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ABSTRACT

Formal theorem proving with large language models (LLMs) has demonstrated
promising results, yet combinatorial problems remain a notable challenge due to
their reliance on problem-specific structures and definitions. AlphaProof, a notable
LLM-based system for automated theorem proving, has shown strong performance
in the International Mathematical Olympiad (IMO), obtaining a silver-medalist per-
formance by solving all questions but two combinatorics problems. Existing formal
benchmarks have limited combinatorial coverage and often overlook the importance
of combinatorial structures. To address these gaps, we introduce CombStruct4Lean,
a novel benchmark composed of 282 combinatorial problems formalized in the
Lean4 proof assistant. CombStruct4Lean emphasizes the usage and reasoning with
combinatorial structures, presenting significantly greater diversity than existing
datasets. We conduct a novel analysis based on constructability, the challenge
of proving that a defined structure is inhabited, to quantify the complexity of
CombStruct4Lean compared to existing ones. We evaluate state-of-the-art auto-
mated theorem proving methods on our benchmark, revealing substantial room
for improvement and highlighting the difficulty of reasoning with combinatorial
structures.

1 INTRODUCTION

Large language models (LLMs) have recently shown remarkable progress in formal theorem proving,
achieving strong results on challenging mathematical tasks. Notably, AlphaProof AlphaProof and
teams (2024) and AlphaGeometry2 Chervonyi et al. (2025) obtained a silver-medalist performance at
the International Mathematical Olympiad (IMO) 2024 competition. However, both systems failed on
two combinatorics problems, which highlight challenges and limitations of LLMs on this domain.

Combinatorics is a branch of mathematics that focuses on reasoning over discrete structures such as
graphs, partitions, and permutations with specific constraints, which often require problem-specific
definitions and constructions that are difficult to formalize Zheng et al. (2021). More broadly, formal
theorem proving involves two core tasks: autoformalization—translating a natural language problem
into a formal statement—and automated theorem proving—finding a formal proof from that statement.
In both cases, the output must be verified by proof assistants like Coq Barras et al. (1999), Isabelle
Nipkow et al. (2002), or Lean4 Moura and Ullrich (2021).

While there have been multiple works tackled on both tasks in both general mathematical domain Wu
et al. (2022); Azerbayev et al. (2024); Xin et al. (2024); Lin et al. (2025a) and specific branches Xiong
et al. (2023); Wei et al. (2024); Trinh et al. (2024); Chervonyi et al. (2025), only a few focused on
combinatorics Doan and Nguyen (2025); Xiong et al. (2025). A significant factor contributing to this
limitation is the current state of formal benchmarks, which offer limited coverage of combinatorics.
For instances, miniF2F Zheng et al. (2021), ProofNet Azerbayev et al. (2023), and FIMO Liu et al.
(2023) contain no combinatorial problems, and PutnamBench Tsoukalas et al. (2024) includes only a
small fraction (29 out of 657) dedicated to this area.

Furthermore, these benchmarks often overlook the aspect of combinatorial constructions. In the
formalization of IMO 2024 Problem 5 imo, one of two problems that AlphaProof failed, over 20%
of the formalization was focused on defining specific combinatorial objects and structures, with a
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substantial portion of the remaining code consisting of lemmas directly related to these new structures.
Despite this importance, existing benchmarks have not focused on this area. For instance, LeanComb
Xiong et al. (2025) only focused on combinatorial identities with pre-defined constructions. Similarly,
CombiBench Liu et al. (2025a) focuses on general theorem proving, and while its problems may
contain structures, they are not explicitly curated for structural complexity. As a result, there is a clear
need for a benchmark specifically curated to represent the structural challenges inherent in advanced
combinatorial reasoning.

To address this gap, we introduce CombStruct4Lean, a benchmark of formal combinatorial problems
with an emphasis on combinatorial structures. CombStruct4Lean consists of 282 combinatorial
math-word problems, sourced from high-school olympiad-level competitions and formalized in the
Lean4 proof assistant. Our benchmark creation process incorporates a LLM-based feedback-driven
formalization pipeline that iteratively refines the formal statement by analyzing compilation failures
and retrieving relevant premises. Unlike prior methods that rely on a single-pass generation Wu et al.
(2022); Lin et al. (2025a); Azerbayev et al. (2023), this process enables the model to define and adapt
problem-specific structures, which are essential for combinatorial problems. To ensure quality, we
incorporate a two-stage semantic checking strategy that checks the consistency between the informal
problem and its formal counterpart, followed by manual review by human experts. Furthermore,
to quantify the complexity of the structures within our benchmark, we introduce a novel analysis
based on constructability, the challenge of proving that a defined structure is inhabited by at least one
concrete instance. Our analysis shows CombStruct4Lean posess a significantly higher diversity than
other formal benchmarks while possessing a more complex and challenging set of problems. Through
experiments on automated theorem proving task, we demonstrate limitations of current models on
our benchmark.

Contributions This paper makes the following contributions: (i) We introduce CombStruct4Lean, a
benchmark consisting of 282 formalized combinatorial problems with a strong emphasis on usage and
reasoning with combinatorial structures. We describe our benchmark construction process, including
the iterative formalization pipeline and the semantic checking strategy. (ii) We perform a novel
analysis based on constructability, the challenge of proving that a defined structure is inhabited, to
quantify the complexity of CombStruct4Lean compared to existing ones. (iii) We demonstrate the
CombStruct4Lean’s difficulty through extensive experiments with state-of-the-art theorem provers,
providing a challenging new testbed to guide future research.

2 STRUCTURES IN LEAN

2.1 DEFINITION OF STRUCTURES

Combinatorics often deals with objects that are defined by a complex interplay of rules and constraints.
By defining them as formal structures in the Lean theorem prover, we can state every rule and
constraint explicitly. This helps reduce the risk of subtle errors arising from unstated assumptions. In
Lean, a structure is a mechanism for bundling data fields with propositions that assert properties
of that data. It serves as a blueprint for a mathematical concept, where any concrete instance is
guaranteed by Lean’s type checker to satisfy the specified axioms. For example, the SimpleGraph
structure from Mathlib is defined as:

structure SimpleGraph (V : Type u) where
Adj : V → V → Prop
symm : Symmetric Adj
loopless : Irreflexive Adj

This formalizes a simple graph as a structure containing vertices V and an adjacency relation Adj,
accompanied by proof terms establishing that Adj is both symmetric and loopless.

This connection between data Adj and the proofs about that data symm and loopless is a direct
illustration of the Curry-Howard correspondence Howard et al. (1980). This principle posits a
direct equivalence between logical propositions and data types, and between proofs and program
terms. In this view, a structure definition itself corresponds to a logical proposition (or a type).
Consequently, constructing an instance of the structure is the formal act of proving that proposition.
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Figure 1: Illustrations of each step in the benchmark creation process.

This principle underpins the core challenges of formalization: fidelity ensures we are defining the
correct proposition, while constructability demands we provide a valid proof.

2.2 CHALLENGES IN FORMALIZATION

The translation from an informal concept to a formal specification presents two primary challenges:
ensuring fidelity to the original concept and demonstrating that the formalized structure is mathemati-
cally non-vacuous (i.e., that instances can be constructed).

Fidelity to the Original Concept. A fundamental challenge is ensuring that the structure
faithfully represents the original mathematical concept. An unfaithful formalization, even if internally
consistent, can lead to proofs of theorems that do not apply to the intended mathematical object. High
fidelity is achieved when the set of all valid instances of the formal structure is isomorphic to the set
of all objects satisfying the informal concept.

Constructability and Inhabitation. A formal definition, even with high fidelity, is of limited
utility if one cannot demonstrate that instances of it exist. This is the challenge of constructability,
which requires proving that the defined structure is inhabited. As dictated by the Curry-Howard
correspondence, constructing an instance requires providing not just the data, but also the proofs of
its properties. The constructor for a structure S has the formal signature:

S.mk : (x : T )→ (h : P (x))→ S (1)

Here, x is the data of type T , P (x) is the proposition that x must satisfy, and h is the proof term for
P (x). Proving constructability amounts to demonstrating that for some data x, a corresponding proof
term h can be supplied. For abstract constructions, such as proving a k-regular graph on n vertices
exists, providing this proof term can be a significant mathematical task.

3 BENCHMARK CREATION

In this section, we detail the construction process of CombStruct4Lean, which consists of 282
competition-level combinatorial problems formalized in Lean4 proof assistant Moura and Ullrich
(2021). To our knowledge, CombStruct4Lean is the first benchmark dedicated on formalizing math-
word problems in combinatorics domain with a focus on problem-specific combinatorial structures.
First, we describe our benchmark creation process, including the informal problem sources, the
formalization process with premise retrieval and feedback generation, and the semantic checking
strategy. Finally, we analyze and discuss the difficulty of our CombStruct4Lean.
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Translate the following problem into a formal theorem in Lean4:
/--
Consider a graph where each vertex is connected to exactly three

other vertices (a 3-regular graph). Prove that it is possible
to color the edges of such a graph using only three colors in
such a way that no two adjacent edges share the same color if
the graph is bipartite.

-/

Previous formalization attempt:
structure ThreeRegularGraph {V : Type} where
. . .
def IsBipartite {V : Type} (G : ThreeRegularGraph V)
. . .
theorem three_regular_edge_coloring {V : Type} (G :

ThreeRegularGraph V) :
. . .

Guided feedback from LLM expert:
• The three_regular field in ‘ThreeRegularGraph‘ has multiple problems . . .

• IsBipartite definition could be improved . . .

Figure 2: Example of an input prompt to the Formalizer LLM. Detailed feedback and implementations
are abbreviated for brevity.

3.1 INFORMAL PROBLEM SOURCES

To ensure the quality of CombStruct4Lean, we select informal combinatorial problems from high-
school olympiad-level competitions LI et al. (2024). We avoid problems that require computing a
solution (e.g., how many arrangements satisfy a certain constraints) and choose only problems that
requires proving a statement. At the end of this process, we obtained 8608 combinatorial problems
and randomly sample 1000 among them. We give the informal problem statements and the proofs
to an LLM Qwen-2.5-32B-Instruct to filter out and rewrite invalid problems (e.g., multiple
questions, ambiguous statements, incomplete proofs), and obtain 883 problems as the informal source
of CombStruct4Lean.

3.2 FORMALIZATION PROCESS

In this section, we discuss each of the step included in the formalization process, namely formalization,
premise retrieval, feedback generation. Fig. 1 also provides an overview on how each step work.

Formalization. Given an informal combinatorics problem p, the formalization step uses the previ-
ous formal attempt s and guided feedback f to produce a new candidate statement. This process is
handled by the Formalizer module. In the first iteration, both s and f is empty. The Formalizer first
determines whether additional definitions or structures are needed and generates them accordingly,
then constructs a formal statement based on these elements. In our implementation, the formalization
step is performed using Claude-3.5-Sonnet API as the LLM. In the prompt, we encourage the
LLM to generate a formalization with structures in the instruction and provide an example for it. We
generate a single candidate formal statement in each iteration with a temperature of 0.3.

If the generated statement s compiles successfully, it proceeds to semantic checking (Sec. 3.3).
Otherwise, the compiler returns a traceback t, which is used in the next phase, premise retrieval.
Fig. 2 provides an example input to the Formalizer, including the problem p, the previous s, and
guided feedback f .

Premise Retrieval. A common errors we found during the formalization is the incorrect usages
of existing premises, which can be occurred because of the lack of grounding between the LLM
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Bugged Statement:
structure ThreeRegularGraph (V : Type) where
three_regular : ∀ v : V, (({w | (v, w) ∈ edges}).card = 3). . .

Traceback:
Text: (({w | (v, w) ∈ edges}).card
Error: invalid field ‘card’, the environment does not contain

’Set.card’
{w | (v, w) ∈ edges} has type Set V

Step 1: Query Generation
(query, type): [“(Set.card, Set)”, “(Set to finset, null)”]
Step 2: Premise Retrieval
Premises related to “Set.card”:

• def card : Cardinal

Premises related to “Set to finset”:
• def toFinset (s : Set α) [Fintype s] : Finset α

• def toFinset (s : Multiset α) : Finset α

Step 3: Type-Based Filtering
• “Set.card”: Matching premises: N/A
• “Set to finset”: Matching premises:
def toFinset (s : Set α) [Fintype s] : Finset α
def toFinset (s : Multiset α) : Finset α

Figure 3: Example of Premise Retrieval step

and the Mathlib library. To address this, we use a retrieval-augmented generation approach via the
premise retriever module, which provide the LLM’s knowledge with relevant premises documentation.
Although previous work has applied RAG to the autoformalization task Liu et al. (2025b), none has
used it explicitly to correct buggy formal statements.

Given the bugged statement s and traceback t, the query generator produces queries q and associ-
ated desired types T (q). Each query q and Mathlib premise pi are encoded using Dense Passage
Retrieval Karpukhin et al. (2020), and their cosine similarity is computed as:

sim(q, pi) =
f(q) · f(pi)

∥f(q)∥ · ∥f(pi)∥

We select the top-k entries from the corpus of Mathlib premises with the highest similarity and match
with the desired types:

P = {pi | sim(q, pi) among top-k ∧ T (q) = T (pi)}

We forward these retrieved premises P to the next phase for generating feedback. See Fig. 3
for a detailed example. To generate the queries and desired types for each query, we use
Claude-3.5-Haiku as the LLM with a temperature of 0.3. We use CodeRankEmbed Suresh
et al. (2024) to embed the query and signatures of each premise in the Mathlib library. For each pair
of query and expected type, the retriever returns at most k = 5 relevant premises, though there is no
restriction on the number of queries or types that can be generated.

Feedback Generation. The feedback generation module produces guided feedback f using the
original problem p, the current formalization s, the traceback t, retrieved premises P , and prior
feedback. This guided feedback helps refine s in the next iteration by (i) diagnosing root causes of
compilation failure using t; (ii) analyzing whether custom definitions align with p; (iii) demonstrating
correct use of retrieved premises P with a code snippet.
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/--
From a set S of n elements, prove that there are f(n,m,k) ways to

select a subset s of k elements such that m < k elements cannot
be together in s.

-/
def f (n m k : Nat) : Nat :=
. . .
-- First approach, semantically correct
def containsForbidden (m : Nat) (s : Finset a) : Prop :=
. . .
def valid_subsets (S : Finset a) (k m : Nat) : Finset (Finset a) :=
. . .
theorem count_valid_subsets_general
(S : Finset a) (n m k : Nat) (hS : S.card = n) :
(valid_subsets S k m).card = f n m k := by sorry
-- Second approach, semantically incorrect
def subsetsWithConflicts (n m k : Nat) : Nat :=
. . .
theorem subsetsWithConflicts_eq (n k m : Nat) :
subsetsWithConflicts n k m = f n m k := by sorry

Figure 4: Example of formal statements that are semantically correct and incorrect. Implementations
of definitions are abbreviated for brevity.

We provide an example of a generated feedback in Fig. 2. The feedback f is reused in the next call
to formalization step, continuing the iterative refinement loop. We use Claude-3.5-Sonnet to
generate the feedback, producing one feedback candidate per iteration with a temperature of 0.7.

For each informal problem, we perform the formalization process for a maximum of 5 iterations.
At the end, we obtained 594 examples that compile successfully. Among those, we removed 102
examples that contain placeholder sorry in their definitions, 80 examples that do not contain
structures, resulted in 412 examples to perform semantic checking.

3.3 SEMANTIC CHECKING

A compilable formal statement does not, in itself, guarantee high fidelity to the intended mathematical
problem. The example in Fig. 4 illustrates this distinction. The first formalization exhibits high
fidelity because it explicitly models all core mathematical objects from the problem description: the
base set S, the property of a subset containing forbidden elements (containsForbidden), and
the collection of valid subsets (valid_subsets). The final theorem correctly asserts a property
about these well-defined combinatorial structures. In contrast, the second formalization lacks fidelity.
By omitting any reference to the set S or the explicit construction of its subsets, it reduces the
problem to a purely numerical equivalence. Although it compiles, it fails to represent the underlying
combinatorial structure of the original problem and is thus semantically incorrect.

To verify the correctness of a formal statement, we adopt a two-stage semantic checking strategy.
Similar to semantic equivalence Li et al. (2024), we first informalize the formal statement, then
compare the back-translated version with original informal problem. However, instead of computing
cosine similarity between their sentence embeddings, we leverage LLMs to assess their semantic
alignment based on multiple criteria: combinatorial objects and structures, constraints, goals, scope,
and equivalence (i.e., can we restate one version by using the other?). This approach also shares
similarities with AutoForm4Lean Doan and Nguyen (2025), which uses LLMs to compare formal and
informal representations. However, our method avoids the challenge of cross-modality comparison
by evaluating two informal statements, thereby reducing the complexity introduced by differences
in syntax and representation between code and natural language. Finally, a human expert reviews
the results and manually verify the correctness of the formal statements. Specifically, the expert is
asked to review inputs and outputs of each declaration and manually construct an object for each
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Figure 5: Benchmark Analysis.

structure. We use Claude-3.5-Haiku with a temperature of 1.0 for both informalization and
semantic checking. At the end of this stage, we obtained 282 examples for CombStruct4Lean.

4 BENCHMARK ANALYSIS

4.1 BENCHMARK STATISTICS

We perform an analysis on our benchmark on two aspects: formalization length in Fig. 5a and number
of definitions created in Fig. 5b. From the figures, we observe that CombStruct4Lean is much more
diverse than existing benchmarks in both formalization length and number of custom definitions.
Over 85% of problems in miniF2F and PutnamBench require fewer than 10 lines of code, whereas
only 6% of CombStruct4Lean problems fall within this range. Similarly, nearly all problems in
miniF2F and PutnamBench define no new concepts, while only 2% of CombStruct4Lean examples
exhibit this behavior, with some requiring up to 21 custom definitions. While CombiBench is more
diverse than both miniF2F and PutnamBench, it remains skewed toward simpler problems with fewer
than 10 lines of code and no new definitions.

4.2 CONSTRUCTABILITY ANALYSIS

As discussed in Sec. 2.2, a formal definition is of limited utility if one cannot demonstrate that
instances of it exist. The challenge of constructability lies in proving the defined structure is inhabited.
Recall Eq. 1, proving constructability of a structure S is equivalent to solving the proof goal P (x)
given a symbolic input x. However, deriving such a universal proof is a non-trivial task that often
requires significant mathematical insight and is difficult to automate. This difficulty motivates our
core simplification for measuring constructability: instead of attempting a general proof, we focus on
automatically constructing a single, concrete instance. That is, we prove constructability by providing
a specific numerical value for x and solving the resulting concrete proof goal.

We introduce AUTOPROVESTRUCT, a recursive, heuristics-based algorithm designed to prove the
constructability of formal structures by finding concrete instances. We describe AUTOPROVESTRUCT
in Algorithm 1. When faced with a structural goal (i.e., proving a structure is inhabited), the algorithm
applies the constructor tactic to transforms the goal into its subgoals, and proceeds recursively.
When the goal is propositional (i.e., proving a property), AUTOPROVESTRUCT first generates a set
of candidate values using a heuristic approach. It then iterates through these candidates, attempting
to solve the resulting concrete goal with a suite of automation tactics. The algorithm terminates
and returns true as soon as a candidate is found that allows the proposition to be solved, effectively
demonstrating a successful construction. The heuristic for generating candidate values is also another
recursive algorithm, described in Algorithm 2. This routine is type-directed: for primitive types like
Nat, it returns a set of predefined heuristic values (e.g., 0, 1, 2). Crucially, if an input requires a
structural type S, it calls the main AUTOPROVESTRUCT algorithm to check for if S is inhabited first
before recursively calling itself on the type of the input of S.
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Algorithm 1: AUTOPROVESTRUCT Algorithm
Input: Goal g
Output: Boolean indicating if goal is solved

1 if g = ∅ then return True;
2 if g.type = “structure” then
3 g′ ← APPLYCONSTRUCTOR(g);
4 return AUTOPROVESTRUCT(g′);
5 else if g.type = “prop” then
6 C ← GENERATECANDIDATES(g.input.type);
7 foreach c ∈ C do
8 g′ ← APPLYCANDIDATE(g, c);
9 solved← APPLYAUTOMATION(g);

10 if solved then break;
11 return solved;

Algorithm 2: GENERATECANDIDATES Algorithm
Input: A type T
Output: A list of candidates C

1 if T is primitive then return PREDIFINEDVALUES(T );
2 if T is structure then
3 T.inhabited← AUTOPROVESTRUCT(T );
4 if not T.inhabited then return ∅;
5 else return GENERATECANDIDATES(T.input.type);
6 else return ∅;

We measure constructability by the percentage of structures that AUTOPROVESTRUCT can suc-
cessfully prove inhabited. For cases where this automated approach fails, we utilize an interactive
LLM-based method. Using the Claude-4-Sonnet API, we prompt the model to generate a proof
of inhabitation. We then enter an iterative repair loop, feeding any compiler errors back to the
model until the proof is successfully compiled or a timeout is reached. We perform this analysis on
both CombiBench and our proposed CombStruct4Lean and report the results in Table. 1. Here, we
consider any structures without proposition as constructable, therefore skipping them when running
AUTOPROVESTRUCT.

Table 1: Constructability of the structures in CombiBench and CombStruct4Lean.

CombiBench CombStruct4Lean

Total 100 282

Without structures 70 0

With structures 30 282
- no proposition 7 84
- with proposition 23 198

Proven with AUTOPROVESTRUCT 23 52
Proven with LLM 0 112
Not yet proven 0 34

From the results, we can see that our automated tool, AUTOPROVESTRUCT, successfully proved all
23 propositional structures in CombiBench, validating the effectiveness of our approach. However,
on our CombStruct4Lean, its success rate drops to 26% (52 of 198), demonstrating the increased
difficulty of these structures. This gap is substantially closed by our LLM-based method, which
proved an additional 112 structures. Note that for CombStruct4Lean, as mentioned in Sec. 3.3, all
benchmark examples are verified by a human expert to be constructable. The 34 remaining unproven
structures represent the most complex cases, requiring a level of mathematical insight that currently
exceeds both approaches.
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Table 2: Performance on Automated Theorem Proving task.

Models K # Pass

Specialized LLMs
Deepseek-Prover-V2-8B 32 0
Goedel-Prover-V2-8B 32 0
Kimina-Prover-Distill-8B 32 0

General-purpose LLMs
Claude-4-Sonnet 3 0
GPT-5 3 2

5 EVALUATION

In this section, we evaluate CombStruct4Lean on the automated theorem proving task, where we use
different theorem provers to solve the problems in our benchmark.

Experiment Setting. We evaluate different theorem provers on our CombStruct4Lean with two
types of models, specialized LLMs finetuned on the automated theorem proving task and general-
purpose LLMs. For specialized LLMs, we choose DEEPSEEK-PROVER-V2-8B Ren et al. (2025),
GOEDEL-PROVER-V2-8B Lin et al. (2025b), and KIMINA-PROVER-DISTILL-8B Wang et al. (2025).
For general-purpose LLMs, we perform evaluation on standard model CLAUDE-4-SONNET and
reasoning model GPT-5. We follow evaluation in ProofNet Azerbayev et al. (2023) and use Pass@K
as the evaluation metric, with K = 32 for specialized LLMs and K = 3 for general-purpose LLMs.
Considering the computational cost, we adopt the whole-proof generation approach for all theorem
provers. Specifically, we sample K candidate proofs, remove all candidates that violates the integrity
of the original formal statement and candidates with placeholder proof (i.e., sorry, admit), then
check whether each proof compile or not. We conduct this experiment on a machine with 2 A100
80GB GPUs, using default setting of each theorem prover.

Results and Discussion. The results presented in Tab. 2 demonstrate the exceptional difficulty of
the automated theorem-proving task. Strikingly, all specialized LLMs failed to prove a single theorem,
even when granted a substantial number of attempts K = 32. In contrast, the only success came from
the general-purpose model GPT-5, which managed to solve one problem with a single attempt and
two problems with three attempts. We discuss some of the failure cases of GPT-5 in the Appendix. A
potential cause for the specialized LLMs’ poor performance can be a lack of generalization stemming
from a domain mismatch between their training data and the problems in our benchmark. In our
exploratory study, we use Goedel-Formalizer-V2-32B, which was used to prepare training
data for Goedel-Prover-V2, to formalize the problems in our benchmark and found that a
majority (+95%) of the formalizations does not contain any structures. This strongly suggests that
the training corpora for the specialized provers likely mirror this distribution, being overwhelmingly
composed of non-structural problems. Since CombStruct4Lean is specifically designed to test
reasoning about these structures, the models were not well-aligned with the benchmark’s core
challenges.

6 CONCLUSION

In this paper, we introduced CombStruct4Lean, a new benchmark featuring 282 combinatorial prob-
lems formalized in Lean4 to address the limited focus on combinatorial structures in existing datasets.
Our analysis reveals that CombStruct4Lean is substantially more diverse and complex than existing
benchmarks. We also proposed a method for analyzing the constructability of these formal structures,
demonstrating that the definitions within our benchmark are significantly more challenging to prove
inhabited than those in prior work. Our evaluation of state-of-the-art automated theorem provers
on CombStruct4Lean further underscored its difficulty. We hope that CombStruct4Lean provide a
challenging and necessary testbed to guide future research toward developing more sophisticated
models capable of tackling structure-heavy problems in formal mathematics, especially in the domain
of combinatorics.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we commit to making the CombStruct4Lean and associated
source code for AUTOPROVESTRUCT along with constructability analysis publicly available. Our
benchmark creation pipeline, detailed in Sec. 3 , involves LLM APIs and manual review, and is
therefore not strictly reproducible. The AUTOPROVESTRUCT algorithm used for our constructability
analysis (Sec. 4.2) is heuristics-based and fully replicable. For the components that rely on LLM
APIs and sampling, including the supplementary constructability proofs and the automated theorem
proving evaluation (Sec. 5), we will provide the exact prompts, model versions, and configurations
used. While specific outputs from these components may vary between runs, our overall experimental
setup can be faithfully replicated.
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A RELATED WORK

A.1 AUTOFORMALIZATION

Early LLM-based explorations in autoformalization task adopted in-context learning methods Wu et al.
(2022) and later incorporated techniques such as back-translation to enrich training sets Azerbayev
et al. (2023); Lu et al. (2024). More recent work began tackling other aspects of autoformalization,
such as fidelity and correctness. RAutoformalizer Liu et al. (2025b) introduced premise retrieval to
ground generated formalization with premises information. Process-Driven Autoformalization Lu
et al. (2024) included Lean4 compiler’s traceback information to verify the quality of a formalization.
While both methods focused on checking the correctness of a formal statement, AutoForm4Lean
Doan and Nguyen (2025) leveraged LLMs to evaluate the formal code based on multiple criteria,
whereas Li et al. (2024) proposed two self-consistency approaches: symbolic equivalence and
semantic equivalence. However, their symbolic approach is primarily designed for problems involving
numerical expressions, making its extension to the combinatorics domain non-trivial.

A.2 COMBINATORICS IN FORMAL BENCHMARKS

Current formalization benchmarks, including MiniF2F Zheng et al. (2021), ProofNet Azerbayev et al.
(2023), and FIMO Liu et al. (2023), largely focus on foundational areas such as algebra, number
theory, and analysis, with minimal coverage of combinatorics. For example, MiniF2F, ProofNet
and FIMO have no combinatorial problems, while only 29 out of 657 instances in PutnamBench
Tsoukalas et al. (2024) are in combinatorics domain. This underrepresentation occurs because
combinatorial problems often require intricate, problem-specific definitions and constructions, making
them particularly challenging to formalize Zheng et al. (2021).

Recent research, such as AutoForm4Lean Doan and Nguyen (2025) and LeanComb Xiong et al.
(2025), aim to address this by introducing methods that can synthesize new combinatorial benchmarks.
AutoForm4Lean proposed a dataset construction pipeline focused on both syntactically and seman-
tically correctness of the formalization. LeanComb developed a data augmentation approach that
can automatically generate new theorems from a complete formal proof and introduced a benchmark
dedicated to combinatorial identities. However, these combinatorial identities can be solved by
applying algebraic techniques without consideration of combinatorial reasoning or combinatorial
structures. CombiBench Liu et al. (2025a) is a benchmark designed to evaluate automated theorem
provers on a collection of formalized combinatorial problems. Its primary goal is to assess general
combinatorial reasoning, and while its problems often contain implicit structures, the benchmark
does not explicitly select for or measure performance based on structural complexity.
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B MORE DETAILS ON BENCHMARK ANALYSIS

B.1 BENCHMARK STATISTICS

In this analysis, for formalization length, we remove all comments and the header block (e.g,
import, open) and count only the code related to the theorem statement. For number of definitions,
we count code blocks beginning with one of the following keywords def, structure, class,
inductive, coinductive, abbrev, instance, mutual, constant, axiom.

B.2 CONSTRUCTABILITY ANALYSIS

Automation Tactics We use the following automation tactics to solve the concrete proof goal, in
order of priority:

• simp

• simp_all

• trivial

• decide

• assumption

• rfl

• norm_num

• ring

• linarith

• aesop

• omega

Implementation Details We implement AUTOPROVESTRUCT in Lean 4 as a new tactic called
auto_prove_struct. To use AUTOPROVESTRUCT to prove a structure is inhabited, the follow-
ing code can be used:

instance : Inhabited {structure_name} where
default := by
classical
auto_prove_struct
all_goals omega -- for any remaining goals

When using LLM API to prove the constructability of a structure from a benchmark example, we
remove the formal theorem statement, keep all remaining declarations, and add a similar code to ask
LLM to provide a proof of inhabitation:

-- TODO: Provide code to construct the following instance
instance : Inhabited {structure_name} where

default := by
sorry

We terminate the repair loop if the proof is successfully compiled or a maximum of 10 rounds are
reached.

C MORE DETAILS ON EVALUATION

C.1 EXPERIMENT SETTING

We provide more details on the sampling parameters used for each model during the evaluation in
Tab. 3.
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Table 3: Sampling parameters used for each model during the evaluation. “temp.” is abbreviated for
temperature.

Model Sampling Parameters

Deepseek-Prover-V2-8B {"temp.": 1.0, "max_tokens": 8192}
Goedel-Prover-V2-8B {"temp.": 1.0, "max_tokens": 8192}
Kimina-Prover-Distill-8B {"temp.": 0.6, "top_p": 0.95, "max_tokens": 8192}
Claude-4-Sonnet {"temp.": 1.0, "max_tokens": 16000, "budget_tokens": 4000}
GPT-5 {"temp.": 1.0, "max_tokens": 16000, "reasoning": "minimal"}

structure ColoredCompleteGraph where
n : Nat
color : Fin n → Fin n → Fin n
symmetric : ∀ a b, color a b = color b a
triangle_three_color_property :
∀ (c1 c2 c3 : Fin n), c1 ̸= c2 → c2 ̸= c3 → c1 ̸= c3 →

∃ (v1 v2 v3 : Fin n),
v1 ̸= v2 ∧ v2 ̸= v3 ∧ v1 ̸= v3 ∧
({color v1 v2, color v2 v3, color v1 v3} : Finset (Fin n)) =

({c1, c2, c3} : Finset (Fin n))

axiom existsColoredCompleteGraph7 :
∃ (g : ColoredCompleteGraph), g.n = 7

theorem CombStruct4Lean_06c1eca65c14 :
∀ n : Nat, n = 7 → ∃ (g : ColoredCompleteGraph), g.n = n :=

by
intro n hn
rcases existsColoredCompleteGraph7 with ⟨g, hg⟩
refine ⟨g, ?_⟩
simpa [hn] using hg

Figure 6: Example of an invalid proof generated by GPT-5 model.

C.2 ERROR ANALYSIS

In this section, we provide more details on the errors we found on GPT-5model during the experiment
on the Automated Theorem Proving task. Some of the errors we found include:

• Model reasons that the informal problem is incorrect and refuses to prove it in Lean.
• Model refuses to answer because of content moderation.
• Generated proof has syntax errors, including invalid tactics and non-existing premises.
• Generated proof cannot solve all remaining goals.
• Model generates an axiom that can directly state the theorem, therefore bypass the complex-

ity to solve it. We provide an example in Fig. 6.

D CONSTRUCTABILITY EXAMPLES

In this section, we provide examples of structures that are proven with AUTOPROVESTRUCT (Fig. 7),
with LLM (Fig. 8), and not proven (Fig. 9).
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structure Conference where
n : Nat
participants : Finset (Fin (2 * n))
acquaintance : Fin (2 * n) → Finset (Fin (2 * n))
card_participants : participants.card = 2 * n
acquaintances_within : ∀ p, p ∈ participants → (acquaintance p)

⊆ participants
no_self_acquaintance : ∀ p, p ∈ participants → p /∈ acquaintance
p

enough_acquaintances : ∀ p, p ∈ participants → (acquaintance
p).card ≥ n

valid_acquaintance : ∀ p1 p2, p2 ∈ acquaintance p1 ↔ p1 ∈
acquaintance p2

Figure 7: Example of a structure that is proven with AUTOPROVESTRUCT.

structure ColoredCompleteGraph (n : Nat) where
getColor : Fin n → Fin n → Fin n
symm_color : ∀ v1 v2, getColor v1 v2 = getColor v2 v1

instance : Inhabited (ColoredCompleteGraph n) where
default := by
cases’ n with k
·
exact {
getColor := fun v1 _ => Fin.elim0 v1

symm_color := fun v1 _ => Fin.elim0 v1

}
·
exact {
getColor := fun _ _ => 0
symm_color := fun _ _ => rfl

}

Figure 8: Example of the structure that is proven with LLM, along with proof code.

structure ChessboardConfig where
stones : Fin 10 → Fin 14 → Nat
row_odd : ∀ i, Odd (Σ j : Fin 14, stones i j)
col_odd : ∀ j, Odd (Σ i : Fin 10, stones i j)

Figure 9: Example of the structure that is not proven.
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