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Abstract

This paper investigates the theoretical behavior of generative models under
finite training populations. Within the stochastic interpolation genera-
tive framework, we derive closed-form expressions for the optimal velocity
field and score function when only a finite number of training samples are
available. We demonstrate that, under some regularity conditions, the de-
terministic generative process exactly recovers the training samples, while
the stochastic generative process manifests as training samples with added
Gaussian noise. Beyond the idealized setting, we consider model estima-
tion errors and introduce formal definitions of underfitting and overfitting
specific to generative models. Our theoretical analysis reveals that, in the
presence of estimation errors, the stochastic generation process effectively
produces convex combinations of training samples corrupted by a mixture
of uniform and Gaussian noise. Experiments on generation tasks and down-
stream tasks such as classification support our theory.

1 Introduction
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generative models through extensive empirical experiments. These studies reveal that gen-
erative models may replicate samples from the training set, exhibiting strong memorization
effects, which is particularly prominent with small-sample training sets.

A series of outstanding papers (bko et alJ, b023|; lHuang et alj, f2023|) have investigated the
theoretical properties of generative models in the asymptotic regime when the number of
training samples tends to infinity. However, practical applications often involve finite-sample
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Yu et al), 2024). As such, the findings of this study offer both broad generalizability and
practical relevance.

Our paper analyzes the properties of the stochastic interpolation model under the constraint
of limited training samples. We theoretically demonstrate that the model memorizes the
training data through its velocity field. Under ideal scenario without estimation error, de-
terministic generation reproduces the training samples exactly, while stochastic generation
produces the training samples with additive Gaussian noise. Furthermore, we investigate
the generative behavior under estimation errors and introduce formal definitions of under-
fitting and overfitting in the context of generative models. These findings lay a theoretical
foundation for understanding memorization phenomena in generative modeling.

Contributions of our paper are summarized as follows

e We provide a systematic analysis of the optimal estimation for stochastic interpo-
lation models with finite training populations, and we investigate the theoretical
properties of both deterministic and stochastic generation.

o We analyze the effect of estimation errors on generation result and provide a theoret-
ical understanding of overfitting and underfitting phenomena in generative models.

o We reveal that samples generated by stochastic interpolation models can be viewed
as training samples perturbed by a combination of uniform and Gaussian noise. We
validate our theoretical findings through downstream experiments on datasets such
as MNIST, CIFAR-10 and Imagenet.

1.1 Notion

In this paper, we adopt the following notions. Let W; be the standard Brownian motion.
I; denotes the d-dimensional identity matrix. The Minkowski sum of two sets is defined as
AxB={a+b|a€ A be B}. The asymptotic notations f(t) < g(t), f(t) = g(¢t), and
f(t) < g(t) indicate that the relationship between f(¢) and g(t) is understood up to constant
multiplicative factors. The symbol é(x) denotes the Dirac delta function. f’(z) represents
the derivative of the function f(z) and the gradient operator is denoted as V. We use Px(-)
to denote the probability density of the random variable X. Specifically, we denote p; as
the probability density of the random variable Z; involved in the differential equation.

2 Preliminary: Stochastic Interpolation

In this section we introduce the stochastic interpolation model. Given two random variables

Zy and Z; with probability distribution py and pi, a stochastic interpolation is defined as
Zt :I(ta Z07ZI)+7(t)na te [Oa 1]7 (1)

where 7 is the standard Gaussian random variable independent of Zy and Z;, v is a real-
valued function defined on [0, 1] and Z is the function that [0,1] x R? x R — R¢. Tt has
the following conditions.

1. The interpolation function Z satisfies Z(0, Zy, Z1) = Zo and Z(1, Zy, Z1) = Z;.
2. The function ( satisfies one of the following conditions

o Forte {0,1},~v(t)=0.
o For ¢t e (0,1), y(t) > 0 and for v(¢t) = 0 elsewhere.

A widely used form of stochastic interpolation is Z(t, Zy, Z1) = «a(t)Zy + 5(t)Z1, which
satisfies a(0) =1, (1) = 0, B(0) =0, B(1) = 1. Therefore, Z; has the following form

Zy = a(t)Zo + B(t) Z1 + ~v(t)n.

Without loss of generality, we assume «(¢) and S(¢t) > 0 when ¢ € (0,1). Based on the
theoretical frameworks provided by the Fokker—Planck equation and the continuity equation,
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the velocity field b(z,t) and the score function s(z,t) are defined as follows
bz, 1) = E|a'(t)Z0 + B'(1) 20+ (D0l Z1 = 2], (2)
s(z,t) = Vy1og pi(2). (3)

Starting from an initial point Z; ~ p;1, the generated result obtained from the following
generative models satisfy Zy ~ po,

Deterministic generation: dZ; = b(Z, t)dt, (4)
Stochastic generation: dZ, = (b(Zt,t) — C(t)s(th))dt + /20 (t)dW,. (5)

In practical applications, the explicit forms of b(z,t) and s(z,t) are typically unknown and
should be estimated through the minimization of the following loss function

b(z,t) = argmbinIEHb(Zt,t) — (o/(t)Zo +6'(t)Z1 + ’y’(t)n) ’

)

1 2
5(z,t) = argminEHs Zy,t) — —nH .

The stochastic interpolation model constitutes a general class of generative models. When
choosing a(t) = t, f(t) = 1 —t and ~(t) = 0, the stochastic interpolation model coincides
with the flow mathcing framework. When the initial distribution pg is Gaussian distribu-
tion and the time-dependent coeflicients a(t) and §(t) are suitably selected, the stochastic
interpolation model degenerates to the score-based generative model. Therefore, the con-
clusions discussed in this paper under the stochastic interpolation framework can be readily
extended to other diffusion generative models.

3 Generation Results under Finite Training Sets
3.1 Optimal Generation

In this section, we consider the ideal scenario in which the estimators b and § are assumed
to be error-free, i.e., they exactly coincide with the true underlying functions b and s. We
begin by analyzing the setting where p; is a Gaussian distribution and pg corresponds t
data distribution, reflecting the classical generative modeling framework. In Sectionoﬁf7
we will extend our analysis to the more practical case where both py and p; are empirical
distributions constructed from finite populations. The expression of the velocity field b,
as given in Eq. B, involves expectations with respect to both py and p;. In many real
applications, we are limited to a finite training populations, and therefore pg should be
characterized via discretized empirical distributions as follows.

po = - > 3(X0) ©)

Therefore, taking the expectation with respect to the distribution p; reduces to computing
the empirical expectation over the training samples. It is worth noting that we are still
taking the expectation with respect to the distribution p;, as the Gaussian distribution
permits infinite sampling during training. This allows us to obtain the optimal velocity field
under finite samples, denoted as b*(z, t).

Proposition 1 When p; is Gaussian distribution and pg has the discretized empricial distri-
bution form defined in Eq. [, the optimal velocity field has the following expression

n llz—a(®)X:|?

. B 1 exp (— T(t))
0= X g [AGERTeAORY S 1_2%(2?”2) : (7)

where

Cu(t) = A(t) (1) + B'(D)B(),
Ca(t) = [4(07'(®) + B8] a(t) - [120) + B2 (1)] (1),
Ca(t) = 72(t) + B (1)
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s(z,t) can be expressed by b(z,t) and z, which is also reported in IHuang et all (l2023|) Thus,
we can obtain the optimal score function under finite populations, denoted as s*(z,t).

Proposition 2 When p; is Gaussian distribution and py has the empirical distribution form
defined in Eq. [, the optimal score function has the expression that
o' (t)

s*(z,t) = g((?)b*(z,t) - %z, (8)

where

B(t) = B(1) [/ (18() - a(t)8'(1)] + (D) [v(B)a'(8) = 7/ (Da(t)]

It can be observed that the optimal velocity b*(z,t) has a closded form of a weighted sum of
{z—X;}" ,, which is an expression that can only be derived under finite training sets. Due to
the softmax form of the weighting terms, one specific z — X; will dominate. Therefore there
exists ¢ € {1---n} that the generated results will gradually approach X;, which motivates
the following theorem about deterministic generation.

Theorem 1 There exists ¢ € {1,...,n} such that, based on the optimal velocity field b*(z,t),
the deterministic generated result satisfies Zy = X;.

Furthermore, we now consider the case of stochastic generation. Since s*(z,t) is a linear
combination of b* and z, it also gradually becomes a weighted sum of {z — X;}? ;. This
observation motivates the following theorem about stochastic generation.

Theorem 2 Based on the optimal velocity field b*(z,t) and score s*(z,t), assume that ((t) <
B(t) when t — 0, the generated result of stochastic generation defined in Eq. f| will be the
Minikowski sum of the training set and the Gaussian distribution. In particular, there exists

i €{1,...,n} such that Zy ~ N(X;,0%1,), where 0® = 2 [ ((t)dt.

Remark 1 The assumption that ((¢) < B(t) is satisfied in some common cases, such as

V(t) = Vil 1)

e use a two-dimensional toy data to help understanding and verifying Theorems m and

. Specifically, we randomly select 5 points within the range [0,1]? as the training set and
compute the corresponding b*(z,t) and s*(z,t) using Eq. [] and é The deterministic and
stochastic generation results are shown in Fig. E When using deterministic generation, the
model precisely reproduces the training samples, as the red generated points almost coincide
with the blue points in Fig. [la. In the case of stochastic generation, the generated samples
form elliptical Gaussian distributions centered around the training samples. Furthermore, as
the noise level increases, the spread of the Gaussian distributions also increases accordingly.
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Figure 1: Visualization of oracle generation. Blue points represent the training samples and
red points represent the generated samples. (a) Deterministic generation. (b) Stochastic

generation with 2 fol ¢(t)dt ~ 0.016. (c) Stochastic generation with 2 fol ¢(t)dt ~ 0.079.
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3.2 Generation with Estimation Error

In practical training, we often adopt various neural networks architectures to estimate the
oracle b*(z,t). Therefore, we further consider the generation process with estimation error.
For theoretical simpljcity, we focus only on the deterministic generation scenario, since, as
analyzed in Section ﬁ, stochastic generation can be viewed as deterministic generation
with added Gaussian noise.

Let b(z,t) denote the estimated veloity field and e(z,t) denote as the estimation error, i.c.,
e(z,t) := bz, t) — b*(2,1),

which characterizes the discrepancy between the estimated b(z,t) and the optimal b*(z, t).
The following theorem reveals the impact of estimation error on the generated results.

Theorem 3 When using Z)(z, t) as the velocity field and performing deterministic generation
defined by Eq. {, there exists ¢ € {1...,n} such that the generated result Z, satisfies

Zo = X, ~ lim ggg e(z.1), (9)

where Ci(t) and C5(t) are defined in Proposition m

This result indicates that the generated result is a sample from the training set combined
with estimation error. In the following, we state formal assumptions on €(z,t) and inves-
tigate its impact on the generation result. The first assumption is the uniform boundness
of the error term €(z,t), which is commonly adopted in convergence analysis (Huang et all,
2023). Under this regularity condition, we establish the following theoretical result.

Corollary 1 Assume that there exists a constant A > 0 such that the approximation error
€(z,t) satisfies
le(z, )] < A, Vz,t € R x [0, 1],

Then the generation result of deterministic generation defined by Eq. H will lie within the
set { X} .

Corollary E establishes that, provided the error is uniformly bounded, the generated sam-
ples remain within the training set, irrespective of the magnitude of the bound. This result
follows from the fact that, during the deterministic generation process, the error is explic-
itly corrected at each iteration. This property highlights a key strength of diffusion-based
generative frameworks, namely their robustness to bounded perturbations during the gen-
eration trajectory. We visually illustrate the conclusion of Corollary [I| through experiments
on two-dimensjonal data. Setting A to 1, 5, and 25 the generated results with different A are
shown in Fig. J. Even when A is large, the generated results still coincide with the samples
in the training set, which supports the conclusion of the Corollary [l.

0471 o Generated Samples 041 o Generated Samples 041 @ Generated Samples
o Training Data o Training Data o Training Data

Figure 2: Visualization of the case where the error has a global upper bound. (a), (b), and
(c) correspond to A = 1, 5,25 respectively.

The assumption that e(z,t) is uniformly bounded constitutes a strong condition under
which the aforementioned conclusions hold. However, in practice, €(z,t) typically diverges
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due to the divergence of b*(z,t) as t — 0 or t — 1. To address this, we consider a more
general setting in which the divergence of €(z,t) is regulated by a function ~(¢). Under
this formulation, we demonstrate that the quality and validity of the generation process are
governed by the relative decay rates of 5(¢) and y(t) as t — 0.

Corollary 2 Assume that there exists a constant A > 0 such that the estimation error €(z,t)
satisfies

pY
le(z, )] < i Vet eRx 0.1

Under the common choice of 8(¢t) = ¢, the behavior of the generated samples depends
critically on the relative scaling between ~(t) and () as ¢t — 0:

o If 7(t) 2 B(t), the generated samples asymptotically converge to the training set.

o If v(t) =< B(t), the generated samples remain concentrated in the vicinity of the
training set.

o If v(t) < B(t), the generated samples diverge, resulting in outputs that deviate
substantially from the training set and lack semantic consistency.

In a more general scenario, the generation res are related to the relative scaling between
Cy(t)y(t) and Cs(t), as can be seen in Proof. A.3.7.

Corollary E offers theoretical guidance for the selection of the functions v(t) and 5(¢) in the
deterministic, generation process. To develop an intuitive understanding of the implications
of Theorem P, we consider a fixed choice of S(t) =t and evaluate three representative forms
of ’y(t):g(l —1), v/t(1 —t), and t(1 —t)%2. The corresponding empirical results are presented
in Fig. B.
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Figure 3: Visualization of the case where the error has an upper bound controlled by ~(¢).

(a) v(t) < B(1). (b) v(t) Z B(H). (c) 7(t) S B().

Next, we discuss a more complex but also more realistic error scenario, which is
1 " (le—a@xd?\)
e(z,t) x —— ox \/C3(t exp(z) .

The intuition behind this scenario is that when the marginal density p;(z) is relatively
high, the likelihood of observing the sample z during training increases, thereby leading to
a smaller estimation error at the corresponding pair (z,t). Based on this observation, we
assume that the estimation error is inversely proportional to the density p;(z). Furthermore,

we assume that .
e(z,t):A{z;eXp(—W)} , (10)

where A is used to control the norm of the estimation error. We neglect the denominator
term /C3(t)S(t) in our analysis for the reason that it is a polynomial function of ¢, which
is asymptotically dominated by the exponential term in the full expression’s denominator.
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To streamline the theoretical discussion, we therefore retain only the dominant exponential
factor. Moreover, to better reflect practical implementation settings, we adopt the FEuler
method for discrete-time generation, i.e.

thl = Zt - b(Z,t)h,

where h is the step size. Then, we have the following conclusion.

—1
Corollary 3 Assume that e(z,t) = A {Z?zl exp ( — %)} , the generated result

of the deterministic method defined in Eq. Y satisfy

o Underfitting: There exists A such that when A\ > X, for all i € {1,...,n} and ¢, it
holds that
1Ze-1 = Xil* > 12 — X%

o Overfitting: Assume the start point in generation is bounded. For any 7 > 0, there
exists A such that when A < ), there exists ¢ € {1,...,n} satisfying

1Zo — Xi||* < .

The assumption that the start point is bounded is not particularly restrictive due to the finite
numerical precision and constrained sampling ranges in practical implementations. Corol-
lary B offers a comprehensive characterization of generative behavior within the stochastic
interpolation framework. Specifically, if the estimation error during training is excessively
large, the generated samples tend to diverge and fail to capture meaningful structure—
this scenario corresponds to underfitting. On the other hand, if the estimation error is
extremely small, the generated samples may concentrate too closely around the training
data, effectively memorizing them and failing to produce novel outputs, which is referred to
as overfitting.

We provide a visual validation of the conclusions drawn in Corollary E, with the corre-
sponding results presented in Fig. Y. When the error bound A is large, the generated
samples exhibit divergent behavior and tend toward infinity, which is the underfitting case.
In contrast, when A is sufficiently small, the generated samples remain concentrated around
points in the training set, which is the overfitting case. This is consistent with the theoretical
predictions.

mge o o : Generated Samples
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Figure 4: Visualization of the error proportional to the probability: (a), (b), and (¢) corre-
spond to ¢ values of le—2, le—4, and 1le—10 respectively.

Section @ reveals that the stochastic generation process inherently injects Gaussian noise
into the final outputs. Excluding the underfitting regime, generation with estimation error
yields samples that lie within a ball around the training data, which can be effectively
interpreted as the addition of uniform noise. Therefore, in practical scenarios, the essence
of the generated samples from the generative model is the training samples perturbed by
Gaussian noise and uniform noise, where the intensity of Gaussian noise is related to the
stochasticity during generation, and the intensity of uniform noise is related to the fitting
error.

The conclusions presented in this work do not challenge the fundamental validity of gener-
ative models. When the primary objective is sample generation, and the underlying data
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space exhibits sufficient continuity, producing samples in the vicinity of the training set can
still be considered consistent with the data distribution and may yield high-quality outputs.
Furthermore, as the size of the training dataset increases, the generated samples tend to
better approximate the true data distribution. Therefore, in classical generative tasks, such
as training models on large-scale datasets like ImageNet, it remains feasible to attain both
high generation quality and sample diversity.

However, some prior works have utilized samples generated by generative models in down-
stream tasks, such as training classification models. Our theoretical findings suggest that
the use of generated samples in such settings may be effectively equivalent to augment-
ing the training set with noise-perturbed versions of the original samples. Moreover, when
the original training dataset is limited in size, generative models are prone to overfitting,
producing samples that closely resemble the training data without introducing substantial
novelty. This necessitates caution when applying generative models to downstream tasks.

4 Experiments

4.1 Performance of Generated Samples in Classification Tasks

In this section, we empirically validate our theoretical findings through experiments on
real datasets. Specifically, we assess the effectiveness of generative models in downstream
classification tasks using the MNIST and FashionMNIST datasets. To illustrate the sample
composition, we consider a total training size of 100 and the training configurations is defined
as follow

o Half Samples: A baseline classifier trained on 50 real samples.

e Full Samples: An upper-bound classifier trained on 100 real samples.

o Generated Samples: A classifier trained on 50 real samples and 50 generated sam-
ples, where the generative model is trained on the 50 real samples.

e Full Generated Samples: A classifier trained on 50 real samples and 50 generated
samples, where the generative model is trained on the full dataset of 60,000 samples.

e Noised Samples: A classifier trained on 50 real samples and 50 noisy versions of
them.

The classification accuracies under these settings are reported in Tab. m and Tab. E, where
the values in the table represent the classification accuracy (%) on the test set.

Table 1: Classification Accuracy on MNIST

Sample Size Half Samples Noised Samples Generated Samples Full Generated Samples Full Samples

100 68.84 75.3 68.61 73.74 77.57
200 77.57 83 78.33 81.8 81.7
400 81.7 84.96 80.43 84.88 85.97
1000 87.29 88.65 86.18 88.69 89.22
2000 89.22 90.44 89.78 90.48 91.3
4000 91.3 92.94 91.82 92.24 93.15
10000 93.15 94.23 93.36 93.42 94.48

Table 2: Classification Accuracy on FashionMNIST

Sample Size Half Samples Noised Samples Generated Samples Full Generated Samples Full Samples

100 62.26 68.69 65.89 60.8 68.32
200 68.32 73.78 70.78 67.81 71.04
400 71.04 76.18 73.07 72.5 75.77
1000 77.64 79.6 78.55 76.9 80.14
2000 80.14 82.32 81.41 80 81.83
4000 81.83 84.21 82.65 81.5 82.64
10000 84.17 84.82 83.72 83.31 84.14
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The experimental results demonstrate that synthetic samples generated by a generative
model trained on the full dataset can enhance the performance of downstream classifica-
tion tasks, thereby validating the data augmentation potential of high-quality generated
samples. However, under small-sample conditions, the limited availability of training data
leads the generative model to overfit, resulting in generated samples with low diversity that
largely replicate the training distribution. This overfitting behavior is directly manifested
in the downstream task performance: specifically, when the training data are scarce, the
classification accuracy achieved using generation-augmented data is even lower than that
obtained using simple noise-perturbation techniques.

4.2  Performance of Generated Samples in Contrastive Learning

We further assess the applicability of our theoretical framework in the context of contrastive
learning. Prior work Wang et al| (2024) has shown that incorporating synthetic samples
generated by a generative model, together with weaker data augmentation strategies, can
enhance contrastive learning performance. Our theory offers a plausible explanation for this
observation. Specifically, data augmentation in contrastive learning can be interpreted as
generating new samples within a local neighborhood of the original data points. In our
theory, the samples generated by the generative model can be regarded as the result of
adding Gaussian noise within the unit ball neighborhood of the original training samples.
Consequently, combining generated samples with weak augmentation yields a comparable
perturbation magnitude to that of conventional strong augmentation strategies (e.g., the
Ag+1 in Wang et al] (2024)), while simultaneously introducing greater sample diversity.
This dual effect contributes to improved generalization. We validate this claim through
comparions between using generated samples and noised samples under different contrastive
learning method on the CIFAR-10 dataset, including SwavCaron et al| (2020), SimsiamChen
& He (2021)), SimclrChen et al| (2020a) and Mocov2Chen et al| (20201). Experiments results
are reported in Tab. B, where the values in the table represent the classification accuracy
(%) on the test set.

Table 3: Results of Contrastive Learning on CIFAR-10

Swav  Simsiam Simclr Mocov2

Baseline 88.94 88.82 90.14 91.72
Weak Augmentation + Generated samples 90.11 90.80 91.71 92.95
Weak Augmentation + Noised samples 90.09 90.68  91.41 92.84

The experimental results reveal that incorporating noisy samples in conjunction with weak
data augmentation yields modest performance gains over the baseline, although it remains
slightly inferior to directly leveraging samples generated by the generative model. This
observation is consistent with expectations: the generative model, having been trained on
the full dataset of 60,000 samples, possesses strong generative capacity. Nonetheless, the fact
that noise based synthetic samples achieve performance comparable to that of the generative
model provides indirect empirical support for our theoretical framework.

5 Discussion and Future Work

In this paper, we discuss the properties of generative models under limited sample training
set based on the stochastic interpolation framework. We also provide a comprehensive
understanding for the underfitting and overfitting phenomena in generative models with
theoretical support. This conclusion can also be extended to other algorithms in the diffusion
model series. However, due to space limitations, there are still some issues that this article
does not address, including (1) whether mainstream generative models such as VAE, GAN,
and Autoregressive exhibit similar memorization characteristics; (2) whether conditional
generative models follow the same patterns under this theoretical framework. These open
questions provide valuable directions for future research.
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6 Reproducibility statement

All experimental results in the paper, including the scatter plots in Section E and the tabular
data in Section H{l, are accompanied by the corresponding code submitted in the supplemen-
tary materials. The proofs of all theorems and propositions are provided in Section
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A Appendix

A.1 Property of Finite Training Sets on Both End

In this section, we extend the results to the case where both pg and p; are finite sample
distributions, which deduces the following proposition.

Proposition 3 When po = 1 """ | §(X;) and py = L Y™ §(Y;), the optimal velocity has
the following expression

bty = L0 4 zn: i{ (1) - :((f))a(t)}xi + o - L850y,

—a(t)X;—B1)Y;]? (11)
eXp(_Hz o )272({;3() il )

n m —a(t) X, — Y2\
Shoy Sy exp(— 2= 5 SN

Similar to Theorem ﬂ, we have the following corollary about the generation result.

Corollary 4 Using b3(z,t) as the velocity field and performing determinstic generation as
defined by Eq. f, starting from a time ¢ = 1, the generated result will lie in {X;}?,.
Similarly, starting from time ¢t = 0, the generated result will lie in {¥;};.

Corollary H provides the result for error-free deterministic generation. Similarly, following
the conclusions in Sections and , we can readily obtain the results for stochastic
generation and generation with estimation error.

A.2 The Relation between Generation Quality and Training Set

We further investigate the phenomena of memorization and generalization in generative
model training by conducting experiments on the ImageNet dataset. Specifically, we sample
256, 1024, 4096 images randomly from ImageNet to construct the training sets, and adopt
the SiT-B/2 Ma et al| (2024) architecture as the backbone of the generative model. To
assess the quality of generated images, we employ the CLIPIQA [Yang et al! (2022) metric,
which provides a reference-free evaluation of perceptual quality, in contrast to metrics such
as SSIM and PSNR that require ground-truth comparisons. For quantifying memorization,
we follow the evaluation protocol introduced in [Yoon et al] (2023). For a generated sample

Z, find X7 and X5 in the training set with the smallest and second smallest Lo distance.
X1 -2

T%=ZI7 < % following [Yoon

The sample Z is marked as a memorized instance if it satisfies
et al) (2023). The visual results are presented in Fig. E

The results in the figure indicate that if the training set has very few samples, such as
256 samples, the model will quickly memorize the samples in the training set, leading to
overfitting. As the number of training samples increases, with 1024 samples, although the
quality of the training images improves, the memorization rate also rises. When there are
4096 samples, the model no longer memorizes the samples in the training set and achieves
better generation metrics. This memorization phenomenon supports the motivation of this
paper.

To further examine this behavior, we display generated samples alongside their closest coun-
terparts in the training set, which is shown in Fig. ph. The results suggest that, particularly
under limited-data settings and prolonged training, the model tends to memorize specific
training instances, thereby compromising its generalization capability.
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clipiga

(a) (b)
Figure 5: Underfitting and overfitting phenomena on ImageNet. (a) Changes in generation
quality and memorization as training time increases. (b) Visualization of samples generated

by the generative model alongside their closest samples in the training set; the first row
shows the generated samples, and the second row shows the closest training samples.

A.3 Theoretical proofs

In this section, we provide the proofs of the theorems in the main text.

A.3.1 Proof of Proposition |

Proof. According to the definition of b(z,t), when p; is the Gaussian distribution, the
optimal velocity field can be derived as

b*(2,t) = E [o/(t)zo A1) 21+ ()| Ze = z}

Zt =) // [o/ 20+ B'(t)z1 + /(¢ )7]} po(zo)pl(zl)Pn(z - O‘(t);(ot) 5(t)21>d20d21

= [ [ {l =L Raw)a+ (510 - T s+ 202}
(z—a zo— (t)z1>

po(z0)p1(21)P, dzodz

i (05200) )
[ [{le® -2 aw]zo+ [0 - T st0) + 252}

-1

po(20)p1(21) Py (Z — a(t)’yz(ot)— b= >d20d21
121 = ey (2 — a(t)20)|? 1z — a(t)z0)|2
[ [ e (- o ) o (= 2y + oy )

P B S PR, ) P TN (O
[ [ {0 - Zaw)za+ (510 - L st0) + L0}

B(t) 2
21 — szt (2 — alt)z0)| ) ox ( _ M)dmd%

po(20) exp ( - S
) 2(~2 2
N OFEIO) (v2(t) + B2(t))
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Treating 2z; as a Gaussian random variable, we obtain

z—a(t)zo — B(t)z
pl('zl)Pﬁ( ’Y(t) )

2> Iz — a(t)zo — BH)z ]
e exp ( T2 ) xp ( - 27(;(1?) )

Iz 2 B2 W)zl — 28(0)2F (2 — a(t)z0) + Iz — a(t) 2ol
xexp (= e (- O )
xexp (- (72(t) + B2@0)|1]1® — 28(8)2F (2 — al(t)z) + || 2 — a(t)zO||2)

P 292(t)

l21 — i (2 — a(t)20) 12 1z — a(t)z0)|2

xewp (- L0 Je (- 2<72<t>+53<t>>>'

72 (1)+5%(1)

Therefore b*(z,t) has expression that

2 —1 7 /
b*(z,t) = {/po(zo) exp ( — m%)dzo} /{[o/(t) - 1((;))(1(15)]20 +[8(t) - "Vy(t)ﬁ(t)]

B(1)(=z — o(t)z0) | 7' (1) I — a(t)zl?

FOTE T o e e (- 5oy gy

V) O — OB ,

= [ for- S T s+ B ) O‘W“)}W[wt) QST a0
7)

Hz a(t)zo|?

exp (= 37520
a(t)zo||?
Jexp (- 7|(‘z2(t (i)ﬁgut)))po(zo)dzo

po(20)dzo.

Considering that po = > 1, §(X;), the integral can be written as a summation over the

samples {X;}™ ,, thus b*(z,t) has the following expression

n l|z—a(t) X2
o= (P o) B
I I T e -
'_;Cg(t)[ 10z = Ca(t) ’} > exp (- [E Qa(stzf)f \|2)’

where
Cr(t) = A(t)' (1) + /(D)8 (),
Ca(t) = [y (1) + B OB0)]alt) = [42(1) + 82|’ ®),
Ca(t) =23(t) + (1)

A.3.2 Proof of Proposition E

We begin by presenting two related lemmas that establish some useful properties of Z; with
respect to Zy and Z.

Lemma 1 (Tweedie’s Formula) Let Y be a random variable following an exponential family
distribution, such that Y = 6 + ¢, where

e 0 is an unknown parameter follows a prior distribution,

o ¢ is independent noise with E[e] = 0 and Var (g) = o2.
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Then, the posterior expectation of # given Y = y is:

d
E[f|Y =y] = y+02d—ylogPy(y).

Lemma 2 The score function s(z,t) can be expressed as
1

v(t)

s(z,t) = — E[n|Z: = z].
Proof. Recalling that the definition of Z; is
Zy = a(t)Zo + B(t) Z1 + ().
Taking conditional expectation with respect to Z; on both sides, we obtain

Zy = Bo(t)Zo + B(t) 21 2] + v(H)E[n|Z:].

Applying Lemma m, it follows that
Ela(t)Zo + B(t) Z1|Z: = z] = z + ¥ (t)s(z, t).
Combining the above equation, we have
1
s(z,t) = ——=E|n|Z; = z|. 12

Next we present the proof of Proposition E

Proof. The velocity field b(z,t) can be further expressed as

b(z,t) =E[d/(t)Z0 + B'(t)Z1 +~ (t)n|Z; = 2]

= (OE[Z0|Z, = z] + B (OE[Z1]|Z, = z] ++' (H)E[n|Z, = z]. (13)

Applying Lemma [[, it follows that
a()E[Zo|Z, = 2] = z+ (B°(t) + 7*(t))s(2, t). (14)

In addition, by Lemma ], we have
Zy = E[a(t) Zo + B(t) Z1| 2] +~v(t)E[n|Z] (15)

= a(t)E[Zo|Z:] + BE[Z1]Z:] +~(H)E[n]Z:].

Combining Eq. @, Eq. @, Eq. @, and Eq. @, we arrive at the closed-form expression for
the score function
a(t)

s(z,t) = ==%b(z,t) — B >

B(t)
where
B(t) = B(t)[a'(t)B(t) — a®)8' ()] + () [v() (t) — ' (H)a(t)].

Thus we have

s*(zt) = g((?)b*(z,t) -
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A.3.3 Proof of Theorem m

Proof. Let us define A(t) = exp (— ftl g;gzgd ), X = [X1,...X,] and introduce the weight
function

lz—a@®X1)* 2= at)Xa|?

2(v2(t) + 82(1))" T 2(v*(t) + B2(1))

Let Z; = A(t)k(t), where x(t) is a time-dependent auxiliary function. Then, by differenti-
ating x(t), we have

di(t)  A()Z® _ 7 A1)

w(z,t) = softmax[

at A%(1)
AW G2 — AW G - X - w(Z1) Zi
- A%(1)
6l v,
Gmnap e @nt)

Let Z;(x) denote the random variable at time ¢ of the process initialized at point . Then,
Z(x) can be expressed as follows

Zi(x) = A(t)k(t)

YOy (u ! 5(u
:exp(— t g;gugdu) (;v—l—/t CM.X.w(Zu(x),u)du).

Therefore, at ¢ = 0, there exists ¢ € {1---n} that the generation result Zy(x) takes the
following value

YOy (u ! 2 (u
Zo(x) = 1%ir%exp ( — /t g;gu;du> (x Jr/t Cgfu)(A)(u) - X - w(Zu(x),u)du)
ft Cg?j)(z) X - w(Zy(z),u)du

= lim

t—0 ﬁ
Ca(t) X -w(Zy(x),1)
_ 15y C3(OAD) AN
= fm = A'(0) 16)
A2
Ca(t)

~ Iy X
=X }g%w(Zt(:r),t)
— X,

The sixth equation holds because as ¢t approaches 0, due to the nature of the softmax
function, one element in w tends to 1, while the other elements tend to 0. Therefore, there
exists ¢ € {1,...,n} such that the final result will be one of the Xj.

O
A.3.4 Proof of Theorem E
Proof. Recalling that the stochastic generation process has the expression that
47, = (b*(Zt,t) —C(D)s (Zit )dt+ V2 () dwy,
alt), o)

B =Y T B

where s(z,t) =
Starting from initial point s, Z;(x) has the following expression

1 "(u 1
Zi(x) =z — /t (1 - C(g)(‘zg”)b(zu(z),u) + %Zu(x)du +/t V2C ()W
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Let Z; denote the result generated by the drift component alone (i.e., without the stochastic
noise), initialized from x

Zi(z) =z — /1 (1 - M)b(Zu(x),u) LW 5,

Similar to the proof of Theorem m denoting A(t) = exp(— ft gé(zg + %du) we obtain

that

Cilw) | ¢,y o) [P —Caw)
Ao e ) Gl Gy e Aoy e SR L RD
)

_ iy ©2(0) ( (1)Cs(t) (Balt) ;
_}%Cl(t)(l 20 (1—W)-X-M(Zt(x),t).

Zo () = lim exp <

t—0

Ci(t)B(t)

Therefore, when ((t) < B(t), there exists i € {1,---,n} such that Zo(z) = X;. Conse-
quently, the stochastic generation process satisfies

Zo(l‘) = Xl + /O vV 2C(t)th,

where fol \/2((t) dWy is a Gaussian random variable with mean zero and variance 2 fol C(t)dt.

A.3.5 Proof of Theorem E

Proof. When an error term e(z,t) is present, the generation process can be expressed as
follows

iz, .
D b*(z,t) + €(z,1).

Analogous to the proof in Theorem m, define, let A(t) = exp( Clgzg du) and Z; =
A(t)k(t), we have

dr(t)  At)%2: — 7, A'(t)

dat A2(t)
AW E Z, - AW - X - w(Z,t) + Ae(Zi,t) — G40 A2,
- A2(t)
Cs(t) e(Z,t)
=———7 . X w(Z,t)+ .
Cs(H)A(t) (29 + 3

Starting from initial point x, Z;(x) has the following expression
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Therefore, at ¢ = 0, there exists ¢ € {1---n} that the generation result Zy(x) takes the
following value

_ Cou) €(Zy,u)
Zy = 1 A(t — - X - Z
(@) = limg A(t) (o / GotwA ~ @)+ =70 du)
) ¥ (Zy(2),u)du 1
— lim ft C3(w)A(u) - ( ( ) ) ~ lim A(t)/ G(Zu,’u,)du
t—0 V0] t—0 ‘ Au)
Co(t
L C3(t)(A)(t) X - w(Zy(2),) . e(Z,,1)/A(t)
A(t ’ 2
t—0 A2((t)) t=0 A’(t)/A2(t)
N e ()) A(t)e(Zy, t)
=l G X @z~ im =g e
_ : Cs(t)
=X %gnw(Zt(x),t) - }HO ) €(Z,t)
_ v Cs(t)
=X; - 7}1_1)1(1) 3 (t)e(Zt,t)
The fifth equality holds because A(t) = g;gg A'(t). O

A.3.6 Proof of Corollary E
Proof. Recalling that the expression of C4(t) and Cs(t) are

C1(t) =~ (1) + B/(1)B(1),
Cs(t) = 7*(t) + B°(t).

Ast — 0, we observe that Cs(t)/Cy(t) — 0. Therefore, if there exists a constant A > 0 such
that |le(z,t)]|? < A for all ¢, then
2

=10 =0.

e(z,t
Ci(t) (%:1)
This implies that the error term vanishes in the limit as ¢ — 0, and hence the generated

sample at time ¢t = 0 concentrates around one of the training samples. Therefore, there
exists an ¢ € {1---n} such that Zp = X;. O

t—0

A.3.7 Proof of Corollary E

Proof. Since the error term €(z,t) is bounded by a function related to ~(¢), if Cs(t) <
’Y(t)cl(t)v then

|1 Cs(2) ? _
%gr(l) Cl(t)e(z,t) =0.
If C5(t) < v(t)C1(t), there exists a constant ¢ > 0 such that
lim Og(t)e(z t) i =c
t—0 || C1 (t) ’ T
If C5(t) 2 ~v(t)C1(t), then
_les@) 2
AT t)‘ =
Next, we demonstrate the case when §(t) = ¢, where 8'(t) = 1. we consider the following
equatlon
Colt) (1) N 8
Cr(ty(t) (O (&) +10)BA () ()Y () + (BB (E)
_ VA (t) 2
= S £ 0
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Therefore, as t — 0, if v(t) < 5(¢), then

.|| Cs(1) 2
el FeAri e

If (t) < B(t), there exists a constant ¢ > 0 such that

el AR

It 7(t) 2 B(#), then

lim
t—0

A.3.8 Proof of Corollary E

Proof. (1) We begin by proving the first case, that is, there exists a constant X such that
for any A > A, and for all i and ¢, ||Z;—1 — Xi||® > || Z: — Xu||*

(i) If for all index j € {1...,n},
120 = () X51I* > 2max || X; — X,

then, for a fixed index i, it follows that for all j € {1...,n},

2
Z, — a(t)XjH < ‘

Zt — a(t)XZ

2 2
+ Ck(t)HXZ — XJH

IN

2+@Hzt—a<t)

2

HZf —a(t)X;

IN

2+a(t)‘
2

Zt — Ol(t)

Consequently, we have

-1

n 2 —a 2 —1
Zexp ( _ M) > {nexp ( _ ”Zt(t)X”)} > exp (”Zt_a(t)Xin)-

203(t) 203(t)
(17)
Moreover, there exist universal constants ¢y, cs > 0 such that
‘ Zy — CIE ;Zth-i- C2Et§ - X - w(Zy,t)
G, Gl Ci(t) Calt) 2
o GO0 M2~ (L= G e (- G = Xk gy Xl h|
i), 2 Gt Cy(t)
==& w7 - x, Ca(d) Ca(t) W(Z“t)hH
§C1‘ Zy — X; 2+02.
(18)

The constants ¢; and ¢y are independent of both ¢ and j because the functions 3(t), C1(¢),
C5(t) and || X||? are all uniformly bounded.

Suppose that the error term e(z,t) satisfies the following condition

C(t) Cs(t)

2
03(t) C3(t) - X s (19)

Zh +

2
e(Zt,t)H h> HZt_ X - w(Zi,t)

19
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then, by virtue of the update equation

a1 (1) Co(t)
G 2 e

and applying the triangle inequality, it follows that

Zy1— Xy =2y —

X - w(Zi, O + e(Zi, t)h — X, (20)

) 2_ Cl(t) Cg(t) . 2
HZH X; _HZt G2t ey X e(Z b = X,
Ci(t) Co(t) 9
> 2 - X _X.
> [le(Ze I~ 12— Gl e+ s - X -w(Zotih = Xl

> 12 — Xi||%.

Combining Eq. @ and Eq. @, the condition in Eq. @ can be rewritten as
le(Ze, )|*h > (L + )| 2 — Xi||* + o (21)

According to Eq. @, for each iiiscrete time t;, there exists a constant );, such that Eq. @
holds. We denote A\; = maxy, A, .
(ii) If there exists an index j such that

17 — a(t)X, P < 2max | X; — X,

then for any ¢ € {1,...,n}, it holds that
1Z: = a()Xi[]* < (2 + a(t)) max || X; — X,

In this case, there exist universal constants cg > 0 such that
12 = Xil|* < (12 — a®) Xil” + la(t) X; — Xi]|* < e3,

where c3 is independent of both ¢ and j. Furthermore, we have
-1

e 12, — a(t) X, A
ez )12 = A ;;“p(‘;mgﬂ) >2

Therefore, there exists a constant Ao such that the error term e(z,t) satisfies Eq. @ By
defining A = max(\1, A2), the proof of the first case is complete.

(2) Next, we prove the second case, that is, for any 7 > 0, there exists A such that when
A < A, there exists i € {1,...,n} satisfying

HZ() — Xz||2 <T.
According to Eq. @, there exist universal constants ¢y, ce, c3 > 0 such that
2 Cy(t) 2 Cy(t) Cs(t) 2
Zi-xl <@a- hHZ—XZ- H hX, X - w(Zit hH
|70 =< - ggmlla -5l + e+ o X w0
2
n e(z,t)” h
2 2
:Cl‘Zt—Xi +co + G(Z,t)H h

< eshexp(]| Z: — X%
Since the start point Z; is bounded and {X;}? , is a finite set, let
M = max||Z; — X;|°.
Define Cp := exp™) (0) as the T-fold exponential, where T is the number of generation steps.

Thus there exists A; such that csA, M < In‘™)(Cr), which implies exp(™)(csA, M) < Cp.
Simultaneously, there exists A, satisfying Ay < —%—. By defining A = min(};, \,), we obtain

c3Cr

csAexpT) (esAM) < 7, and consequently, ||Zo — X;||? < 7, which completes the proof of the
second case.

O
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A.3.9 Proof of Proposition E

Proof. Similar to the proof of Proposition m when py = =37 6(X;) and py =
L§™" 1 8(Y;), the optimal velocity field has the expression that

b (z,t) = E[a ( )Zo + B'(t)Z1 + ' ()] Z, = 2]

Zt — 2 // "(6)Zo + B'(t)Z1 + 'y'(t)n} po(zo)pl(zl)Pn(z — a(t);glt; ﬁ(t)zl)dzodzl

_ m / /{ o (1) - 1 g))a@)}m + |8 - 1 <<f>) Bz + Yy (%)z}
(z —a(t)zo — B(t)z1
(1)

=T3S {0 - Zew] i+ [0 - L] )

1=15=1

po(Zo)p1(Z1)Pn )dZole

exp(— L= X b0V,

n m —a — 257
D k=1 211 €xP(— = (t)zfg(tﬁg(tmu )

A.3.10 Proof of Corollary @

Proof. According to the definition of b%(z,t) and the proof of Theorem m, we denote A(t) =

exp ( f : 77((:) du) Starting from an initial point = at time ¢ = 1, Z;(x) has expression
that

1 / /
7 () )
Zi(x)=exp| — / (u) — alu)| X; + |8 (u) — B(u)|Y;
) =ew (- > {lve ) ] X |8 = 2T 8|}
exp(,nzuw)faé:);&;a(u)m ) ) du)
s i xp( - [ZCI-f S0 Au)

Therefore, there exists an ¢ € {1,...,n} such that

TYL

u ’Yl(u) , ’y’(u)
Zo(x) = 1;“% exp ( / (u) / o (u) — () Oé(u)}Xi + [ﬁ (u) — ) B(u)}Yj}
exp(— ”Z“‘“(’;Lfé;)mumu ) : du)
ZZ:1 Zl";l exp(— ‘lZ“_O‘(?jg’(cu—)ﬁ(u)ng) A(u)
: ’Y(t) ~ / ~'(w) , 'y’(u)
- ng%_,y/(t) ;jzl { [04 (u) — e a(u)} X+ [5 (u) — e g(u)]yj}

exp(— 1z (X BV I

Sopoy Sy exp(— Pumely) o flunE

T im0 ~'( [Z Z ( — (¢ )a(t))Xi + (V(t)ﬁl(t) - ’Vl(t)ﬁ(t)>y}]
=1 j=1

exp(— ”Zu*augjgz;)ﬁ(um I

Sohoy Yoty exp(— [ Zemaly) B BComiE
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According to the symmetry of {X;}7.; and {Y;}7L,, starting from time ¢ = 0, the generated
samples belong to {Y;}7 ;.

|
A.4 LLM Usage Statement
Large Language Models were used solely as an auxiliary tool for translation and language

polishing of the manuscript. The research ideas, problem formulation, methodology, analy-
sis, and main writing were entirely conducted by the authors without LLM assistance.
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