
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMBSTRUCT4LEAN: A FORMAL COMBINATORIAL
BENCHMARK EMPHASIZING STRUCTURES FOR AUTO-
MATED THEOREM PROVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Formal theorem proving with large language models (LLMs) has demonstrated
promising results, yet combinatorial problems remain a notable challenge due to
their reliance on problem-specific structures and definitions. AlphaProof, a notable
LLM-based system for automated theorem proving, has shown strong performance
in the International Mathematical Olympiad (IMO), obtaining a silver-medalist per-
formance by solving all questions but two combinatorics problems. Existing formal
benchmarks have limited combinatorial coverage and often overlook the importance
of combinatorial structures. To address these gaps, we introduce CombStruct4Lean,
a novel benchmark composed of 282 combinatorial problems formalized in the
Lean4 proof assistant. CombStruct4Lean emphasizes the usage and reasoning with
combinatorial structures, presenting significantly greater diversity than existing
datasets. We conduct a novel analysis based on constructability, the challenge
of proving that a defined structure is inhabited, to quantify the complexity of
CombStruct4Lean compared to existing ones. We evaluate state-of-the-art auto-
mated theorem proving methods on our benchmark, revealing substantial room
for improvement and highlighting the difficulty of reasoning with combinatorial
structures.

1 INTRODUCTION

Large language models (LLMs) have recently shown remarkable progress in formal theorem proving,
achieving strong results on challenging mathematical tasks. Notably, AlphaProof AlphaProof and
teams (2024) and AlphaGeometry2 Chervonyi et al. (2025) obtained a silver-medalist performance at
the International Mathematical Olympiad (IMO) 2024 competition. However, both systems failed on
two combinatorics problems, which highlight challenges and limitations of LLMs on this domain.

Combinatorics is a branch of mathematics that focuses on reasoning over discrete structures such as
graphs, partitions, and permutations with specific constraints, which often require problem-specific
definitions and constructions that are difficult to formalize Zheng et al. (2021). More broadly, formal
theorem proving involves two core tasks: autoformalization—translating a natural language problem
into a formal statement—and automated theorem proving—finding a formal proof from that statement.
In both cases, the output must be verified by proof assistants like Coq Barras et al. (1999), Isabelle
Nipkow et al. (2002), or Lean4 Moura and Ullrich (2021).

While there have been multiple works tackled on both tasks in both general mathematical domain Wu
et al. (2022); Azerbayev et al. (2024); Xin et al. (2024); Lin et al. (2025a) and specific branches Xiong
et al. (2023); Wei et al. (2024); Trinh et al. (2024); Chervonyi et al. (2025), only a few focused on
combinatorics Doan and Nguyen (2025); Xiong et al. (2025). A significant factor contributing to this
limitation is the current state of formal benchmarks, which offer limited coverage of combinatorics.
For instances, miniF2F Zheng et al. (2021), ProofNet Azerbayev et al. (2023), and FIMO Liu et al.
(2023) contain no combinatorial problems, and PutnamBench Tsoukalas et al. (2024) includes only a
small fraction (29 out of 657) dedicated to this area.

Furthermore, these benchmarks often overlook the aspect of combinatorial constructions. In the
formalization of IMO 2024 Problem 5 imo, one of two problems that AlphaProof failed, over 20%
of the formalization was focused on defining specific combinatorial objects and structures, with a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

substantial portion of the remaining code consisting of lemmas directly related to these new structures.
Despite this importance, existing benchmarks have not focused on this area. For instance, LeanComb
Xiong et al. (2025) only focused on combinatorial identities with pre-defined constructions. Similarly,
CombiBench Liu et al. (2025a) focuses on general theorem proving, and while its problems may
contain structures, they are not explicitly curated for structural complexity. As a result, there is a clear
need for a benchmark specifically curated to represent the structural challenges inherent in advanced
combinatorial reasoning.

To address this gap, we introduce CombStruct4Lean, a benchmark of formal combinatorial problems
with an emphasis on combinatorial structures. CombStruct4Lean consists of 282 combinatorial
math-word problems, sourced from high-school olympiad-level competitions and formalized in the
Lean4 proof assistant. Our benchmark creation process incorporates a LLM-based feedback-driven
formalization pipeline that iteratively refines the formal statement by analyzing compilation failures
and retrieving relevant premises. Unlike prior methods that rely on a single-pass generation Wu et al.
(2022); Lin et al. (2025a); Azerbayev et al. (2023), this process enables the model to define and adapt
problem-specific structures, which are essential for combinatorial problems. To ensure quality, we
incorporate a two-stage semantic checking strategy that checks the consistency between the informal
problem and its formal counterpart, followed by manual review by human experts. Furthermore,
to quantify the complexity of the structures within our benchmark, we introduce a novel analysis
based on constructability, the challenge of proving that a defined structure is inhabited by at least one
concrete instance. Our analysis shows CombStruct4Lean posess a significantly higher diversity than
other formal benchmarks while possessing a more complex and challenging set of problems. Through
experiments on automated theorem proving task, we demonstrate limitations of current models on
our benchmark.

Contributions This paper makes the following contributions: (i) We introduce CombStruct4Lean, a
benchmark consisting of 282 formalized combinatorial problems with a strong emphasis on usage and
reasoning with combinatorial structures. We describe our benchmark construction process, including
the iterative formalization pipeline and the semantic checking strategy. (ii) We perform a novel
analysis based on constructability, the challenge of proving that a defined structure is inhabited, to
quantify the complexity of CombStruct4Lean compared to existing ones. (iii) We demonstrate the
CombStruct4Lean’s difficulty through extensive experiments with state-of-the-art theorem provers,
providing a challenging new testbed to guide future research.

2 STRUCTURES IN LEAN

2.1 DEFINITION OF STRUCTURES

Combinatorics often deals with objects that are defined by a complex interplay of rules and constraints.
By defining them as formal structures in the Lean theorem prover, we can state every rule and
constraint explicitly. This helps reduce the risk of subtle errors arising from unstated assumptions. In
Lean, a structure is a mechanism for bundling data fields with propositions that assert properties
of that data. It serves as a blueprint for a mathematical concept, where any concrete instance is
guaranteed by Lean’s type checker to satisfy the specified axioms. For example, the SimpleGraph
structure from Mathlib is defined as:

structure SimpleGraph (V : Type u) where
Adj : V → V → Prop
symm : Symmetric Adj
loopless : Irreflexive Adj

This formalizes a simple graph as a structure containing vertices V and an adjacency relation Adj,
accompanied by proof terms establishing that Adj is both symmetric and loopless.

This connection between data Adj and the proofs about that data symm and loopless is a direct
illustration of the Curry-Howard correspondence Howard et al. (1980). This principle posits a
direct equivalence between logical propositions and data types, and between proofs and program
terms. In this view, a structure definition itself corresponds to a logical proposition (or a type).
Consequently, constructing an instance of the structure is the formal act of proving that proposition.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Formal
Statement

Informalizer

Backtranslated
Informal
Problem

Original
Informal
Problem

Accept

Reject

Not
equivalent

Equivalent

Semantic
Check

Formalization Premise
Retrieval Feedback Generation Semantic Checking

Bugged
Statement Traceback

Query Generator

Queries

Premises

Premise
Retriever

Desired
types

Type-based filter

Premises

Feedback Generator

Guided
Feedback

Previous
Feedback

Informal
Problem

Bugged
Statement Traceback

Informal
Problem

Previous
Statement

Formalizer

Candidate
Formal

Statements

Compile?

Formal
Statements

TracebackNo

Yes

Guided
Feedback

Figure 1: Illustrations of each step in the benchmark creation process.

This principle underpins the core challenges of formalization: fidelity ensures we are defining the
correct proposition, while constructability demands we provide a valid proof.

2.2 CHALLENGES IN FORMALIZATION

The translation from an informal concept to a formal specification presents two primary challenges:
ensuring fidelity to the original concept and demonstrating that the formalized structure is mathemati-
cally non-vacuous (i.e., that instances can be constructed).

Fidelity to the Original Concept. A fundamental challenge is ensuring that the structure
faithfully represents the original mathematical concept. An unfaithful formalization, even if internally
consistent, can lead to proofs of theorems that do not apply to the intended mathematical object. High
fidelity is achieved when the set of all valid instances of the formal structure is isomorphic to the set
of all objects satisfying the informal concept.

Constructability and Inhabitation. A formal definition, even with high fidelity, is of limited
utility if one cannot demonstrate that instances of it exist. This is the challenge of constructability,
which requires proving that the defined structure is inhabited. As dictated by the Curry-Howard
correspondence, constructing an instance requires providing not just the data, but also the proofs of
its properties. The constructor for a structure S has the formal signature:

S.mk : (x : T)→ (h : P (x))→ S (1)

Here, x is the data of type T , P (x) is the proposition that x must satisfy, and h is the proof term for
P (x). Proving constructability amounts to demonstrating that for some data x, a corresponding proof
term h can be supplied. For abstract constructions, such as proving a k-regular graph on n vertices
exists, providing this proof term can be a significant mathematical task.

3 BENCHMARK CREATION

In this section, we detail the construction process of CombStruct4Lean, which consists of 282
competition-level combinatorial problems formalized in Lean4 proof assistant Moura and Ullrich
(2021). To our knowledge, CombStruct4Lean is the first benchmark dedicated on formalizing math-
word problems in combinatorics domain with a focus on problem-specific combinatorial structures.
First, we describe our benchmark creation process, including the informal problem sources, the
formalization process with premise retrieval and feedback generation, and the semantic checking
strategy. Finally, we analyze and discuss the difficulty of our CombStruct4Lean.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Translate the following problem into a formal theorem in Lean4:
/--
Consider a graph where each vertex is connected to exactly three

other vertices (a 3-regular graph). Prove that it is possible
to color the edges of such a graph using only three colors in
such a way that no two adjacent edges share the same color if
the graph is bipartite.

-/

Previous formalization attempt:
structure ThreeRegularGraph {V : Type} where
. . .
def IsBipartite {V : Type} (G : ThreeRegularGraph V)
. . .
theorem three_regular_edge_coloring {V : Type} (G :

ThreeRegularGraph V) :
. . .

Guided feedback from LLM expert:
• The three_regular field in ‘ThreeRegularGraph‘ has multiple problems . . .

• IsBipartite definition could be improved . . .

Figure 2: Example of an input prompt to the Formalizer LLM. Detailed feedback and implementations
are abbreviated for brevity.

3.1 INFORMAL PROBLEM SOURCES

To ensure the quality of CombStruct4Lean, we select informal combinatorial problems from high-
school olympiad-level competitions LI et al. (2024). We avoid problems that require computing a
solution (e.g., how many arrangements satisfy a certain constraints) and choose only problems that
requires proving a statement. At the end of this process, we obtained 8608 combinatorial problems
and randomly sample 1000 among them. We give the informal problem statements and the proofs
to an LLM Qwen-2.5-32B-Instruct to filter out and rewrite invalid problems (e.g., multiple
questions, ambiguous statements, incomplete proofs), and obtain 883 problems as the informal source
of CombStruct4Lean.

3.2 FORMALIZATION PROCESS

In this section, we discuss each of the step included in the formalization process, namely formalization,
premise retrieval, feedback generation. Fig. 1 also provides an overview on how each step work.

Formalization. Given an informal combinatorics problem p, the formalization step uses the previ-
ous formal attempt s and guided feedback f to produce a new candidate statement. This process is
handled by the Formalizer module. In the first iteration, both s and f is empty. The Formalizer first
determines whether additional definitions or structures are needed and generates them accordingly,
then constructs a formal statement based on these elements. In our implementation, the formalization
step is performed using Claude-3.5-Sonnet API as the LLM. In the prompt, we encourage the
LLM to generate a formalization with structures in the instruction and provide an example for it. We
generate a single candidate formal statement in each iteration with a temperature of 0.3.

If the generated statement s compiles successfully, it proceeds to semantic checking (Sec. 3.3).
Otherwise, the compiler returns a traceback t, which is used in the next phase, premise retrieval.
Fig. 2 provides an example input to the Formalizer, including the problem p, the previous s, and
guided feedback f .

Premise Retrieval. A common errors we found during the formalization is the incorrect usages
of existing premises, which can be occurred because of the lack of grounding between the LLM

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Bugged Statement:
structure ThreeRegularGraph (V : Type) where
three_regular : ∀ v : V, (({w | (v, w) ∈ edges}).card = 3). . .

Traceback:
Text: (({w | (v, w) ∈ edges}).card
Error: invalid field ‘card’, the environment does not contain

’Set.card’
{w | (v, w) ∈ edges} has type Set V

Step 1: Query Generation
(query, type): [“(Set.card, Set)”, “(Set to finset, null)”]
Step 2: Premise Retrieval
Premises related to “Set.card”:

• def card : Cardinal

Premises related to “Set to finset”:
• def toFinset (s : Set α) [Fintype s] : Finset α

• def toFinset (s : Multiset α) : Finset α

Step 3: Type-Based Filtering
• “Set.card”: Matching premises: N/A
• “Set to finset”: Matching premises:
def toFinset (s : Set α) [Fintype s] : Finset α
def toFinset (s : Multiset α) : Finset α

Figure 3: Example of Premise Retrieval step

and the Mathlib library. To address this, we use a retrieval-augmented generation approach via the
premise retriever module, which provide the LLM’s knowledge with relevant premises documentation.
Although previous work has applied RAG to the autoformalization task Liu et al. (2025b), none has
used it explicitly to correct buggy formal statements.

Given the bugged statement s and traceback t, the query generator produces queries q and associ-
ated desired types T (q). Each query q and Mathlib premise pi are encoded using Dense Passage
Retrieval Karpukhin et al. (2020), and their cosine similarity is computed as:

sim(q, pi) =
f(q) · f(pi)

∥f(q)∥ · ∥f(pi)∥

We select the top-k entries from the corpus of Mathlib premises with the highest similarity and match
with the desired types:

P = {pi | sim(q, pi) among top-k ∧ T (q) = T (pi)}

We forward these retrieved premises P to the next phase for generating feedback. See Fig. 3
for a detailed example. To generate the queries and desired types for each query, we use
Claude-3.5-Haiku as the LLM with a temperature of 0.3. We use CodeRankEmbed Suresh
et al. (2024) to embed the query and signatures of each premise in the Mathlib library. For each pair
of query and expected type, the retriever returns at most k = 5 relevant premises, though there is no
restriction on the number of queries or types that can be generated.

Feedback Generation. The feedback generation module produces guided feedback f using the
original problem p, the current formalization s, the traceback t, retrieved premises P , and prior
feedback. This guided feedback helps refine s in the next iteration by (i) diagnosing root causes of
compilation failure using t; (ii) analyzing whether custom definitions align with p; (iii) demonstrating
correct use of retrieved premises P with a code snippet.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

/--
From a set S of n elements, prove that there are f(n,m,k) ways to

select a subset s of k elements such that m < k elements cannot
be together in s.

-/
def f (n m k : Nat) : Nat :=
. . .
-- First approach, semantically correct
def containsForbidden (m : Nat) (s : Finset a) : Prop :=
. . .
def valid_subsets (S : Finset a) (k m : Nat) : Finset (Finset a) :=
. . .
theorem count_valid_subsets_general
(S : Finset a) (n m k : Nat) (hS : S.card = n) :
(valid_subsets S k m).card = f n m k := by sorry
-- Second approach, semantically incorrect
def subsetsWithConflicts (n m k : Nat) : Nat :=
. . .
theorem subsetsWithConflicts_eq (n k m : Nat) :
subsetsWithConflicts n k m = f n m k := by sorry

Figure 4: Example of formal statements that are semantically correct and incorrect. Implementations
of definitions are abbreviated for brevity.

We provide an example of a generated feedback in Fig. 2. The feedback f is reused in the next call
to formalization step, continuing the iterative refinement loop. We use Claude-3.5-Sonnet to
generate the feedback, producing one feedback candidate per iteration with a temperature of 0.7.

For each informal problem, we perform the formalization process for a maximum of 5 iterations.
At the end, we obtained 594 examples that compile successfully. Among those, we removed 102
examples that contain placeholder sorry in their definitions, 80 examples that do not contain
structures, resulted in 412 examples to perform semantic checking.

3.3 SEMANTIC CHECKING

A compilable formal statement does not, in itself, guarantee high fidelity to the intended mathematical
problem. The example in Fig. 4 illustrates this distinction. The first formalization exhibits high
fidelity because it explicitly models all core mathematical objects from the problem description: the
base set S, the property of a subset containing forbidden elements (containsForbidden), and
the collection of valid subsets (valid_subsets). The final theorem correctly asserts a property
about these well-defined combinatorial structures. In contrast, the second formalization lacks fidelity.
By omitting any reference to the set S or the explicit construction of its subsets, it reduces the
problem to a purely numerical equivalence. Although it compiles, it fails to represent the underlying
combinatorial structure of the original problem and is thus semantically incorrect.

To verify the correctness of a formal statement, we adopt a two-stage semantic checking strategy.
Similar to semantic equivalence Li et al. (2024), we first informalize the formal statement, then
compare the back-translated version with original informal problem. However, instead of computing
cosine similarity between their sentence embeddings, we leverage LLMs to assess their semantic
alignment based on multiple criteria: combinatorial objects and structures, constraints, goals, scope,
and equivalence (i.e., can we restate one version by using the other?). This approach also shares
similarities with AutoForm4Lean Doan and Nguyen (2025), which uses LLMs to compare formal and
informal representations. However, our method avoids the challenge of cross-modality comparison
by evaluating two informal statements, thereby reducing the complexity introduced by differences
in syntax and representation between code and natural language. Finally, a human expert reviews
the results and manually verify the correctness of the formal statements. Specifically, the expert is
asked to review inputs and outputs of each declaration and manually construct an object for each

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0-10 10-20 20-30 30-40 40-50 50+
LOC Range

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Distribution by LOC Range
Dataset

CombStruct4Lean
CombiBench
minif2f (test)
PutnamBench

(a) Distribution of formalization lengths.

0 1 2 3 4 5+
Definitions Range

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Distribution by Definitions Range
Dataset

CombStruct4Lean
CombiBench
minif2f (test)
PutnamBench

(b) Distribution of number of custom definitions.

Figure 5: Benchmark Analysis.

structure. We use Claude-3.5-Haiku with a temperature of 1.0 for both informalization and
semantic checking. At the end of this stage, we obtained 282 examples for CombStruct4Lean.

4 BENCHMARK ANALYSIS

4.1 BENCHMARK STATISTICS

We perform an analysis on our benchmark on two aspects: formalization length in Fig. 5a and number
of definitions created in Fig. 5b. From the figures, we observe that CombStruct4Lean is much more
diverse than existing benchmarks in both formalization length and number of custom definitions.
Over 85% of problems in miniF2F and PutnamBench require fewer than 10 lines of code, whereas
only 6% of CombStruct4Lean problems fall within this range. Similarly, nearly all problems in
miniF2F and PutnamBench define no new concepts, while only 2% of CombStruct4Lean examples
exhibit this behavior, with some requiring up to 21 custom definitions. While CombiBench is more
diverse than both miniF2F and PutnamBench, it remains skewed toward simpler problems with fewer
than 10 lines of code and no new definitions.

4.2 CONSTRUCTABILITY ANALYSIS

As discussed in Sec. 2.2, a formal definition is of limited utility if one cannot demonstrate that
instances of it exist. The challenge of constructability lies in proving the defined structure is inhabited.
Recall Eq. 1, proving constructability of a structure S is equivalent to solving the proof goal P (x)
given a symbolic input x. However, deriving such a universal proof is a non-trivial task that often
requires significant mathematical insight and is difficult to automate. This difficulty motivates our
core simplification for measuring constructability: instead of attempting a general proof, we focus on
automatically constructing a single, concrete instance. That is, we prove constructability by providing
a specific numerical value for x and solving the resulting concrete proof goal.

We introduce AUTOPROVESTRUCT, a recursive, heuristics-based algorithm designed to prove the
constructability of formal structures by finding concrete instances. We describe AUTOPROVESTRUCT
in Algorithm 1. When faced with a structural goal (i.e., proving a structure is inhabited), the algorithm
applies the constructor tactic to transforms the goal into its subgoals, and proceeds recursively.
When the goal is propositional (i.e., proving a property), AUTOPROVESTRUCT first generates a set
of candidate values using a heuristic approach. It then iterates through these candidates, attempting
to solve the resulting concrete goal with a suite of automation tactics. The algorithm terminates
and returns true as soon as a candidate is found that allows the proposition to be solved, effectively
demonstrating a successful construction. The heuristic for generating candidate values is also another
recursive algorithm, described in Algorithm 2. This routine is type-directed: for primitive types like
Nat, it returns a set of predefined heuristic values (e.g., 0, 1, 2). Crucially, if an input requires a
structural type S, it calls the main AUTOPROVESTRUCT algorithm to check for if S is inhabited first
before recursively calling itself on the type of the input of S.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1: AUTOPROVESTRUCT Algorithm
Input: Goal g
Output: Boolean indicating if goal is solved

1 if g = ∅ then return True;
2 if g.type = “structure” then
3 g′ ← APPLYCONSTRUCTOR(g);
4 return AUTOPROVESTRUCT(g′);
5 else if g.type = “prop” then
6 C ← GENERATECANDIDATES(g.input.type);
7 foreach c ∈ C do
8 g′ ← APPLYCANDIDATE(g, c);
9 solved← APPLYAUTOMATION(g);

10 if solved then break;
11 return solved;

Algorithm 2: GENERATECANDIDATES Algorithm
Input: A type T
Output: A list of candidates C

1 if T is primitive then return PREDIFINEDVALUES(T);
2 if T is structure then
3 T.inhabited← AUTOPROVESTRUCT(T);
4 if not T.inhabited then return ∅;
5 else return GENERATECANDIDATES(T.input.type);
6 else return ∅;

We measure constructability by the percentage of structures that AUTOPROVESTRUCT can suc-
cessfully prove inhabited. For cases where this automated approach fails, we utilize an interactive
LLM-based method. Using the Claude-4-Sonnet API, we prompt the model to generate a proof
of inhabitation. We then enter an iterative repair loop, feeding any compiler errors back to the
model until the proof is successfully compiled or a timeout is reached. We perform this analysis on
both CombiBench and our proposed CombStruct4Lean and report the results in Table. 1. Here, we
consider any structures without proposition as constructable, therefore skipping them when running
AUTOPROVESTRUCT.

Table 1: Constructability of the structures in CombiBench and CombStruct4Lean.

CombiBench CombStruct4Lean

Total 100 282

Without structures 70 0

With structures 30 282
- no proposition 7 84
- with proposition 23 198

Proven with AUTOPROVESTRUCT 23 52
Proven with LLM 0 112
Not yet proven 0 34

From the results, we can see that our automated tool, AUTOPROVESTRUCT, successfully proved all
23 propositional structures in CombiBench, validating the effectiveness of our approach. However,
on our CombStruct4Lean, its success rate drops to 26% (52 of 198), demonstrating the increased
difficulty of these structures. This gap is substantially closed by our LLM-based method, which
proved an additional 112 structures. Note that for CombStruct4Lean, as mentioned in Sec. 3.3, all
benchmark examples are verified by a human expert to be constructable. The 34 remaining unproven
structures represent the most complex cases, requiring a level of mathematical insight that currently
exceeds both approaches.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Performance on Automated Theorem Proving task.

Models K # Pass

Specialized LLMs
Deepseek-Prover-V2-8B 32 0
Goedel-Prover-V2-8B 32 0
Kimina-Prover-Distill-8B 32 0

General-purpose LLMs
Claude-4-Sonnet 3 0
GPT-5 3 2

5 EVALUATION

In this section, we evaluate CombStruct4Lean on the automated theorem proving task, where we use
different theorem provers to solve the problems in our benchmark.

Experiment Setting. We evaluate different theorem provers on our CombStruct4Lean with two
types of models, specialized LLMs finetuned on the automated theorem proving task and general-
purpose LLMs. For specialized LLMs, we choose DEEPSEEK-PROVER-V2-8B Ren et al. (2025),
GOEDEL-PROVER-V2-8B Lin et al. (2025b), and KIMINA-PROVER-DISTILL-8B Wang et al. (2025).
For general-purpose LLMs, we perform evaluation on standard model CLAUDE-4-SONNET and
reasoning model GPT-5. We follow evaluation in ProofNet Azerbayev et al. (2023) and use Pass@K
as the evaluation metric, with K = 32 for specialized LLMs and K = 3 for general-purpose LLMs.
Considering the computational cost, we adopt the whole-proof generation approach for all theorem
provers. Specifically, we sample K candidate proofs, remove all candidates that violates the integrity
of the original formal statement and candidates with placeholder proof (i.e., sorry, admit), then
check whether each proof compile or not. We conduct this experiment on a machine with 2 A100
80GB GPUs, using default setting of each theorem prover.

Results and Discussion. The results presented in Tab. 2 demonstrate the exceptional difficulty of
the automated theorem-proving task. Strikingly, all specialized LLMs failed to prove a single theorem,
even when granted a substantial number of attempts K = 32. In contrast, the only success came from
the general-purpose model GPT-5, which managed to solve one problem with a single attempt and
two problems with three attempts. We discuss some of the failure cases of GPT-5 in the Appendix. A
potential cause for the specialized LLMs’ poor performance can be a lack of generalization stemming
from a domain mismatch between their training data and the problems in our benchmark. In our
exploratory study, we use Goedel-Formalizer-V2-32B, which was used to prepare training
data for Goedel-Prover-V2, to formalize the problems in our benchmark and found that a
majority (+95%) of the formalizations does not contain any structures. This strongly suggests that
the training corpora for the specialized provers likely mirror this distribution, being overwhelmingly
composed of non-structural problems. Since CombStruct4Lean is specifically designed to test
reasoning about these structures, the models were not well-aligned with the benchmark’s core
challenges.

6 CONCLUSION

In this paper, we introduced CombStruct4Lean, a new benchmark featuring 282 combinatorial prob-
lems formalized in Lean4 to address the limited focus on combinatorial structures in existing datasets.
Our analysis reveals that CombStruct4Lean is substantially more diverse and complex than existing
benchmarks. We also proposed a method for analyzing the constructability of these formal structures,
demonstrating that the definitions within our benchmark are significantly more challenging to prove
inhabited than those in prior work. Our evaluation of state-of-the-art automated theorem provers
on CombStruct4Lean further underscored its difficulty. We hope that CombStruct4Lean provide a
challenging and necessary testbed to guide future research toward developing more sophisticated
models capable of tackling structure-heavy problems in formal mathematics, especially in the domain
of combinatorics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we commit to making the CombStruct4Lean and associated
source code for AUTOPROVESTRUCT along with constructability analysis publicly available. Our
benchmark creation pipeline, detailed in Sec. 3 , involves LLM APIs and manual review, and is
therefore not strictly reproducible. The AUTOPROVESTRUCT algorithm used for our constructability
analysis (Sec. 4.2) is heuristics-based and fully replicable. For the components that rely on LLM
APIs and sampling, including the supplementary constructability proofs and the automated theorem
proving evaluation (Sec. 5), we will provide the exact prompts, model versions, and configurations
used. While specific outputs from these components may vary between runs, our overall experimental
setup can be faithfully replicated.

REFERENCES

AlphaProof and AlphaGeometry teams. Ai achieves silver-medal standard solving interna-
tional mathematical olympiad problems. https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/, 2024.

Yuri Chervonyi, Trieu H Trinh, Miroslav Olšák, Xiaomeng Yang, Hoang Nguyen, Marcelo Menegali,
Junehyuk Jung, Vikas Verma, Quoc V Le, and Thang Luong. Gold-medalist performance in
solving olympiad geometry with alphageometry2. arXiv preprint arXiv:2502.03544, 2025.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin, et al. The coq
proof assistant reference manual. INRIA, version, 6(11), 1999.

Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof assistant for
higher-order logic. Springer, 2002.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
Automated Deduction–CADE 28: 28th International Conference on Automated Deduction, Virtual
Event, July 12–15, 2021, Proceedings 28, pages 625–635. Springer, 2021.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Information
Processing Systems, 35:32353–32368, 2022.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=4WnqRR915j.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback for
reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Danqi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated
theorem proving. arXiv preprint arXiv:2502.07640, 2025a.

Jing Xiong, Jianhao Shen, Ye Yuan, Haiming Wang, Yichun Yin, Zhengying Liu, Lin Li, Zhijiang
Guo, Qingxing Cao, Yinya Huang, Chuanyang Zheng, Xiaodan Liang, Ming Zhang, and Qun
Liu. TRIGO: Benchmarking formal mathematical proof reduction for generative language models.
In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL
https://openreview.net/forum?id=ILQnct9H4H.

Chenrui Wei, Mengzhou Sun, and Wei Wang. Proving olympiad algebraic inequalities without
human demonstrations. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
8kFctyli9H.

10

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=ILQnct9H4H
https://openreview.net/forum?id=8kFctyli9H
https://openreview.net/forum?id=8kFctyli9H

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Long Doan and ThanhVu Nguyen. AI-Assisted autoformalization of combina-
torics problems in proof assistants. 45th International Conference on Soft-
ware Engineering: New Ideas and Emerging Results, 2025. URL https:
//conf.researchr.org/details/icse-2025/icse-2025-nier/11/
AI-Assisted-Autoformalization-of-Combinatorics-Problems-in-Proof-Assistants.

Beibei Xiong, Hangyu Lv, Haojia Shan, Jianlin Wang, Zhengfeng Yang, and Lihong Zhi. A
combinatorial identities benchmark for theorem proving via automated theorem generation. arXiv
preprint arXiv:2502.17840, 2025.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics.
arXiv preprint arXiv:2302.12433, 2023.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
Chuanyang Zheng, Yichun Yin, Lin Li, et al. Fimo: A challenge formal dataset for automated
theorem proving. arXiv preprint arXiv:2309.04295, 2023.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on
the putnam mathematical competition. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024. URL https://openreview.
net/forum?id=ChKCF75Ocd.

IMO 2024 P5 formalization. https://github.com/leanprover-community/
mathlib4/blob/master/Archive/Imo/Imo2024Q5.lean. Accessed: 2025-05-11.

Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi,
Haiming Wang, Yunzhou Xie, Beibei Xiong, et al. Combibench: Benchmarking llm capability for
combinatorial mathematics. arXiv preprint arXiv:2505.03171, 2025a.

William A Howard et al. The formulae-as-types notion of construction. To HB Curry: essays on
combinatory logic, lambda calculus and formalism, 44:479–490, 1980.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,
Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and improving
autoformalization: towards a faithful metric and a dependency retrieval-based approach. In
The Thirteenth International Conference on Learning Representations, 2025b. URL https:
//openreview.net/forum?id=hUb2At2DsQ.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pages 6769–6781, 2020.

Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach Nussbaum, Andriy Mulyar, Brandon Duderstadt,
and Heng Ji. Cornstack: High-quality contrastive data for better code ranking. arXiv preprint
arXiv:2412.01007, 2024.

Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian Zhang, Fan Yang, and Xiaoxing Ma. Aut-
oformalize mathematical statements by symbolic equivalence and semantic consistency. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=8ihVBYpMV4.

11

https://conf.researchr.org/details/icse-2025/icse-2025-nier/11/AI-Assisted-Autoformalization-of-Combinatorics-Problems-in-Proof-Assistants
https://conf.researchr.org/details/icse-2025/icse-2025-nier/11/AI-Assisted-Autoformalization-of-Combinatorics-Problems-in-Proof-Assistants
https://conf.researchr.org/details/icse-2025/icse-2025-nier/11/AI-Assisted-Autoformalization-of-Combinatorics-Problems-in-Proof-Assistants
https://openreview.net/forum?id=ChKCF75Ocd
https://openreview.net/forum?id=ChKCF75Ocd
https://github.com/leanprover-community/mathlib4/blob/master/Archive/Imo/Imo2024Q5.lean
https://github.com/leanprover-community/mathlib4/blob/master/Archive/Imo/Imo2024Q5.lean
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://openreview.net/forum?id=hUb2At2DsQ
https://openreview.net/forum?id=hUb2At2DsQ
https://openreview.net/forum?id=8ihVBYpMV4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical
reasoning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng,
Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with scaffolded
data synthesis and self-correction. arXiv preprint arXiv:2508.03613, 2025b.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,
Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large formal
reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, et al. Process-driven autoformalization in lean 4. arXiv
preprint arXiv:2406.01940, 2024.

A RELATED WORK

A.1 AUTOFORMALIZATION

Early LLM-based explorations in autoformalization task adopted in-context learning methods Wu et al.
(2022) and later incorporated techniques such as back-translation to enrich training sets Azerbayev
et al. (2023); Lu et al. (2024). More recent work began tackling other aspects of autoformalization,
such as fidelity and correctness. RAutoformalizer Liu et al. (2025b) introduced premise retrieval to
ground generated formalization with premises information. Process-Driven Autoformalization Lu
et al. (2024) included Lean4 compiler’s traceback information to verify the quality of a formalization.
While both methods focused on checking the correctness of a formal statement, AutoForm4Lean
Doan and Nguyen (2025) leveraged LLMs to evaluate the formal code based on multiple criteria,
whereas Li et al. (2024) proposed two self-consistency approaches: symbolic equivalence and
semantic equivalence. However, their symbolic approach is primarily designed for problems involving
numerical expressions, making its extension to the combinatorics domain non-trivial.

A.2 COMBINATORICS IN FORMAL BENCHMARKS

Current formalization benchmarks, including MiniF2F Zheng et al. (2021), ProofNet Azerbayev et al.
(2023), and FIMO Liu et al. (2023), largely focus on foundational areas such as algebra, number
theory, and analysis, with minimal coverage of combinatorics. For example, MiniF2F, ProofNet
and FIMO have no combinatorial problems, while only 29 out of 657 instances in PutnamBench
Tsoukalas et al. (2024) are in combinatorics domain. This underrepresentation occurs because
combinatorial problems often require intricate, problem-specific definitions and constructions, making
them particularly challenging to formalize Zheng et al. (2021).

Recent research, such as AutoForm4Lean Doan and Nguyen (2025) and LeanComb Xiong et al.
(2025), aim to address this by introducing methods that can synthesize new combinatorial benchmarks.
AutoForm4Lean proposed a dataset construction pipeline focused on both syntactically and seman-
tically correctness of the formalization. LeanComb developed a data augmentation approach that
can automatically generate new theorems from a complete formal proof and introduced a benchmark
dedicated to combinatorial identities. However, these combinatorial identities can be solved by
applying algebraic techniques without consideration of combinatorial reasoning or combinatorial
structures. CombiBench Liu et al. (2025a) is a benchmark designed to evaluate automated theorem
provers on a collection of formalized combinatorial problems. Its primary goal is to assess general
combinatorial reasoning, and while its problems often contain implicit structures, the benchmark
does not explicitly select for or measure performance based on structural complexity.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B MORE DETAILS ON BENCHMARK ANALYSIS

B.1 BENCHMARK STATISTICS

In this analysis, for formalization length, we remove all comments and the header block (e.g,
import, open) and count only the code related to the theorem statement. For number of definitions,
we count code blocks beginning with one of the following keywords def, structure, class,
inductive, coinductive, abbrev, instance, mutual, constant, axiom.

B.2 CONSTRUCTABILITY ANALYSIS

Automation Tactics We use the following automation tactics to solve the concrete proof goal, in
order of priority:

• simp

• simp_all

• trivial

• decide

• assumption

• rfl

• norm_num

• ring

• linarith

• aesop

• omega

Implementation Details We implement AUTOPROVESTRUCT in Lean 4 as a new tactic called
auto_prove_struct. To use AUTOPROVESTRUCT to prove a structure is inhabited, the follow-
ing code can be used:

instance : Inhabited {structure_name} where
default := by
classical
auto_prove_struct
all_goals omega -- for any remaining goals

When using LLM API to prove the constructability of a structure from a benchmark example, we
remove the formal theorem statement, keep all remaining declarations, and add a similar code to ask
LLM to provide a proof of inhabitation:

-- TODO: Provide code to construct the following instance
instance : Inhabited {structure_name} where

default := by
sorry

We terminate the repair loop if the proof is successfully compiled or a maximum of 10 rounds are
reached.

C MORE DETAILS ON EVALUATION

C.1 EXPERIMENT SETTING

We provide more details on the sampling parameters used for each model during the evaluation in
Tab. 3.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Sampling parameters used for each model during the evaluation. “temp.” is abbreviated for
temperature.

Model Sampling Parameters

Deepseek-Prover-V2-8B {"temp.": 1.0, "max_tokens": 8192}
Goedel-Prover-V2-8B {"temp.": 1.0, "max_tokens": 8192}
Kimina-Prover-Distill-8B {"temp.": 0.6, "top_p": 0.95, "max_tokens": 8192}
Claude-4-Sonnet {"temp.": 1.0, "max_tokens": 16000, "budget_tokens": 4000}
GPT-5 {"temp.": 1.0, "max_tokens": 16000, "reasoning": "minimal"}

structure ColoredCompleteGraph where
n : Nat
color : Fin n → Fin n → Fin n
symmetric : ∀ a b, color a b = color b a
triangle_three_color_property :
∀ (c1 c2 c3 : Fin n), c1 ̸= c2 → c2 ̸= c3 → c1 ̸= c3 →

∃ (v1 v2 v3 : Fin n),
v1 ̸= v2 ∧ v2 ̸= v3 ∧ v1 ̸= v3 ∧
({color v1 v2, color v2 v3, color v1 v3} : Finset (Fin n)) =

({c1, c2, c3} : Finset (Fin n))

axiom existsColoredCompleteGraph7 :
∃ (g : ColoredCompleteGraph), g.n = 7

theorem CombStruct4Lean_06c1eca65c14 :
∀ n : Nat, n = 7 → ∃ (g : ColoredCompleteGraph), g.n = n :=

by
intro n hn
rcases existsColoredCompleteGraph7 with ⟨g, hg⟩
refine ⟨g, ?_⟩
simpa [hn] using hg

Figure 6: Example of an invalid proof generated by GPT-5 model.

C.2 ERROR ANALYSIS

In this section, we provide more details on the errors we found on GPT-5model during the experiment
on the Automated Theorem Proving task. Some of the errors we found include:

• Model reasons that the informal problem is incorrect and refuses to prove it in Lean.
• Model refuses to answer because of content moderation.
• Generated proof has syntax errors, including invalid tactics and non-existing premises.
• Generated proof cannot solve all remaining goals.
• Model generates an axiom that can directly state the theorem, therefore bypass the complex-

ity to solve it. We provide an example in Fig. 6.

D CONSTRUCTABILITY EXAMPLES

In this section, we provide examples of structures that are proven with AUTOPROVESTRUCT (Fig. 7),
with LLM (Fig. 8), and not proven (Fig. 9).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

structure Conference where
n : Nat
participants : Finset (Fin (2 * n))
acquaintance : Fin (2 * n) → Finset (Fin (2 * n))
card_participants : participants.card = 2 * n
acquaintances_within : ∀ p, p ∈ participants → (acquaintance p)

⊆ participants
no_self_acquaintance : ∀ p, p ∈ participants → p /∈ acquaintance
p

enough_acquaintances : ∀ p, p ∈ participants → (acquaintance
p).card ≥ n

valid_acquaintance : ∀ p1 p2, p2 ∈ acquaintance p1 ↔ p1 ∈
acquaintance p2

Figure 7: Example of a structure that is proven with AUTOPROVESTRUCT.

structure ColoredCompleteGraph (n : Nat) where
getColor : Fin n → Fin n → Fin n
symm_color : ∀ v1 v2, getColor v1 v2 = getColor v2 v1

instance : Inhabited (ColoredCompleteGraph n) where
default := by
cases’ n with k
·
exact {
getColor := fun v1 _ => Fin.elim0 v1

symm_color := fun v1 _ => Fin.elim0 v1

}
·
exact {
getColor := fun _ _ => 0
symm_color := fun _ _ => rfl

}

Figure 8: Example of the structure that is proven with LLM, along with proof code.

structure ChessboardConfig where
stones : Fin 10 → Fin 14 → Nat
row_odd : ∀ i, Odd (Σ j : Fin 14, stones i j)
col_odd : ∀ j, Odd (Σ i : Fin 10, stones i j)

Figure 9: Example of the structure that is not proven.

15

	Introduction
	Structures in Lean
	Definition of Structures
	Challenges in Formalization

	Benchmark Creation
	Informal Problem Sources
	Formalization Process
	Semantic Checking

	Benchmark Analysis
	Benchmark Statistics
	Constructability Analysis

	Evaluation
	Conclusion
	Related Work
	Autoformalization
	Combinatorics in Formal Benchmarks

	More Details on Benchmark Analysis
	Benchmark Statistics
	Constructability Analysis

	More Details on Evaluation
	Experiment Setting
	Error Analysis

	Constructability Examples

