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DEMOGRASP: UNIVERSAL DEXTEROUS GRASPING
FROM A SINGLE DEMONSTRATION
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Figure 1: DemoGrasp is a framework for learning universal dexterous grasping policies via reinforce-
ment learning (RL) augmented with a single demonstration. It achieves state-of-the-art performance
across diverse robotic hand embodiments and transfers effectively to real robots, demonstrating strong
generalization.

ABSTRACT

Universal grasping with multi-fingered dexterous hands is a fundamental challenge
in robotic manipulation. While recent approaches successfully learn closed-loop
grasping policies using reinforcement learning (RL), the inherent difficulty of
high-dimensional, long-horizon exploration necessitates complex reward and cur-
riculum design, often resulting in suboptimal solutions across diverse objects. We
propose DemoGrasp, a simple yet effective method for learning universal dexterous
grasping. We start from a single successful demonstration of grasping a specific
object and adapt to novel objects and poses by editing the robot actions in this
demonstration: changing the wrist pose determines where to grasp, and changing
the hand joint angles determines ow to grasp. We formulate this trajectory editing
as a single-step Markov Decision Process (MDP) and use RL to optimize a univer-
sal policy across hundreds of objects in parallel in simulation, with a simple reward
combining binary success and a robot—table collision penalty. To enable real-world
deployment, we collect rollouts using the trained RL policy with rendered images
in simulation and apply imitation learning to obtain a closed-loop vision-based
policy. In simulation, DemoGrasp achieves a 95% success rate on DexGraspNet
objects using the Shadow Hand, outperforming previous state-of-the-art methods.
It also shows strong transferability, achieving an average success rate of 84.6%
across diverse dexterous hand embodiments on six unseen object datasets, while
being trained on only 175 objects. In real-world tests, our vision-based policy
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successfully grasps 110 unseen objects, including small, thin items. It generalizes
to spatial, background, and lighting changes, supports both RGB and depth inputs,
and extends to language-guided grasping in cluttered scenes. Videos are available
on our project page: https://research.beingbeyond.com/demograsp.

1 INTRODUCTION

Universal dexterous grasping (Bicchil 2000; [Duan et al., [2021) is a fundamental capability for real-
world robots. The anthropomorphic design of dexterous robotic hands makes them the most suitable
manipulators for real-world manipulation tasks, such as tool use, in-hand reorientation, and bimanual
coordination. Universal grasping is therefore an essential prerequisite for enabling these sophisticated
interactions. Though basic in concept, learning universal dexterous grasping policies remains far
from simple. The high-dimensional action space introduced by dexterous hands with many degrees of
freedom (DoFs), together with the long-horizon nature of closed-loop grasping, imposes substantial
exploration challenges for reinforcement learning (RL). At the same time, the diverse geometries of
objects make universal dexterous grasping a multi-task optimization problem, introducing additional
difficulties such as catastrophic forgetting (Kirkpatrick et al., 2017;[Schwarz et al.; 2018) and gradient
interference (Teh et al.,[2017;|Yu et al., [2020).

Recent studies have extensively investigated the use of RL for training universal dexterous grasping
policies. Xu et al.| (2023); Wan et al.| (2023)); Zhang et al.| (2025b); |Chen et al.| (2025b) introduce
techniques in observation feature design, dense reward shaping, and curriculum learning strategies to
facilitate policy learning. UniDexGrasp++ (Wan et al.l 2023 employs an iterative distillation process
to improve teacher—student learning. ResDex (Huang et al. 2025) introduces a two-stage residual RL
framework to accelerate multi-task exploration. UniGraspTransformer (Wang et al., [2025) proposes
exhaustive RL on individual objects and distillation with expressive Transformer policies to bypass
multi-task RL. However, many of these approaches train on hands without robot arms (Xu et al.,
2023; Wan et al., 2023), use privileged contact information as observations (Wan et al., [2023; |Huang
et al.|2025), and face a trade-off between collision penalties and other complex reward terms (Xu
et al.,|2023; [Huang et al.} [2025)), limiting their potential for deployment on real robots. [Singh et al.
(2024); Zhang et al.| (2025b) achieve sim-to-real on a wide variety of objects but still fall short on
grasping small, thin objects in tabletop settings. In addition, their reliance on complicated observation
design, reward shaping, and multi-stage pipelines increases the barrier to extending these methods to
new embodiments and task settings.

In this research, we propose DemoGrasp, a simple yet powerful framework for universal dexterous
grasping that addresses these challenges. Our key insight is that a single demonstration trajectory
of grasping a specific object encodes many transferable patterns for universal grasping, such as
approaching the object’s grasp center, squeezing the hand pose, and lifting the wrist. To grasp various
objects in different poses, we can slightly modify the robot actions within this trajectory and replay
the edited actions. For example, to grasp the same object at a different location, we can apply a
transformation to the wrist poses in the trajectory, changing where to grasp; to grasp a larger object at
the same position, we adjust the grasp poses to be more open, changing how to grasp. In our method,
the RL policy explores how to edit the demonstration along these two axes, rather than exploring in
the low-level robot action space as in prior methods (Xu et al., [2023; [Wang et al., 2025} [Zhang et al.|
2025b), resulting in more efficient trial-and-error.

Specifically, we formulate the demonstration-editing task as a single-step Markov Decision Process
(MDP). At each trial, given an arbitrary object placed at a random position, the policy outputs an
SE(3) transformation and delta hand joint angles, which are used to modify the end-effector poses and
hand actions in the demonstration. The edited demonstration is then replayed in simulation, yielding
a reward for the whole episode. By restricting the policy to a compact action space and a single-step
decision-making horizon, the multi-task exploration burden is significantly reduced, removing the
need for complex reward shaping. This enables us to effectively train a universal grasping policy on
hundreds or thousands of objects by optimizing a simple combination of binary success reward and a
collision penalty. We observe that this design yields both superior performance in simulation and easy
sim-to-real transfer with minimal collisions. We train a flow-matching (Lipman et al.|[2022)) policy
on successful rollouts of the learned policy with rendered camera images in simulation, enabling
zero-shot deployment on a real robot. Figure 2] provides an overview of our approach.
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Figure 2: DemoGrasp uses a single demonstration trajectory to learn universal dexterous grasping,
formulating each grasping trial as a demonstration-editing process. For each trial, the Demo Editor
policy takes observations at the first timestep and outputs an end-effector transformation and a
delta hand pose. The actions in the demonstration are then transformed accordingly and applied in
the simulator. The policy is trained using RL across diverse objects, optimizing a simple reward
consisting of binary success and a collision penalty. A flow-matching policy is trained on successful
rollouts with rendered images to enable sim-to-real transfer.

We conduct large-scale experiments in both simulation and the real world to evaluate DemoGrasp.
On 3.4K objects from DexGraspNet (Wang et al, 2023), DemoGrasp achieves success rates of
95% in state-based settings and 92% in vision-based settings, surpassing previous state-of-the-art
method (Wang et al.,[2025) by a large margin. DemoGrasp also exhibits strong transferability to a
wide variety of robotic embodiments and generalization to unseen object categories. Trained on 175
objects, the policies achieve an average success rate of 84.6% on six unseen object datasets across
various embodiments, including dexterous hands with different numbers of fingers, grippers, and
arm-hand systems. In real-world experiments, DemoGrasp achieves a success rate of 86.5% on 110
unseen objects, covering a wide variety of geometries and visual appearances. For normal-sized
objects, it achieves a superior success rate of 95.3%. Benefiting from the simple reward design, the
policy is, to our knowledge, the first to grasp previously unseen small, thin objects in tabletop settings
without severe collisions, achieving a success rate of 71.1%. DemoGrasp also exhibits generalization
to spatial, background, and lighting changes, and is extensible to various camera configurations (RGB
and depth) and cluttered scenes, underscoring its practical applicability.

Our contributions are summarized as follows:

* We propose DemoGrasp, a simple yet powerful learning framework that addresses key
challenges in learning universal dexterous grasping policies. With a novel formulation
of demonstration editing and single-step RL, DemoGrasp enables robust policy learning,
minimal reliance on reward shaping, and sim-to-real transferability.

* DemoGrasp achieves state-of-the-art performance in large-scale evaluations in both simula-
tion and the real world, demonstrating strong capability in grasping unseen objects.

* We demonstrate the strong extensibility of DemoGrasp to novel embodiments, camera
configurations, and cluttered scenes, establishing a foundation for future research and
applications in dexterous manipulation.

2 METHOD

2.1 PROBLEM FORMULATION

We consider grasping an arbitrary object from a large object set in tabletop settings. The task
is formulated as a partially observable Markov Decision Process (MDP) (Kaelbling et al.| [1998).
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Specifically, at each timestep ¢, the observation comprises the hand joint angles ¢'*4, the 6D pose
of the end-effector (wrist) p¢©, the 6D pose of the object po™!, and a full object point cloud ¢

describing its geometry; the action comprises target hand joint angles ¢i'*"4 and the target end-effector

pose p;° for the PD controller. The objective is to learn a universal state-based policy

and
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that maximizes the expected cumulative reward E [ZtT:_Ol vtrt} across objects, where 7; denotes a

task reward encouraging successful grasping, 7" is the time limit, and -y is the discount factor. Since
solving this multi-step MDP directly is challenging, we present our techniques in the following
subsections, with the final formulation as a single-step MDP in Section[2.3]

To enable sim-to-real transfer — where object poses and full object point clouds are not observable
on hardware — we follow common approaches (Singh et al.||[2024;|Zhang et al., 2025b)) that train a
vision-based policy

vision ( shand see hand |, ee
™ (Qt 7pt ‘qt apt 7Ut)

to imitate the learned state-based policy, where v, denotes visual input (e.g., RGB images, depth
images, or partial point clouds).

2.2 DEMONSTRATION EDITING

The high-dimensional actions, long task horizons, and multi-task nature of training on all objects
in the formulated MDP pose significant challenges for RL exploration. We propose using a single
demonstration to facilitate exploration.

The demonstration is a trajectory of a successful grasp for a specific object in the simulator, which
can be acquired either by teleoperation in the simulator or by executing a hard-coded robot action
sequence. We define the initial object frame as a static coordinate frame obtained by translating
the world frame to the object’s geometric center at the first timestep of the demonstration. We then
represent the robot actions in the demonstration in this frame:

D= {(q:hand, p;kee—obj) tT:DOa

where ¢;"*14 denotes the target hand joint angles and p; c-obi denotes the target 6D end-effector pose

expressed in the initial object frame. Intuitively, {g;?#"%} forms a hand-pose sequence from open to

close, and {p;°“°"} is an end-effector trajectory that first approaches the object center (the origin of

the initial object frame) and then lifts.

For an arbitrary object placed at any position in the simulator, we can attempt to grasp it by simply
replaying this demonstration in an open-loop manner: (1) first, set the hand action to ¢;***¢ and
move the end effector to p;°°°" under the new initial object frame via motion planning, aligning
the robot’s pose (in that frame) with the first step of the demonstration; (2) then, for each timestep
t=1,---,TP, set the hand action to ¢;"*? and transform p}°*°™ back to the world frame as the
end-effector’s target pose in the world frame. This replay mechanism, which reuses the same hand
grasp poses and wrist approach directions for all objects, already achieves non-trivial success rates

when evaluated across all objects (see Table [8).

Universal grasping necessitates more flexibility in motion patterns than replaying a single predefined
trajectory. For example, for large objects with different graspable parts, or thin, slippery objects

that require the fingers to reach under the object, the end-effector pose sequence { Py ee'Obj} should

be adjusted to change where to grasp. For objects with varied sizes and geometric features, the
hand action sequence {q;‘hand} should be adjusted to change how fo grasp. Hence, we introduce
parameters for demonstration editing to adapt the demonstration to diverse objects. The parameters
consist of an end-effector transformation matrix 7°° € SE(3) and delta joint angles for the hand
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Aq¢©. Robot actions in the demonstration are then modified as:

*ee-obj
p*/ee—obj _ ree by ) t < T, (1)
i - I Az1,* ee-obj .
[§ 8% proc ™, otherwise,
+hand G _ *hand
*hand + ( «hand __ *hand) qu.t + Aq 9o < T
q*'hand _J% qt 9o q*hand q*hand ) = Llift, )
t B Tuge 10
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T > otherwise.

Here, Ti;s, denotes the first timestep at which the object’s z-position increases (i.e., it begins to be
lifted) in the demonstration. Az is a constant vector in the z direction that lifts the object vertically
after Tj;¢. End-effector target poses are modified by applying the transformation 7°°° in the initial
object frame, changing the approach direction and offset toward the object center. Hand actions at
each timestep are modified by interpolating between the initial open pose qa‘hand and the modified

grasp pose q}ﬁiﬂd + AqY; the interpolation ratio is applied elementwise.

We denote the edited demonstration as D’ = Edit(D, T, Aq®). By varying T°® and Aq® and
replaying D’ in simulation, the robot executes diverse, smooth action sequences that grasp the
object at different positions, orientations, and hand poses, yielding an effective exploration scheme
Jor universal grasping.

2.3 SINGLE-STEP REINFORCEMENT LEARNING

MDP reformulation. Given the grasp exploration scheme via demonstration editing, we reformulate
the task as a single-step MDP: the policy outputs a single action specifying the editing parameters,
after which the edited demonstration is replayed in the environment for a maximum of 7" timesteps,
and the environment returns a reward for the whole episode. Formally, the observation comprises
the initial end-effector 6D pose pg°, the initial object pose pg™, and the full object point cloud 3.
The action consists of the end-effector transformation 7°¢ and the delta hand grasp pose A¢® used
for demonstration editing. The transition replays the edited demonstration D’ and then terminates.
The policy 7(T°¢, AqS | pge, po, 3?1 aims to maximize the expected single-step reward E[r]. In
implementation, we represent end-effector rotations as quaternions in the observation space and as
Euler angles in the action space, yielding a compact representation.

Reward design. With the compact, low-dimensional action space and the short horizon introduced
by the one-step MDP, the exploration challenge is significantly mitigated, making complicated
reward engineering unnecessary. We therefore use a simple reward that comprises grasp success and
robot—table collisions, focusing the policy on collision-free grasping:

r = 1[success| - 1[no collision during execution] . 3)

However, grasping flat objects on the table sometimes requires slight contact with the surface so that
the fingers can reach underneath the object. The strict collision-free objective may prevent success in
these cases. To address this, we leverage IsaacGym’s parallel simulation (Makoviychuk et al., [2021)
to optimize across all objects simultaneously and randomly disable robot—table collision detection
in half of the environments, allowing hand-table penetration. In the reward, collisions are assessed
via penetration of hand keypoints into the table. This design yields: (1) collision-free successful
grasps achieve E[r] = 1; (2) successful grasps with robot—table contact receive E[r] = 0.5; and (3)
failures receive E[r] = 0. This encourages the policy to avoid unnecessary collisions while permitting
minimal contact when beneficial for hard-to-grasp objects.

2.4  VISION-BASED SIM-TO-REAL

After training the RL policy, we train a vision-based policy on its successful rollouts to enable
sim-to-real transfer. We record robot proprioception (hand joint angles and end-effector poses), robot
actions, and rendered RGB or depth images from successful rollouts to form a dataset. We then train
a Flow-Matching (Lipman et al.,[2022) policy with action chunking for imitation learning, modeling
the multi-modal action distribution with high quality. To close the visual sim-to-real gap, we perform
domain randomization of colors, textures, lighting conditions, camera extrinsics, and table positions
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Table 1: Success rates on DexGraspNet with the Shadow Hand in simulation. Results are reported
for both state-based and vision-based settings on 3,200 training objects (Train.), 141 unseen objects
from seen categories (Test Seen Cat.), and 100 unseen objects from unseen categories (Test Unseen
Cat.).

\ State-Based Setting (%) Vision-Based Setting (%)

Method Trai Test. Test. Trai Test. Test.
T4l geen Cat.  Unseen Cat. T4l geen Cat.  Unseen Cat.

UniDexGrasp 79.4 74.3 70.8 73.7 68.6 65.1

UniDexGrasp++ 87.9 84.3 83.1 85.4 79.6 76.7

UniGraspTransformer | 91.2 89.2 88.3 88.9 87.3 86.8

DemoGrasp \ 95.2 95.5 94.4 \ 92.2 92.3 90.1

during data collection, and we finetune a pre-trained ViT (Dosovitskiy et al.,[2021) encoder for the
visual representation. Further implementation details are provided in Appendix

3  EXPERIMENTS

Our experiments aim to evaluate: (1) the performance and scalability of our method through large-
scale simulation with diverse object datasets and dexterous hand embodiments (Sections [3.2]and [3.3));
(2) the sim-to-real performance of our method through real-world experiments with a wide variety of
objects (Section[3.4); and (3) an analysis of the components of the proposed method (Section [3.5).

3.1 EXPERIMENTAL SETTINGS

Simulation. We use IsaacGym (Makoviychuk et al.;|2021) as the training and evaluation platform
for all simulation experiments. For evaluations on DexGraspNet (Wang et al., 2023)) with the Shadow
Hand (Section [3.2)), we train on 3,200 objects from the DexGraspNet training set to align with
baseline settings. In all remaining sections, unless otherwise specified, we randomly sample 175
objects from the YCB dataset (Calli et al., |2015) and the DexGraspNet training set for training,
and test on unseen objects from other datasets. For both training and evaluation, we randomize the
object’s initial position within a 50 cm x 50 cm region to ensure spatial generalization of the policy.
A trial is considered successful if the object’s center is raised at least 10 cm above its original position
and the average distance between the object’s center and hand keypoints is less than 12 cm after the
policy executes for a fixed number of steps.

Real robot. We use a 6-DoF Inspire Hand (6 active and 6 passive joints) mounted on a 7-DoF Franka
Research 3 (FR3) robot arm for real-world experiments. Two RealSense D435i cameras are used to
evaluate vision-based policies with either RGB or depth input, placed at two diagonal sides of the
table. In simulation, the camera intrinsics match those of the real cameras, and the camera extrinsics
are randomized around the calibrated real-camera extrinsics. Figure[T2]shows the hardware setup and
the camera views.

3.2 RESULTS ON DEXGRASPNET

DexGraspNet (Wang et al.| [2023) is a widely used dataset for studying universal dexterous grasp-
ing. We follow the settings of previous state-of-the-art methods—UniDexGrasp (Xu et al., [2023)),
UniDexGrasp++ (Wan et al., [2023)), and UniGraspTransformer (Wang et al., |2025)—training the
18-DoF Shadow Hand with a 6-DoF floating wrist on the training set of 3,200 objects. Table|[T|reports
grasp success rates for DemoGrasp and prior methods. DemoGrasp surpasses the best baseline by 5%
in state-based settings and 4% in vision-based settings on both training and test sets, and exhibits a
minimal generalization gap of 1% between training and unseen objects, demonstrating strong learning
and generalization performance.

Notably, the baseline methods do not randomize object initial positions, whereas our method is trained
and tested with a large reset region of 50 cm x 50 cm, posing a challenge for spatial generalization.
Benefiting from the translation invariance of our demonstration-replay mechanism (i.e., replaying a



Published as a conference paper at ICLR 2026

Table 2: Success rates across unseen datasets in simulation using the Allegro Hand mounted on
a URS arm.

Datasel | G4 EGAD  Omni6DPose ModelNetd0  VisualDexterity
Method

RobustDexGrasp ‘ 64.40 9345 73.00 75.70 92.50
DemoGrasp | 74.40  96.75 82.24 75.58 97.80

demonstration for the same object at different initial locations leads to the same grasp outcome), spatial
randomization does not hinder RL exploration in our method, yielding strong spatial generalization.
In addition, while baselines rely on complex reward designs (e.g., hand—object distance, object-lift,
and hand-lift terms) to facilitate RL, our method uses a simple binary reward, highlighting the
simplicity and effectiveness of our approach.

3.3 SCALABILITY AND GENERALIZATION

Previous research on tabletop dexterous grasping has typically evaluated a narrow set of datasets
and a specific dexterous hand, leaving method scalability largely unassessed. |[Zhong et al.[(2025b)
find that existing datasets, such as DexGraspNet, do not span the breadth of real-world graspable
objects. Therefore, we conduct cross-dataset zero-shot tests to evaluate the generalization of universal
grasping policies. We train the policy on 175 objects—75 randomly sampled from YCB (Calli et al.,
2015) and 100 randomly sampled from the DexGraspNet training set (Wang et al., 2023))—and test
on five out-of-distribution datasets: DGA (Zhong et al.| [2025b), EGAD (Morrison et al., [2020)),
Omni6DPose (Zhang et al.| [2024b), ModelNet40 (Wu et al., 2015)), and Visual Dexterity (Chen et al.,
2023)). For Omni6DPose and ModelNet40, which consist of larger objects, we randomly scale objects
to sizes between 6 cm and 15 cm for testing. A snapshot of objects from each dataset is provided in

Figure[6]

We evaluate DemoGrasp on various robotic hands without hyperparameter tuning, assessing its
cross-embodiment universality. For the Allegro Hand mounted on a URS arm, we compare against
the RobustDexGrasp (Zhang et al., 2025b) policy. Although trained on different object datasets, the
test sets are unseen for both methods and thus form a fair comparison, since both aim at universal
grasping over arbitrary objects. As shown in Table 2] DemoGrasp matches RobustDexGrasp on
ModelNet40 and surpasses it on the other four datasets, demonstrating the strong generalizability of
the DemoGrasp policy.

We further extend the evaluation to various
embodiments from Ding et al.| (2024), in-
cluding five-fingered hands (Inspire Hand,
Shadow Hand, and Schunk SVH Hand),
the four-fingered Allegro Hand, the three-
fingered DClaw gripper, and a parallel grip-
per. Figure 3] visualizes results for all hands
on the test datasets, and the quantitative
results are reported in Table[I0] All multi-
fingered hands achieve > 90% success on
the 175 training objects and generalize to
unseen datasets with an average success rate
of 84.6%, indicating that our method ex- ModelNerss  edtert
tends easily to different hands rather than [61.2-80.1%] (83.5-50.1%]
overfitting to a particular hand. Notably,

all six hands are mounted on robot arms; Figure 3: Success rates of DemoGrasp for various
together with the collision-free training robotic embodiments across all test datasets.
objective, this makes the trained policies more likely to succeed in sim-to-real deployment compared
with prior work using floating-wrist hands. Our results show that the Shadow Hand mounted on an
arm (FR3+Shadow) underperforms the floating Shadow Hand (Shadow) by only 1.4% on average
across the test sets, indicating that adding a robot arm does not harm performance. FR3+Gripper
performs worse on EGAD and DGA, because the Panda gripper’s limited stroke hinders grasping
wide or large objects; in contrast, all multi-fingered hands achieve high success rates on EGAD.

EGAD DGA
[49.4-97.9%)] [30.7-79.3%]

—e— FR3 + Inspire
URS5 + Allegro

—— FR3 + DClaw

—e— Shadow

—— FR3 + Shadow

—e— UR5 + Schunk
FR3 + Gripper

DexGraspNet
nseen Cat.)
81.1-97.5%]
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3.4 REAL-WORLD EXPERIMENTS

We evaluate the vision-based policies on a real robot using 110 unseen real-world objects to assess
generalization and sim-to-real performance. Images of all objects are shown in Figure[5] For each
trial, we randomize the initial object orientations and positions within a 50 cm x 50 cm region and
count success when the object is lifted and held for two seconds. Table [3|reports the success rates
of DemoGrasp using two RGB views across different categories of real-world objects. It achieves
an average success rate of 95.3% on normal-sized objects—including everyday items of various
shapes, deformable objects, and irregular geometries—demonstrating strong generalization. For
flat, thin objects (thickness < 1.5 cm), it achieves 68.3%; for small objects (diameter < 3.5cm),
it achieves 76.7%, demonstrating successful sim-to-real on these challenging tabletop grasping
scenarios. Figure|/|illustrates trajectories in real-world tests, showing that DemoGrasp can achieve
collision-free grasps for normal-sized objects, appropriately leverage finger—table contact to grasp
small, thin objects, and exhibit regrasp behaviors to recover from failures in a closed-loop manner.

DemoGrasp is also extensible to more advanced grasping tasks, such as cluttered grasping and
instruction-following, by including random distractor objects and automatically generated language
descriptions during vision-based data collection in simulation. We evaluate the policies in both
simulation and the real world. In simulation, we test on randomly sampled cluttered scenes; in the
real world, we test on 10 cluttered scenes, each consisting of 5-8 randomly selected objects. Table ]
reports their success rates. The unconditional policy (Any-DemoGrasp) counts success when it
grasps any object from the clutter, whereas the language-conditioned policy (Instruct-DemoGrasp)
counts success when it grasps the object specified by the instruction. Both policies achieve >80%
success in both simulation and the real world, highlighting the robust performance of DemoGrasp on
challenging task settings. The language-conditioned policy slightly outperforms the unconditional
policy, suggesting that reducing action uncertainty for vision-based imitation learning can improve
action quality. We further evaluate the language-conditioned policy under randomized backgrounds
and lighting conditions, achieving an 82% success rate, demonstrating robustness to scene appearance
changes. Qualitative results are provided in Appendix [D.2}

Table 3: Success rates on 110 real-world objects. Each

object is tested for five trials with randomized initial poses. ~ 1aple 4: Results for grasping in clut-

tered scenes. “Any-DemoGrasp” de-
Shape | Category Num. Success. notes the unconditioned policy that
grasps a random object; “Instruct-

Bottles 12 95.0% v,
Reoular Boxes & Jars ” 93.6% Den;gfrasg cll§notes the language-
gu Balls & Fruit 12 98.3% conditioned poticy.
Soft Toys 10 96.0% Model | Sim. | Real.
Irregular | 18 900% Any- | g3 66% | 82%
Flat & Thin Tools 10 60.0% DemoGrasp
Others 14 743% Instruct- | oo 220 | g4
DemoGrasp '
Small \ 12 76.7%

3.5 ABLATION STUDY

The necessity of RL. A direct ablation for DemoGrasp is

to replace RL with sampling-based methods. Given the Table 5: Sampling vs. RL. For the
demonstration-editing scheme, we sample in the editing- sampling-based method, we uniformly
parameter space for each object and position, execute the ~sample editing parameters to collect
edited rollout in simulation, and train a behavior cloning 35,000 successful trajectories, then train
(BC) policy on the successful rollouts. Table[5|compares @ behavior cloning (BC) policy.

this sampling-based method with the RL-based method

on the 175 training objects. We find that sampling+BC Method  Success (%)
policies achieve significantly lower success rates than the Sampling 77.56
RL policy. The main reason is that sampling can produce RL 96.24
diverse successful rollouts for the same object and
position, yielding a multimodal and inconsistent dataset that hinders BC from converging to an
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Table 6: Success rates of vision-based policies with different camera configurations in simulation
and the real world.

Camera Config. Simulator Real Robot

black blue little tiny phone

YCB  DexGraspNet bottle box duck Dbottle case

Mono-Depth 80.2% 95.2% 5/5 4/5 1/5 0/5 0/5
Two-Depth 80.3% 96.4% 5/5 4/5 1/5 0/5 0/5
Mono-RGB 83.2% 94.8% 4/5 5/5  4/5 0/5 3/5
Two-RGB 87.0% 97.3% 5/5 5/5 45 5/5 5/5

Table 7: Success rates on the test sets when trained on 175 objects from the training set (row 1) or
trained directly on the union of the test sets (row 2).

Test Omni- Visual
m ‘DGA EGAD ()poc. ModelNetd0 /0%

175 Objects (YCB+DexGraspNet) | 65.62  97.88 85.04 80.13 99.13
Test Sets 7149  99.16 88.71 81.10 99.20

optimal policy. In contrast, RL directly optimizes the expected return, resulting in a more consistent,
unimodal policy with higher success rates.

The action space in RL. We examine the effect of each demonstration-editing parameter on RL
performance, studying the contributions of wrist DoFs and hand DoFs. Table [§|reports success rates
for RL with different action-space components. Success rates consistently improve as the action
space expands, showing that RL can effectively leverage the full dexterity of the wrist and hand to
achieve higher performance. Editing end-effector translations and rotations is essential for grasping,
contributing +6% and +13% to the training-set success rate, respectively; editing hand DoFs yields a
smaller +2% gain, indicating that using dexterous hands as single-DoF grippers can already achieve
high success rates in grasping. Figure 4 further shows that editing hand DoFs produces more robust
grasps (e.g., grasping a vase from the side and using the thumb, index, and ring fingers to form force
closure), whereas other ablations do not exhibit this behavior.

Table 8: Success rates of RL policies with different action spaces.
Axyz, Arpy, and Aq denote the inclusion of wrist translation, wrist
rotation, and delta hand actions in the RL action space, respectively.
The first row corresponds to replaying the original demonstration
without RL.

Axyz | Arpy | Aq | Training Set  Test Set

75.29 73.43
v 81.35 76.04
v v 86.40 79.68
v v 94.22 81.39 Axyz + Arpy Axyz + Arpy + Aq
v v v 96.24 82.74 Figure 4: Learned grasps un-

der different action spaces.

Camera configurations for vision-based policies. DemoGrasp enables sim-to-real deployment
with different camera types by training vision-based policies on correspondingly rendered data.
Table |6 reports performance using either RGB or depth input, and either monocular or two-view
configurations. We observe that two RGB views achieve the best performance in both simulation and
the real world, outperforming the two-depth-camera configuration. Specifically, RGB policies achieve
>70% success rates on small, flat objects in the real world, whereas depth policies often fail. This
is because RGB policies can identify such objects via visual cues (e.g., color and texture), whereas
depth policies may not distinguish the object from the tabletop due to sensor noise. Two-camera
setups consistently outperform monocular ones: the former provides richer 3D information and
reduces hand—object occlusions during grasping.



Published as a conference paper at ICLR 2026

Table 9: Success rates with different demonstrations. Demonstrations are collected via teleopera-
tion to grasp objects of different sizes (small vs. large) and from different directions (top vs. side).
While directly replaying the demonstrations yields widely varying success rates across all objects, all
policies learned by DemoGrasp achieve comparably high success rates.

N Demo Replay RL Policy (Training Set) RL Policy (Test Set)

small obj. + top 75.29% 96.24% 82.74%
small obj. + side 62.90% 95.18% 81.45%
big obj. + top 7.23% 95.02% 82.46%
big obj. + side 3.88% 95.27% 83.22%

Are 175 training objects enough? Table|/|shows that when trained directly on the five test sets, the
policy achieves an average performance gain of 2.4% relative to training on 175 objects and testing
on these same test sets. This marginal gain suggests that universal grasping can be achieved with a
small training set using DemoGrasp.

Demonstration quality. We study the effect of demonstration quality for DemoGrasp, using
demonstrations that grasp different objects and approach from different directions. Results in Table[9)]
show that DemoGrasp consistently achieves high performance given any successful demonstration.

4 CONCLUSION

DemoGrasp is an RL framework for universal dexterous grasping that leverages a single demonstration
to mitigate the exploration challenge. By formulating a single-step MDP with a compact action space
for demonstration editing, DemoGrasp eliminates the need for complex reward shaping and can
robustly achieve excellent success rates when trained on diverse robotic hand embodiments and object
datasets. Extensive simulation experiments demonstrate that DemoGrasp achieves state-of-the-art
success rates on multiple dexterous hands and object datasets. Real-world experiments show that
DemoGrasp achieves robust zero-shot sim-to-real transfer via simple vision-based imitation learning,
successfully grasping diverse real-world objects, including small and flat items that have remained
challenging in tabletop settings for prior work. Taken together, the contributions of DemoGrasp not
only establish a novel approach to dexterous grasping but also provide an easy-to-implement, robust
RL framework for robotics research and applications.
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A LIMITATIONS AND FUTURE WORK

Although our method handles universal dexterous grasping in both simulation and the real world
and extends to cluttered and instruction-based grasping, some advanced tasks still require nontrivial
design—such as functional grasping and tightly cluttered scenes that require pre-grasp manipulation.
In addition, while our policies exhibit some closed-loop regrasp capabilities through vision-based
distillation, the policy learned in the RL stage is open-loop and cannot handle dynamic scenes or
fine-grained manipulation. Future work could explore a trade-off between DemoGrasp and direct
RL in the low-level action space to enable both efficiency and closed-loop behaviors. For example,
by breaking demonstration trajectories into short segments and having the RL policy operate at the
segment level.

Using pure visual observations may limit the performance of our method, particularly when the
dexterous hand occludes the object in camera images, when the real-world object requires grasping
with appropriate strength, or when the task demands precise grasping for downstream manipulation
(e.g., grasping an electric screwdriver with the index finger pressing the button). Incorporating tactile
feedback presents a promising future direction to mitigate these issues. Future work could include
tactile data in the observations and design reward functions to achieve more precise grasping. Given
the sim-to-real challenge posed by tactile sensors, another promising direction is to collect real-robot
data with tactile sensing using our vision-based policy and then finetune it with the collected data to
incorporate tactile information.

B RELATED WORK

Universal Dexterous Grasping is a fundamental task for robotic manipulation. Research approaches
can be broadly classified into static grasp generation and dynamic grasping policy learning.

The goal of grasp generation is to synthesize hand and wrist poses of robust grasps, serving either
as targets for grasping motion planning (Wang et al.| 2023j Zhang et al., [2024a) or as auxiliary
information for policy learning (Xu et al., 2023)). Recent studies have explored various strategies:
Weng et al.|(2024) employ diffusion models to generate grasping poses; Zhong et al.|(2025b) enhance
diffusion-based generation by incorporating physical constraints during sampling; Wei et al.| (2024)
train a grasp generation model for multiple hand embodiments; Jian et al.| (2025)) leverage contact
and affordance priors retrieved from existing grasp examples; and |Chen et al.| (2025a) propose a
model that generates grasp poses conditioned on predefined grasp taxonomies. Beyond synthesizing
physically plausible grasps, recent research in language-guided grasping (He et al.| 2025} |Li et al.
2024])) introduces the additional challenge of learning a joint distribution between natural language
and dexterous grasp poses. However, deploying grasp-generation models still requires manual motion-
planning design and faces challenges in tabletop settings when a collision-free grasp trajectory does
not exist.

Policy-learning methods aim to learn closed-loop grasping policies over low-level robot actions,
enabling direct deployment on real robots and avoiding explicit collision handling and path planning.
Yet training universal grasping policies via RL is challenging due to high-dimensional, long-horizon
exploration, the need to optimize across diverse objects simultaneously, and the gap for closed-loop
sim-to-real transfer. Prior work has explored curriculum learning (Xu et al.,2023;|Chen et al., 2025b)),
policy distillation (Wan et al., 2023; |Wang et al.,|2025} |Yuan et al.,[2025a), residual learning (Huang
et al.,|2025; Zhao et al.,2025), and object-geometry representation (Zhang et al., 2025aib) to mitigate
the RL exploration burden in simulation.

Recent advances include UniGraspTransformer (Wang et al., [2025)), which proposes a Transformer-
based distillation method that can distill thousands of single-object policies without significant
performance loss, achieving SOTA performance on DexGraspNet. However, it still struggles with
sim-to-real transfer. RobustDexGrasp (Zhang et al., 2025b) trains a performant policy for universal
dexterous grasping using geometry representation and contact prediction, achieving sim-to-real
transfer on a large number of objects. However, the method requires high-quality point cloud
observations and is evaluated only on the Allegro Hand, limiting its ability to grasp small and thin
objects. ClutterDexGrasp (Chen et al., |2025b)) explores grasping in cluttered scenes using a similar
geometry representation with a contrastive distance reward function, but it is evaluated on a specific
hand and cannot grasp small objects in real-world environments. DexGraspVLA (Zhong et al.,
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2025a)) trains an RGB-based grasping policy solely from real-world teleoperation data but is limited
to large objects with a single grasp pose, making it costly to acquire training data and limiting
object generalization. DextrAH-RGB(Singh et al.| 2024) and DextrAH-G (Lum et al.,[2024)) explore
sim-to-real techniques using RGB or depth images, but their real-world evaluations are limited to
approximately ten regular-sized objects.

In our work, we address the challenge of designing high-performance, efficient RL pipelines for
grasping policy learning. We mitigate the exploration burden by introducing a single demonstration
and reformulating the problem as a single-step MDP. As a result, our method extends to any
dexterous hand embodiment without hyperparameter tuning and achieves performant sim-to-real
transfer across a wide variety of unseen objects, including small and thin ones, using only simple
RGB observations.

Learning Robotic Manipulation from Demonstrations is an active research direction that leverages
human priors from demonstration data to facilitate robot learning. Imitation learning methods directly
learn robot policies by imitating human teleoperated data (Zhao et al.,2023; [Fu et al.,|2024; (Ch1 et al.|
2023) or human manipulation data (Luo et al.| 2025} |Bi et al.,2025), but require a large number of
high-quality trajectories. Some works (Mandlekar et al., 2023} |Jiang et al.,[2025; Xue et al., [2025)
improve data efficiency for imitation learning by synthesizing multiple demonstration trajectories
from a single demonstration. Demonstrations can also be used to augment RL, serving as reward
signals (Chen et al., [2024;|Zhou et al., 2024; [Li et al., |[2025)), auxiliary losses (Qin et al., |2022), and
training data in the replay buffer (Luo et al., 2024). In our work, we introduce a single successful
grasp demonstration to facilitate RL for universal grasping. By appropriately transforming wrist
and hand poses, this single demonstration is augmented into diverse grasp trajectories for arbitrary
objects, enabling a universal policy.
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C OBIJECTS USED IN EXPERIMENTS

Figure [5|shows the 110 objects used in our real-world experiments. Figure [f] shows samples from
each dataset used in our simulation experiments.

Figure 5: Objects used in real-world experiments.
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Figure 6: Snapshots of the training and test datasets used in our experiments. 16 objects are randomly
sampled from each dataset for visualization.

D ADDITIONAL RESULTS

D.1 QUANTITATIVE RESULTS

Table 10: Success rates of DemoGrasp for various robotic embodiments across all object datasets.

. Training DexGraspNet Omni- Visual
Embodiment Set (Unseen Cat.) DGA  EGAD 6DPose ModelNet40 Dexterity
FR3 + Gripper 90.21 81.10 30.71 49.38 66.56 79.46 83.49
FR3 + DClaw 96.96 94.17 79.28  96.37 74.63 61.16 97.94
URS + Allegro 92.93 94.18 7440  96.75 82.24 75.58 97.80
FR3 + Inspire 96.24 97.5 65.62 97.88 85.04 80.13 99.13
URS5 + Schunk 95.46 87.29 4797  90.70 78.19 73.43 88.59
Shadow 97.43 89.75 60.99  94.58 74.84 71.88 93.67
FR3 + Shadow 95.33 87.40 5990 93.64 76.51 67.48 93.40

D.2 QUALITATIVE RESULTS

Figure [7] shows real-world grasp trajectories for arbitrary objects. Figure[§|shows real-world tests
under complex, randomized scene configurations using a language-conditioned policy.
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Time

Figure 7: Grasping trajectories from real-world tests. DemoGrasp learns distinct finger poses for
large, small, and thin objects to maximize expected success. Slight robot—table contact is leveraged to
grasp tiny objects (second-to-last row). A regrasp behavior emerges when an attempt fails (last row).
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“Grasp the
green box”

“Grasp the
green toy”

“Grasp the
grey bottle”

“Grasp the
purple toy”

“Grasp the red
strawberry”

Time

Figure 8: Real-world tests of the language-conditioned DemoGrasp policy in cluttered scenes with
randomized object positions, language instructions, backgrounds, and lighting conditions.
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D.3 THE NECESSITY OF TWO-STAGE TRAINING

There are several reasons motivating us to adopt a two-stage training pipeline (state-based RL for data
collection followed by vision-based imitation learning) rather than directly training a vision-based
RL policy.

—— PPO-state
—— PPO-vision (w/o hand)
—— PPO-vision

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

Figure 9: Comparison of RL training curves between the state-based policy (7000 parallel environ-
ments) and the vision-based policy (175 parallel environments). “w/o hand” denotes a reduced action
space that includes only end-effector transformations, while others use the full action space.

0.84

0.6

Reward

0.4+
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—— 350envs
—— 875 envs
—— 1750 envs
3500 envs
7000 envs

0.24

0.0

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

Figure 10: Comparison of RL training curves with different numbers of parallel simulation environ-
ments, ranging from 175 to 7000.

First, large-scale parallel simulation is necessary for efficient RL training on robotic tasks. If we
directly train a vision-based RL policy, rendering RGB images consumes substantial GPU memory,
resulting in fewer than 200 parallel environments on a single RTX 4090 GPU. In contrast, state-based
training without rendering supports up to 7000 parallel environments. The large number of parameters
introduced by the vision encoder also increases training cost. Therefore, given the same computation
budget, state-based RL allows significantly more parallel environments and leads to better training
performance. To verify this, we implement a vision-based RL pipeline in which the policy takes
two RGB images processed by a pretrained ResNet-18 encoder. Figure [9]shows that state-based RL,
which uses 40 times more parallel environments than vision-based RL, outperforms it in both sample
efficiency and final performance. Figure [I0] compares training curves under different numbers of
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parallel environments and confirms the necessity of large-scale simulation (typically more than 1000
environments) for RL.

Second, our method reformulates RL as demonstration editing, where actions modify wrist trans-
formations and hand delta angles. However, real-world deployment requires closed-loop control
in the robot action space (per-timestep end-effector and hand joint targets). Therefore, a two-stage
pipeline is necessary: RL optimizes in the demonstration-editing action space, and imitation learning
distills the behavior into a policy that directly outputs robot actions. Online distillation methods such
as DAgger are not applicable in this setting because they require the teacher policy and the student
policy to share the same action space. For this reason, we collect successful rollouts from the teacher
policy and train the student policy using imitation learning on the offline dataset. This two-stage
RL+BC approach is also used in prior work (Wang et al.,[2025} [Yin et al., [ 2025; |[Liu et al., [2025)).

D.4 TRAINING CURVES

0.81

0.6

Value

0.4+

—— Reward
— Success Rate

0.24 .
—— Collision Rate

0.0
0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

Figure 11: RL training curves for the Inspire hand, showing total reward, success rate, and collision
rate.

E IMPLEMENTATION DETAILS

E.1 DATASETS AND SIMULATION

In Sec.[3.2] we compare our method against prior approaches for universal dexterous grasping, all
trained and evaluated on DexGraspNet (Wang et al., [2023)). Following their protocol, we adopt the
same split consisting of a training set and two test sets. The training set contains 3,200 objects
spanning diverse shapes and categories. The first test set includes 141 objects from categories seen
during training but with novel shapes not present in the training set. The second test set contains 100
objects whose shapes and categories are both unseen during training, thereby assessing generalization
to entirely novel object classes.

For the experiments in Sec. [3.3] and the real-world experiments, we adopt a smaller training set.
Specifically, we randomly sample 100 objects from the DexGraspNet training set and add 75
objects from YCB to increase shape and category diversity, yielding 175 training objects in total.
We evaluate the learned policies on multiple datasets, including DexGraspNet (the 100 unseen-
category objects) (Wang et al.| 2023), DGA (Zhong et al., 2025b), EGAD (Morrison et al., [2020),
Omni6DPose (Zhang et al., 2024b)), ModelNet40 (Wu et al, 2015), and Visual Dexterity (Chen et al.|
2023)). The results demonstrate robustness across diverse embodiments and datasets.

We use IsaacGym (Makoviychuk et al.,[2021)) as our simulation platform. For state-based policies,
we sample 512 points from mesh vertices and surfaces for each object to form its full point-cloud
representation. We increase the resolution of VHACD decomposition to 300K so that the objects’
collision meshes in the simulator closely match the original meshes. We use a hierarchical position
controller for arm and hand control, where a high-level controller receives target joint positions and
interpolates from the previous target to the new target, sending a smooth trajectory to a low-level PD
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controller. We set the PD controller stiffness to large values and limit the step between consecutive
target joint positions to produce smooth motion and accurately track the policy’s actions. For robot
hands mounted on arms, we use inverse kinematics to convert the policy’s end-effector action outputs
into target joint positions for the controller. Detailed simulation and control parameters are provided
in Table [T

Table 11: Simulation parameters.

Name Value
Low-level control frequency 60 Hz
Policy control frequency 3Hz
Simulation substeps 2
Object friction coefficient 1.0

Maximum arm angular velocity  1.57 rad/s
Maximum hand angular velocity — 6.28 rad/s

Maximum hand joint effort 1.0
Arm joint stiffness K™ 16000
Arm joint damping K7™ 600
Hand joint stiffness K 600
Hand joint damping K 20

At the beginning of each replay of the edited demonstration, we require a motion planner that
can smoothly and accurately move the robot from its initial pose to the starting pose in the edited
demonstration within the initial object frame. To achieve this, we use an interpolation-based motion
planner for the robot end-effector, where positions are linearly interpolated with a maximum step size
of 0.04 m, and rotations are interpolated using SLERP with a maximum step size of 0.1 rad. Each
interpolated pose serves as a target for the PD controller, which is executed for 20 simulation steps to
reach the target. For the dexterous hand, we directly set the action to the initial joint positions from
the demonstration. We verify that the robot can follow the action sequence with minimal tracking
error using this motion planner in both simulation and the real world.

E.2 TRAINING RL POLICIES

The demonstration-editing policy is trained jointly across all objects in the training set using Proximal
Policy Optimization (PPO) (Schulman et al., [2017)). Full object point clouds are encoded with
PointNet (Q1 et al.l [2017), and the resulting 128-dimensional features are concatenated with the
end-effector pose and the initial object pose in the world frame. This combined vector is then fed
into the actor and critic networks, implemented as MLPs with hidden layers of sizes [1024, 1024,
512, 512] and ELU activations (Clevert et al., |2015)). For the final action output layer, we apply
tanh to bound outputs to [—1, 1], then rescale to the allowed editing ranges: end-effector translation
Axyz € [—0.05,0.05] m; end-effector Euler angles Arpy € [—1.57,1.57] rad; and delta hand
joint angles Aq € [—1, 1] rad. The hyperparameters used for training are summarized in Table
Training converges within 24 hours on a single NVIDIA RTX 4090 GPU.

E.3 TRAINING VISION-BASED POLICIES

We collect 35,000 trajectories with the trained RL policy across all training objects and retain the
successful trajectories to train the vision-based policy.

To bridge the sim-to-real gap in RGB images, we align camera and table configurations in simulation
with those in the real world and apply broad domain randomization. We first estimate camera
extrinsics via hand—eye calibration and set both camera intrinsics and extrinsics in simulation to
match the real hardware. We then randomize camera extrinsics by adding uniform noise in the range
[—0.02, 0.02]. We fetch 300 background images from RoboTwin (Mu et al,[2024) to sample table
textures. For objects, we randomly sample colors and apply textures from 100 material images in
FMD (Sharan et al.| 2014). We use three point lights and randomize their intensity and ambient
parameters within [0.1,0.8] to create varied lighting conditions. We also translate the table randomly
within [—0.05, 0.05] m to increase background variation. For ablation studies using depth images, we
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Table 12: Hyperparameters for RL.

Name Value
Parallel environments 7,000
Initial actor Gaussian std. 0.8
Learning rate 3e-4
PPO clip range (¢) 0.2
Gradient-norm clip 1.0
Observation clip range 5.0
Episode length for RL

Rollout steps per iteration
Update epochs per iteration

1
Execution steps for demo replay per episode 40
1
5
Minibatches per epoch 4

follow HERMES (Yuan et al., 2025b) to augment the rendered depth observations. We randomize the
depth range, add Gaussian blur and Gaussian noise, randomly set 1% of depth pixels to zero, and
blend each frame with a random depth image from the NYU-Depth-v2 dataset (Nathan Silberman &
Fergus| [2012) using a = 0.005.

We adopt the GROOT-N1.5 (Bjorck et al., 2025) architecture, consisting of a pretrained Vision
Transformer (ViT) encoder and a flow-matching action head. We do not use the pretrained weights
from GROOT-N1.5; instead, we train the action head from scratch and fine-tune the pretrained ViT.
The model is trained for 100k iterations on four NVIDIA A800 GPUs, taking 16 hours.

To train a language-conditioned policy for grasping in cluttered scenes, we sample distractor objects
and construct language instructions during data collection. For each environment, we load 10 objects
sampled from the training dataset. For each episode, we uniformly sample n € [0, 10] objects among
them as distractors and initialize them at random poses on the table. We use the instruction template
“Grasp the {COLOR} {OBJECT_NAME}.” where {COLOR} is the color name sampled for the task
object and {OBJECT_NAME} is its instance name from the dataset. We use the pretrained vision-
language model open-sourced by GROOT-N1.5 to process language instructions during imitation
learning, keeping its weights frozen. In real-world tests, we use the true color and name of the object
(which may be unseen during training) to prompt the model.

E.4 REAL-WORLD EXPERIMENTS

We conduct real-world experiments using a Franka Research 3 robot arm with an Inspire Hand. The
world frame is defined at the arm’s base frame. Two RealSense D435i cameras are placed at fixed
viewpoints to capture RGB or depth images for the vision-based policies. Figure[I2]illustrates the
hardware setup and camera views.

F AN ILLUSTRATION OF DEMONSTRATION EDITING

Figure [[3]illustrates how the learned policy edits the demonstration of grasping a little duck to grasp
a plate.

G USE OF LARGE LANGUAGE MODELS

In this work, the large language model (LLM) is used exclusively for text polishing. Its role is
limited to refining the linguistic quality of the textual content, with no involvement in the method or
experimental results.

H OPEN-SOURCE COMMITMENT

We are committed to open-sourcing the code upon paper publication.
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Figure 12: Example images from different camera sensors used in our experiments (left) and our
hardware setup (right).

A demonstration of grasping a duck. P The RL policy’s action.
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Figure 13: An illustration of demonstration editing using the learned RL policy.

25



	Introduction
	Method
	Problem Formulation
	Demonstration Editing
	Single-Step Reinforcement Learning
	Vision-Based Sim-to-Real

	Experiments
	Experimental Settings
	Results on DexGraspNet
	Scalability and Generalization
	Real-World Experiments
	Ablation Study

	Conclusion
	Limitations and Future Work
	Related Work
	Objects Used in Experiments
	Additional Results
	Quantitative Results
	Qualitative Results
	The Necessity of Two-Stage Training
	Training Curves

	Implementation Details
	Datasets and Simulation
	Training RL Policies
	Training Vision-Based Policies
	Real-World Experiments

	An Illustration of Demonstration Editing
	Use of Large Language Models
	Open-Source Commitment

