
Under review as a conference paper at ICLR 2024

DELVE INTO IMAGE STYLE DIFFUSION TOWARDS
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ABSTRACT

Taking inspiration from the exceptional performances of Score-Based Generative
Modeling (SGM) in image generation tasks, we introduce a novel Style-Diffusion
method in this work. For the first time, we achieve flexible and efficient stylization
transfer using SGM while preserving the semantic structures. With the prior distri-
butions pθ(v) obtained from encoding the source domain data samples, we employ
approximate score-matching to estimate the drift of the reverse-time Stochastic
Differential Equation (SDE) at arbitrary time step. By introducing Control Factor
ϕ, we have achieved controllable stylization in the output images. To improve
computation speed, we re-formulate the original multi-end diffusion problem as a
composite Schrödinger half bridge Problem, providing a new method for the diffu-
sion evolution between more complex multiple distributions. Numerous empirical
results and comparison with state-of-the-art methods demonstrate the superior per-
formance of our approach in terms of stylization and extraordinary preservation
of semantic structure.

1 INTRODUCTION

Score-based Generative Modeling (SGM) is a novel approach for probabilistic generative modeling
that has demonstrated state-of-the-art performance on various audio and image synthesis tasks (Cai
et al., 2020; Kong et al., 2020; Jolicoeur-Martineau et al., 2020; Song et al., 2020a; Saharia et al.,
2022b; Popov et al., 2021). GLIDE (Nichol et al., 2021), DALL-E 2 by OpenAI (Ramesh et al.,
2022), and Imagen by Google (Saharia et al., 2022a) are among the successful examples of SGMs.
In the field of image generation, many recent outstanding works are also based on diffusion model.
Poole et.al (Poole et al., 2022) proposed DreamFusion, which utilizes a 2D diffusion model as a
prior for optimizing the parameterized image generator, to generate 3D models from given text that
can be viewed from any angle. Rombach et.al (Rombach et al., 2022) proposed Stable Diffusion
(Latent Diffusion Model), which introduced cross-attention layers to transform the diffusion model
into a powerful and flexible generator for high-resolution synthesis. Building on the former, Takagi
et.al (Takagi & Nishimoto, 2022) achieved the reconstruction of high-resolution images from high-
fidelity brain activity from functional Magnetic Resonance Imaging (fMRI) signals. Recent works
demonstrate that diffusion models have advanced to provide state-of-the-art performance (Dhariwal
& Nichol, 2021).

SGM, inspired by non-equilibrium thermodynamics, typically consists of two parts. In the forward
process, data is perturbed by gradually adding noise, leading to a prior distribution that is easy to
sample from. In the reverse process, a generative model is constructed by using a trainable neural
network to predict noise that depends on the time index t (Ho et al., 2020; Song & Ermon, 2019b;a).
Song et.al (Song et al., 2020b) presented a comprehensive framework and provided a SDE represen-
tation of the noise process. The challenging issue faced by SGM is the high computational cost, and
training for a sufficiently long time is necessary to approximate the prior distribution (De Bortoli
et al., 2021). Furthermore, in order to ensure that the noise prediction in the reverse process also
conforms to a simple distribution e.g. Gaussian distribution, the variance variance schedule βt

should be set small enough. To alleviate this issue, Bortoli et.al (De Bortoli et al., 2021) proposed
Diffusion Schrödinger Bridge (DSB), which formulates the generative modeling process of SGM as
an SBP problem, i.e. an entropy-regularized optimal transport (OT) problem (Schrödinger, 1932)
on path spaces. Experimental results show that with this approach can effectively reduce diffusion
steps while ensuring the quality of generated samples.
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Convolutional neural networks (CNNs) have always been a popular solution for generative models
(Gatys et al., 2016; 2017), as they are able to extract both style and content from pre-trained networks
in order to optimize the joint content and style loss of pending images. Additionally, various CNN-
based style transfer methods have been proposed (Kolkin et al., 2019; Wang et al., 2020; Kalischek
et al., 2021; Chen et al., 2021; Hong et al., 2021; Zhu et al., 2017), which are highly efficient
for feature extraction in source images. However, To the best of the author’s knowledge, there is
currently no work that utilizes a diffusion-based model for style transfer, which allows for flexible
and efficient stylization transfer while preserving the semantic structure. Inspired by the superior
generative performance of SGM, we have, in this work, for the first time, incorporated diffusion
model into the domain of I2I style transfer.

In this work, we propose a new Style-Diffusion method for the gradual evolution of content and
style image distributions. In contrast to the traditional SGM method, our model obtains the desired
output at the midst layer. Instead of using the U-net architecture (Ronneberger et al., 2015) to obtain
a noise predictor, εθt , we use a CNN with parameter θ as an encoder to extract style and content
feature targets as prior distribution from both domains, denoted as pθ(v). We use pθ(v) as reference
to obtain approximate score-matching for arbitrary sampled data, and use it to estimate the time
inhomogeneous drift of the corresponding reverse process SDE. Furthermore, by introducing the
control factor ϕ, we enable control over the degree of stylization in the output images, allowing
for different degrees of stylization to be output according to the specific needs and requirements
of different application scenarios and tasks. For instance, when emphasizing the semantic content
structure, we can increase ϕ, whereas when emphasizing the original artistic style of the style image
(e.g. by choosing an abstract style image, people may prefer stronger symbolic features in the output
image), we can decrease the value to give the image stronger stylistic characteristics. Notably, Style-
Diffusion exhibits a remarkable capability in retaining semantic structures when compared to other
state-of-the-art methods, see Appendix. To reduce computational costs and minimize the number of
iterations, we reformulate the diffusion process as a Schrödinger half bridge composite problem and
provide optimization objectives.

Figure 1: The overall framework of our proposed Style-Diffusion method. To implement feature
extraction, we utilize the VGG encoder with parameter θ. The priors pθ(vc) and pθ(vs) serve as
references to guide data construction. For an arbitrary x(t) that depends on time t, the encoder can
generate corresponding sample feature distributions qθ(vc|xt) and qθ(vs|xt). The distance between
the distribution at time t and the prior reference is denoted as lD. In sections 3.3 and Appendix E,
we provide a detailed illustration and experimental analysis of the distance measurement method.

In summary, our substantial contributions includes:

• We propose a novel controllable Style-Diffusion method, which to the best of our knowl-
edge, is the first diffusion-based method for targeted I2I style transfer.
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• We are the first to give a mathematical formulation for the multi-end diffusion task under
the perspective of the Schrödinger bridge problem (SBP).

• We present comprehensive experimental results and detailed comparisons with state-of-
the-art methods (Deng et al., 2022; Wu et al., 2021; Liu et al., 2021; Park & Lee, 2019;
Huang & Belongie, 2017), showing that our method outperforms baseline methods and
demonstrates exceptional ability in preserving semantic structures (see Appendix D).

2 RELATED WORKS

2.1 SCORE-BASED GENERATIVE MODELS (SGMS)

Score Matching with Langevin dynamics (SMLD) (Song & Ermon, 2019a) and Denoising Diffusion
Probabilistic Models (DDPM) (Ho et al., 2020) are two classes well-known probabilistic generative
models, Song et.al (Song et al., 2020b) refers to these two models as score-based generative models
and proposes a comprehensive framework that extends prior methods by examining them through
the perspective of stochastic differential equations (SDEs). According to their work, the diffusion
process can be expressed as the solution to an Itô SDE:

dx = f(x, t)dt+ g(t)dw (1)

where w is the standard Wiener process (a.k.a., Brownian motion), f(·, t) : Rd → Rd is the drift
coefficient of x(t), and g(·) : R → R is the diffusion coefficient of x(t). The reverse process is also
a diffusion process (Anderson, 1982), and can be written by the reverse-time SDE:

dx = [f(x, t)dt− g(t)2∇x log pt(x)]dt+ g(t)dw̄ (2)

where w̄ is a standard Wiener process in backwards flow, dt is an infinitesimal negative timestep,
and ∇x log pt(x) is the score function of each marginal distribution.

To estimate ∇x log pt(x), Song et.al (Song et al., 2020b) train a score-based model sθ(x, t) with
parameter θ:

θ∗ = argmin
θ

Et{λ(t)Ex(0)Ex(t)|x(0)[∥sθ(x(t), t)

−∇x(t) log p0t(x(t)|x(0))∥22]}
(3)

where λ : [0, T ] → R>0 is a positive weighting function, t is uniformly sampled over [0, T ]. Though
training the time-dependent score-based model sθ(x, t), the reverse-time SDE can be constructed to
generate samples from p0.

Probability Flow ODE. An alternative approach to solving the reverse-time stochastic differential
equation (SDE) exists. Song et.al (Song et al., 2020b) propose that a deterministic ordinary differen-
tial equation (ODE) can be used to represent all diffusion processes, which shares the same marginal
densities as the corresponding SDE. The ODE is expressed as follows:

dx = [f(x, t)− 1

2
g(t)2∇x log pt(x)]dt (4)

which is named as probability flow ODE.

The traditional diffusion model (as shown in Figure 2) is inspired by the non-equilibrium thermo-
dynamic entropy increase, where noise is continuously added to a given input data in the forward
process, ultimately resulting in isotropic Gaussian noise. Through the following discussion of SBP,
we will find that SGMs are a special case of the SBP, where the data distributions at both ends
of SBP can be more complex, rather than easily samplable distributions such as Gaussian. Fur-
thermore, this end-to-end diffusion model cannot effectively handle the diffusion process between
multiple distributions.

2.2 SCHRÖDINGER BRIDGE PROBLEMS (SBPS)

The Schrödinger bridge problem (SBP) seeks to find optimal stochastic evolution between two prob-
ability distributions, given a prior or reference (Vargas, 2021).
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Figure 2: The end-to-end structure of classic diffusion model

Definition 1 (Dynamic Schrödinger Problem). The dynamic Schrödinger problem is given by

inf
Q∈D(α0,α1)

DKL(Q∥Wδ) (5)

where D(α0, α1) represents the set of path measures with marginals α0 and α1 at times 0, 1, and
Wδ is the Wiener measure with volatility δ.

Static Schrödinger Bridge. Föllmer (Föllmer, 1988) gives the optimal density solution q∗(x, y) of
the static Schrödinger Bridge under the marginal constraints:

q∗(x, y) = arg inf
q(x,y)

DKL(q(x, y)∥pW
δ

(x, y))

s.t. α0(x) =

∫
q(x, y)dy, α1(y) =

∫
q(x, y)dx

It is evident that the extremization of the exponential function in Equation (5) can present a chal-
lenging numerical problem due to the simultaneous satisfaction of two boundary value constraints.

Half Bridge. To simplify the original full bridge problem, Pavon et.al (Pavon et al., 2021) proposed
the half-bridge problem, which removes one of the constraints and integrate it as an initial value
problem.

Definition 2. The forward half bridge is given by

Q∗ = inf
Q∈D(α0,·)

DKL(Q∥Wδ) (6)

Definition 3. The backward half bridge is given by

P∗ = inf
P∈D(·,α1)

DKL(P∥Wδ) (7)

The resolution of the half bridge problem is a significant contribution towards constructing an itera-
tive approach for solving the full bridge problem. In the Section 3, we formulate the task of SGMs
style transfer as a composite SBP. In this way, we can improve computational speed and provide a
feasible method for multi-end

3 METHODS

3.1 STYLE AND CONTENT FEATURE VECTORS

Existing diffusion-based methods leverage the U-Net architecture (Ronneberger et al., 2015) to ob-
tain a noise predictor, εθt . Different from the noise adding way of traditional diffusion model, which
utilizes the Gaussian noise during the forward process. We impose the target vectors to guide the
noise in each unique time step. Inspired by the work (Gatys et al., 2016), which introduces A Neural
Algorithm of Artistic Style that can separate and recombine the image content and style of natural
images by utilizing the convolutional neural network (CNN) as an encoder, we use a pre-trained
CNN to extract 5 style feature target vectors (s1, s2, s3, s4, s5) and 1 content feature target vector
(c1) from two domains, and then impose these feature targets to guide the noise, εθt (xt|

∑5
i=1 si, c1).
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3.2 ALGORITHM OF OUR METHOD

Given xA and xB are samples drawn from the true data distribution, pd(XA) and pd(XB), respec-
tively, belonging to domain A (XA) and domain B (XB). We continuously add noise over 0 ∼ T
time steps. x1, ..., xt denote the samples in each step. Our objective is to find a distribution evolution
path from pd(XA) to pd(XB), and the midst distribution q(xM |xA) combines the feature constraints
from both domains.

Let vs, vc be the convolutional layer style and content feature vectors extracted by utilizing a CNN
as an encoder and pθ(v) be the prior distribution we want to impose on the codes with CNN pa-
rameters, θ. The conditional style and content feature distribution can be obtained as pθ(vc|xA) and
pθ(vs|xB). The aggregated distribution of pθ(vc) and pθ(vs) can be obtained as:

pθ(vc) =

∫
pθ(vc|xA)pθ(xA)dxA (8)

pθ(vs) =

∫
pθ(vs|xB)pθ(xB)dxB (9)

which represent the content and style targets codes distribution.

Given xt sampled from the intermediate steps xt ∼ q(xt|xA) in the diffusion path, and pθ(vc|xt),
pθ(vs|xt) be the encoding distributions, the aggregated distribution of content and style codes of the
sampled data can be written as:

qθ(vc) =

∫ ∫
pθ(vc|xt)q(xt|xA)pθ(xA)dxtdxA (10)

qθ(vs) =

∫ ∫
pθ(vs|xt)q(xt|xA)pθ(xA)dxtdxA (11)

With the diffusion sampling q(xt|xA), we sample data xM from the midst layer of our model. The
middle data distribution can then be obtained from q(xM |xA). To adjust the content preservation of
the midst output results, we introduce the hyperparameter ϕ, defined as the Control Factor (CF) of
semantic structure from the domain XA. We can then obtain the optimal function for the midst data
distribution loss based on the true data distribution pd(xA) from XA as follows:

LA = DKL[q(xM |xA)∥pd(xA)] (12)

which is to optimize the output distribution of the midst layer, so that the distribution can jointly em-
body the features of XA, thereby enabling the final output image to preserve the semantic structure
from the content image.

3.3 METRIC SPACE

To combine the dual-domain features and optimal the model, we need to focus on the distance
between qθ(·) and the prior pθ(·). Considering that the stochastic process {x(t) : t ∈ T} is a
discrete probability function sequence indexed by time t, qθ(·) and pθ(·) w.r.t Lebesgue measure
both with support on Rn, we research the following metric spaces for analysis in the experiment.

Definition 4 (distance of lp space). Given two points x = {xk} ∈ lp and y = {yk} ∈ lp, the

distance between x, y is given by: d(x, y) =
[∑∞

k=1 |xk − yk|p
] 1

p

Definition 5 (distance of C space). Consider the set C consisting of all convergent sequences of real
numbers. For any pair of points x = {ξi} and y = {ηi} in C, the distance between x, y is given by:
d(x, y) = supi |ξi − ηi|
Definition 6 (distance of Rn space). Given two points x = {xk} and y = {yk} in Euclidean space
Rn, their distance is defined as: d(x, y) =

∑∞
k=1 |xk − yk|2

Given a distance metric LD[·∥·], with pθ(vs), pθ(vc), qθ(vs) and qθ(vc) derived from Equation (8)
∼ (11), the objective function can be expressed as:

Ldual = σ LD[qθ(vc)∥pθ(vc)]︸ ︷︷ ︸
content

+τ LD[qθ(vs)∥pθ(vs)]︸ ︷︷ ︸
style

(13)
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which joins the content and style targets feature vector. And the first term in the equation represents
the texture and style loss in comparison to targets from domain XA, while the second term represents
the content loss in comparison to targets from domain XB .

Ultimately, with Equation (12) and (13) we can obtain the final loss function for our Style-Diffusion
models, as shown below:

Ltotal = Ldual + ϕLA (14)
where the first term in the equation represents the loss in the feature of the convolutional layers
between [v̇c ∼ pθ(v̇c|xt), v̇s ∼ pθ(v̇s|xt)] (with xt ∼ q(xt|xA) ) and [vc ∼ pθ(vc|xA), vs ∼
pθ(vs|xB)] (with xA ∼ pd(XA), xB ∼ pd(XB)) that are extracted by our model. The second and
third terms denote the KLD between the true data sampled from the true distributions representing
XA and XB and the data sampled from the middle step of the diffusion model. In our experiments,
we optimize the middle output by adjusting the hyperparameters ϕ to be as close as possible to the
artistic target (XB) while preserving the semantic structure (XA).

3.4 DIFFERENCE BETWEEN STYLE-DIFFUSION AND SGM

According to the probability flow ODE proposed by Song et.al (Song et al., 2020b), any diffusion
model process can be expressed as Equation (4), which can be determined from the SDE once scores
are known. The original work utilizes the trainable score-based model sθ(x, t) with parameter θ to
estimate ∇x log pt(x). In the Style-Diffusion, We use a CNN with parameters θ as the encoder to
obtain the feature vector v from the constructed data distribution that depends on time index t. Given
any x(t) sampled from marginal distribution, we can obtain its feature vector distribution qθ(v|xt)
with time index t. With prior pθ(v) and the distance metric LD[·∥·] illustrated in previous part, we
utilize LD[pθ(v)∥qθ(v|xt)] as score function for estimation, which is denoted as LD

θ
t (x).

Definition 7. The aggregated drift evolves from finite timestep: t1 → t2 is given by:

∆
t1:t2

(x, t) :=

∫ t2

t1

[f(x, t)− 1

2
g(t)2LD

θ
t (x)]dt (15)

Then the midst output is: xM = x(0) + ∆0:N/2(x). In D3PSR, time index t = 0 indicates that the
data sampled from the Domain A (xA ∼ pd(XA)).

3.5 STYLE-DIFFUSION UNDER SBP REPRESENTATION

In SBP, Ω = C([0, 1];Rn) means the path space representing a function of the form x : [0, 1] :→ Rn,
with marginals α0, α1 at time t = 0, t = 1, respectively. The goal is to find Q∗ such that:

Q∗ = argmin{DKL[Q∥W] : α0 = pdata, α1 = pprior} (16)

In the Style-Diffusion with the background of diffusion model, the path space is in the form x :
[0, N ] :→ Rn, with α0 = pd(XA), αN = pd(XB) at time t = 0, t = N , respectively. Notably,
instead of setting both sampled data distribution at time t = 0, t = N as marginal constraints,
we impose the guided feature targets distribution pθ(v) to be one of the prior marginals. Then the
marginal constraints in the 1st process are: α0 = pd(XA), αN/2 = pθ(v); the marginal constraints
in the 2nd process are: αN/2 = pθ(v), αN = pd(XB).

The First Process. In the 1st process of our approach, we can rewrite it though the perspective of
SBP:

Problem 1. The 1st process is to find a distribution from D(α0, αN/2) that minimizes the KL-
divergence: Q1∗ := argmin{DKL(Q1∥W1) | Q1 ∈ D(α0, αN/2)}, where α0 = pd(XA),
αN/2 = pθ(v), W1 is a prior reference measure.

The Second Process. Similar to the 1st process, the 2nd process can also be represented as a de-
scription in terms of SBP.

Problem 2. The 2nd process is to find a distribution from D(αN/2, αN ) that minimizes the KL-
divergence: Q2∗ := argmin{DKL(Q2∥W2) | Q2 ∈ D(αN/2, αN )}, where αN/2 = pθ(v),
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αN = pd(XB), W2 is a prior reference measure. (The whole proof and derivations are detailed
in Appendix A.)

Based on the aforementioned proofs and derivations, we can give the following proposition:

Proposition 1. By considering an evolution between two source domains XA and XB , we define
D(α0, αN ) as the set of full path measures with marginals α0 and αN . To decompose the full
process into half-bridge problems, we can express the original evolution path as:

forward: Q1∗ +Q2∗ (17)

backward: P1∗ + P2∗ (18)
which is separated at the time index t = N/2.

Thus, we have expressed the original multi-end diffusion-based problem as a segmented SBPs prob-
lem and provided the objectives. To numerically solve this problem, we can utilize Fortet’s Algo-
rithm and Iterative Proportional Fitting (IPF) procedure (Fortet, 1940; Kullback, 1968; Ruschendorf,
1995; Gramer, 2000). More details can be found in Appendix A

4 EXPERIMENTS

4.1 IMPLEMENTING DETAILS

We train our model with MS-COCO dataset (Lin et al., 2014) as the content dataset and the WikiArt
dataset (Phillips & Mackintosh, 2011) as the style dataset, each containing roughly 80,000 images
of real photos and artistic images respectively. For each content/style image, we set 512×512 as the
default image resolution. The content feature target vector is extracted from layer ‘conv4 2’, and the
style feature target vectors are extracted from layers ‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and
‘conv5 1’. We set the control factor ϕ = 128 and the ratio σ/τ is set to the same as (Gatys et al.,
2016). Our code is implemented with PyTorch (Paszke et al., 2017) and our model is trained on 3
NVIDIA Tesla V100 GPUs.

4.2 UNIFYING STRUCTURE AND TEXTURE SIMILARITY

Traditional metrics such as Mean Absolute Error (MAE) and Multi-Scale Structural Similarity (MS-
SSIM) (Wang et al., 2003) as well as SSIM (Wang et al., 2004) were relatively inadequate for
analyzing texture similarity between images, as they rely on simple introjection mapping and tend
to produce conservative estimates that are a combination of all possible results. In order to achieve
robustness to texture details (which do represent the same type of object although the local details
are different, e.g. different areas of lawn), Ding et.al (Ding et al., 2020) proposed Unifying Structure
and Texture Similarity for evaluating the structural and textural similarity between images.

4.3 COMPARISON AGAINST OTHER STATE-OF-THE-ART METHODS

In this study, we conducted a comparison of our approach with several state-of-the-art methods,
including StyTr2 (Deng et al., 2022), StyleFormer (Wu et al., 2021), AdaAttN (Liu et al., 2021),
SANet (Park & Lee, 2019) and AdaIN (Huang & Belongie, 2017) as depicted in Figure 3. Our
analysis was based on the Unifying Structure and Texture Similarity method proposed by Ding
et.al (Ding et al., 2020). Extra samples can be found in the Appendix F

Qualitative Evaluation. Our model excels at preserving the semantic content of Domain A after
stylistic rendering. Specifically, in Sample 3, the content image from Domain A has a cloud outline
that appears blurred. Although other methods have produced output images that largely lost or
distorted the cloud information, our model is still capable of rendering the clouds relatively well.
This serves as a strong indication of the accuracy of our model in capturing and preserving the
semantic content contours. Additionally, in Sample 1, the stylized images from Domain A depict a
dreamy night scene with a splash of color in the light after the rain. Our result captures the colorful
and light atmosphere while retaining the structure of the house very well. In contrast, other methods,
such as StyleFormer and AdaAttN, fail to reflect the colorful glowing effect.

Quantitative Evaluation. The Table 1 presents the DISTS values (Ding et al., 2020) of the output
images compared to the target images after undergoing style transfer through various methods. The
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Figure 3: The comparison of our model against several famous I2I style rendering approaches.

Table 1: Quantitative comparison of content and style DISTS value with other approaches
Ours StyTr2 AdaAttN AdaAttN SANet AdaIN

sample 1

DS 0.26431 0.26852 0.3574 0.3244 0.2709 0.2871
DC 0.42511 0.4384 0.4745 0.4423 0.4569 0.43082

sum 0.68941 0.70692 0.8319 0.7667 0.7278 0.7179
sample 2

DS 0.24821 0.28032 0.3492 0.3832 0.2879 0.3327
DC 0.4522 0.4531 0.5285 0.36141 0.4864 0.44422

sum 0.70041 0.73342 0.8777 0.7446 0.7743 0.7769
sample 3

DS 0.30132 0.3121 0.3160 0.3016 0.29382 0.3394
DC 0.27801 0.3311 0.33102 0.3293 0.3510 0.3686
sum 0.57931 0.6432 0.6470 0.63092 0.6448 0.7080
sample 4

DS 0.4009 0.29692 0.3222 0.3415 0.28571 0.3389
DC 0.39021 0.4940 0.5674 0.46722 0.5214 0.4848
sum 0.79112 0.79091 0.8896 0.8087 0.8071 0.8237

table indicates the distance to both the content and style images from two distinct domains, repre-
sented by DS and DC , respectively. The top-performing scores, as indicated by being ranked first
or second, are highlighted in bolded and denoted with superscripts 1 and 2, respectively. The results
presented in the Table 1 demonstrate that our proposed model consistently ranks first or second in
terms of performance. Notably, the score for SC demonstrates that our model is particularly effec-
tive in preserving semantic content and consistently ranks first in this category. This suggests that
our model is able to effectively stylize images while maintaining valid content features from the
images in Domain A, resulting in outstanding semantic recognizability performance.

Furthermore, our model’s unique conditioning mechanism allows for the degree of texture rendering
to be progressively modified over semantic structure preservation, providing greater flexibility in
terms of stylistic results. More details can be found in Appendix C and D. By adjusting the Control

8



Under review as a conference paper at ICLR 2024

Table 2: Quantitative comparison of user study
Ours StyTr2 AdaAttN SANet AdaIN

General 4.161 4.082 3.69 3.03 3.13
Texture 4.011 3.982 3.16 3.56 3.28
Structure 4.341 4.09 4.162 3.03 3.41

Factor (CF) ϕ, the trade-off between structure and texture can be freely modified according to the
user’s personal needs. The effect of ϕ on style transfer is further examined in Appendix B.

4.4 USER STUDY

To further evaluate the performance of our proposed method, we conducted a user study comparing
it to several established baselines: StyTr2 (Deng et al., 2022), AdaAttN (Liu et al., 2021), SANet
(Park & Lee, 2019), and (Huang & Belongie, 2017). We designed our questionnaire based on the
work of (Li & Chen, 2009) and the specific options definition can be found in Appendix G. The
questionnaire options included: A. General: the overall stylization of the image; B. Texture: the
accuracy of the imitation of texture strokes; C. Structure: the preservation of the content structure
after stylization. A total of 117 participants, including 56 males and 61 females with a diverse
ethnic background, participated in the study. The participants’ professional backgrounds included
art workers, computer science researchers, and the general public. We used the images from section
4.3 for comparison and 20 images were randomly selected for each participant to rate. The minimum
time for each marking was 20 seconds. The results were recorded in Table 2, with the top-performing
scores highlighted in bolded and denoted with superscripts 1 and 2, respectively. The results in
Table 2 clearly demonstrate that our method outperforms the other methods in terms of overall
style rendering, imitation of stylized brushstroke textures, and preservation of semantic structure. In
particular, our method excels in preserving semantic structures in the style rendering process.

More Discussion. Based on the experimental results, we can effectively control the degree of styl-
ization in the output images using ϕ to meet the requirements of different scenarios. Moreover, in
comparison to other baseline methods, our model exhibits outstanding performance in preserving
the semantic structure of the content images while achieving style transfer, which is also validated
in Table 1 and 2. In Appendix E, we demonstrated the rationality of the parameters and components
in our algorithm via the ablation study.

5 CONCLUSION

In this work, we proposed a novel Style-Diffusion method for image-to-image (I2I) style transfer.
Our proposed method provides a new approach to estimate the drift of the inverse process SDE using
prior feature distributions extracted from two source domains. To the best of our knowledge, this is
the first study to investigate how to use diffusion models to implement image style diffusion towards
Schrödinger Bridge Problem, achieving impressive stylization while extraordinarily preserving the
semantic structure of the source image. With Control Factor ϕ, the degree of stylization in images
can be adjusted according to different task requirements. Furthermore, we formulate the original
muti-end diffusion problem under the perspective of a Schrödinger half bridge composite Problem,
which not only reduces the computational cost of solving, but also provides a method for SGM to
deal with the diffusion process of multiple complex distributions.
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A THE SCHRÖDINGER BRIDGE PROBLEM

In this section, we will provide a detailed solution for the two problems proposed in Section 3.5 of
the original article.

The First Process. In the 1st process of our approach, we can rewrite it though the perspective of
SBP:

Problem 1. The 1st process is to find a distribution from D(α0, αN/2) that minimizes the KL-
divergence: Q1∗ := argmin{DKL(Q1∥W1) | Q1 ∈ D(α0, αN/2)}, where α0 = pd(XA),
αN/2 = pθ(v), W1 is a prior reference measure.

Proof. Let D denote the set of all probability measures on Ω which are absolutely continuous with
respect to stationary Winener measure. By Girsanov’s theorem any Π ∈ D has a forward drift (µ(t)),
and a backward drift (λ(t)), the canonical process has Itô differential such that:

forward: dx(t) = µ(t)dt+ dW+(t) (19)

backward: dx(t) = λ(t)dt+ dW−(t) (20)

where W+(t),W−(t) are standard Wiener processes adapted to the forward and reverse time diffu-
sion. By defining b(t, x(t)) = µ(t)−∇ lnϕt(x) (Pavon & Wakolbinger, 1991), where ϕt · ϕ̂t = qt
and qt represents the density of x(t) that satisfies the Fokker-Planck (FPK) equation for the process
of the form dx(t) = b(t, x(t))dt + dW(t), and referring to e.g. (Pavon & Wakolbinger, 1991)
(Lemma 3.8) and (Léonard, 2014) (Theorem 2.4), the KLD between Q1 and W1 can be expressed
as a decomposition:

DKL[Q1∥W1] =

constant︷ ︸︸ ︷
DKL[Q1

0∥W1
0]

+ EQ1

[∫ N
2

0

1

2
∥µ(t)− b(t, x(t))∥2d(t)

] (21)

where Q1
0 and W1

0 denote the initial densities of Q1 and W1, and the first term is constant. By the
Theorem 3.9 (Pavon & Wakolbinger, 1991), we can obtain the forward equivalent objective for SBP
of the 1st process such that:

F (Q1) := min
Q1∈D(α0,αN/2)

EQ1

[∫ N
2

0

1

2
∥µ(t)− b(t, x(t))∥2d(t)

]
(22)

Using reverse diffusion, we can also obtain the backward equivalent objective for SBP of the 1st

process:

B(Q1) := min
Q1∈D(α0,αN/2)

EQ1

[∫ N
2

0

1

2
∥λ(t)− b−(t, x(t))∥2d(t)

]
(23)

Then, there holds:

DKL[Q1∥W1] = DKL

[
Q1

0∥W1
0

]
+ F (Q1)

= DKL

[
Q1

N/2∥W
1
N/2

]
+B(Q1)

(24)

where Q1
N/2 and W1

N/2 denote the initial densities of Q1 and W1 at time index t = N
2 .

Half Bridge Problem. To simplify the numerical solution of the iterative algorithms, we set α0 as
initial value and force it into single-constraint problems, which transforms the original problem into
a half bridge problem (Pavon et al., 2021). Then the forward and backward half bridge of the 1st

process is given by:
forward: Q1∗ = inf

Q1∈D(α0,·)
DKL(Q1∥W1)

backward: P1∗ = inf
P1∈D(·,αN/2)

DKL(P1∥W1)

Using e.g. (Pavon et al., 2021) and (Vargas, 2021)(Theorem 9&10), the optimal solution of static
forward bridge holds:

q∗(x, y) = pW(x, y)
α0(x)

pW(x)
(25)
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where pW(x, y) = pW0 (x)pW(y|x) with marginal prior pW0 (x), the joint distribution q(x, y) ∈
D(α0(x), αN/2(y)), α0(x) =

∫
q(x, y)dy, αN/2(y) =

∫
p(x, y)dx. The optimal solution of static

backward bridge holds:

p∗(x, y) = pW(x, y)
αN/2(y)

pW(y)
(26)

Now, we have completed the description of the 1st process from the perspective of SBP and provided
the objectives. Half bridge’s solutions can be considered ”closed-form” to some extent, they can
also be used to remove constraints by including them as an initial value problem, which provides
simplification objectives for solving SBPs problems using iterative methods.

The Second Process. Similar to the 1st process, the 2nd process can also be represented as a de-
scription in terms of SBP.

Problem 2. The 2nd process is to find a distribution from D(αN/2, αN ) that minimizes the KL-
divergence: Q2∗ := argmin{DKL(Q2∥W2) | Q2 ∈ D(αN/2, αN )}, where αN/2 = pθ(v), αN =

pd(XB), W2 is a prior reference measure.

Similar to the discussion of the 1st process, the forward and backward half bridge of the 2nd process
is given by:

forward: Q2∗ = inf
Q2∈D(αN/2,·)

DKL(Q2∥W2)

backward: P2∗ = inf
P2∈D(·,αN )

DKL(P2∥W2)

So far, the formulation of the 2nd process towards SBP and the objectives are given.

B CONTROL FACTOR

Figure 4: The DIST value with different control factor ϕ.
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Figure 5: The outputs with different control factor ϕ.

Table 3: DISTS value with different ϕ.
ϕ = 0 ϕ = 10 ϕ = 100 ϕ = 1000

sample 1

DS 0.2825 0.3161 0.4179 0.4613
DC 0.4574 0.4286 0.3544 0.2994
sample 2

DS 0.2760 0.2859 0.3111 0.3424
DC 0.3859 0.3630 0.3312 0.2822
sample 3

DS 0.2521 0.2617 0.2723 0.2986
DC 0.4098 0.3969 0.3841 0.3558

The distinct characteristic of our model in comparison to other methods is the conditioning mech-
anism, which allows for the flexibility to modify the degree of texture rendering while maintaining
semantic structure preservation. Our model can produce a wide range of stylized results by adjust-
ing the Control Factor (CF), ϕ, to control the balance between structure and texture, as illustrated in
Figure 5.

Qualitative evaluation. By altering the value of ϕ, the level of stylization and the semantic struc-
ture in the generated image can be adjusted. As depicted in Figure 5, as the value of ϕ increases,
the semantic structure of the image becomes more defined (e.g. windows and doors on buildings,
outlines of statues, etc.), while at the same time the level of stylization decreases (e.g. brushstrokes
and textures in the image, etc.). It is important to note that one cannot excessively reduce the value
of ϕ in an effort to achieve a stronger stylistic transition, as this can result in certain areas of the
image becoming overwhelmed (e.g. when ϕ = 1 and 10 in sample 1 and 2). Similarly, the value of
ϕ should not be increased excessively in an attempt to obtain a sharper semantic structure, as this
can result in the generated image being insufficiently stylized (e.g. the stylized strokes and textures
from Domain B are weak at ϕ = 1000 in samples 1 and 3).

Quantitative evaluation. Table 3 records the DISTS values (Ding et al., 2020) of the generated
images in Figure 5 in comparison to the target style image and the original content image. This data
can then be used to generate the line graph depicted in Figure 4. Through quantitative analysis, it is
evident that there is a clear trade-off between style DIST and content DIST, indicating that an en-
hancement in stylization is accompanied by a loss of semantic structural information. Furthermore,
it can be observed that as the semantic structure becomes sharper, the stylization is weakened.

C PROGRESSIVE RENDERING IMPLEMENTATION

As described in the original text, we employed VGG as an encoder to extract corresponding feature
from the content and style images as priors. The content feature target vector is extracted from
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Figure 6: The DISTS value varies over different Groups.

layer ‘conv4 2’, and the style feature target vectors are extracted from layers ‘conv1 1’, ‘conv2 1’,
‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ (Gatys et al., 2016). In this section, we will discuss the impact
of using varying numbers of features on the final output results.

Group Design. In Group 1, we only utilized the style feature (‘conv1 1’) from the style image. In
Group 2, we employed style features (‘conv1 1’ and ‘conv2 1’) from the style image. In Group 3,
we utilized style features (‘conv1 1’, ‘conv2 1’ and ‘conv3 1’) from the style image. In Group 4,
we employed style features (‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’) from the style image.
In Group 5, we utilized style features (‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’)
from the style image. In Group 6, we employed style features (‘conv1 1’, ‘conv2 1’, ‘conv3 1’,
‘conv4 1’ and ‘conv5 1’) from the style image and content feature (‘conv4 2’) from the content
image. Furthermore, we only impose the CF term in group 6 among all the groups.

Figure 7: The progressive changes of each Group.
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Table 4: Quantitative DISTS value with different Groups.
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

sample 1

DS 0.3892 0.3671 0.3438 0.3444 0.3323 0.4309
DC 0.3673 0.3968 0.4043 0.3928 0.3939 0.3325
sample 2

DS 0.3788 0.3312 0.3059 0.2654 0.2637 0.2817
DC 0.2016 0.2437 0.2674 0.3108 0.3109 0.2810
sample 3

DS 0.4041 0.3571 0.3206 0.3101 0.3086 0.3089
DC 0.2989 0.3573 0.3952 0.4123 0.4039 0.3889
sample 4

DS 0.4242 0.3661 0.3716 0.3607 0.3597 0.3663
DC 0.3433 0.4333 0.4748 0.4662 0.4716 0.4492
sample 5

DS 0.3637 0.3165 0.2914 0.2851 0.2892 0.3561
DC 0.3673 0.3968 0.4043 0.3928 0.3939 0.3325
Average

DS 0.3920 0.3476 0.3267 0.3131 0.3107 0.3488
DC 0.3279 0.3739 0.3977 0.4046 0.4065 0.3601

Qualitative evaluation. As shown in Figure 7, as the number of style feature targets imposed on the
images increases from Group 1 to Group 5, the stylization in the images becomes more prominent
(e.g. brush strokes and textures). However, we can observe that simply increasing the style features
could result in certain critical semantic structures in the image becoming increasingly blurred. With
the reference of ϕ and the content feature target, the images in Group 6 not only successfully achieve
stylization but also make the semantic structures clearer than the previous outputs.

Quantitative evaluation. The Table 4 presents the DISTS values (Ding et al., 2020) of the output
images compared to the target images, and it can be observed that as more style feature targets
are progressively imposed on each Group, the style DISTS value is getting smaller, indicating that
the generated images increasingly closely resemble the target style images in terms of texture and
style. In contrast, the content DISTS value is increasing, which indicates that the generated images
lose more and more information about their semantic structure as they are stylized, resulting in a
gradual blurring of contours from the content image. However, with the guidance of the content
feature target and the CF ϕ in Group 6, the content DISTS value plummets, meaning that the image
becomes more similar to the content image from Domain A in terms of semantic structure. At the
same time, the style DISTS value becomes larger, indicating a drop in performance at the stylized
level compared to the previous Group.

This analysis and Figure 6 reveal that in the process of style transfer, there is a trade-off between
preserving semantic structure and stylization, and it is difficult to preserve both at the same time.
However, our model’s unique CF mechanism allows for greater flexibility in terms of controlling
the extent to which semantic structure is preserved, enabling the user to select results from Group 6
when a clearer content image is desired, or results from Group 5 when stronger stylization is needed.

D SEMANTIC STRUCTURE PRESERVATION

When performing style transfer from a content image to an abstract painting, it particularly tests the
model’s ability to preserve semantic structures. As shown in Figure 8, our model exhibits strong
performance in preserving image semantic structures. In the original image, the woman is wearing
a bracelet on her wrist, which is not present in the rendered result in Group 3 due to the absence of
the content target or the ϕ that adjusts the sharpness of the original semantic structure in the output
image. Furthermore, because Group 3 only imposes lower-level vectors (‘conv1 1’, ‘conv2 1’ and
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Figure 8: Evaluation of semantic structure preservation. The original image is denoted by (a), the
image from Group 3 is denoted by (b), and the image from Group 6 is denoted by (c). Detailed
display images corresponding to (d) through (i) are also provided.

‘conv3 1’) of CNN, it is more biased towards simulating local small structure textures from Domain
B, resulting in a cluster of small structures near the nose and mouth. In contrast, Group 6 imposes
more high-level features (‘conv4 1’ and ‘conv5 1’), the content target and ϕ, which controls the
extent of semantic structure preservation. As a result, the bracelet and the hand curve, two semantic
structures in the source image, are nicely preserved in the final rendering results in Group 6, further
demonstrating the superior performance of our method.

E ABLATION STUDY

In this section, we conduct several ablation studies on the number of reference feature vectors
{
∑5

i=1(si, c1)}, the distance of Metric Space LD, loss term and the control factor (CF) ϕ.

Reference Feature Vectors. In the experiment, by utilizing Equation (14) (Section 3.3) as our
loss function, setting ϕ to 358, and using the Euclidean distance LD, we impose a varying number
of {

∑5
i=1(si, c1)} as prior references and obtain different output images, as shown in Figure 9.

Based on the outputs’ performance, with a small number of style features as references, the style

Figure 9: Ablation study of different number of target feature vectors. More detailed results and
evolution are illustrated in supplementary materials.

transfer results are not satisfactory. With more style features without content feature, the stylization
is improved, but the semantic structure is not well preserved. With all content and style features, the
output image can preserve clear semantic content structure and achieve extraordinary style transfer.

Metric Space Distance. In order to verify the effectiveness of distances in different metric spaces on
model performance, we compared the images generated using the three distances defined in Section
3.3, as shown in Figure 10. The results demonstrate that using the C space cannot complete the style
transfer task smoothly; using the lp space results in poorer style transfer effect, and some semantic
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content is not achieved in style transfer (as shown in the red box in the figure); using the Euclidean
space Rn can achieve satisfactory performance.

Loss Term and the Control Factor. To validate the necessity and rationality of the control factor
term ϕLA in Equation (14) (Section 3.3), we conducted comparative experiments as shown in Fig-
ure 11. In the experiments, we observed the influence of the ϕLA on the experimental results, and
obtained corresponding output images by modifying the hyperparameter ϕ. The results show that
when the ϕLA is not introduced, or the ϕ value is small, the style transfer will cause the semantic
structure of the content image to be blurred and lose some semantic content. Moreover, serious over-
flow will occur in the originally clean background. Increasing ϕ will alleviate the above problems,
but if ϕ is too large, the degree of stylization will be low, affecting the effect of style transfer.

Figure 10: Ablation study of the Metric space distance.

Figure 11: Ablation study of the Loss term and the control factor. We compared the results generated
by using or not using the CF term in loss function, and observed the impact of adjusting the ϕ
value on the images. More quantitative analysis and further discussions on this are presented in the
supplementary material.

F EXTRA TEST SAMPLES

Due to the page limit, we only showcased four samples in Figure 3 in the paper. Figure 12 shows
the remaining samples used in our tests.

G USER STUDY

User study has been discussed in Section 4.4. In this section, we provide an example illustrated in
Figure 13 to demonstrate the formatting of the questions and the description of the options in our
questionnaire. The participants in this user study have been informed of the content and objectives
of our research.
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Figure 12: This figure presents the extra samples.

Figure 13: Example of questionnaire

20


	Introduction
	Related works
	Score-Based Generative Models (SGMs)
	Schrödinger Bridge Problems (SBPs)

	Methods
	Style and Content Feature Vectors
	Algorithm of Our Method
	Metric Space
	Difference Between Style-Diffusion and SGM
	Style-Diffusion under SBP Representation

	Experiments
	Implementing Details
	Unifying Structure and Texture Similarity
	Comparison against Other State-of-the-Art Methods
	User Study

	Conclusion
	The Schrödinger bridge problem
	Control Factor
	Progressive Rendering Implementation
	Semantic Structure Preservation
	Ablation Study
	Extra Test Samples
	User Study

