
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS PRINCIPLED EVALUATIONS OF SPARSE AU-
TOENCODERS FOR INTERPRETABILITY AND CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Disentangling model activations into human-interpretable features is a central
problem in interpretability. Sparse autoencoders (SAEs) have recently attracted
much attention as a scalable unsupervised approach to this problem. However,
our limited understanding of ground-truth features in realistic scenarios makes it
difficult to measure the success of SAEs. To address this challenge, we propose to
evaluate SAEs on specific tasks by comparing them to supervised feature dictio-
naries computed with knowledge of the concepts relevant to the task.
Specifically, we suggest that it is possible to (1) compute supervised sparse feature
dictionaries that disentangle model computations for a specific task; (2) use them
to evaluate and contextualize the degree of disentanglement and control offered by
SAE latents on this task. Importantly, we can do this in a way that is agnostic to
whether the SAEs have learned the exact ground-truth features or a different but
similarly useful representation.
As a case study, we apply this framework to the indirect object identification (IOI)
task using GPT-2 Small, with SAEs trained on either the IOI or OpenWebText
datasets. We find that SAEs capture interpretable features for the IOI task, and that
more recent SAE variants such as Gated SAEs and Top-K SAEs are competitive
with supervised features in terms of disentanglement and control over the model.
We also exhibit, through this setup and toy models, some qualitative phenomena
in SAE training illustrating feature splitting and the role of feature magnitudes in
solutions preferred by SAEs.

1 INTRODUCTION

While large language models (LLMs) have demonstrated impressive (Vaswani et al., 2017; Devlin
et al., 2019; Radford et al., 2019; Brown et al., 2020; OpenAI, 2023) results, the mechanisms be-
hind their successes and failures largely remain a mystery (Olah, 2023). A prominent bottom-up
approach to this problem is taken by mechanistic interpretability (MI), which aims to disentangle
model activations into units with faithful, human-interpretable roles in an LLM’s computation (Olah,
2022). Recently, the MI community has focused on sparse autoencoders (SAEs) as a promising
approach to this problem (Olshausen & Field, 1997; Faruqui et al., 2015; Goh, 2016; Arora et al.,
2018; Yun et al., 2021; Cunningham et al., 2023; Bricken et al., 2023). If successful at scale, this re-
search could provide significant scientific and practical value, enabling enhanced model robustness,
controllability, interpretability, and debugging (Gandelsman et al., 2023; Nanda et al., 2023; Marks
et al., 2024; Conmy & Nanda, 2024).

However, realistic ground-truth evaluations of the SAE paradigm have been lacking, which hinders
progress in this area. While recent works have proposed various metrics to evaluate SAE quality
(detailed in Section 2), they all rely on indirect metrics only conjecturally correlated with recovering
the ‘true’ features used by LLMs.

To address this challenge, we propose the first principled method for evaluating SAEs on realistic
linguistic tasks. Our method directly compares SAEs to supervised feature dictionaries computed
using knowledge of task-relevant concepts. By comparing SAEs to objects of the same ‘type signa-
ture’, we provide a fair comparison where the supervised dictionaries serve as a canonical skyline
for SAE performance. The IOI task(Wang et al., 2023) – a non-trivial natural language task that has
been extensively studied in the mechanistic interpretability literature – serves as a natural case study

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Select Prompts with Known Attributes

Compute Supervised Feature Dictionaries

Test 1: Approximation Test 2: Sparse Controllability

Test 3: Causal Faithfulness of Feature Interpretations

Mary

John

-
Mary

John

N
ec

es
si

ty
Su

ff
ic

ie
nc

y

Mary

John

Activation patch
highest contributing
features

Edit features with relevant descriptions

John and Mary went to the store, Mary gave a drink to
John and Mike went to the store, Mike gave a drink to

Alex and John went to the store, Alex gave a drink to Pr
om

pt
s

A
tt

ri
bu

te

V
al

ue
sIO = John, S = Mary, Pos=1st

IO = John, S = Mike, Pos=1st
IO = John, S = Alex, Pos=2nd

John and Mary …
John and Mike …

Alex and John …

IO = John
IO = John

IO = John?

Score feature descriptions
using known attributes

Jo
hn

 a
nd

 M
ar

y
…

Jo
hn

 a
nd

 M
ik

e
…

Mike

Mary

John

Mike

IO = Mary

IO = Mike

Jo
hn

 a
nd

 M
ar

y
…

𝐯𝐈𝐎=John = 𝔼𝑝~𝒟 𝐚𝐜𝐭𝐢𝐯𝐚𝐭𝐢𝐨𝐧 𝑝 𝐈𝐎 𝑝 = John − 𝔼𝑝~𝒟[𝐚𝐜𝐭𝐢𝐯𝐚𝐭𝐢𝐨𝐧 𝑝]

Figure 1: Overview of our evaluation pipeline. We begin by selecting a specific model capability
(IOI task, Section 3) and then disentangling model activations into capability-relevant features using
supervision (Section 4.2). Then, we evaluate a given feature dictionary w.r.t. this capability, using
the supervised features as a benchmark (Section 4.3). We test the extent to which (1) the feature
dictionary’s reconstructions of the activations are necessary and sufficient for the capability (Section
5.3), (2) the features can be used to edit capability-relevant information in internal model represen-
tations agnostic of feature interpretations (Section 5.4), and (3) the features can be interpreted w.r.t.
the capability in a manner consistent with their causal role (Section 5.5).

on which we base this paper. However, we stress that our framework is applicable to other tasks, as
we illustrate in Appendix 7.1. Our contributions are outlined as follows:

• We propose a principled method to compute supervised sparse feature dictionaries w.r.t. a
specific task an LLM can do, using supervision via task-relevant prompt attributes.

• We apply this method to the IOI task, demonstrating that these dictionaries exhibit three
desirable properties: (1) dictionaries’ activation reconstructions are both sufficient and nec-
essary for the task; (2) attributes relevant to the task are disentangled in a way that allows
precise control over model behavior; and (3) the features are interpretable in a way consis-
tent with their causal role in the model’s computation.

• We use these feature dictionaries to design and contextualize evaluations of any feature
dictionaries along the same three axes, in a way agnostic to whether they use the same
latent directions.

• We apply this methodology to SAEs trained on either the IOI dataset (task-specific SAEs)
or the LLM’s pre-training dataset (full-distribution SAEs), finding that both types contain
interpretable latents for the task, and that some task-specific SAE variants allow us to edit
attributes about as effectively as supervised dictionaries

• We also briefly remark on two qualitative phenomena we observed in SAE training and
reproduced in toy models: a tendency for SAEs to learn higher-magnitude features, and
a tendency to ‘over-split’ an intuitively single concept into many features. Due to space
constraints, we defer a full discussion to Appendix 7.2.

Our results suggest that more detailed and controlled SAE evaluations are possible and informative,
and that SAEs may hold promise for disentangling model computations in realistic scenarios. A
limitation of our approach is that it requires potentially substantial per-task effort to independently
identify the relevant attributes, which is proportional to the complexity of the task and the number
of attributes we want to consider. However, as we show in Appendix 7.1, our framework allows for
the targeted evaluation of a few attributes in a few locations of the model, which can substantially
reduce this effort.

2 RELATED WORK

Most related to this paper. Several recent works propose controlled SAE evaluations related to
our approach. Karvonen et al. used a board game model as a testbed, comparing SAE latents to
supervised features based on atomic board state components and simple strategic configurations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

IO

S2

END

When
Mary

and
S1 John

went

the
store

,

John
gave

a
drink

to

S1+1 Previous Token Heads
2.2 4.11

Duplicate Token Heads
0.1 3.0 (0.10)

Induction Heads
5.5 6.9 (5.8 5.9)

S-Inhibition Heads
7.3 7.9 8.6 8.10

Backup Name Mover Heads
9.0 9.7 10.1 10.2 10.6 10.10 11.2 11.9

Name Mover Heads
9.9 9.6 10.0

Negative Name Mover Heads
10.7 11.10

to

Class of Heads
Layer.Head

Key / Value

OutputQuery

Legend

Figure 2: A reproduction of Figure 2 from Wang et al. (2023), showing the internal structure of
the IOI circuit. Original caption: The input tokens on the left are passed into the residual stream.
Attention heads move information between residual streams: the query and output arrows show
which residual streams they write to, and the key/value arrows show which residual streams they
read from.

Huang et al. (2024); Chaudhary & Geiger (2024) evaluated SAEs for disentanglement of factual
attributes in a templated dataset, while Gao et al. (2024) proposed evaluating SAE latents as binary
classifiers over human-defined tasks (e.g., sentiment classification). A concern with the choice of
‘ground-truth’ concepts in these works is that, while meaningful from a human perspective, they
may not align with internal model computations. We also differ from these works in that we focus
on linguistic tasks in pre-trained LLMs.

Other SAE evaluations. Prior works have also proposed various indirect metrics as proxies for
assessing recovery of ’ground-truth’ features. These include automated interpretability methods
based on highly activating examples (Bills et al., 2023; Choi et al., 2024; Juang et al., 2024), though
using maximum activating examples has been criticized as potentially misleading (Bolukbasi et al.,
2021). Other approaches use the trade-off between reconstruction error and sparsity (Bricken et al.,
2023; Cunningham et al., 2023; Rajamanoharan et al., 2024), toy models (Elhage et al., 2022b),
computational proxies (Bricken et al., 2023; Templeton et al., 2024), or geometric measures like
mean maximum cosine similarity between different SAEs’ features (Sharkey et al., 2023).

3 PRELIMINARIES

The linear representation hypothesis and sparse autoencoders. A central hypothesis in inter-
pretability is the linear representation hypothesis. A strong variant of this hypothesis posits that
model activations can be approximately decomposed into meaningful features using a sparse fea-
ture dictionary: given a location in the model (e.g., an attention head output), there exists a set of
vectors {ui}mi=1 such that each activation a at this location can be approximated as a sparse linear
combination of the uj with non-negative coefficients. In particular, recent work suggests that n-
dimensional activations a ∈ Rn may be best described by m � n such features in superposition
(Elhage et al., 2022a; Gurnee et al., 2023). Recently, SAEs have been proposed as a way to disen-
tangle these features. Following the setup of Bricken et al. (2023) here and in the rest of this work, a
sparse autoencoder (SAE) is an unsupervised model which learns to reconstruct activations a ∈ Rn
as a weighted sum of m features with non-negative weights. Specifically, the autoencoder computes
a hidden representation f = ReLU (Wenc (a− bdec) + benc) and a reconstruction

â = Wdecf + bdec =

m∑
j=1

fj(Wdec):,j + bdec (1)

where Wenc ∈ Rm×n, Wdec ∈ Rn×m,bdec ∈ Rn,benc ∈ Rm are learned parameters. The
rows of Wenc are the encoder directions, and the columns of Wdec are the decoder directions.
Similarly, benc is the encoder bias and bdec is the decoder bias. The decoder directions determine
the features we decompose the activations into, while the encoder directions compute the coefficients

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of these features for a given activation. The decoder directions are constrained to have unit norm:
‖(Wdec):,i‖2 = 1. In the simplest setup (Bricken et al., 2023), the training objective over examples
{a(k)}Nk=1 is the sum of the MSE between the activations a(k) and their reconstructions â(k), and
the `1 regularization term λ

∑N
k=1

∥∥f (k)∥∥
1
, where λ is the `1 regularization coefficient.

The IOI task. In Wang et al. (2023), the authors analyze how the decoder-only transformer language
model GPT-2 Small (Radford et al., 2019) performs the Indirect Object Identification (IOI) task. In
this task, the model is given sentences of the form ‘When Mary and John went to the store, John gave
a book to’ (with the intended completion in this case being ‘ Mary’). We refer to the repeated name
(John) as S (the subject) and the non-repeated name (Mary) as IO (the indirect object). For each
choice of the IO and S names, there are two patterns the sentence can have: one where the IO name
comes first (we call these ‘ABB examples’), and one where it comes second (we call these ‘BAB
examples’). We refer to this binary attribute as the Pos attribute (short for position). Additional
details on the data distribution, model and task performance are given in Appendix 7.6.

Wang et al. (2023) discover several classes of attention heads in GPT2-Small that collectively form
the IOI circuit solving the IOI task (Figure 2; see Appendix 7.3 for more details on the circuit
structure). Specifically, Wang et al. (2023) provide multiple lines of evidence that the circuit ap-
proximately implements the algorithm:

1. detect the (i) position in the sentence and (ii) identity of the repeated name in the sentence
(i.e., the S name). This information is computed and moved by duplicate token/induction
and S-Inhibition heads;

2. based on the two signals (i) and (ii), exclude this name from the attention of the name
mover heads, so that they copy the remaining name (i.e., the IO name) to the output.

The logit difference metric. To discover the IOI circuit, Wang et al. (2023) used the logit difference:
the difference in log-probabilities assigned by the model to the IO and S names. This metric is
more sensitive than accuracy, which makes possible the detection of individual model components
(or interventions thereof) with a consistent but non-pivotal role in the task. Accordingly, we also
use the logit difference throughout this work to evaluate the causal effect of fine-grained model
interventions.

Measuring interpretability with the F1 score. Following prior work (Bricken et al., 2023), we
assign interpretability scores for SAE latents using precision and recall, which we combine in the
F1 score. Specifically, given a set of examples S used for evaluation, an SAE latent f active on a
subset F ⊂ S of examples, and a potential interpretation in the form of a subset A ⊂ S (e.g., the
IO name being ‘Mary’), we can evaluate the interpretation’s precision and recall with respect to f :
recall(F,A) = |A ∩ F | / |A| and precision(F,A) = |A ∩ F | / |F |We combine them into a single
number using the F1 score (see Appendix 7.4 for some discussion of this metric):

F1(F,A) =
2 precision(F,A) recall(F,A)

precision(F,A) + recall(F,A)
.

4 COMPUTING AND EVALUATING SUPERVISED FEATURE DICTIONARIES

This section is a self-contained presentation of our supervised feature dictionary methods and results.
In the next section 5, we will extend these methods to SAEs.

4.1 PARAMETRIZING THE IOI TASK VIA ATTRIBUTES

Given a distribution over IOI prompts p ∼ D, we can form the sets NamesIO,NamesS of names
that appear as, respectively, the IO and S name in the prompts from supp(D). In a slight abuse of
notation, we define functions

IO : p 7→ NamesIO, S : p 7→ NamesS, Pos : p 7→ {ABB,BAB}

that assign the values of IO, S and Pos to each prompt (‘ABB’ means the IO name appears first,
‘BAB’ means it appears second). Together, these three attributes define a parametrization of IOI
prompts.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Why use these attributes? Not every set of attributes will result in a good approximation of the
model’s internal activations; in fact, we find that the choice of attributes is a crucial modeling de-
cision. We chose the IO, S and Pos attributes because they are the ones found to be key to the IOI
circuit in Wang et al. (2023). We experimented with other choices of attributes, but did not find
them to be more successful in our tests (see Appendix 7.10 for details1). We emphasize that there
are many other imaginable choices of attributes; see Appendix 7.12 for further discussion.

4.2 COMPUTING SUPERVISED FEATURE DICTIONARIES

Motivated by the linear representation hypothesis, we conjecture that model activations can be lin-
early decomposed as sums of features corresponding to the attributes. Specifically, given activations
a (p) := aC (p) ∈ Rd of a given model component C (e.g., outputs of an attention head) for IOI
prompts p ∼ D, there exist vectors (specific to the component C, which we omit from the notation
for brevity) uIO=x,uS=y,uPos=z ∈ Rd for each possible value x, y, z of the respective attributes,
such that

a(p) ≈ Ep∼D [a(p)] + uIO=IO(p) + uS=S(p) + uPos=Pos(p) := â(p) (2)

where â(p) is the reconstruction of a(p). Note that Equation 2 is quite similar, but less expressive,
than SAE reconstructions (Equation 1), as it effectively requires a given feature to always appear
with the same coefficient in reconstructions. This is a reasonable assumption in settings like IOI,
where we expect the relevant features to behave as binary, on/off switches, as opposed to having
continuous degrees of activation2. The expectation of a(p) is analogous to the decoder bias in an
SAE.

To compute optimal values for the attribute vectors uIO=x, . . ., we considered several approaches3.
Our most effective method for the IOI task is straightforward: to compute e.g. uIO=x, we take the
conditional expectation over the event IO (p) = x and subtract the overall expectation. Formally,

uIO=x = Ep∼D [a (p) | IO(p) = x]− Ep∼D [a (p)] .

We refer to this method as mean feature dictionaries. One can prove that, in the limit of infinite
data, the mean features for an attribute not linearly detectable in the activations will converge to zero
(Appendix 7.7).

4.3 EVALUATING SUPERVISED FEATURE DICTIONARIES

Intervention notation and locations. As above, we denote by a(p) := aC (p) the activation of
a single model component C (e.g., output of a single attention head) that we omit for brevity. We
denote an intervention that runs the model on a prompt p but replaces the activation a (p) with v as
a(p)← v and continues the forward pass (often called activation patching (Vig et al., 2020)). Note
that such interventions can be applied simultaneously to multiple model components, but upstream
interventions may be ‘overwritten’ by downstream ones. In what follows, given an intervention intv,
we denote the logit difference of the model after the intervention as logitdiff (intv).

In all evaluations, we focus on cross-sections of the IOI circuit as identified by Wang et al. (2023).
These cross-sections are groups of attention heads that serve a shared computational role, such as
detecting name repetitions or moving information between positions. They represent key informa-
tion bottlenecks in the model’s computation where variables are passed between different parts of
the circuit (described in more detail in Appendix 7.3; also see Figure 2). We intervene on entire
cross-sections instead of just single heads in order to observe a stronger causal effect.

Sufficiency and necessity of reconstructions. The first set of evaluations measures the faithfulness
of activation reconstructions â(p). It is closely related to prior work (e.g., the ‘cross-entropy loss
recovered’ metric used in many SAE works (Bricken et al., 2023; Rajamanoharan et al., 2024)).
Here, we consider natural IOI-specific versions of this metric, and complement it with a measure of
how much information is lost when reconstructions are removed.

1In particular, we found that another set of attributes, though more expressive in principle, learns to approx-
imate the features we get using the S, IO and Pos attributes through a change-of-variables-like transformation.

2See also the discussion of ‘features as directions’ vs ‘features as points’ in Tamkin et al. (2023).
3See Appendix 7.8 for more details on other approaches we considered.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Ind+DT out S-I v S-I out (B)NM q (B)NM qk (B)NM out0.0

0.2

0.4

0.6

0.8

1.0

Ind+DT out S-I v S-I out (B)NM q (B)NM qk (B)NM out0.0

0.2

0.4

0.6

0.8

1.0

Intervention
Supervised
Task SAE
Full distribution SAE

Figure 3: Sufficiency (left) and necessity (right) evaluations of reconstructions of cross-sections
of the IOI circuit computed using supervised feature dictionaries, task- and full-distribution SAEs.
Left: average logit difference when replacing activations in cross-sections of the IOI circuit with
their reconstructions, normalized by the average logit difference over the data distribution in the
absence of intervention (a y-axis value of 1 is best). Right: drop in logit difference when deleting
reconstructions, normalized by the respective drop when performing mean-ablation, and linearly
rescaled so that values close to 1 are best. See Appendix 7.5 for details.

Sufficiency. We check if reconstructions are sufficient to do the task using the intervention a(p) ←
â (p), i.e., replacing activations a(p) with their reconstructions â(p) at circuit cross-sections. To
normalize values, we report the metric

sufficiencyscore :=
Ep∼D [logitdiff (a(p)← â(p))]

Ep∼D [logitdiff (id)]

where logitdiff (id) is the logit difference of the model in the absence of intervention, with expec-
tation ≈ 3.3 over our dataset. Results are shown in Figure 3 (left, orange bars)4.

Necessity. We check if the reconstructions are necessary for the model to do the task. To do this, we
intervene by replacing activations a(p) with their average plus the SAE error term:

necessity-intv :=a(p)← Ep∼D [a(p)] + (a(p)− â(p))︸ ︷︷ ︸
error term

We measure the drop in logit difference that results from this intervention compared to no interven-
tion, and compare to the corresponding drop when using the mean-ablation intervention to normal-
ize5:

necessity score = 1− |Ep∼D [logitdiff (necessity-intv)− logitdiff (a← Ep∼D [a(p)])]|
|Ep∼D [logitdiff (id)− logitdiff (a← Ep∼D [a(p)])]|

Results are shown in Figure 3 (right, orange bars), rescaled linearly versus the logit difference in
the absence of intervention.

Control. This evaluation measures the degree to which the supervised feature dictionaries disentan-
gle the different attributes 6. Specifically, supervised dictionaries suggest a straightforward way to
edit the model’s internal representation of the IO, S and Pos attributes via feature arithmetic. For

4We note that we report fractions of average logit differences; this ignores the distribution of logit dif-
ferences across prompts, and raises the possibility that a few examples with very high logit differences may
dominate the final score. However, in practice we observe that logit differences are concentrated close to their
means.

5The intuition for this is that mean-ablation over the IOI distribution keeps shared information like grammar,
syntax and non-IOI-specific semantics intact, which keeps the model somewhat on-distribution, but erases IOI-
specific data. If the error term has useful information for the task, we expect the logit difference to drop less
when we intervene with the error term than when we intervene with the mean-ablation.

6Note that, to meaningfully conclude disentanglement of attributes, they must be ‘entangled’ in the first
place. This is true in the IOI task, where many circuit locations represent the S and Pos information simultane-
ously. We also find that one particular location, the queries of the L10H0 name mover head, represent all three
attributes IO, S and Pos.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

example, to change the value of the IO attribute in some activation a (p), we can define the edited
activation

aIO←x(p) := a(p) +
(
uIO=x − uIO=IO(p)

)
. (3)

We want to check the extent to which this edit changes the IO attribute and only the IO attribute.
We measure this in two ways:

• probing accuracy (correlational effect): we train linear probes to predict the IO, S and
Pos attributes from the activations a(p) of a single circuit location, and then we check
whether their predictions are consistent with the edits. We find these probes have high
accuracy overall w.r.t. both the attribute being edited-in, as well as the attributes that should
be fixed (see Appendix Figure 16 for the results).

• edit accuracy (causal effect): we measure the fraction of edits where an intervention
such as a(p) ← aIO←x(p) results in the same next-token prediction as the ‘ground truth’
intervention a(p)← a(pIO←x). Here pIO←x is the prompt p where the IO attribute is set to
x, but all other data is kept the same. This is ‘ground truth’ because it directly patches the
‘correct’ activation our edit attempts to approximate. Results are shown in Figure 4 (red
shapes, x-axis); some additional results are given in Appendix Figure 28 (orange bars).

Sparsity of supervised feature interactions. Supervised feature dictionaries are in a way emph-
tautologically interpretable: they were defined to have a single feature activating for each possible
value of each of the 3 attributes. In particular, the F1 score of a supervised feature with respect to
its ground-truth interpretation (e.g., IO=‘John’) will be 1 by definition. Accordingly, we performed
a more demanding test of interpretability: decomposing internal model computations in terms of
interactions between individual features. We find that pre-softmax attention scores and composition
between heads can be decomposed in terms of feature-level interactions, such that many interactions
are close to zero, and the few non-zeros correspond to those expected based on the high-level IOI
circuit description from Wang et al. (2023); see Appendix 7.9 for details, and especially Figures 8
and 9.

Having established our supervised feature dictionary framework and demonstrated its effectiveness
on the IOI task, we now turn to the challenge of evaluating SAEs using this methodology.

5 EVALUATING SPARSE AUTOENCODERS

5.1 SAE TRAINING METHODOLOGY

We trained SAEs using a range of architectures and datasets. A central distinction in our experiments
is between task SAEs trained on IOI dataset activations, and full-distribution SAEs trained on
activations from the LLM’s pre-training dataset OpenWebText (Gokaslan & Cohen, 2019).

For most experiments reported in this paper, we used the ‘vanilla’ SAE architecture following
Bricken et al. (2023) with task SAEs. On the whole, we found vanilla task SAEs good at suffi-
ciency/necessity, but struggling to control the model effectively.

This prompted us to experiment with more recent SAE architectures such as gated (Rajamanoharan
et al., 2024) and topK (Gao et al., 2024) SAEs, as well as to better optimize how we choose SAEs
for control. The specific details of these architectures are not relevant for this paper, and we refer
the reader to the original papers for more details. For our purposes, all SAE architecutres used come
with a notion of recontruction as a bias term plus a linear combination of a subset of SAE latents.
For the training methodology of these newer variants, we adopted standard practices from recent
works (Bricken et al., 2023; Rajamanoharan et al., 2024; Gao et al., 2024). Exhaustive details on
SAE training algorithms and hyperparameters are given in Appendix 7.13. We found that these new
architectures significantly increased performance in the sparse control evaluation.

5.2 CHALLENGES IN SAE EVALUATION

Our goal now is to extend the methodologies used to evaluate supervised feature dictionaries from
Subsection 4.3 to deal with SAE latents. This involves two main challenges:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Edit Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Ed
it

M
ag

ni
tu

de
 (W

ei
gh

t R
em

ov
ed

)

Interpretation-agnostic edits

0.0 0.2 0.4 0.6 0.8 1.0
Edit Accuracy

Interpretation-aware edits

SAE Variant & Edit Method
Vanilla (Interpretation-aware)
Gated (Interpretation-aware)
Topk (Interpretation-aware)
Supervised
Edit Attribute and Location
IO in (B)NM out
Pos in (B)NM qk
Pos in (B)NM q
Pos in S-I out
Pos in S-I v
Pos in Ind+DT out

Figure 4: Activation editing results, showing the trade-offs between edit accuracy and edit mag-
nitude (better is down and to the right). Left: results in the interpretation-agnostic editing regime,
where we edit using the SAE latents best for each individual edit. Right: results in the interpretation-
aware editing regime, where we edit using SAE latents with high F1 score for the attribute values
being edited. Each color represents an SAE variant, and each shape a cross-section of the IOI circuit.
See subsection 5.4 for more details on the two editing regimes.

No built-in interpretations: unlike our supervised features, which by definition correspond to val-
ues of the IOI attributes, SAE latents do not come with a built-in interpretation. This means that
we must perform some kind of labeling/search over SAE latents when interested in e.g. using SAE
latents to control the model;

Multiple good solutions may exist: even if the SAE latents do not correspond in a 1-to-1 manner
to the supervised features, they may still be useful for approximating and controlling the IOI circuit
w.r.t. the attributes IO, S and Pos we have chosen. A qualitative discussion of some concrete ways
in which this might occur is given in Appendix 7.12. This means that we should not compare SAE
latents to supervised features in a head-to-head manner, but rather allow for some flexibility in how
SAE latents can be leveraged to achieve the outcomes we want.

With these challenges in mind, we now generalize the evaluations from Subsection 4.3 in the next
sections.

5.3 SUFFICIENCY/NECESSITY

We note that the sufficiency/necessity evaluation applies as-is to SAE latents, as it only depends on
the unambiguous notion of reconstruction. Results are shown in Figure 3 (green and red bars) for
vanilla SAEs. We find that vanilla task SAEs are good at sufficiency/necessity, but full-distribution
SAEs are not. We hypothesize this is because the task SAEs’s training dataset (i.e., the IOI dataset)
is a much better fit for the IOI task than the full pre-training dataset; this is consistent with our other
observations that full-distribution SAEs do worse on the control evaluations.

5.4 SPARSE CONTROL VIA SAE LATENTS

Expressing activation editing as an optimization problem over SAE latents. To generalize the
supervised edit from Equation (3) to the SAE setting, we need a way to pick SAE latents to re-
move/add to the clean activation a(p). In the supervised setting, we always have a single feature for
e.g. IO=‘John’ which we always add to the activation to change the IO attribute.

However, in the SAE setting, it may be too demanding to expect a single feature with this property
to exist. For example, multiple SAE latents might be relevant to representing IO=‘John’, but each
might activate only in specific contexts.

Thus, to remain agnostic to the exact decomposition of the SAE latents, we propose to allow more
flexibility to the SAE latents in the control evaluation. Suppose we have two prompts ps, pt where

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ps is the ‘source’ prompt that we want to intervene on, and pt is the ‘target’ prompt which expresses
the edit we want to make; for example, we could have pt = (ps)IO←x if we want to change the
IO attribute to x. Let the SAE has a dictionary of decoder vectors {uj}mj=1, and the original and
counterfactual activations a(ps),a(pt) have reconstructions respectively â(ps) =

∑
i∈S αiui +

bdec, â(pt) =
∑
i∈T βiui + bdec for S, T ⊂ {1, . . . ,m} and αi, βi > 0. We frame activation

editing as the optimization problem

min
R⊂S,A⊂T,|R∪A|≤k

∥∥∥∥∥a(ps)−
∑
i∈R

αiui +
∑
i∈A

βiui − a(pt)

∥∥∥∥∥
2

(4)

In words, this problem asks for at most k features to remove (R) from and/or add (A) to the original
activation to bring it as close as possible to the counterfactual activation, where the features to add
are taken directly from the counterfactual one (we also experimented with using the reconstructions
instead of the actual activations in this algorithm, but results were worse). In general, this problem
has no polynomial-time (in k, |S| , |T |) solution, as the NP-hard problem SUBSETSUM reduces to
it; instead, we use a greedy algorithm to find a solution.

We stress that this formulation is heuristic, but can be readily replaced with a more principled one;
we chose it because it is intuitive and cheap to optimize. Another natural choice would be to optimize
the logit difference downstream of the intervention to match that of patching the true counterfactual
activation directly.

Preventing complete activation overwrites by measuring edit magnitude. When editing acti-
vations, we must ensure our edits are minimal and targeted. A concerning failure mode would be
to completely overwrite the original activation’s features with those from the target, which would
demonstrate no true disentanglement of attributes. Furthermore, depending on the SAE’s structure,
this situation can arise even if we remove 1 latent and add 1 latent back 7.

To measure the magnitude of the edit, we compare the contribution of the changed features to the
reconstruction against the analogous quantity for our ‘ideal’ supervised feature dictionary. Namely,
for each summand fiui in a reconstruction â, we assign a measure of its contribution

weight(i) := (fiui)
> (â− bdec) / ‖â− bdec‖22 (5)

so that
∑k
i=1 weight(i) = 18. Note that weights are additive in the features, so that the sum of

weights of some subset of features is the weight for these features’ total contribution to the recon-
struction. We then measure the magnitude of an edit by the total weight of the features removed
during the edit.

Results. We instantiate the optimization objective from Equation (4) in two main ways:

Interpretation-agnostic: here, we optimize the objective over all SAE latents active in the source
and target activations. This is the most flexible regime.

Interpretation-aware: here, we pick SAE latents in the order of F1 score w.r.t. the relevant attribute
value. For instance, if we want to change activation a (ps) with IO=‘John’ to activation a (pt)
with IO=‘Mary’, we first order the SAE latents active in a(ps) (resp. a (pt)) by their F1 score for
IO=‘John’ (resp. IO=‘Mary’), and then remove the top k/2 features from a(ps) and add the top
k/2 features from a(pt).

Results on the trade-off between edit accuracy and edit magnitude for k = 2 are shown in Figure
4 for task SAE variants. Note that k = 2 is the smallest meaningful value we can use, and it has
the same expressive power as our supervised edits, leading to a more fair comparison. Furthermore,
topK SAEs allow us to directly set the sparsity level of the latents, and we chose 3 active latents per
activation for this evaluation. This further matches the supervised feature dictionaries, which also
have 3 ‘active’ features per activation. Results for probing accuracy with topK SAEs (k = 3) are
shown in Appendix Figure 16.

7As a simple but extreme example, consider an SAE which has a dedicated latent for each possible combi-
nation of values of the IO, S and Pos attributes (this can be achieved with ∼ 105 features in our setup, far more
than any SAE we train). Such an SAE can represent every IOI example perfectly (modulo random variation
beyond the attributes) with just 1 active feature.

8While weights can in general take any real value, we find that in practice they are almost always approxi-
mately in [0, 1]; see Appendix 7.18 for empirical details.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We find that vanilla SAEs are markedly worse at this evaluation than supervised dictionaries, but
gated and especially topK SAEs are competitive with supervised dictionaries, especially in the
interpretation-agnostic regime. Further results for vanilla task SAEs with higher k are shown in
Appendix Figure 28 (for task SAEs). We find that higher k values lead to only marginally better
performance. Full-distribution vanilla SAEs do even worse on this task (Appendix Figure 27). As
a control condition, we also consider running the same experiment with an SAE where the decoder
vectors were frozen at initialization; this leads to significantly worse performance (Appendix Figure
26), indicating that the SAE latents are indeed learning useful information for the task.

5.5 INTERPRETABILITY

To evaluate SAE latent interpretability, we frame an ’interpretation’ as a subset A of the IOI dis-
tribution’s support, assigning interpretability scores via the F1 score between a latent’s active set
F and A. To avoid trivial interpretations where each latent simply matches its own active set, we
restrict A to meaningful human-defined subsets, including our primary attributes (IO, S, Pos), their
intersections, and unions of attribute values. Given a latent, we pick the interpretation among these
with the highest F1 score. Details on the interpretation methodology are given in Appendix 7.14.

Our analysis reveals that many SAE latents have clear interpretations (F1 > 0.8) consistent with
their circuit locations, as shown in Appendix Figure 15 for full-distribution SAEs and in 29 (among
others) for task SAEs. We note that these experiments are of a rather exploratory and qualitative
nature; the main conclusion we draw is that there is a wide variety of interpretations for the SAE
latents.

6 DISCUSSION, LIMITATIONS AND CONCLUSION

Discussion. We have taken steps towards more principled and objective evaluations of the usefulness
of sparse feature dictionaries for disentangling LLM activations. In particular, we have demonstrated
that simple supervised methods can be used as a principled way to compute high-quality feature
dictionaries in a task-specific context, and that these supervised dictionaries can be used as ‘skylines’
to evaluate and contextualize the performance of unsupervised methods, such as SAEs. Moreover,
while we have focused on the IOI task because of how well-studied it is, we have shown a proof of
concept that our methods can be generalized straightforwardly to new tasks and models, as well as
new distributions (Appendix 7.1).

Limitations and Future Work. A central limitation of our approach is that we impose the set of
attributes we want to evaluate SAEs against. This influences many of our evaluations, in particular
the ‘sparse control evaluation’ from Section 5.4, which relies on these attributes to compute the
counterfactual activations used to evaluate edit accuracy.9 This is somewhat mitigated by the fact
that we use attributes shown to be consistent with the computation of the IOI circuit, and that we aim
to be agnostic to the precise SAE representation of the task. We believe this assumption (conditioned
on the supervised dictionaries successfully passing our tests) is a reasonable middle ground between
assessing the usefulness of SAEs for model behaviors humans understand and wish to control, and
evaluating SAEs fairly.

Another major limitation of our framework is that it deals with quite templatic tasks. We hope that
future work can bridge this gap. For example, we find the approach of Gao et al. (2024) for evalu-
ating SAE latents as probes for binary classification tasks to be a promising direction for building
more fine-grained supervised feature dictionaries.

Finally, a third limitation is that it takes work to identify in a way independent of SAEs what good
attributes for a given task are. We show through two case studies in Appendix 7.1 that, by targeting
only key attributes in a single activation location, we can reduce this effort substantially. This comes
at the cost of analyzing a more limited, but still potentially interesting slice of the task. However, we
admit that these tasks are still somewhat contrived/templatic. For truly open-ended tasks, we belive
that methods to generate ‘concept vectors’ at scale, such as the ones given in Luo et al. (2024); Zou
et al. (2023), may be a promising direction for obtaining a starting point for ‘ground-truth’ feature
dictionaries.

9However, note that the sufficiency and necessity evaluations are independent of the choice of attributes, as
they evaluate SAE reconstructions as a whole.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic struc-
ture of word senses, with applications to polysemy. Transactions of the Association for Compu-
tational Linguistics, 6:483–495, 2018.

Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv, abs/1607.06450,
2016. URL https://api.semanticscholar.org/CorpusID:8236317.

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and Stella
Biderman. Leace: Perfect linear concept erasure in closed form. ArXiv, abs/2306.03819, 2023.
URL https://api.semanticscholar.org/CorpusID:259088549.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain
neurons in language models. https://openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html, 2023.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and Martin
Wattenberg. An interpretability illusion for bert. arXiv preprint arXiv:2104.07143, 2021.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Maheep Chaudhary and Atticus Geiger. Evaluating open-source sparse autoencoders on disentan-
gling factual knowledge in gpt-2 small. arXiv preprint arXiv:2409.04478, 2024.

Dami Choi, Vincent Huang, Kevin Meng, Daniel D Johnson, Jacob Steinhardt, and Sarah
Schwettmann. Scaling automatic neuron description. https://transluce.org/
neuron-descriptions, October 2024.

Tom Conerly, Adly Templeton, Trenton Bricken, Jonathan Marcus, and Tom Henighan.
Update on how we train saes. Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/april-update/index.html#
training-saes.

Arthur Conmy and Neel Nanda. Activation steering with SAEs. Alignment Forum,
2024. URL https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/
progress-update-1. Progress Update #1 from the GDM Mech Interp Team.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Min-
nesota, 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

11

https://api.semanticscholar.org/CorpusID:8236317
https://api.semanticscholar.org/CorpusID:259088549
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://transluce.org/neuron-descriptions
https://transluce.org/neuron-descriptions
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1
https://aclanthology.org/N19-1423

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Gan-
guli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
URL https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of super-
position. Transformer Circuits Thread, 2022a. URL https://transformer-circuits.
pub/2022/toy_model/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022b.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer, and Noah A. Smith. Sparse over-
complete word vector representations. In Annual Meeting of the Association for Computational
Linguistics, 2015. URL https://api.semanticscholar.org/CorpusID:9397697.

Yossi Gandelsman, Alexei A Efros, and Jacob Steinhardt. Interpreting clip’s image representation
via text-based decomposition. arXiv preprint arXiv:2310.05916, 2023.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Gabriel Goh. Decoding the representation of code in the brain: an fmri study of code review and
expertise. 2016. URL https://gabgoh.github.io/ThoughtVectors/.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bert-
simas. Finding neurons in a haystack: Case studies with sparse probing. arXiv preprint
arXiv:2305.01610, 2023.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Inter-
preting mathematical abilities in a pre-trained language model. Advances in Neural Information
Processing Systems, 36, 2024.

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. Bulletin
of the American Mathematical Society, 43(4):439–561, 2006.

Jing Huang, Zhengxuan Wu, Christopher Potts, Mor Geva, and Atticus Geiger. Ravel: Evaluat-
ing interpretability methods on disentangling language model representations. arXiv preprint
arXiv:2402.17700, 2024.

Caden Juang, Gonçalo Paulo, Jacob Drori, and Nora Belrose. Open source automated interpretability
for sparse autoencoder features. EleutherAI Blog, July 30 2024.

Adam Karvonen, Benjamin Wright, Can Rager, Rico Angell, Jannik Brinkmann, Logan Riggs
Smith, Claudio Mayrink Verdun, David Bau, and Samuel Marks. Measuring progress in dic-
tionary learning for language model interpretability with board game models. In ICML 2024
Workshop on Mechanistic Interpretability.

Connor Kissane, Robert Krzyzanowski, Arthur Conmy, and Neel Nanda. Attention saes scale to gpt-
2 small. Alignment Forum, 2024. URL https://www.alignmentforum.org/posts/
FSTRedtjuHa4Gfdbr.

12

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://api.semanticscholar.org/CorpusID:9397697
https://gabgoh.github.io/ThoughtVectors/
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://www.alignmentforum.org/posts/FSTRedtjuHa4Gfdbr
https://www.alignmentforum.org/posts/FSTRedtjuHa4Gfdbr

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Robert Krzyzanowski, Connor Kissane, Arthur Conmy, and Neel Nanda. We inspected
every head in gpt-2 small using saes so you don’t have to. Alignment Forum,
2024. URL https://www.alignmentforum.org/posts/xmegeW5mqiBsvoaim/
we-inspected-every-head-in-gpt-2-small-using-saes-so-you-don.

Tom Lieberum, Matthew Rahtz, János Kramár, Geoffrey Irving, Rohin Shah, and Vladimir Miku-
lik. Does circuit analysis interpretability scale? evidence from multiple choice capabilities in
chinchilla. arXiv preprint arXiv:2307.09458, 2023.

Jinqi Luo, Tianjiao Ding, Kwan Ho Ryan Chan, Darshan Thaker, Aditya Chattopadhyay, Chris
Callison-Burch, and René Vidal. Pace: Parsimonious concept engineering for large language
models. arXiv preprint arXiv:2406.04331, 2024.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
arXiv preprint arXiv:2403.19647, 2024.

Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The hydra
effect: Emergent self-repair in language model computations. arXiv preprint arXiv:2307.15771,
2023.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. arXiv preprint arXiv:2309.00941, 2023.

Chris Olah. Mechanistic interpretability, variables, and the importance of inter-
pretable bases. https://www.transformer-circuits.pub, 2022. URL https://www.
transformer-circuits.pub/2022/mech-interp-essay.

Christopher Olah. Interpretability dreams. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/interpretability-dreams/index.html.

Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision Research, 37:3311–3325, 1997. URL https://api.
semanticscholar.org/CorpusID:14208692.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. In-context learning and induction heads. Trans-
former Circuits Thread, 2022. URL https://transformer-circuits.pub/2022/
in-context-learning-and-induction-heads/index.html.

OpenAI. Gpt-4 technical report, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders. arXiv preprint arXiv:2404.16014, 2024.

Lee Sharkey, Dan Braun, and Beren Millidge. Taking features out
of superposition with sparse autoencoders. 2023. URL https:
//www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/
interim-research-report-taking-features-out-of-superposition.

Alex Tamkin, Mohammad Taufeeque, and Noah D Goodman. Codebook features: Sparse and
discrete interpretability for neural networks. arXiv preprint arXiv:2310.17230, 2023.

13

https://www.alignmentforum.org/posts/xmegeW5mqiBsvoaim/we-inspected-every-head-in-gpt-2-small-using-saes-so-you-don
https://www.alignmentforum.org/posts/xmegeW5mqiBsvoaim/we-inspected-every-head-in-gpt-2-small-using-saes-so-you-don
https://www.transformer-circuits.pub/2022/mech-interp-essay.
https://www.transformer-circuits.pub/2022/mech-interp-essay.
https://api.semanticscholar.org/CorpusID:14208692
https://api.semanticscholar.org/CorpusID:14208692
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas Sakenis, Jason
Huang, Yaron Singer, and Stuart Shieber. Causal mediation analysis for interpreting neural nlp:
The case of gender bias. arXiv preprint arXiv:2004.12265, 2020.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Zeyu Yun, Yubei Chen, Bruno A. Olshausen, and Yann LeCun. Transformer visualization via
dictionary learning: contextualized embedding as a linear superposition of transformer factors.
In Workshop on Knowledge Extraction and Integration for Deep Learning Architectures; Deep
Learning Inside Out, 2021. URL https://api.semanticscholar.org/CorpusID:
232417301.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023.

7 APPENDIX

7.1 GENERALIZING OUR METHODS TO OTHER MODELS, DISTRIBUTIONS, AND TASKS

In this section, we detail two new tasks and datasets we used to showcase the generalizability of our
methods.

7.1.1 THE GREATER-THAN TASK

First, we ran a proof-of-concept for the ”greater-than” task (Hanna et al., 2024) to edit the attribute
denoted “YY” in the outputs of 7 attn heads in the greater-than circuit.

Task, dataset, and model. We use the greater-than task as-is, with the template

‘The $NOUN lasted from the year 17$YY to the year 17’

where YY is a two-digit number that concatenates with 17 to form a year, and we restrict years to
be between 1701 and 1720. We intervene on the outputs of the attention heads L5H1, L5H5, L6H1,
L6H9, L7H10, L8H8, and L8H11 in order to change the attribute YY. The LLM used is the same
as in the main paper, the GPT-2 Small model. We sample several thousand prompts for training and
testing.

SAE training. We train vanilla task SAEs with an `1 regularization coefficient of 5.0; we follow the
methodology of ?Conerly et al. (2024) for training the SAEs.

14

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://api.semanticscholar.org/CorpusID:232417301
https://api.semanticscholar.org/CorpusID:232417301

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Sparse control results. Exchanging as few as 2 SAE latents matched next-token predictions 90%
of the time when patching attention heads with counterfactual activations (compared w/ 38% for no
intervention; this is a binary classification task). Results are in Figure 5.

Figure 5: Results for sparse control on the greater-than task. We show the accuracy of next-token
predictions (against counterfactual labels) after patching attention heads with SAE latents, compared
to patching with ground-truth counterfactual activations.

7.1.2 THE ‘BOTH’ TASK

To showcase the flexibility of our methods, we have evaluated them in a setup that departs in several
major ways from the main results reported in the paper:

• We evaluate on a new task in-context learning task we created for this paper. The task is
based on setting up a prompt where the model can apply induction (i.e., predict that the next
token is the same as some earlier token in the context) in one of two ways; our experiments
are centered on disentangling the two different ways the model can apply induction.

• We evaluate on a new model and pre-training dataset, the 4-layer 33M parameter model
trained on the Tiny Stories dataset (Eldan & Li, 2023).

• Whereas for most of the paper we have focused on task-specific SAEs, here we evaluate
topK SAEs trained on the same pre-training dataset as the model (Tiny Stories).

This section is a proof of concept that our methods can be straightforwardly generalized to new
models and datasets.

Task. The task uses a template of the form

Once upon a time, there live a kid named $NAME. $NAME really loved $ANI-
MALS. $NAME also really loved $SPORT. So $NAME really loved both

where a correct next-token prediction is either ‘$ANIMALS’ or ‘$SPORT’; we refer to these as the
two attributes for the task.

In our experiments, we sample a set of 1000 prompts where we randomly and independently sample
from a set of 25 names, 6 animal species, and 9 sports. We observe the following key properties of
the task:

• While at temperature 0 the model will always prefer to start its completion with one of the
two attributes (e.g., generate ‘cats and football’), we can still measure that at the ‘both’
token the model places higher probability on the correct attribute values compared to in-
correct ones.

• Specifically, we define the restricted logit accuracy with respect to an attribute, which
is the fraction of examples where the correct attribute value has the highest logit among
all values for this attribute. For example, for the ‘animal’ attribute, an example where
$ANIMALS=‘cats’ will be considered accurate if the logit for ‘cats’ is higher than the logit
for each of the other 5 animal species in our dataset.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• We find that in our dataset, the restricted logit accuracy for sport is 85.5%, and for animal
is 75.9%. Moreover, we find that the residual stream representation of the ‘both’ token at
the last (4th) layer of the model is causal w.r.t. this metric. Specifically, we can activation-
patch this location from a prompt where we keep one attribute fixed but change the other.
We observe that the accuracy w.r.t. the attribute value being patched-in is 77.1% for animal
and 85.6% for sport, while the accuracy w.r.t. the attribute that is fixed remains mostly
unchanged (at most 1− 2% difference from clean).

Supervised feature dictionaries. We create supervised features for the two attributes like in the
main paper by using conditional expectation over examples in the dataset having a given value of
the attribute.

We observe that the supervised features are able to recover the causal effect of the attribute value
being patched-in on the restricted logit accuracy, suggesting that we have found meaningful features
for the task. Specifically, when we edit the animal attribute, the restricted logit accuracy w.r.t. the
animal being edited-in is 73%, while the accuracy w.r.t. the (fixed) sport attribute remains high at
82.8%. Similar results are found when editing the sport attribute.

Sparse control with TopK SAEs. We train topK SAEs with k ∈ {32, 64} and number of latents in
{8192, 16384}. We find that these SAEs achieve a good value of variance explained in the activa-
tions.

We perform a variant of the sparse control evaluation from Section 5.4 where we edit each attribute
in isolation, using counterfactual prompts where only this attribute has changed. This is analogous
to the intervention we use to evaluate our supervised feature dictionaries.

We explore changing a number of SAE latents in {2, 4, 6, 8}, and observe that this intervention is not
sufficient to recover the full causal effect of our supervised feature dictionaries. Results are shown
in Figure 6.

7.2 QUALITATIVE PHENOMENA IN SAE LEARNING

7.2.1 FEATURE OCCLUSION

Our experiments suggest that when two (causally relevant) attributes are represented in the same
activation, but one attribute’s (supervised) features have overall higher magnitude, SAEs have a
tendency to robustly learn more interpretable features for the attribute with higher magnitude. We
observe this in the queries of the L10H0 name mover head at the END token in the IOI circuit,
where the IO and S attributes are both represented and causally relevant (ablating either leads to a
change of ≈ 0.5 in logit difference). We find that our task SAEs consistently find features with high
F1 score for individual IO names, but fail to find a significant number of features for individual S
names. In Figure 7 (left), we show interpretability results from training SAEs over a wide grid of
hyperparameters that confirm this observation; more details in Appendix 7.16.

Hypothesis: feature magnitude is a driver of occlusion. We noticed that the supervised features for
IO and S names in the L10H0 queries have a small but significant difference in norm (see Appendix
Figure 13 (left)). We then hypothesized that feature magnitude is a factor in this phenomenon. To
check this, we surgically reduce the magnitude of IO features in the activations using our supervised
feature dictionaries, and observe that the number of S features discovered in these modified activa-
tions monotonically increases as we remove larger fractions of the IO features (Figure 7 (right); see
Appendix 7.16 for methodology). We furthermore constructed a simple toy model based on i.i.d.
isotropic random features that mimic the norms of supervised features in the L10H0 queries, and
find that a similar phenomenon occurs for the distribution of features with high F1 score (e.g. higher
than 0.9; see Appendix 7.16).

7.2.2 FEATURE OVER-SPLITTING

We also found in our experiments that task SAEs have a tendency to split a single binary attribute
into multiple features, even when the number of features available could in principle be spent on
other attributes. Note that, while this behavior may be counter-intuitive from a human standpoint, it
does not necessarily mean that the SAE failed; it may be that the binary attribute is not part of an
optimal sparse description of the model’s internal states. We observe this phenomenon with the Pos

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: Sparse control results for the new task. We plot how the restricted logit accuracy w.r.t. the
original (blue) and counterfactual (orange) attribute values changes as we edit more SAE latents.
The accuracy w.r.t. the other attribute is not shown as it remains high and nearly unchanged.

attribute in the IOI task (again in the queries of the L10H0 name mover), which is robustly split into
many (e.g. ≥ 10) features by our SAEs that activate for small, mostly non-overlapping subsets of
examples sharing the same Pos value that have no clear semantic interpretation.

Is over-splitting a form of over-fitting? To investigate whether this is due to overfitting, we com-
pared Pos features between (1) different random seeds for the same training dataset and (2) different
training datasets. In both cases, we found that the Pos features discovered are similar above chance
levels, suggesting that the over-splitting is not due solely to overfitting to randomness in the training
algorithm and/or dataset.

Reproducing the over-splitting phenomenon in a simple toy model. On the other hand, we show
empirical evidence that in a toy model where activations are a uniform mixture of two isotropic
Gaussian random variables, an appropriately randomly initialized SAE with enough hidden features
will achieve lower total loss than an ideal SAE with just two features corresponding to the two com-
ponents of the mixture. Such randomized constructions exist for any `1 regularization coefficient,
even in the limit of infinite training data. Details are given in Appendix 7.17.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1024 2048 4096 8192

4.
0

1.
0

0.
2

0.
04

0.00 0.00 0.00 0.00

0.81 0.82 0.84 0.85

0.38 0.57 0.63 0.63

0.04 0.13 0.44 0.54

1024 2048 4096 8192

0.00 0.00 0.00 0.00

0.05 0.05 0.09 0.10

0.01 0.01 0.06 0.06

0.00 0.00 0.00 0.00

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Attribute
IO
S

Figure 7: Left: Fraction of IO (left subplot) and S (right subplot) names in our dataset for which
a feature with F1 score ≥ 0.5 is found, as a function of dictionary size (x-axis) and effective `1
regularization coefficient (y-axis), over a wide hyperparameter sweep for the queries of L10H0.
Right: fraction of IO and S names in our dataset for which a feature with F1 score ≥ 0.5 is found,
as a function of α (x-axis), the fraction of supervised IO features we subtract from the activations.

7.3 ADDITIONAL DETAILS ON THE IOI CIRCUIT

Circuit structure. To refer to individual token positions within the sentence, we use the notation
of Wang et al. (2023): IO denotes the position of the IO name, S1 and S2 denote respectively the
positions of the first and second occurrences of the S name (with S1+1 being the token position after
S1), and END denotes the last token in the sentence (at the word ‘to’).

Wang et al. (2023) suggest the model uses the algorithm ‘Find the two names in the sentence, detect
the repeated name, and predict the non-repeated name’ to do this task. Specifically, they discover
several classes of heads in the model, each of which performs a specific subtask of this overall
algorithm. A simplified version of the circuit involves the following three classes of heads and
proceeds as follows:

• Duplicate token heads: these heads detect the repeated name in the sentence (the S name)
and output information about both its position and identity to the residual stream10

• S-Inhibition heads: these heads read the identity and position of the S name from the
residual stream, and output a signal to the effect of ‘do not attend to this position / this
token identity’ to the residual stream

• Name Mover heads: these are heads that attend to names in the sentence. Because the
signal from the S-Inhibition heads effectively removes the S name from the attention of
these heads, they read the identity of the IO name from the input prompt, and copy it to the
last token position in the residual stream.

In reality, the circuit is more nuanced, with several other classes of heads participating: previous
token heads, induction heads (Olsson et al., 2022), backup name mover heads, and negative name
mover heads. In particular, the circuit exhibits backup behavior (McGrath et al., 2023) which poses
challenges for interpretability methods that intervene only on single model components at a time.
We refer the reader to Figure 2 for a schematic of the full circuit, and to Wang et al. (2023) for a
more complete discussion.

7.4 F1 SCORE NOTES

An F1-score of α guarantees that both precision and recall are at least α
2−α . For example, when

α = 0.8 (the value we use in most evaluations), both precision and recall are at least 0.8/1.2 ≈ 0.67.
Requiring a sufficiently high F1 value is important in order to avoid labeling a trivial feature as
meaningful for attributes where |A| is large, because then a feature active for all examples can have
a high F1-score.

The F1 score has some limitations in the context of our work:

10We follow the conventions of Elhage et al. (2021) when describing internals of transformer models. The
residual stream at layer k is the sum of the output of all layers up to k − 1, and is the input into layer k.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• it does not take into account the magnitude of the feature activations; for instance, a feature
that is active for all examples in S but only has high activation values on the examples in
A may have a low F1 score, even though it is in some sense highly informative for the
attribute A.

• it is a very conservative metric, in that it requires both high precision and high recall to be
high. For example, a feature with precision 0.5 but recall 0.02 will have an F1 score of
∼ 0.04, heavily skewed towards the lower of the two metrics, even though it is in some
sense informative for the attribute A.

We hope to address these limitations in future work.

7.5 ADDITIONAL DETAILS FOR SECTION 4.3

Computing and evaluating supervised feature dictionaries. For each parametrization and each
method to compute feature dictionaries, we use 20,000 prompts sampled from our IOI distribution
(see Appendix 7.6) to compute feature dictionaries for the query, key, value, and attention output
(i.e., attention-weighted values) of the relevant token positions of all 26 heads identified in Wang
et al. (2023) (recall Figure 2). We use another sample of 5,000 prompts to validate the quality of the
feature dictionaries.

Cross-sections of the circuit. Based on the understanding of the IOI circuit from Wang et al. (2023),
we identify several cross-sections of the computational graph of the IOI circuit where feature editing
is expected to have effects meaningful for the task:

• outputs of (backup) name mover heads at END ((B)NM out): these activations encode the
IO name and write it to the END token of the residual stream. We expect that editing the
IO name in these activations will directly affect the model’s prediction, while editing other
attributes will not have a significant effect.

• queries+keys of (backup) name movers at END ((B)NM qk): the queries represent the S
name and Pos information, but they are mainly used as inhibitory signals for the model,
decreasing the attention to the S token11. The keys represent information about the IO and
S names: in particular, the S information combines with the query to inhibit attention to the
S token.
We expect that editing the S and Pos attributes in both the keys and queries will not signif-
icantly hurt model performance, because as a result attention to the S token will again be
inhibited. By contrast, it is unclear what editing the IO name is expected to do, since its
role in the attention computation is not fully described in Wang et al. (2023).

• outputs of S-Inhibition heads at END (S-I out), values of S-Inhibition heads at S2 (S-I v),
and outputs of duplicate token and induction heads at S2 (Ind+DT out): these activations
transmit the inhibitory signal to the name mover heads through the residual stream. We
expect that editing S and Pos in these activations will lower the model’s logit difference by
disrupting the inhibitory signal, while editing IO will have no effect.

Evaluating necessity of feature reconstructions: When we intervene on the model by removing
reconstructions from activations in cross-sections of the circuit, model performance on the IOI task
(as measured by the logit difference) goes down from the clean value logitdiffclean to a lower value
logitdiff intervention. As we describe in the main text, the ground-truth intervention for removing
the features from the activations is mean ablation of the corresponding cross-section, which also re-
sults in a lower value of the logit difference, logitdiffmean ablation. We want to measure the degree
to which logitdiff intervention approximates logitdiffmean ablation, in a way that normalizes for
different values of logitdiffmean ablation across cross-sections of the circuit. We use the following
metric to do this:

necessity score = 1− |logitdiffmean ablation− logitdiff intervention|
|logitdiffmean ablation− logitdiffclean|

.

11In addition, we later find that the queries of the L10H0 name mover head also represent the IO attribute,
and serve an inhibitory role for it as well, decreasing the attention to the IO token.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

7.6 DATASET, MODEL AND EVALUATION DETAILS FOR THE IOI TASK

We use GPT2-Small for the IOI task, with a dataset that spans 216 single-token names, 144 single-
token objects and 75 single-token places, which are split 1 : 1 across a training and test set. Every
example in the data distribution includes (i) an initial clause introducing the indirect object (IO, here
‘Mary’) and the subject (S, here ‘John’), and (ii) a main clause that refers to the subject a second
time. Beyond that, the dataset varies in the two names, the initial clause content, and the main clause
content. Specifically, use three templates as shown below:

Then, [] and [] had a long and really crazy argument. Afterwards, [] said to
Then, [] and [] had lots of fun at the [place]. Afterwards, [] gave a [object] to

Then, [] and [] were working at the [place]. [] decided to give a [object] to

and we use the first two in training and the last in the test set. Thus, the test set relies on unseen
templates, names, objects and places. We used fewer templates than the IOI paper Wang et al.
(2023) in order to simplify tokenization (so that the token positions of our names always align), but
our results also hold with shifted templates like in the IOI paper.

On the test partition of this dataset, GPT2-Small achieves an accuracy of ≈ 91%. The average
difference of logits between the correct and incorrect name is ≈ 3.3, and the logit of the correct
name is greater than that of the incorrect name in ≈ 99% of examples. Note that, while the logit
difference is closely related to the model’s correctness, it being > 0 does not imply that the model
makes the correct prediction, because there could be a third token with a greater logit than both
names.

7.7 PROPERTIES OF MEAN FEATURE DICTIONARIES

Mean feature dictionaries enjoy several convenient properties:

• The vectors uiv for an attribute ai do not depend on which other attributes al 6= ai we have
chosen to describe the prompt p with.

• If an attribute i is not linearly represented in the activations, the mean code features viv → 0
in the limit of infinite data (see below). In particular, this also holds if the attribute is not
represented at all in the activations.

This suggests that mean feature dictionaries are robust to the inclusion of irrelevant or non(-linearly)-
represented attributes, which is a desirable property in real settings where we may not know the
exact attributes present in each activation. However, mean feature dictionaries are not robust to
the inclusion of redundant attributes, as the lack of interaction between the attributes means that
redundant attributes cannot ‘coordinate’ to reduce the reconstruction error ‖a− â‖22.

7.7.1 MEAN FEATURES ARE ZERO FOR NON-LINEARLY-REPRESENTED ATTRIBUTES.

Suppose we have a random vector x for a k-way classification task with one-hot labels z ∈ Z =
{z ∈ {0, 1}k s.t. ‖z‖1 = 1}. In Section 3 of Belrose et al. (2023), it is shown that the following are
equivalent:

• the expected cross-entropy loss of a linear predictor ẑ = w>x + b for z is minimized at
a constant linear predictor. In other words, the optimal logistic regression classifier (in the
limit of infinite data) is no better than the optimal constant predictor (which, at best, always
predicts the majority class).

• the class-conditional mean vectors E [x|z = ei] are all equal to the overall mean E [x] of
the data.

If we translate this to the context of mean feature dictionaries, we have that logistic regression for
the value of an attribute ai will degenerate to the majority class predictor if and only if the mean
feature dictionaries for all values of this attribute are zero. In the finite data regime, this gives us
some theoretical grounds to expect that the mean feature dictionaries will be significantly away from
zero if and only if the attribute’s values can be non-trivially recovered by a (logistic) linear probe.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

As a special case, if an attribute is not represented in the data at all, we expect the mean feature
dictionaries for this attribute to be zero.

7.8 DEFINITION AND PROPERTIES OF MSE FEATURE DICTIONARIES

The main alternative method we considered to compute supervised feature dictionaries from at-
tributes was MSE feature dictionaries, which use a least-squares linear regression to predict the
activations from the attribute values. We note that mean feature dictionaries work well in our set-
ting because the attributes we choose in the IOI task are probabilistically independent w.r.t. the IOI
distribution we work with. We recommend using MSE dictionaries when attributes are not proba-
bilistically independent.

MSE feature dictionaries compute uai(·)=v by directly minimizing the `2 reconstruction error over
the centered activations:

{uai(·)=v}i∈I,v∈Si
= arg min

uai(·)=v

1

N

N∑
k=1

∥∥∥∥∥(a(pk)− a)−
∑
i∈I

uai(·)=ai(pk)

∥∥∥∥∥
2

2

(6)

This objective is convex, and is equivalent to a least-squares regression problem; in fact, the optimal
solutions take a form very similar to the mean feature dictionaries (see below). Furthermore, this
objective closely mimics the SAE objective: here, the sparsity is hard-coded, leaving only the `2
objective.

We next discuss some properties of the MSE feature dictionaries. For brevity, in the remainder of
this section we write uiv instead of uai(·)=v .

7.8.1 MSE FEATURE DICTIONARIES AS A MULTIVARIATE LEAST-SQUARES REGRESSION
PROBLEM.

Let S =
∑NA

i=1 |Si| be the total number of possible values for all attributes. For each attribute i,
consider the characteristic matrix Ci ∈ RN×Si of the dataset for this attribute, where

Ckj =

{
1 if ai(p(k)) = vj
0 otherwise

for some ordering (v1, . . . , v|Si|) of the values in Si, and let C = [C1 C2 · · · CNA] ∈ RN×S
be the concatenation of all characteristic matrices. Also, let A ∈ RN×d be the matrix of activations
with rows a(k). Then the objective function for the MSE feature dictionaries can be written as the
multivariate least-squares regression problem

min
U∈RS×d

1

N
‖A− CU‖2F

where the rows of U are the vectors uiv across all i and v ∈ Si, with the optimal solution given by

U∗ =
(
C>C

)+
C>A (7)

7.8.2 MSE FEATURE DICTIONARIES AS AVERAGING OVER EXAMPLES.

Using the special structure of the objective, we can also derive some information about the optimal
solutions u∗iv . Namely, at optimality we should not be able to decrease the value of the objective by
changing a given u∗iv away from its optimal value. The terms containing u∗iv in the objective are

1

N

∑
k∈Piv

∥∥∥∥∥∥a(k) −
∑
l 6=i

u∗
lv

(k)
l

− u∗iv

∥∥∥∥∥∥
2

2

=
1

N

∑
k∈Piv

∥∥∥∥∥∥
a(k) −

∑
l 6=i

u∗
lv

(k)
l

− u∗iv

∥∥∥∥∥∥
2

2

=
1

N

∑
k∈Piv

∥∥∥a(k) − u∗iv

∥∥∥2
2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where recall that Piv = {k | ai(p(k)) = v}, and a(k) is the residual of a(k) after subtracting the
reconstruction using all other attributes l 6= i. Since this value cannot be decreased by changing u∗iv ,
we have that it equals the minimizer of this term (holding a(k) fixed). In other words, if we define

f (u) =
1

N

∑
k∈Piv

∥∥∥a(k) − u
∥∥∥2
2

we have that u∗iv = arg minu f (u). Since f is a sum of convex functions, it is itself convex, and so
the first-order optimality condition is also sufficient for optimality. We have

∇f (u) ∝
∑
k∈Piv

(
a(k) − u

)
∝ 1

|Piv|
∑
k∈Piv

a(k) − u

and so
u∗iv =

1

|Piv|
∑
k∈Piv

a(k) (8)

Note that this is very similar to the definition of mean feature dictionaries, but also importantly
different, because the optimal u∗iv depends on the optimal values of the feature dictionaries for the
other attributes.

7.8.3 MSE FEATURE DICTIONARIES WITH INDEPENDENT ATTRIBUTES.

Finally, we can prove that, under certain conditions, attributes for which E [a|ai(p) = vi] = E [a],
i.e. the conditional mean of activations over values of the attribute is the same as the overall mean
(assuming both means exist), will have (approximately) constant MSE feature dictionaries uiv =
ui∀v. This is a counterpart to the result from Appendix 7.7 for MSE feature dictionaries:
Lemma 7.1. Suppose that all conditional means Ep∼D [a|ai(p) = v] exist for all i, v ∈ Si. Let ai
be an attribute such its values appear independently from the values of all other attributes, i.e.
Pp∼D [ai(p) = vi, al(p) = vl] = Pp∼D [ai(p) = vi]Pp∼D [al(p) = vl] ∀vi ∈ Si, vl ∈ Sl, l 6= i

Then, in the limit of infinite training data, the conditional means E [a|ai(p) = v] are all equal to
the overall mean E [a] if and only if the optimal MSE feature dictionaries u∗iv for this attribute are
constant with respect to the value v of the attribute, i.e. u∗iv = ui for all v ∈ Si.

Proof. From Equation 8, we have

u∗iv =
1

|Piv|
∑
k∈Piv

a(k) =
1

|Piv|
∑
k∈Piv

a(k) −
∑
l 6=i

u∗
lv

(k)
l


=

1

|Piv|
∑
k∈Piv

a(k) − 1

|Piv|
∑
k∈Piv

∑
l 6=i

u∗
lv

(k)
l

The first term converges to E [a|ai(p) = v]. The second term is a sum of terms of the form
1

|Piv|
∑
k∈Piv

u∗
lv

(k)
l

=
1

|Piv|
∑
vl∈Sl

u∗lvl |{k s.t. ai(pk) = v, al(pk) = vl}| (9)

for l 6= i. Since we are assuming ai is uncorrelated with al, in the limit of the size N of
the dataset a(1),a(2), . . . ,a(N) going to infinity, |{k s.t. ai(pk) = v, al(pk) = vl}| will approach
|Piv|Ep∼D

[
1al(p)=vl

]
. Moreover, note that in the closed-form solution U∗ =

(
C>C

)+
C>A =(

C>C
N

)+
C>

N A from Equation 7, the matrix 1
NC

TC converges to some limit Σ ∈ RS×S as

N → ∞, and the matrix 1
NC

>A similarly converges to some limit M ∈ RS×d by the assump-
tion that all conditional means for all attributes exist. Thus, the optimal feature dictionaries u∗iv will
also converge as N → ∞. So we see that the sum in Equation 9 will converge to a value that is
independent of the value v for the attribute ai.

Thus, if the conditional means E [a|ai(p) = v] are all equal to the overall mean E [a], we get that
u∗iv is independent of v; conversely, if u∗iv is independent of v, we get that the conditional means are
all equal to the overall mean. This completes the proof.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

7.9 FEATURE-LEVEL MECHANISTIC ANALYSES FOR SECTION 4.3

Since each activation is approximated as the sum of several vectors from a finite set, it becomes
possible to decompose the model’s internal operations in terms of elementary interactions between
the learned vectors themselves. In the current paper, we are particularly interested in attention heads,
as they are the building blocks of the IOI circuit. We consider the following subspace-level analyses:

• Attention scores: The attention mechanism is considered to be a crucial reason for the
success of LLMs (Vaswani et al., 2017), but a subspace-level understanding of it is mostly
lacking (but see Lieberum et al. (2023)). How do the features in the keys and queries of
attention heads combine to produce the attention scores? Which feature pairs are most
important for the head’s behavior?

• Head composition: If we are to understand a circuit on the subspace level, we need to
develop a subspace-level account of how the outputs of one attention head compose with
the queries, keys and values of a downstream head in the circuit. Each head adds its out-
put to the residual stream, and downstream heads’ query/key/value matrices read from the
residual stream. We can thus examine the contribution, or direct effect, of a head’s output
to another head’s queries/keys/values. We can decompose this direct effect in terms of the
features of the source head to calculate contributions of each feature to the direct effect.

Implementation details for these analyses follow.

Attention scores. Given feature dictionary reconstructions for the keys and queries of an attention
head at certain positions

k ≈
∑
i∈I

uai(·)=ai(p), q ≈
∑
i∈I

vai(·)=ai(p)

we can decompose the attention scores as a sum of pairwise dot products between the dictionary
features

qTk/
√
dhead ≈

∑
i,j∈I

vTai(·)=ai(p)uaj(·)=aj(p)/
√
dhead

where dhead is the dimension of the attention head. This allows us to examine which feature com-
binations are most important for the head’s attention according to the learned dictionaries. Variants
of this decomposition can also be applied to e.g. the difference in attention scores at two different
token positions.

Head composition. Following the terminology and results from Elhage et al. (2021), the residual
stream rl,t of a transformer at a given layer l and token position t is the sum of the input embedding
and the outputs of all earlier MLP and attention layers at this position. The residual stream is in turn
the input to the next attention layer; so, for example, we can write the query vector for the h-th head
at layer l and token t as

ql,t,h = WQ
l,h LayerNorm (rl,t) = WQ

l,h LayerNorm
(
rl,t +WO

l′,h′zl′,t,h′
)

where zl′,t,h′ is the attention-weighted sum of values of the h′-th head at layer l′ < l and token t, rl,t
is the remainder of the residual stream after removing the contribution of this head, and LayerNorm
is the model’s layer normalization operation (Ba et al., 2016) before the attention block in layer l.
By treating the layer normalization as an approximately linear operation (taking the scale from an
average over the dataset12), we can derive an approximation of the (counterfactual) direct effect of
the output of the h′-th head at layer l′ and token t on the query vector of the h-th head at layer l and
token t:

ql,t,h ≈WQ
l,h

(
γl �

rl,t − µl,t√
σ̂2
l + ε

+ βl

)
where γl, βl are the learned scale and shift parameters of the LN operation, µl,t is the average of
the vector rl,t over its coordinates, and σ̂l is an average over the dataset of the standard deviation

12This is justified by the empirical observation that the layer normalization scales across the dataset are well
concentrated around their mean.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

of the residual stream at this position. Alternatively, we can use the exact layernorm scale from the
forward pass over a large sample to compute the statistics of the exact direct effect over observed
data.

With either approach, we obtain a decomposition

ql,t,h ≈
∑
l′<l,h′

ut,(l′,h′)→(l,h) + rl,t

of direct contributions from the outputs of earlier heads at this position, plus some residual terms
rl,t (which are the contributions of all previous MLP layers and the input embedding to the query
vector). We can then further decompose ut,(l′,h′)→(l,h) by replacing it with its reconstruction from
our feature dictionary.

For either way to treat the layer normalization, we can use the learned feature dictionaries for the
outputs, keys, queries and values of attention heads in a number of ways to decompose the direct
effect further. Here, we consider head-and-feature attribution: fixing the head (l, h), we can vary
the head (l′, h′) and break down the direct effects (projected on the query vector) by feature.

Results. An interesting location to examine is the attention of the name mover heads from END to
the IO and S1 positions, where (according to the analysis in Wang et al. (2023)) the signal from the
S-Inhibition heads effectively removes the S name from the attention of these heads.

We show the results for the head L10H0 in Figure 8. Crucially, we observe that most interactions
are tightly clustered around zero, which suggests that these feature dictionaries provide a sparse and
interpretable account of the attention mechanism. The only significantly nonzero interactions are (1)
between the S features in the query and the key at the S1 position; (2) between the Pos features in the
query and the key at both positions; and (3) between the IO features in the query and the key at the
IO position. The first two interactions are expected given the findings of Wang et al. (2023). More
interesting is the third interaction, which is negative, suggesting that the L10H0 head inhibits both
the S and IO name tokens, and effectively relies only on the Pos attribute to distinguish between
the two names. Notably, this is in contrast with the other two name movers L9H6 and L9H9 (for
which analogous plots are shown in Figure 18 and 19), where the inhibition of the IO attribute is
absent. We found that using other methods to compute feature dictionaries result in less sparse and
interpretable patterns.

2 0 2

Bias X Bias
Bias X IO

Bias X Pos
Bias X S

IO X Bias
IO X IO

IO X Pos
IO X S

Pos X Bias
Pos X IO

Pos X Pos
Pos X S

S X Bias
S X IO

S X Pos
S X S

Attention to S1

2 0 2

Attention to IO

Figure 8: Decomposing the attention scores of the name mover head L10H0 from END to the S1
(left) and IO (right) positions. The y-axis ranges over the combinations of features from the query
(first element) and the key (second element). The boxplots show the distribution of dot products
between the corresponding feature vectors. The interaction between the bias terms (i.e., the means
of the respective queries/keys) provides a sense of the scale of the effects.

We further investigated the queries of the L10H0 head, by looking at which features from upstream
head outputs at the END token have a large direct effect on these queries. Following the methodol-

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

ogy detailed in Appendix 7.9, we plot the direct effect from the outputs of the S-Inhibition heads,
as well as the two name mover heads L9H6 and L9H9 in layer 9 in Figure 9. We find that the
S-Inhibition heads’ IO features have no significant contribution to the queries, but the IO features
from the two name mover heads in layer 9 have a significant direct effect (aligned with the overall
centered query vector). This suggests that, having already computed a representation of the IO at-
tribute, these heads transmit it to the next layer, where it gets picked up by the L10H0 head’s query.
Conversely, the S-Inhibition heads contribute significantly with their Pos and S features, whereas
the name mover heads in layer 9 do not.

0.01 0.00 0.01 0.02 0.03 0.04 0.05

L7H3 (S-I)

L7H9 (S-I)

L8H10 (S-I)

L8H6 (S-I)

L9H6 (NM)

L9H9 (NM)

Direct effect on query of L10H0 at END
Source Feature

IO
S
Pos

Figure 9: Direct effect of supervised features in the output of S-Inhibition heads, and Name Mover
heads in layer 9, on the queries of the L10H0 name mover head at the END token.

7.10 ALTERNATIVE PARAMETRIZATIONS FOR THE IOI TASK

We mostly experimented with two possible parametrizations of prompts via attributes:

• independent parametrization: we use the three independently varying attributes – S, IO
and Pos – to describe each prompt. This is the parametrization used in the main text.

• coupled parametrization: we couple position with name, and use the two attributes (S,
Pos) and (IO, Pos) to describe each prompt. This parametrization is more expressive than
the independent one, as it allows for different features for the same name depending on
whether it comes first or second in the sentence. At the same time, the coupled parametriza-
tion can express the independent one as a special case (Appendix 7.11).

We find that these parametrizations arrive at highly similar activation reconstructions â. In fact, we
find an even stronger property: the coupled parametrization essentially simulates the features in the
independent one; details are given in Appendix 7.11.1.

Finally, we note that the fact that we find parametrizations that result in good approximation is not
trivial. Not every ‘natural-seeming’ parametrization will lead to a good approximation of model
behavior; we show an example of this with a ‘names’ parametrization in Appendix Figure 17, where
we instead use an attribute for the 1st, 2nd and 3rd name in the sentence.

What about other parametrizations? Note that there are combinatorially many possible ways to
pick attributes to disentangle the activations into, and a priori any specific choice is arbitrary. We

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

justify our choice of parametrizations in several ways: (1) they pass our tests for model approxi-
mation, control and interpretability given later in this section; (2) they correspond to the internal
states of the IOI circuit identified in Wang et al. (2023); (3) we experimented and/or considered
other parametrizations, but found they either perform the same or worse on our tests. In Appendix
7.12, we provide a more detailed discussion of different possible parametrizations in the IOI task
and their relative strengths and weaknesses.

7.11 COMPARING THE COUPLED AND INDEPENDENT PARAMETRIZATIONS

7.11.1 THE COUPLED PARAMETRIZATION CAPTURES THE INDEPENDENT ONE

Idealized model. We first note that the coupled parametrization can express all reconstructions
expressible by the independent parametrization. Suppose we have an IOI distribution using a set
of available names Snames, and let posABB ,posBAB , {ioa}a∈Snames

, {sa}a∈Snames
be feature

dictionaries for the independent parametrization at some model activation. Then, we can define the
following feature dictionaries for the coupled parametrization:

ioa,ABB = ioa +
1

2
posABB , ioa,BAB = ioa +

1

2
posBAB ,

sa,ABB = sa +
1

2
posABB , sa,BAB = sa +

1

2
posBAB

Then for a prompt p of the form ABB (the BAB case is analogous), with the IO name being a
and the S name being b, we have that the reconstruction of an activation a using the independent
parametrization is

âindependent = ioa + sb + posABB
and the reconstruction using our coupled parametrization is

âcoupled = ioa,ABB + sb,ABB = ioa + sb +
1

2
posABB +

1

2
posABB

= ioa + sb + posABB = âindependent

Empirical evaluation. We evaluated whether this occurs empirically with the MSE features for the
two parametrizations. First, we plot the fraction of variance explained by the reconstructions using
the independent parametrization in the reconstructions using the coupled parametrization. We find
very high agreement (Figure 10); results in the other direction are almost identical and are not shown
here for brevity. Next, we check if the coupled parametrization essentially simulates the independent
one as described analytically above. We do this by measuring the cosine similarity between the vec-
tor posABB −posBAB from the independent parametrization and vectors ioa,ABB − ioa,BAB and
sa,ABB − sa,BAB from the coupled parametrization. In our idealized simulation of the independent
parametrization using the coupled one, these values would be exactly 1 for all names. We find that
in all circuit locations that represent both IO and Pos, the similarities w.r.t the IO differences are
significant; similarly, in all circuit locations that represent both S and Pos, the similarities w.r.t the
S differences are significant (Figure 11). For reference, in a space of this dimensionality (64), the
expected magnitude of the cosine similarity between two random vectors is 1/8.

7.11.2 OTHER PARAMETRIZATIONS EXPRESSIBLE BY THE COUPLED PARAMETRIZATION.

Consider the parametrization with attributes (S, Pos) and IO. Again, let
{ioa}a∈Snames

, {sa,ABB}a∈Snames
, {sa,BAB}a∈Snames

be feature dictionaries for this parametriza-
tion at some model activation. Then, we can define the following feature dictionaries for the
coupled parametrization:

io′a,ABB = io′a,BAB = ioa, s′a,ABB = sa,ABB , s′a,BAB = sa,BAB

Then for a prompt p of the form ABB (the BAB case is analogous), with the IO name being a
and the S name being b, we have that the reconstruction of an activation a using the (S, Pos) + IO
parametrization is

â(S,Pos)+IO = ioa + sb,ABB = io′a,ABB + s′b,ABB = âcoupled

and so the coupled parametrization can express all reconstructions expressible by the (S, Pos) + IO
parametrization. Analogously, it can express all reconstructions expressible by the (IO, Pos) + S
parametrization.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Attn Output Key Query Value

Backup Name Mover

Duplicate Token

Induction

Name Mover

Negative Name Mover

Previous Token

S-Inhibition

0.96 1.00 0.95 1.00

0.99 1.00 1.00 1.00

0.91 1.00 1.00 1.00

0.98 1.00 0.96 1.00

0.98 1.00 0.98 1.00

1.00 1.00 1.00 1.00

0.97 0.97 0.99

Figure 10: Variance explained by the reconstructions using the independent parametrization, with
respect to the reconstructions using the coupled parametrization, averaged over combinations of
class of heads in the circuit and activation types.

0.0 0.2 0.4 0.6 0.8
Cosine Similarity

Duplicate Token Attn Output (S)

Induction Attn Output (S)

S-Inhibition Value (S)

S-Inhibition Attn Output (S)

Name Mover Query (S)

Name Mover Query (IO)

Backup Name Mover Query (IO)

Backup Name Mover Query (S)

Figure 11: Cosine similarity between the vector posABB − posBAB from the independent
parametrization and vectors ioa,ABB − ioa,BAB and sa,ABB − sa,BAB from the coupled
parametrization, averaged over several classes of circuit locations. When evaluating similarity for
the ioa,ABB − ioBAB vectors, we only include locations where both the IO and Pos attributes are
represented; and similarly for the s-vectors.

7.11.3 EDITING METHODOLOGY WITH THE COUPLED PARAMETRIZATION.

For each activation, we may choose to edit one or several of the IO, S and Pos properties of the
prompt. With the independent parametrization, this is straightforward, since the attributes match
these properties. With the coupled parametrization, suppose we are given a prompt of the form ABB
(the BAB case is analosous) with the IO name being a and the S name being b. Given an activation
a with corresponding reconstruction under the coupled parametrization

â = ioa,ABB + sb,BAB

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

we can perform edits as follows:

• to change the IO name from a to a′: aedit = a− ioa,ABB + ioa′,ABB

• to change the S name from b to b′: aedit = a− sb,ABB + sb′,ABB

• to change the Pos property from ABB to BAB: aedit = a−ioa,ABB−sb,ABB+ioa,BAB+
sb,BAB

7.12 ON POSSIBLE FEATURE DICTIONARIES FOR THE IOI TASK

In this section, we compare the properties of several a priori possible ways in which the activations
of the IOI circuit could be disentangled via sparse feature dictionaries. The main goal is to illustrate
that different feature dictionaries can have similar usefulness in terms of model control and inter-
pretability, even if they fail natural tests that directly look for similar features in the two dictionaries.
This motivates evaluations that are agnostic to the specific features in a dictionary, as long as the
features can parsimoniously disentangle the model’s internal computations.

The independent parametrization from the main text. It is worth explicitly describing the prop-
erties of the supervised feature decomposition we constructed in Section ??, which uses the IO, S
and Pos attributes to describe the prompts; it serves as an idealized example against which to com-
pare other possible decompositions. In this decomposition, we can approximate an activation a for a
prompt p where the IO name is a and the S name is b, with the IO name appearing first, as follows:

a ≈ ioa + sb + posABB

where the vector ioa is the feature for the IO name a, the vector sb is the feature for the S name
b, and the vector posABB is the feature for the Pos attribute when the IO name appears first in the
sentence (and analogously for posBAB).

Imagine now that we are given an ‘unlabeled’ feature dictionary that corresponds to this decom-
position (i.e., we don’t know which attribute each feature corresponds to). We want to evaluate
the usefulness of this decomposition for model control and interpretability relative to the ‘human-
legible’ attributes IO, S and Pos. This will be tautologically successful:

• the reconstructions are a faithful and complete representation of the model’s internal com-
putations;

• the dictionary can (by definition) express edits to the IO, S and Pos attributes very ef-
ficiently, as we only need to change a single feature vector to change the corresponding
attribute’s value.

• the features are fairly interpretable: we can understand the meaning of each feature in terms
of the attribute it represents.

• moreover, using metrics such as recall and precision (following the evaluation methodology
of Bricken et al. (2023)) will readily surface the features that are most important for each
attribute.

Using per-gender vectors to describe names. Another possible decomposition is

a ≈ ioa + io genderg(a) + sb + s genderg(b) + posABB

where g : Names→ {M,F} is some labeling function that roughly classifies names according to
how they are typically gendered13. Here, we hypothesize that the model may use features of high
norm that sort names into genders (which may be useful to the model for various reasons), and then
add a small-norm per-name correction to obtain a name-specific representation. In particular we
imagine that ioa + io genderg(a) in this representation would correspond to ioa in the supervised
decomposition, and similarly for the S name.

• This decomposition is also fairly sparse and interpretable, and it can express edits almost
as parsimoniously as the supervised decomposition (we only need to change two feature
vectors to edit a name, and one to edit Pos).

13We experimented with this decomposition in our supervised framework, but did not find it to confer addi-
tional benefits for the purposes of our tests.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

• Moreover, metrics such as recall and precision will pick up on the per-name features;

• If we compare the prompts for which a feature activates for this dictionary and our ‘inde-
pendent parametrization’ feature dictionary (discussed above), we will easily discover the
per-name features that correspond to the IO and S names.

• However, if we instead directly use cosine similarity to the supervised features ioa, sb as a
metric, we may be misled, because if the per-gender features have sufficiently higher norm
than the per-name corrections, the cosine similarity may be low.

Features for small, overlapping subsets of names. Going further, we can imagine a decomposition
where we have features that correspond to pairs of names, such that each name is in exactly two
pairs (this can be achieved by partitioning all names into pairs along a cycle). We can express a
name as a sum of the features for the two pairs it is in, with some superposition. Note that more
sophisticated constructions with more features per name / more names per feature are possible by
e.g. picking subsets at random or using expander graphs (Hoory et al., 2006), as they will ‘spread
out’ the superposition more evenly.

• This decomposition is somewhat sparse and interpretable, and can likely be used for feature
editing in a reasonable way, as long as the sets of features associated with each name are
not too large. Even though we would need to change several feature vectors to edit a name,
there should also be a fair amount of disentanglement so that we don’t also need to throw
away all the features active in an example to change a single attribute.

• However, comparing our supervised decomposition against this one using geometric met-
rics such as cosine similarity may be misleading, because while a sum of a few feature
vectors associated with the same name may point in the same direction as our supervised
feature, any individual feature may not.

• Furthermore, it also has significantly reduced precision for the features, because each of
the few features associated with a name will also activate for several other names. This
can make directly looking for features whose activation patterns resemble the ones in our
supervised decomposition misleading.

Our experiments suggest that both task-specific and full-distribution SAEs trained on IOI circuit
activations learn a decomposition resembling this abstract construction more than any other decom-
position discussed here.

Overfitting dictionaries. Finally, a worst-case decomposition would be to have a single feature for
each possible set of values of the S, IO and Pos attributes.

• This decomposition is not interpretable, and it is not editable in any non-trivial way: to
change a single attribute, the entire decomposition must be replaced;

• Features of this form will have maximum precision, but very low recall for the attributes.

7.13 DETAILS FOR TRAINING SPARSE AUTOENCODERS

7.13.1 VANILLA TASK SAES

We followed the methodology of Bricken et al. (2023), with the exception that our neuron re-
initialization method is not as sophisticated as theirs: we simply re-initialize the encoder bias, en-
coder weights and decoder weights for the dead neurons every 500 training epochs.

Training SAEs on the IOI distribution alone allows us to do a more extensive hyperparameter search.
Importantly, we normalized SAE inputs across attention heads so that activations have an `2 norm
of 1 on average in order to make it easier for the same set of hyperparameters to work well across
different heads. In our main experiments, we use SAEs that were trained with a 16× hidden expan-
sion factor, (effective) `1 regularization coefficient in (0.01, 0.05, 0.1, 0.3), batch size of 1024, and
learning rate of 0.001.

We evaluated two key test-set metrics across training epochs: the average number of active fea-
tures per example (i.e. the average `0 norm of activations), and the fraction of the logit difference
recovered when using the SAE reconstructions at the given model location instead of the original

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

activations, scaled against a mean-ablation baseline (which is more stringent than the zero-ablation
baseline employed in most other work). We chose the regularization coefficient and training check-
point for each node that provided a good trade-off between these two metrics; in particular, for
almost all nodes, we recover logit difference to within 20% with respect to the mean-ablation base-
line, and there are < 25 active features per example. We provide the results of this sweep in Figure
20. While most SAEs seemed adequate, some still have poor approximation as measured by the
reconstructed logit difference.

We use a training set of 20,000 examples and an evaluation set of 8,000 examples (for the purposes
of automatic interpretability scoring, we need a large enough evaluation sample so that each property
in the distribution appears a significant number of times). Since our training regime is significantly
distinct from that of Bricken et al. (2023) (we use a much smaller dataset), we first experimented
extensively with different hyperparameters, focusing on training SAEs on the queries of the name
mover heads. We observed that the most important hyperparameters are the dictionary size and the
effective `1 regularization coefficient. We found that the batch size did not influence the eventual
quality of the learned features, only the speed of convergence, and that a learning rate of 10−3 (as in
Bricken et al. (2023)) was a good choice throughout. The runs reported here used a dictionary size
of 1024 (a 16× increase over the dimensionality of attention head activations in GPT-2 Small), an
effective `1 regularization between 0.05 and 0.3, and a batch size of 1024.

We normalized activations across the circuit to make it easier for the same range of hyperparameters
to give good results, and ran a sweep over `1 regularization coefficients in (0.01, 0.05, 0.1, 0.3).

Results. While performance varied strongly across circuit locations, most full-distribution SAEs
had an `0-loss between 2 and 12 and a recovered loss fraction (against a mean ablation baseline)
between 0.4 and 0.9 (both measured on OPENWEBTEXT). Similarly, most task-SAEs had an `0-
loss below 25 and a recovered logit difference fraction against mean ablation > 0.8 (both measured
on the IOI dataset) 14.

7.13.2 ADDITIONAL TASK SAE VARIANTS: GATED AND TOPK

Training schedule. We incorporate several training tactics from recent literature. For all SAE
variants considered, we used the same (small) learning rate of 3 × 10−4, trained for 2000 epochs
in total, and applied resampling followed by a learning rate warmup over 100 epochs (roughly
following Rajamanoharan et al. (2024)) at epochs 501 and 1001. Our resampling methodology
closely follows that of Bricken et al. (2023). In addition, we decay the learning rate linearly to zero
over the last 25% of training (following Conerly et al. (2024)). For topK SAEs, we initialize the
encoder to the transpose of the decoder, as suggested by Gao et al. (2024); however, we do not use
the auxiliary loss term suggested in section 2.4 (‘Preventing dead latents’) from that work (which is
the only difference of this paper from the implementation of Gao et al. (2024)).

We checkpoint all models at 14 epochs: (1, 2, 4, 8, 16, 32, 64, 128, 500, 750, 1000, 1250, 1500, 2000).
This checkpoint schedule is chosen to ensure that we have a dense enough sampling of the early
stages of training, while also capturing the state of the model right before resampling, and after the
learning rate warmup that is done post-resampling is sufficiently in the past.

Preprocessing. We normalize all IOI circuit activations prior to passing them through our SAEs,
following the scaling methodology in Conerly et al. (2024), so that they on average have `2 norm
of
√
dhead. This helps us share hyperparameters across sites of the circuit, and reduces the range of

hyperparameters to search over.

Hyperparameters. We sweep over values λ ∈ (0.5, 1.0, 2.5, 5.0) for the `1 regularization penalty
for vanilla and gated SAEs, and over values k ∈ (3, 6, 12, 24) for topK SAEs. This is a reasonable
range: we found that the highest value of λ leads to about 3-4 active features per example on average;
the supervised dictionaries have 3. Conversely, the lowest value of λ lead to very good `2 loss and
recover close to 100% of the logit difference, but have too many (about 20-30) active features per

14Importantly, we did not perform exhaustive hyperparameter tuning to train these SAEs, as our main goal
was to evaluate the methodology and how it can distinguish between different classes of feature dictionaries,
rather than to achieve state-of-the-art performance. Thus it is possible that significantly better performance
could be achieved with more tuning. Indeed, it is our hope that the methods we present here will be useful for
tuning SAEs in the future.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

example on average. The range for k is chosen to include values equal and close to our expectation
for the ‘true’ number of necessary features (3), while still allowing significantly more features to be
active.

7.13.3 FULL-DISTRIBUTION SAES

We trained full-distribution SAEs on every IOI component using OPENWEBTEXT as training data.
We mostly followed the method outlined in Bricken et al. (2023). We added a standardization
procedure to be able to train SAEs on components with different activation scales using the same
l1-coefficient. Before training, we calculated the mean and the mean l2-norm over 10 million ac-
tivations. These values were then frozen and used to standardize all activations as a preprocessing
step and to rescale the SAE reconstructions to match the original scale as a post-processing step. We
generated the training dataset by extracting a buffer of 10 million activation vectors from the shuffled
OPENWEBTEXT dataset at a time with a maximal context window of 512 tokens. We then trained
the SAEs for 250 million activation vectors and resampled dead neurons after 50000 steps (around
100 million activations) as outlined in Bricken et al. (2023). We used a batch size of 2048 and 8192
features per SAE. Post-training, we excluded dead and ultra-low frequency neurons that we define
as neurons who activate less than once per million activations. The amount of dead neurons varies
across SAEs between 20 and 90%. We plot the fraction of dead neurons versus `0 loss in Figure 22,
and the loss recovered versus `0 loss in Figure 23.

We used an `1 coefficient of 0.006 initially for all SAEs, and retrained SAEs with a different `1 co-
efficient for crosssections whose SAE metrics were undesired (e.g. very low `0 / bad reconstruction
or very high `0). For the name mover outputs, we used 0.025, and for S-Inhibition keys we used
0.005. The test `0 and loss-recovered metrics were calculated on 81920 unseen activation vectors.

We trained fewer SAEs on the full pre-training distribution compared to the IOI distribution, as
the computational cost is higher. We observe that SAEs with a lower number of active features
per example generally perform better for IOI-related tests, even if their other metrics (such as loss
recovered on OPENWEBTEXT) are worse.

SAE training loss metrics. The most important loss metrics to track during SAE training are the `0
loss (measuring the average number of active features per activation) and the language model loss
recovered when using the learned features to reconstruct the model’s logits (Bricken et al., 2023).
To turn the loss recovered into a meaningful quantity, it is rescaled against a baseline; both zero
ablation and mean ablation have been used for this purpose in the literature (Bricken et al., 2023;
Kissane et al., 2024). In this work, we used mean ablation, as it is a more strict test of the quality of
approximation.

7.14 ADDITIONAL NOTES ON METHODOLOGY FOR SAE INTERPRETABILITY

Interpretations considered. Let Names be the set of names in our IOI dataset. We consider
the following binary predicates over prompts as possible interpretations for SAE features in the
activations at the S2 and END tokens:

• IO is 2nd name: the Pos attribute having value corresponding to BAB-type prompts;

• IO is 1st name: the Pos attribute having value corresponding to ABB-type prompts;

• S is <name>: the S attribute has a certain value in Names;

• S is <name> and at 1st position: same as above, but also the S name is at 1st position in
the prompt (i.e., this is a BAB-type prompt);

• S is <name> and at 2nd position: same as above, but for ABB-type prompts;

• IO is <name>: the IO attribute has a certain value in Names;

• IO is <name> and at 1st position: same as above, but also the IO name is at 1st position
in the prompt (i.e., this is a ABB-type prompt);

• IO is <name> and at 2nd position: same as above, but for BAB-type prompts;

• S is male: the S name is labeled as a male name under our labeling of Names provided by
GPT-4;

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

• S is female: same as above for female names;
• <name> is in sentence: a certain name in Names;
• <name> is at 1st position: same as above, but the name is the first name in the sentence;
• <name> is at 2nd position: same as above, but the name is the second name in the

sentence;

The next several interpretations are only defined for the keys and values of the name mover heads.
We collect together activations for the keys according to their role in the IOI circuit as opposed
to absolute position: we group together all activations at the IO token position (these are the IO
keys/values), even though they come from different absolute positions across IOI prompts, because
in ABB prompts the IO name comes first, while in BAB prompts it comes second. The same applies
for gathering the S keys/values.

The key/value activations described above have not yet ‘seen’ the repeated name in the sentence,
so there is no meaningful concept of IO and S for them. Instead, the only potentially task-relevant
information contained in them is about the name(s) seen so far in the sentence, and the position (1st
name or 2nd name) where the activation is taken from. Accordingly, the applicable interpretations
for features contained in these activations are different:

• current token is <name>: the token from which the activations are taken holds a certain
value in Names.

• token is<name> and at 1st position: the activation was taken from a token with a certain
value in Names, and in addition it comes from the first name in the sentence;

• token is <name> and at 2nd position: same as above, but activation is from the second
name in the sentence;

• current token is at 1st position: the activation is from the first name in the sentence;
• current token is at 2nd position: same as above, but from second name;
• current token is female: the token the activation is from is female under our labeling of

Names.

Unions of interpretations. In addition, for each type of predicate that has a free parameter in Names,
we considered unions of up to 10 such predicates (recall that we have a total of 216 names in our
dataset). We ordered the individual predicates according to their F1 score, and chose the union of
the first k ≤ 10 predicates with the highest F1 score as a possible interpretation. Note that the F1

score is not in general a monotone function of k in this setup; indeed, we find that for many features
the highest-F1-score explanation uses k < 10 features.

Sufficiency/necessity of interpretable features. We take the interpretations of the features de-
scribed above and their respective F1 scores, and for each threshold t ∈ [0, 1] over F1 scores con-
sider two interventions:

• sufficiency: we subtract from the respective activation all active features with F1 score< t;
• necessity: we subtract from the respective activation all active features with F1 score ≥ t;

7.15 ADDITIONAL OBSERVATIONS ON SAE LATENT INTERPRETATIONS

Correlational evaluation. Full-distribution SAEs must capture variation in activations across a large
set of text, of which IOI-like prompts are only a small subset. Consistent with this, we found
that only a subset of full-distribution SAE latents activates on IOI prompts, with the number of
latents that fire on IOI prompts varying strongly between components. We scored the latents that do
fire on IOI prompts and found a significant amount of latent descriptions with high F1-score. We
summarize the number of high-F1-score latents per type in Figure 15. Remarkably, we find that
the interpretable latents in the full-distribution SAEs and the task-specific SAEs are qualitatively
similar; corresponding task-specific results are given in Appendix Figures 29 (showing the most
interpretable SAEs at each node of the IOI circuit) and 30 (showing the SAEs chosen to optimize
the tradeoff between the `0 loss and the logit difference reconstruction, which we use throughout the
main body of the paper).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

In practice, we want to use latent explanations to get insight into the more general computation of
a component. Thus, we investigated whether the latents found are consistent with the previously
established function of the heads from Wang et al. (2023). We found that this was true for all heads
and that simply looking at the number of latents with a given interpretation draws a clear picture;
examples are provided in Appendix 7.15.

Our results also suggests several details about the IOI circuit that weren’t reported previously, which
we summarize in Appendix 7.15. We were also curious about how the detected latents behave on
arbitrary text of the model’s training distribution. As creating a rigorous test for this is difficult, we
report some anecdotal evidence in support of latent generalization in Appendix 7.15.

Causal evaluation: sufficiency/necessity of interpretable latents. Results here are encourag-
ing: keeping/removing the latents with F1 score ≥ 0.6 often goes a long way towards preserv-
ing/degrading the model’s performance on the task. Appendix Figures 33 and 34 show the results of
these experiments for task SAEs.

Causal evaluation: sparse control via interpretable latents. Here, results are also moderately en-
couraging. We find that, for the task-specific SAEs, editing using the high-F1-score latents w.r.t. a
given attribute as a guide performs not much worse than the interpretation-agnostic editing method.
Results are provided in Figure ?? in the form of a comparison with interpretation-agnostic editing,
as well as Appendix Figure 31. However, for full-distribution SAEs, we again need to edit a high
number of latents to achieve a noticeable effect (results in Appendix Figure 32).

Interpretable latents agree with head roles identified in the IOI circuit by Wang et al. (2023).
For example, duplicate token heads attend to a previous occurrence of the previous token and write
information about this to the residual stream. Consistent with this, we found that SAEs trained on
them contain latents that indicate the duplicated name, the subject in case of IOI. This information is
then used by the induction heads that determine whether the subject is the first or second name. The
subject position is subsequently copied to the END position by the S-Inhibition heads, where it will
query the name movers to not attend to the subject, and to copy and predict the IO name. Indeed, we
find latents of the outputs of induction heads, in the outputs and values of the S-I heads, and in the
queries of the name movers that inform about the position of the indirect object. Lastly, the name
movers attend to the IO position and copy the name to predict it. As anticipated, the name mover
values and outputs contain latents that specify the concrete IO name. In summary, the type of latents
detected informs well about the function of the head on a certain task.

New insights from the latent dictionaries.

• The first layer DT-heads almost exclusively contain S latents but the third layer duplicate
token head also has positional latents, suggesting more sophisticated text processing hap-
pening there.

• Induction head encompass different positional latents. L6H9 latents inform about what
name is at the second position, while L5H5 and L5H8 activate when the IO is at the first
position. L5H9 is comprised of different latents including positional latents that don’t
inform about the role (IO vs S) of the name.

• L7H3 is the only head that contains a significant amount of gender latents.

• S-Inhibition heads include primarily latents that are a combination of names and S, while
the name mover queries seem to only contain Pos latents.

• The keys and values of name movers both inform about the token at the current position,
but there is an important difference in the type of latents: while the values primarily contain
latents that contain the name (that later gets moved to the END position), the keys consist
of positional latents and combinations of position and name. This hints at an important
mechanism where the name mover query contains positional information about the S name
that gets matched with the corresponding key, effectively shifting the attention towards the
IO token such that the value with the IO gets copied to the END position.

Editing interpretable latents

While the latent descriptions generated through our automatic scoring predict well when a latent is
active, it is still unclear whether they also have an interpretable causal role, i.e. whether activating or

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

deactivating a certain latent leads to a change in output logits that would be expected from the latent’s
description. To test this, we propose two experiments to judge the faithfulness and completeness of
our interpreted latents that involve patching activations from a counterfactual prompt and calculating
the effect on the model’s output:

• Estimating Faithfulness: To estimate faithfulness, we construct SAE activations where
we fix latents with a test F1-score smaller than a threshold and patch activations of latents
with a high F1-score from the counterfactual prompt. We then calculate reconstructions
of this new SAE activation vector, patch cross-sections, and record whether the model
successfully predicts the correct counterfactual name.

• Estimating Completeness: To estimate completeness, we propose a similar experiment
where we fix latents with a high test F1-score and patch all remaining latents. This inter-
vention should not change the output logits if our latents are complete.

We run this experiment on cross-sections of name mover outputs and repeat this experiment for
different thresholds. We observe that for a threshold F1-score of 0.6, the SAE latents are both faithful
and complete to a high degree. We observe that the faithfulness metric significantly decreases for
higher F1-scores of 0.7 and 0.8 but remarkably, we also observe that only fixing latents with a very
high F1-score of > 0.8 while patching all other latents from the counterfactual prompt is sufficient
to keep the model predicting the base prompt’s output.

Generalization of latents to the full distribution. We sample prompts from OpenWebText and vi-
sualize prompts that highly activate a latent. We do this for the name mover queries and outputs. For
the outputs, we calculate the direct-latent-attribution (DFA) metric first proposed by Krzyzanowski
et al. (2024) that calculates per position how large the contribution of its values to activating the
latent is. Thus, it informs what position led to the latent being activated.

We find that latents mostly generalize. For example, we investigated a latent that activated if the
IO name starts with the letter ”E” and we found that on full distribution, this latent fires at tokens
preceeding words starting with ”E”. DFA suggests that previous tokens starting with ”E” activate this
latent, and calculating the unembed Wdec[j]WOWU , denoted with ”Positive Logits” and ”Negative
Logits” in Figure 14 shows that activating the latent increases logits for words starting with ”E”.
Together, this hints at a general name moving mechanisms to predict words that previously occurred
in the context that drives in-context learning where the head’s QK-circuit drives attention to the
position of the word to predict, and the OV circuit copies the token from the previous to the current
position to predict it.

F1-score: 0.86
Names: Elijah, Jeremiah, Andrew, Eric, Ethan, Evan, Emily, Eli, Elizabeth, Eleanor,
Elias, Leo, Aaron, Alexis, Ellie, Eva, Dave, Paige, Andrea, Keith, Alexa, Alice, Emma

F1-score: 0.95
Names: Ashley

Figure 12: Two representative features discovered in the output name mover SAE L9H9 to illustrate
the features behavior or webtext. Both features are IO name features, the upper one containing 23
names, the lower one only a single name. Left: Feature activation per position; Middle: Direct
Feature Attribution (DFA) that tracks the position whose values contribute most to activating the
given feature; Right: The output tokens whose logits get increased (positive) or decreased (negative)
when the feature is active, calculated by vWOWU with v being the decoder weight vector of the
feature of interest, WO the output weight of the head and WU the unembed

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

7.16 FEATURE OCCLUSION DETAILS

Training an exhaustive set of SAEs. Focusing on the L10H0 queries, we found that our SAEs
consistently find a single feature for almost all IO names, but fail to find a significant number of
features for individual S names.

To investigate further whether this is a result of poor hyperparameter choices, we trained SAEs on
the queries of L10H0 over a wide grid of hyperparameters, so that performance deteriorates/plateaus
at the edges of the grid. We pushed the dictionary size, training dataset size, `1 regularization coef-
ficient and number of training epochs significantly beyond the values used in our other experiments.
Specifically, we used a training set of 100,000 examples (this is more datapoints than all ∼ 93, 000
possible combinations of S, IO and Pos in our data); we trained dictionaries of up to 128∗64 = 8192
features (our supervised feature dictionaries contain ∼ 500 features); we varied the effective `1 reg-
ularization coefficient across two orders of magnitude; and we trained for up to 6, 000 epochs.

Results on the number of IO/S features with F1 score > 0.5 are reported in Figure 7 (left). We
observe that across hyperparameters, we often find as many IO features as there are names in our
dataset; however, the number of S features is consistently low, never exceeding 22.

Magnitudes of the IO and S features. As a first step, we investigate the distribution of the norms of
the features for IO and S across the names in the IOI dataset in the L10H0 queries in our supervised
feature dictionaries from Section ??; results are shown in Figure 13 (left). We observe that the norms
of the IO features are significantly (but not by much) higher than those of the S features.

1.5 2.0 2.5 3.0 3.5

Norms of S and IO feature vectors in L10H0 queries
Attribute

IO
S

0.0 0.2 0.4 0.6 0.8 1.0
% high-norm features found

0.0

0.2

0.4

0.6

0.8

1.0

%
 lo

w-
no

rm
 fe

at
ur

es
 fo

un
d L1 coefficient

0.013
0.025
0.400
0.500
1.000
2.000

Figure 13: Left: distributions of the `2 norms of the feature vectors for the IO and S attributes from
our supervised feature dictionary for the queries of the L10H0 name mover. Right: the results of
the toy model experiment, where we investigate whether a disparity in feature magnitudes alone can
lead to the occlusion phenomenon. The x-axis shows the fraction of high-magnitude ground-truth
features for which we find an SAE feature with F1 score > 0.9; the y-axis shows the same for the
low-magnitude ground-truth features.

Surgically reducing the magnitude of IO features. To examine the role of feature magnitude in
the occlusion phenomenon, we continuously reduce the magnitude of IO features. Namely, given
our supervised feature dictionary with features {ioa}a∈Names, {sb}b∈Names, {posv}v∈{ABB,BAB} and
an activation a(p) for a prompt p where the IO name is a, we construct a new activation

aα (p) = a (p)− αioa

for α ∈ [0, 1]. We find that, applying this intervention without any hyperparameter tuning (with a
modest dictionary size of 1024, and `1 regularization coefficient of 0.2), increasing α from 0 to 1
gradually makes the number of IO features with F1 score > 0.5 to decrease, while the number of S
features with F1 score > 0.5 increases; results are shown in Figure 7 (right).

Reproducing the occlusion phenomenon in a toy model. Finally, we wanted to know if a disparity
in feature magnitudes alone could lead to the occlusion phenomenon. We constructed a simple toy
model closely based on the empirical setup in the queries of the L10H0 head to test this hypothesis.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

We form synthetic activations a = ui + vj for random pairs i, j ∈ {1, . . . , |Names|}, where
ui,vj ∈ Rdhead are sampled independently from a standard normal distribution centered at
zero, and then ui are rescaled so that their mean norm matches the mean norm of IO fea-
tures in the L10H0 queries, and similarly for vj and S features. We train SAEs on these
activations over a wide grid of hyperparmeters: dictionary sizes in (512, 1024, 2048), `1 reg-
ularization in (0.0125, 0.025, 0.4, 0.5, 1.0, 2.0), batch size in (256, 1024) and learning rate in
(0.001, 0.003, 0.0003). We trained for 1000 epochs, saving checkpoints in a geometric progres-
sion of epochs. Results for the number of high- and low-magnitude features with F1 score ≥ 0.9
discovered are shown in Figure 13 (right); we observe that we easily find one SAE feature per
each high-magnitude ground-truth feature, but it is more difficult to find an SAE feature for each
low-magnitude feature.

However, we note that with lower F1 thresholds, this effect is less pronounced and eventually dis-
appears.

7.17 FEATURE OVER-SPLITTING IN A MIXTURE OF GAUSSIANS TOY MODEL

0 1 2 3 4 5 6 7
L1 regularization (lambda)

87.5

90.0

92.5

95.0

97.5

100.0

102.5

Be
st

 to
ta

l l
os

s (
L2

 +
 la

m
bd

a*
L1

)

SAE class
Ideal 2-feature
Randomized many-feature

Figure 14: Main experiment for our toy model of feature oversplitting. The data distribution is a
uniform mixture of two standard multivariate Gaussian random variables in 100 dimensions. Blue:
the (approximate) best possible total loss (in the infinite data limit) achieved by a class of ‘ideal’
SAEs that use two features pointing towards the means of the two components of the mixture.
Orange: an approximate upper bound on the best possible total loss achieved by an SAE with
m = 1, 000 hidden features (in the infinite data limit). The x-axis is the `1 regularization coefficient
λ. The cutoff on the x-axis is chosen so that the idealized solution activates only for a vanishing
fraction (< 2%) of the examples in the mixture.

Our goal in this section is to demonstrate that there exist setups where an SAE with a large number of
hidden features m� 2, when trained on a uniform mixture of two isotropic gaussian variables, will
prefer a solution with� 2 features (as opposed to the ‘ideal’ solution with only two features, one
per component of the mixture), for any value of the `1 regularization coefficient λ and any amount
of training data.

Setup. We consider a simple toy model where activations are distributed according to a uniform
mixture Dtoy of two isotropic gaussians ±µ + N (0, Id) in Rd (i.e., we first flip a fair coin to
determine the sign of µ, and then sample an extra additive term from N (0, Id)). We sample an
i.i.d. dataset from this mixture. We used d = 100, ‖µ‖2 = 2 in the experiments below; this choice
guarantees that the two components of the mixture are separable with high (> 95%) probability.

The ‘ideal’ solution with 2 features. We might hope that, with the right `1 regularization, an SAE
trained on such a distribution will discover only two interpretable features, one for each component
in the mixture, with the encoder/decoder vectors aligned with µ and −µ respectively, and each
feature activating for (approximately) the examples in its corresponding component.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

We find this is the case empirically when we train an SAE with only two hidden features on this
toy distribution. Specifically, there is a range of λ values 1 ≤ λ ≤ 3 where the SAE reliably
approximately recovers this ideal solution, with the encoder bias controlling the trade-off between
the two loss terms: when λ increases, the encoder bias changes so that fewer examples in each
component of the mixture are activated (and the active examples have a lower `1 loss). Beyond this
range, the SAE often fails to activate any feature on any examples (λ > 3 + ε), or activates both
features on almost all examples (λ < 1− ε).
Analyzing the ideal solution across `1 coefficients. To study the properties of the ‘ideal’ solution
analytically, we make the following assumptions (borne out empirically with 2-feature SAEs) using
only symmetries of the data distribution:

• the decoder vectors are ±µ, normalized to have unit `2 norm (by symmetry of each com-
ponent around its mean);

• the respective encoder vectors are ±kµ for some k > 0 (again by symmetry of each com-
ponent around its mean);

• the decoder bias is zero (by symmetry of the mixture around zero);
• both encoder biases are set to −γ for some γ > 0 (again by symmetry of the mixture

around zero).

This leaves only two parameters to tune: the encoder bias γ and the encoder scale k. We can thus
use the following strategy to analytically approximate the best loss of this class of solutions for a
given λ:

• approximate the expected `1 and `2 losses over a fine grid of values for γ and k, for a large
dataset of samples from the mixture;

• given a λ value, find the point in the grid that minimizes the total loss `2 + λ`1.

We implemented this using 105 samples, with a grid of 100 values for γ in [0, 5] and 20 values for
k in [0, 2], over a grid of 100 values of λ in [0, 20]. We verify that the best values chosen for each
λ are not on the edges of the grid; the resulting curve of best total loss values versus λ is shown in
Figure 14 (blue), cut off at λ ≈ 7, beyond which the selected SAE activates for < 2% of examples
in the components of the mixture.

SAEs withm� 2 features prefer other solutions even with infinite data. Next, we want to show
that with enough features, SAEs will prefer solutions different from the class of 2-feature solutions
described above. How can we give an empirical argument that applies to any amount of training
data and any λ? After all, a trained SAE is a function of the data it is trained on, so no experiment
on datasets of bounded size can establish properties of SAEs trained on arbitrarily large datasets.

We get around this by defining a class of SAEs that is competitive with the class of ideal 2-feature
SAEs upfront, independent of the training sample, by using a randomized construction that works
w.h.p., and then estimating the expected loss of this SAE in the infinite data limit empirically. To
give evidence of our result for arbitrary λ, we consider a fine enough grid of λ values, and for each
λ we construct an SAE that is competitive with the best ideal 2-feature SAE.

Our randomized SAE construction proceeds as follows:

• Sample m encoder vectors Wenc ∈ Rm×d from β ∗ Dtoy (i.e. a version of Dtoy scaled by
β) where β > 0 is a hyperparameter that we will tune;

• Set the decoder vectors Wdec ∈ Rd×m to be the same as the encoder vectors W>enc, but
normalized so that each column of Wdec has unit `2 norm;

• Set all encoder biases to −γ (where γ > 0 is a hyperparameter that we will tune), and the
decoder bias to 0 ∈ Rd.

We used m = 1, 000, a grid of 100 values for β in [0, 0.1] to search for the best β for each λ, and
fixed γ ≈ 2.35.

Empirical confirmation. Finally, we actually trained SAEs with many hidden features on Dtoy,
and observed that these SAEs reliably learned solutions with many active features across λ values.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

7.18 ADDITIONAL DETAILS FOR SECTION 5

Feature weights are mostly in the interval [0, 1]. Recall that given a reconstruction â =
∑
i ui,

we defined the feature weight for the i-th feature as

weight (i) = u>i â/ ‖â‖
2
2 .

For our supervised feature dictionaries, we find that 10% of all weights are negative, and that the
average value of all negative weights across all nodes in the IOI circuit and all three attributes is
−0.037. Similarly, for our task-specific SAE feature dictionaries, even though 31% of all weights
are negative, the average value of all negative weights is −0.002. The number and magnitude of
weights higher than 1 are even smaller.

Causal evaluation using interpretability. While the feature descriptions generated through our
automatic scoring predict well when a feature is active, it is still unclear whether they also have an
interpretable causal role, i.e. whether activating or deactivating a certain feature leads to a change
in output logits that would be expected from the feature’s description. To test this, we propose two
experiments to judge the sufficiency and necessity of our interpreted features that involve patching
activations from a counterfactual prompt and calculating the effect on the model’s output:

• Estimating sufficiency: To estimate sufficiency, we construct SAE activations where we
fix features with a test F1-score smaller than a threshold and patch activations of features
with a high F1-score from the counterfactual prompt. We then calculate reconstructions
of this new SAE activation vector, patch cross-sections, and record whether the model
successfully predicts the correct counterfactual name.

• Estimating necessity: To estimate necessity, we propose a similar experiment where we
fix features with a high test F1-score and patch all remaining features. This intervention
should not change the output logits if our features are complete.

We run this experiment on cross-sections of name mover outputs and repeat this experiment for dif-
ferent thresholds. We observe that for a threshold F1-score of 0.6, the SAE features are both faithful
and complete to a high degree. We observe that the faithfulness metric significantly decreases for
higher F1-scores of 0.7 and 0.8 but remarkably, we also observe that only fixing features with a very
high F1-score of ¿0.8 while patching all other features from the counterfactual prompt is sufficient
to keep the model predicting the base prompt’s output.

7.19 ADDITIONAL FIGURES

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
L10H0 output
L9H6 output
L9H9 output
L10H0 value
L9H6 value
L9H9 value
L10H0 key
L9H6 key
L9H9 key

L10H0 query
L9H6 query
L9H9 query

L8H10 value
L8H6 value
L7H9 value
L7H3 value

L8H10 output
L8H6 output
L7H9 output
L7H3 output
L5H9 output
L5H8 output
L6H9 output
L5H5 output
L3H0 output

L0H10 output
L0H1 output

Du
pli

ca
te

 To
ke

n
Ou

tp
ut

s

Ind
uc

tio
n

Ou
tp

ut
s

S-
Inh

ibi
tio

n
Ou

tp
ut

s

S-
Inh

ibi
tio

n
Va

lue
s

Na
me M

ov
er

Qu
er

ies

Na
me M

ov
er

Ke
ys

Na
me M

ov
er

Va
lue

s

Na
me M

ov
er

Ou
tp

ut
s

IO is 2nd name
IO is 1st name
S is <name>
S is <name> and at 1st position
S is <name> and at 2nd position
IO is <name>
IO is <name> and at 1st position
IO is <name> and at 2nd position
S is male
S is female
<name> is in sentence
<name> is at 1st position
<name> is at 2nd position
current token is <name>
token is <name> and at 1st position
token is <name> and at 2nd position
current token is at 1st position
current token is at 2nd position
current token is female

0 1
233
1068
885
710
720
540
203
83
111
27
36
33
460
360
1176
305
239
434
572
173
25
127
85
146
361
322
839

Interpreted
No good description found
Doesn't activate on IOI

Figure 15: Interpreting the IOI features learned by SAEs trained on OPENWEBTEXT. For each
node in the IOI circuit, we show the distribution of interpretations for the features which have any
interpretation with F1 score above a threshold. The numbers in the right column indicate the num-
ber of features with an assigned interpretation by our method, and the color bars show the overall
distribution of the SAE features (conditioned on the feature not being dead on the SAE training
distribution).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Figure 16: Accuracy for probes for the IO, S and Pos attributes in nodes of the IOI circuit, as we
apply our feature editing methods via either supervised (blue) or task-specific topK SAEs (green).
For each cross-section, we train a probe on each location in this cross-section, and report average
accuracies. The ‘baseline test set accuracy’ is the accuracy of each probe on a test set of activations
w.r.t. the one used to train the probe. We always evaluate probe accuracy w.r.t. the attribute value
we expect to observe in an edit. This means that, for example, if we are editing the IO attribute,
we evaluate the IO probes against the name we are editing to, but the S and Pos probes against the
original values of these attributes.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

(B)NM out

(B)NM qk

(B)NM q

S-I v

S-I out

Ind+DT out

independent mean coupled mean names mean

0 1

(B)NM out

(B)NM qk

(B)NM q

S-I v

S-I out

Ind+DT out

independent MSE

0 1

coupled MSE

0 1

names MSE

Figure 17: Fraction of recovered logit difference for several different methods to compute feature
dictionaries, across cross-sections of the circuit. For a definition of the ‘names’ parametrization, see
Appendix 7.12.

0 2 4

Bias X Bias
Bias X IO

Bias X Pos
Bias X S

IO X Bias
IO X IO

IO X Pos
IO X S

Pos X Bias
Pos X IO

Pos X Pos
Pos X S

S X Bias
S X IO

S X Pos
S X S

Attention to S1

0 2 4

Attention to IO

Figure 18: Attention score decomposition for the L9H6 name mover (see Figure 8 for explanation).
Notice that, in contrast with L10H0 attention socres, there is no significant (inhibitory) interaction
between the IO features in the query and key.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

0 2 4

Bias X Bias
Bias X IO

Bias X Pos
Bias X S

IO X Bias
IO X IO

IO X Pos
IO X S

Pos X Bias
Pos X IO

Pos X Pos
Pos X S

S X Bias
S X IO

S X Pos
S X S

Attention to S1

0 2 4

Attention to IO

Figure 19: Attention score decomposition for the L9H9 name mover (see Figure 8 for explanation).

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Logit Difference Recovered

2

8

32

128

Fe
at

ur
es

 P
er

 E
xa

m
pl

e

Head Class
Name Mover
Backup Name Mover
S-Inhibition
Induction
Duplicate Token

Component
Output
Query
Value
Key

Figure 20: Metrics for our chosen task-specific SAEs for each relevant node in the IOI circuit. The
x-axis shows the absolute value of the difference in logit differences between a clean run of the
model, and a run where the activations at the given node are replaced by the SAE’s reconstructions,
normalized by the difference between the clean logit difference and the logit difference when the
node is mean-ablated instead. The y-axis shows the average number of features active per prompt.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Logit Difference Recovered

0

2

8

32

128

Fe
at

ur
es

 P
er

 E
xa

m
pl

e
Head Class

Name Mover
Backup Name Mover
S-Inhibition
Induction
Duplicate Token

Component
Output
Query
Value
Key

Figure 21: Counterpart to Figure 20 where the decoder vectors are frozen during SAE training.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Test L0 loss

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
 d

ea
d

ne
ur

on
s

component
v--l10h0
v--l9h6
v--l9h9
k--l8h10
k--l8h6
k--l7h9
k--l7h3
z--l10h10
z--l11h9
z--l10h2
z--l11h2
k--l10h10
z--l5h5
z--l10h1
z--l9h7
z--l9h0
q--l9h0
z--l10h0
q--l9h6

z--l9h6
q--l9h9
z--l9h9
v--l8h10
z--l5h9
v--l8h6
z--l5h8
k--l11h9
v--l7h9
z--l6h9
k--l11h2
v--l7h3
k--l10h1
k--l10h2
q--l9h7
q--l11h9
q--l8h6
k--l9h7
q--l11h2
k--l9h0

z--l8h10
q--l10h10
z--l8h6
k--l10h0
q--l10h2
z--l7h9
k--l9h6
z--l7h3
q--l10h1
k--l9h9
z--l0h10
z--l3h0
q--l10h0
z--l0h1
Loss Recovered
0.30
0.45
0.60
0.75
0.90

Figure 22: `0 loss versus fraction of dead neurons for our full-distribution SAEs.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Test loss recovered

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Te
st

 L
0

lo
ss

v--l10h0
v--l9h6
v--l9h9
k--l8h10
k--l8h6
k--l7h9
k--l7h3
z--l10h10
z--l11h9
z--l10h2
z--l11h2
k--l10h10
z--l5h5
z--l10h1
z--l9h7
z--l9h0
q--l9h0
z--l10h0

q--l9h6
z--l9h6
q--l9h9
z--l9h9
v--l8h10
z--l5h9
v--l8h6
z--l5h8
k--l11h9
v--l7h9
z--l6h9
k--l11h2
v--l7h3
k--l10h1
k--l10h2
q--l9h7
q--l11h9
q--l8h6

k--l9h7
q--l11h2
k--l9h0
z--l8h10
q--l10h10
z--l8h6
k--l10h0
q--l10h2
z--l7h9
k--l9h6
z--l7h3
q--l10h1
k--l9h9
z--l0h10
z--l3h0
q--l10h0
z--l0h1

Figure 23: `0 loss versus loss recovered (against a mean ablation) for our full-distribution SAEs.

5 4 3 2 1 0 1

IO in (B)NM out
Pos in (B)NM q

Pos in (B)NM qk
Pos in Ind+DT out

Pos in S-I out
Pos in S-I v

S in (B)NM q
S in (B)NM qk

S in Ind+DT out
S in S-I out

S in S-I v

Intervention
Edit 2
Edit 4
Edit 6

Figure 24: Distribution of the average feature weight removed by our interpretation-agnostic edits
using SAE feature dictionaries, over all locations in a given cross-section, normalized by the cor-
responding weight for the supervised feature dictionaries. Weight removed values are transformed
linearly so that a value of 0 indicates that the weight removed by the edit equals the weight re-
moved by the corresponding ‘ground truth’ supervised edit; and a value of 1 indicates that the edit
removed a total weight of 1, meaning that the edit essentially overwrites all SAE features present in
the activation. Negative values are clipped at −5 to preserve readability.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

5 4 3 2 1 0 1

IO in (B)NM out
Pos in (B)NM q

Pos in (B)NM qk
Pos in Ind+DT out

Pos in S-I out
Pos in S-I v

S in (B)NM q
S in (B)NM qk

S in Ind+DT out
S in S-I out

S in S-I v

Intervention
Edit 8
Edit 16
Edit 32
Edit 64

Figure 25: Counterpart of Figure 24 for full-distribution SAEs, when editing using features with
high F1 score for the attribute

IO in
 (B

)NM ou
t

Pos
 in

 (B
)NM q

Pos
 in

 (B
)NM qk

Pos
 in

 In
d+

DT o
ut

Pos
 in

 S-
I o

ut

Pos
 in

 S-
I v

S i
n (

B)NM q

S i
n (

B)NM qk

S i
n I

nd
+DT o

ut

S i
n S

-I o
ut

S i
n S

-I v
0.0

0.2

0.4

0.6

0.8

1.0

Intervention
No intervention
Edit 2
Edit 4
Edit 6
Supervised edit

Figure 26: Counterpart to Figure 28, where the decoder vectors are frozen during SAE training.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

IO in
 (B

)NM ou
t

Pos
 in

 (B
)NM q

Pos
 in

 (B
)NM qk

Pos
 in

 In
d+

DT o
ut

Pos
 in

 S-
I o

ut

Pos
 in

 S-
I v

S i
n (

B)NM q

S i
n (

B)NM qk

S i
n I

nd
+DT o

ut

S i
n S

-I o
ut

S i
n S

-I v
0.0

0.2

0.4

0.6

0.8

1.0

Intervention
No intervention
Edit 4
Edit 8
Edit 16
Edit 32
Supervised edit

Figure 27: Counterpart to Figure 28, where we use full-distribution SAEs instead. Here, we need to
change a much higher number of features in order to have a noticeable effect (and sometimes editing
even 32 features fails)

IO in
 (B

)NM ou
t

Pos
 in

 (B
)NM q

Pos
 in

 (B
)NM qk

Pos
 in

 In
d+

DT o
ut

Pos
 in

 S-
I o

ut

Pos
 in

 S-
I v

S i
n (

B)NM q

S i
n (

B)NM qk

S i
n I

nd
+DT o

ut

S i
n S

-I o
ut

S i
n S

-I v
0.0

0.2

0.4

0.6

0.8

1.0

Intervention
No intervention
Edit 2
Edit 4
Edit 6
Supervised edit

Figure 28: Accuracy when editing IO, S and Pos for circuit cross-sections using our supervised
feature dictionaries and task-specific SAEs; the outcome in the absence of intervention is shown
in blue for reference. When using task-specific SAEs, we edit either 2, 4 or 6 features (which
means we in total add and/or remove up to that many features from activations). For comparison,
supervised edits always involve removing 1 feature and adding 1 feature. Accuracy is measured as
the proportion of examples for which the model’s prediction agrees with the ground-truth prediction
for the edit; see Section ?? and Appendix 7.5 for details.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

L10H0 output
L9H6 output
L9H9 output
L10H0 keys
L9H6 keys
L9H9 keys

L10H0 query
L9H6 query
L9H9 query

L8H10 value
L8H6 value
L7H9 value
L7H3 value

L8H10 output
L8H6 output
L7H9 output
L7H3 output
L5H9 output
L5H8 output
L6H9 output
L5H5 output
L3H0 output

L0H10 output
L0H1 output

Du
pli

ca
te

 To
ke

n
Ou

tp
ut

s

Ind
uc

tio
n

Ou
tp

ut
s

S-
Inh

ibi
tio

n
Ou

tp
ut

s

S-
Inh

ibi
tio

n
Va

lue
s

Na
me M

ov
er

Qu
er

ies

Na
me M

ov
er

Ke
ys

Na
me M

ov
er

Ou
tp

ut
s

IO is 2nd name
IO is 1st name
S is <name>
S is <name> and at 1st position
S is <name> and at 2nd position
IO is <name>
IO is <name> and at 1st position
IO is <name> and at 2nd position
S is male
S is female
IO is male
IO is female
<name> is in sentence
current token is <name>
token is <name> and at 1st position
token is <name> and at 2nd position
current token is male
current token is female
template

Figure 29: Interpreting the features learned by the task SAEs. For each node in the main IOI circuit
(without backup/negative name movers), we show the distribution of the features which have an
explanation with F1 score above a threshold. The SAE chosen at each node is the one with the most
interpretable features out of all SAEs trained on this node during our hyperparameter sweep.

L10H0 output
L9H6 output
L9H9 output
L10H0 keys
L9H6 keys
L9H9 keys

L10H0 query
L9H6 query
L9H9 query

L8H10 value
L8H6 value
L7H9 value
L7H3 value

L8H10 output
L8H6 output
L7H9 output
L7H3 output
L5H9 output
L5H8 output
L6H9 output
L5H5 output
L3H0 output

L0H10 output
L0H1 output

Du
pli

ca
te

 To
ke

n
Ou

tp
ut

s

Ind
uc

tio
n

Ou
tp

ut
s

S-
Inh

ibi
tio

n
Ou

tp
ut

s

S-
Inh

ibi
tio

n
Va

lue
s

Na
me M

ov
er

Qu
er

ies

Na
me M

ov
er

Ke
ys

Na
me M

ov
er

Ou
tp

ut
s

IO is 2nd name
IO is 1st name
S is <name>
S is <name> and at 1st position
S is <name> and at 2nd position
IO is <name>
IO is <name> and at 1st position
IO is <name> and at 2nd position
S is male
S is female
IO is male
IO is female
<name> is in sentence
current token is <name>
token is <name> and at 1st position
token is <name> and at 2nd position
current token is male
current token is female
template

Figure 30: Interpreting the features learned by the task SAEs. This is a counterpart to Figure 29 for
the SAEs chosen based on the `0 and logit difference recovered metrics.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

IO in
 (B

)NM ou
t

Pos
 in

 (B
)NM q

Pos
 in

 (B
)NM qk

Pos
 in

 In
d+

DT o
ut

Pos
 in

 S-
I o

ut

Pos
 in

 S-
I v

S i
n (

B)NM q

S i
n (

B)NM qk

S i
n I

nd
+DT o

ut

S i
n S

-I o
ut

S i
n S

-I v
0.0

0.2

0.4

0.6

0.8

1.0

Intervention
No intervention
Edit 2
Edit 4
Edit 6
Supervised edit

Figure 31: Interpretation-aware sparse control, using task SAE features with the highest F1 score
with respect to the given attribute.

IO in
 (B

)NM ou
t

Pos
 in

 (B
)NM q

Pos
 in

 (B
)NM qk

Pos
 in

 In
d+

DT o
ut

Pos
 in

 S-
I o

ut

Pos
 in

 S-
I v

S i
n (

B)NM q

S i
n (

B)NM qk

S i
n I

nd
+DT o

ut

S i
n S

-I o
ut

S i
n S

-I v
0.0

0.2

0.4

0.6

0.8

1.0

Intervention
No intervention
Edit 8
Edit 16
Edit 32
Edit 64
Supervised edit

Figure 32: Counterpart of Figure 31 with full-distribution SAEs.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Ind+DT out S-I v S-I out (B)NM q (B)NM qk (B)NM out0.0

0.2

0.4

0.6

0.8

1.0

Intervention
Keep only features with F1 0.0
Keep only features with F1 0.2
Keep only features with F1 0.4
Keep only features with F1 0.6
Keep only features with F1 0.8

Figure 33: Measuring the sufficiency of interpretable features for task SAEs: effect of subtracting
features with the lowest F1 score from activations on logit difference. A value of 1 is best.

Ind+DT out S-I v S-I out (B)NM q (B)NM qk (B)NM out0.0

0.2

0.4

0.6

0.8

1.0

Intervention
Remove features with F1 0.0
Remove features with F1 0.2
Remove features with F1 0.4
Remove features with F1 0.6
Remove features with F1 0.8

Figure 34: Measuring the necessity of interpretable features for task SAEs: effect of removing
features with the highest F1 score from activations on the logit difference. Values are rescaled
linearly so that a value of 1 corresponds to perfect recovery of the logit difference achieved by mean
ablation (i.e., ideal intervention removing all features). A value of 1 is best.

49

	Introduction
	Related Work
	Preliminaries
	Computing and Evaluating Supervised Feature Dictionaries
	Parametrizing the IOI Task via Attributes
	Computing Supervised Feature Dictionaries
	Evaluating Supervised Feature Dictionaries

	Evaluating Sparse Autoencoders
	SAE Training Methodology
	Challenges in SAE Evaluation
	Sufficiency/Necessity
	Sparse Control via SAE Latents
	Interpretability

	Discussion, Limitations and Conclusion
	Appendix
	Generalizing our methods to other models, distributions, and tasks
	The greater-than task
	The `both' task

	Qualitative Phenomena in SAE Learning
	Feature Occlusion
	Feature Over-splitting

	Additional details on the IOI circuit
	F1 score notes
	Additional details for Section 4.3
	Dataset, Model and Evaluation Details for the IOI Task
	Properties of mean feature dictionaries
	Mean features are zero for non-linearly-represented attributes.

	Definition and Properties of MSE Feature Dictionaries
	MSE feature dictionaries as a multivariate least-squares regression problem.
	MSE feature dictionaries as averaging over examples.
	MSE feature dictionaries with independent attributes.

	Feature-level mechanistic analyses for Section 4.3
	Alternative parametrizations for the IOI task
	Comparing the coupled and independent parametrizations
	The coupled parametrization captures the independent one
	Other parametrizations expressible by the coupled parametrization.
	Editing methodology with the coupled parametrization.

	On Possible Feature Dictionaries for the IOI Task
	Details for training Sparse Autoencoders
	Vanilla Task SAEs
	Additional Task SAE Variants: Gated and topK
	Full-distribution SAEs

	Additional notes on methodology for SAE interpretability
	Additional observations on SAE latent interpretations
	Feature occlusion details
	Feature over-splitting in a mixture of gaussians toy model
	Additional details for Section 5
	Additional figures

