω = 0.2 our system is defined by

r =



1
−0.15
−0.08

1.0
−0.15
−0.01
−0.005


, α =



1.0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1.0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, W =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 ω 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 1− ω 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0


,

H =



0 0 0 0 0 0 0
2.89855 0 0 0 0 0 0

0 7.35294 0 0 7.35294 0 0
0 0 0 0 0 0 0
0 0 0 2.89855 0 0 0
0 0 8.0 0 0 0 0
0 0 0 0 0 12.0 0


,

q =



0 0 0 0 0 0 0
1.38 0 0 0 0 0 0

0 0.272 0 0 0.272 0 0
0 0 0 0 0 0 0
0 0 0 1.38 0 0 0
0 0 0.1 0 0 0 0
0 0 0 0 0 0.05 0


.

The dynamics of the system are chaotic for this set of parameter values, but in short timescales they resemble
a limit cycle. All non-zero coefficients were set as free parameters, excluding the coefficients of the adjacency
matrix W , where only ω was considered as a free parameter.

C.4 Limit cycle

The basic limit cycle system is defined below,
1
a

dx

dt
= µx− y − x(x2 + y2), 1

a

dy

dt
= x + µy − x(x2 + y2) (59)

with parameters a = 1.0, µ = 0.4.

C.5 Implementation Details

The exact way in which the dynamical systems were solved depended on the figure. For fig. 6 they were
solved in Julia using ChaoticInferenceMarti (2024) whereas for the other plots they were solved in Python
using diffrax (Kidger, 2021).

C.5.1 Fitting dynamical systems

The four systems, Lorenz, double pendulum, ecological model and the limit cycle are implemented as
dynamical systems, where an ODE gives rise to a trajectory.

As the dynamical systems are solved by numerical integration over some time and not autoregressive, an
adjusted loss function (Equation 60) is used.

Lx(θ, T ) =
M−T

T∑
m=0

T∑
τ=1
∥x(mT + τ)− F τ (x(mT ), θ)∥ . (60)
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Where F τ (x0, . . . ) denotes the numerical solution for x(τ).

Heavy lifting is done by the ChaoticInference library (Marti, 2024), namely data generation, loss evaluation
and plotting. Data generation was done with the fully implicit, fifth order RadauIIA5 solver(Rackauckas &
Nie, 2017). For more details regarding initial conditions, timespan, etc. see the respective implementations.

C.5.2 Fitting neural networks

The four systems were solved using the diffrax package developed by Kidger (2021) with 10 initial conditions
sampled from a Gaussian distribution. For the dataset associated with the food web, we sample the system
every 2 seconds, for those associated with the double pendulum they were sampled every 0.005 seconds, for
the Lorenz they were either sampled every 0.005 or 0.04 depending on the experiment and for the limit cycle
they were sampled every 0.5.

C.6 Timestep choice

We selected the sampling timestep in such a way that we could observe the growths of the gradients within
a reasonable range of T . Having a higher sampling rate would require computing a lot of values of T and
overburden our plots, while a too low T would prevent the model from learning.
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D Geo-spatial datasets

In the following section, we expand on the geo-spatial datasets used in the main text and how we processed
them for training with our limited computational budget.

D.1 NOAA SST dataset

Huang et al. (2021) provide daily sea surface temperature data from September 1981 to the present day on a
1/4◦ global grid. We sub-sample this grid, converting it to a 4◦ resolution and also sub-sample the temporal
horizon to get states every 10 days. We split the training and validation datasets using given years. 2000 to
2009 was used for training and 2011 to 2017 was used for validation. Notably, we deal with missing data over
land by setting values to 0. The data was also normalized for training and validation.

D.2 ClimSim dataset

The ClimSim dataset was originally developed by Yu et al. (2023) to provide training data for models
predicting complex climate variables from more simplistic variables. However, we noticed it could also serve
as an excellent candidate for exploring the learnability trade-off as data is reported every 20 minutes of the
simulation. As such, we converted the low-resolution version the dataset, labeled LEAP/ClimSim_low-res for
use in training our autoregressive models. We took a subset of the variables, namely the lowest u and v fields
for prediction. The training and validation sets were taken from non-overlaping year-long periods. As with
the SST data, we also normalised this dataset.

30



Under review as submission to TMLR

E Loss plots for Lorenz system

The Lorenz system is parameterized by three parameters θ1, θ2, θ3 corresponding to ρ, σ, β in appendix C.1.
In this section we expand the visualization from Fig. 6 to the other parameters for a given temporal horizon
T . Note that in systems with more parameters such as the food web model, the plots become too complex.

We evaluate this function for T ∈ [10, 500, 1000]. See plots fig. 7, and fig. 8. In these figures we see, that the
prediction already verified in a one dimensional loss in figure fig. 6 holds also for higher dimensional losses in
dynamical systems.

Figure 7: Surface plot of the piecewise loss function of the Lorenz system with T = 10
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Figure 8: Surface plot of the piecewise loss function of the Lorenz system with T = 1000
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F Training neural networks

In the following section we provide additional details on the training setup used for the four dynamical
systems, as well as the networks used for the two climate-related datasets. We used a both MLPs andresidual
MLPs with the same architectures.

F.1 MLPs

We used two types of MLPs, a plain MLP without residual connections and one with residual connections.
Definition F.1 (MLP). We define a multi-layer to consist of an embedding layer (Wembed), an unembedding
layer (Wunembed) and a series of blocks of the form:

block(x) = ReLU (WblockLN(x) + bblock) (61)

where LN is a layer normalization. The network makes a given prediction by first applying the embedding
layer, a series of blocks and then the unembed layer.

If we let v be the input size of the example, we generally take Wembed ∈ Rav×v, Wblock ∈ Rav×av and
Wunembed ∈ Rav×v with varying values of a and the number of blocks depending on the complexity of the
dataset.

F.2 Computer resources

We use less than 34000 core hours, or equivalent time of 1888 hours on a single V100 GPU.

F.3 Hyperparameter choices

As a general rule, we tried to maintain some consistency between the hyperparameter choices for various
datasets and architectures (for example we typically used a batch size of 512). However, due to the variability
of both the data and the inductive biases, this was not always possible. For a detailed set of these, one would
need to refer to the source code.

G Relationships between model complexity, learning rate, temporal horizon and noise
on performance

In the autoregressive setting studied in this paper, there are many hyperparameters to set. One needs to
decide, among other things, upon the complexity of the model, what learning rate to use and which temporal
horizon to chose. To provide guidance on this front, we explored how performance was related to temporal
horizon, learning rate and model complexity under different levels of observational noise. Specifically, we
repeated the setup of section 5 for the ecology system with increasing label noise for a small, medium and
large MLP using a total wall-time cutoff. We believe the following conclusions are evident from fig. 9:

• For (relatively) high forecasting horizons and learning rates the models fail to learn (red areas in all
plots). This aligns with our theory showing that longer time horizons make the loss landscape harder
to navigate, which can be alleviated with small learning rates.

• For any training horizon, the learning rates have an optimal value which is not at the extrema: high
learning rates lead to a full failure to learn (red), but decreasing the learning rate can alleviate this.
However, having a too low learning rate also decreases the performance of the model, likely because
training has not been completed.

Those observations are both compatible with our theory and also fairly intuitive for machine learning
practitioners. Taken together, we can conclude that with increasing time horizon and model complexity, the
upper bound on effective learning rates decreases.
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It is worth noticing that our theory was focused on deterministic systems with very small ϵ values, and
both assumptions are not necessarily preserved in some subplots of Fig. 9. Thus, by comparing the different
subplots we can reach the following conclusions:

• For small noise levels, the magnitude of the forecasting error for the optimal time horizon decreases
with the model size (note that the error magnitudes decrease across rows). This can be understood
as saying that the model can approximate the dynamics better (ϵ reduces).

• For high noise levels, all models achieve similar optimal performances, regardless of size. Our
interpretation is that as ϵ is bounded from below by the randomness of the dynamics, the model size
does not contribute to make better predictions

Taken together, those observations suggest that our theory is valid for small noise levels, but is not informative
for large noise levels. However, at such levels no prediction is possible due to the inherently stochastic nature
of the dynamics.
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Figure 9: We trained our models at different levels of noise (columns) and with different parameter sizes
(rows). For every combination, we tested different forecasting horizons (x-axis) and learning rates (y-axis).
Note that the loss is normalized per plot.
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H Increasing the temporal horizon increases performance of a sufficiently converged
model

In this section, we provide empirical evidence for a down-stream effect that we should expect from the
presented theory. Specifically from theorem 4.4. That is, for a sufficiently converged model, we expect that
increasing the temporal horizon will increase performance so long as the increase in temporal horizon not
sufficiently large to disrupt the existence of the minima. To do so, we consider MLPs trained on the ecology
time series presented in the main text. We assume that we have a fixed training time B that we split equally
among different choices of temporal horizon. Given this split, we train the model by starting it on T = 1,
then switching to T = 2 and so on until we reach Tmax. This process is visualized in fig. 10.

T = 1 T = 2 T = 3

fT =1
θ fT =2

θ

T = 1 T = 2

fT =1
θ

Figure 10: Experimental setup demonstrating the utility of increasing the temporal horizon of a converged
model.

If our hypothesis is true, for sufficiently large values of B up to a certain Tmax we should get better performance
from a greater splitting. fig. 11 reports the results of the experiment. As can be seen there, we do indeed get
the expected trend, with greater total time favoring greater splitting with a larger total time horizon.
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Figure 11: MSE compared to total time for various maximum horizons where training is split equally among
time horizons up to the maximum horizon. We used the ecology system and computed the MSE

I Choosing time horizons and learning rates

Although we did not deem the results robust enough for inclusion in the main text, we did develop a scheme
consistent with our theory for automatically deciding upon the training temporal horizon and learning rate.
We would tentatively recommend this scheme to practitioners first applying eq. (3) to a well-behaved time
series problem as given an initial η0, it can sometimes out-performs the best T but may also be able to
uncover a reasonable choice for T in cases where it does not perform as well.

I.1 Motivation and specification of the algorithm

The scheme, detailed in algorithm 1, seeks to automatically choose T and η to overcome a common difficulty
in gradient descent: the presence of plateaus. As we saw in theorem 4.5, the loss landscape becomes less
flat with increasing T , suggesting that it should be possible to increase T in order to deal with the plateaus.
There is, however, some subtlety, because plateaus come in two forms: a minimum plateau and saddle-plateau.
A minimum plateau is a region of low loss surrounded by higher losses, and a saddle-plateau is connected to
some region of lower loss. In the later case, we’d like to speed up optimization at the expense of skipping
small improvements that could be made in the region. In contrast, for a minimum plateau we would like
to identify the best points within the plateau, and thus we would like to keep the size of the parameter
update equal or smaller to explore a more informative minima. If we want to increase the step size to traverse
a saddle-plateau, it suffices to increase T , and the gradient will increase either linearly or exponentially,
depending on the underlying dynamics of the system as per proposition 4.2. Translating this logic into
practice lead to development of the algorithm presented in algorithm 1. As can be read there, the algorithm
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Algorithm 1 Iterative scheduling of T and η

1: Initialize: T ← 1, η ← η0, θprev ← θ0, γ ← 1.5 · 10−4, look← True, succeeded← False
2: Set: tstart ← time(), tcurr ← time(),
3: while tcurr − tstart < Tmax do
4: if look then
5: E ← 20
6: θ ← θprev
7: else
8: E ← None
9: time_limit← tmax − (tcurr − tstart)

10: end if
11: Train MLP with T for E epochs while recording L, ∥∇θL∥
12: if validation loss improves then
13: succeeded← True
14: look← False
15: else
16: Adjust η using exponential fit of trend in past ∥∇θL∥
17: θ ← θprev

18: end if
19: if early stop due to gradient using ∥∇θL∥ < γ then
20: T ← T + 1
21: look← False
22: succeeded← False
23: end if
24: tcurr ← time()
25: end while

works by waiting until we reach a flat region, looking ahead to see if we can obtain lower loss by increasing T
without decreasing η and otherwise decreasing η by fitting an exponential to the existing data (mimicking
the scaling implied by proposition 4.2). Note that the algorithm is modified for the limit cycle system by
replacing the exponential fit by a linear one.

I.2 Results in comparison to normal training

In fig. 12, we compare algorithm 1 with networks trained using the same wall time with varying training
temporal horizons and a constant learning rate on our four dynamical systems, changing the algorithm to
fit a linear trend on the limit cycle. Note that some tuning to γ, η0 and the wall time was needed to find
examples where the iterative scheme showed promise. Nonetheless, as presented fig. 12, there are certain wall
times, dynamical systems, learning rates and values of γ one can choose which show that the iterative scheme
can, in some cases, outperform or match the best choice of training temporal horizon without knowledge of
that horizon beforehand. Some general observations from initial testing was that the scheme appeared to
perform better in cases where η0 was relatively low and γ was also reasonably low. However, there was some
non-robust sensitivity to γ especially in the case of the limit cycle.
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Figure 12: Comparison of iterative scheme to regular training on the four dynamical systems from the main
text, as a box plot of the performances taken to be L(θ, T ) where T is the maximum horizon trained on and
the data is from the validation set. For each system and each time limit, we plot the temporal horizon for
training (integers) or the iterative increase. The red line is the median of these scores for the iterative scheme.
Note that η0, wall time and γ have been tuned in favor of the iterative scheme (although a full search was
not applied).

38


	Introduction
	Related works
	Background and Notation
	Dynamical systems
	Examples of dynamical systems
	Autoregressive models
	Loss functions for ARNNs
	Theoretical assumptions and model set-up

	Temporal horizons and loss landscapes
	The building blocks to link dynamics and training loss
	Generalization across temporal horizons
	Loss landscape roughness and the temporal horizon 
	Limitations, generalizations and implications

	Practical insights
	The temporal horizon as an hyper-parameter
	Optimal temporal horizons
	Loss landscape geometry for mechanistic models

	Discussion
	Proofs for propositions and theorems
	Existence of neural network for epsilon-regions
	The model captures the dynamics
	Bounded loss
	Relating gradients and temporal horizons
	Minima with longer forecasting horizons generalize better
	Loss landscape roughness
	Effects of noise
	Generalization to partially observable systems and recurrent networks

	Necessary assumptions
	Dynamical systems equations
	Lorenz attractor
	Double pendulum
	Pood web model
	Limit cycle
	Implementation Details
	Fitting dynamical systems
	Fitting neural networks

	Timestep choice

	Geo-spatial datasets
	NOAA SST dataset
	ClimSim dataset

	Loss plots for Lorenz system
	Training neural networks
	MLPs
	Computer resources
	Hyperparameter choices

	Relationships between model complexity, learning rate, temporal horizon and noise on performance
	Increasing the temporal horizon increases performance of a sufficiently converged model
	Choosing time horizons and learning rates
	Motivation and specification of the algorithm
	Results in comparison to normal training


