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Abstract— Semantic segmentation and object detection are
challenging tasks in computer vision. In recent years the
performance of semantic segmentation and object detection has
been greatly improved by using deep learning techniques. A
large number of novel methods have been proposed to achieve
relevant results in different applications, namely autonomous
vehicles, mobile robotics and agriculture. A key challenge for
autonomous navigation in cluttered outdoor environments is the
reliable discrimination between obstacles that must be avoided
at all costs, and obstacles/objects that need to be identified
to pursue the intended action of the robot. In this paper are
presented and compared DeepLabv3+ semantic segmentation
and YOLOv5 object detection of vegetation, to be used by
an Unmanned Ground Vehicle (UGV) to clean fuel in forest
environments, to prevent fires. The results were obtained with
a dataset taken from a local forest.

I. INTRODUCTION

Humans glance at an image and instantly know what ob-
jects are in the image, where they are, and how they interact.
The human visual system is fast and accurate, allowing us
to perform complex tasks like recognize and locate objects
of interest within a matter of moments. Fast, accurate algo-
rithms for object detection would allow computers to drive
cars with simple sensors such as cameras, enable assistive
devices to output real-time scene information to human users
and robotic systems. Object detection is a computer vision
technique that allows a computer to identify and locate
objects in images. Object detection allows identification and
localization of objects and can be used to count objects in
scenes, pedestrian detection, face detection, text detection,
pose detection, number-plate recognition, determining and
tracking their precise locations, all while accurately labeling
them. Most of the early object detection algorithms were
built based on handcrafted features.

The main goal of this work is to detect and classify vege-
tation to be cleaned by an Unmanned Ground Vehicle (UGV)
in forests, to reduce fire risk. To achieve better cleaning
results and help autonomous navigation, a deep learning
model is used to localize vegetation in images, in real time.
The main contribution of this work is the comparison of two
models to classify vegetation to be cleaned by an UGV in
forest complex environments.

This paper is organized as follows: a brief state of the art in
object detection and in semantic segmentation is presented in
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section II, in section III is presented the DeepLab network, in
section IV is presented the YOLO deep learning network, in
section V is presented the methodology and results, followed
by the conclusions.

II. RELATED WORK

P. Viola and M. Jones achieved real-time detection of
human faces for the first time without any constraints [1][2].
The Viola and Jones detector go through all possible loca-
tions and scales in an image to see if any window contains
a human face, using sliding windows. The Viola and Jones
detector has dramatically improved its detection speed by
incorporating three important techniques: integral image,
feature selection, and detection cascades.

Histogram of Oriented Gradients (HOG) feature descriptor
was originally proposed in 2005 by N. Dalal and B. Triggs
[3]. HOG can be considered as an important improvement of
the scale-invariant feature transform [4] and shape contexts
[5] of its time. To balance the nonlinearity and feature
invariance such as translation, scale or illumination, the HOG
descriptor is designed to be computed on a dense grid of
uniformly spaced cells and use overlapping local contrast
normalization for improving accuracy. HOG can be used
to detect a variety of object classes but it was motivated,
primarily, by the problem of pedestrian detection. To detect
objects of different sizes, the HOG detector rescales the input
image for multiple times while keeping the size of a detection
window unchanged.

Systems like Deformable Parts Models (DPM) use a
sliding window approach where the classifier is run at evenly
spaced locations over the entire image [6]. A typical DPM
detector is composed of a root-filter and a number of part-
filters. Instead of manually specifying the configurations of
the part filters (e.g., size and location), a weakly supervised
learning method is developed in DPM where the configu-
rations of the part filters can be learned automatically as
latent variables. Girshick et al. concluded this process as a
special case of multi-instance learning [7]. Other important
techniques such as “hard negative mining”, “bounding box
regression”, and “context priming” are also applied for
improving detection accuracy. To speed up the detection,
Girshick et al. developed a technique for compiling detection
models into a faster one that implements a cascade architec-
ture, which has achieved over 10 times acceleration without
sacrificing any accuracy [8][9].

In the deep learning era, object detection can be grouped
into two genres, and these are “two-stage detection” and
“one-stage detection”. Two-stage detection frames the de-
tection as a coarse-to-fine process while one-stage detection



frames it as complete in one step.
Recent approaches like R-CNN (two-stage detector) use

region proposal methods to first generate potential bound-
ing boxes in an image and then run a classifier on these
proposed boxes. After classification, post-processing is used
to refine the bounding boxes, eliminate duplicate detections,
and rescore the boxes based on other objects in the scene
[10]. These complex pipelines are hard to optimize because
each individual component must be trained separately re-
sulting in a slow processing. Recently, deep ConvNets [11]
have significantly improved image classification and object
detection accuracy [12]. Compared to image classification,
object detection is a challenging task that requires complex
methods to solve the problem. Due to this complexity, current
approaches (e.g., [12], [13], [14], [15]) train models in multi-
stage pipelines that are slow and inelegant.

In 2014, K. He et al. proposed Spatial Pyramid Pooling
Networks (SPPNet) [16]. The main contribution of SPPNet
(two-stage detector) is the introduction of a Spatial Pyramid
Pooling (SPP) layer, which enables a Convolutional Neural
Network (CNN) to generate a fixed-length representation
regardless of the size of the image/region of interest without
rescaling it. When using SPPNet for object detection, the
feature maps are computed from the entire image only once,
then, fixed length representations of arbitrary regions can
be generated to train the detectors, which avoids repeatedly
calculating the convolutional features. SPPNet is more than
20 times faster than R-CNN without sacrificing any detection
accuracy.

In 2015, Girshick et al. proposed the Fast RCNN [17]
a two-stage detector. Fast R-CNN enables simultaneously
training a bounding box regressor and a detector under the
same network configurations. Although Fast-RCNN success-
fully integrates the advantages of SPPNet and R-CNN, the
detection speed is limited by the proposal detection.

In 2015, Ren et al. proposed Faster R-CNN detector
[18] shortly after the Fast R-CNN. Faster RCNN (two-stage
detector) is the first end-to-end, and the first near real time
deep learning detector. The contribution of Faster-RCNN is
the introduction of the Region Proposal Network (RPN) that
enables nearly cost-free region proposals. From R-CNN to
Faster RCNN, most individual blocks of an object detection
system, e.g., bounding box regression, feature extraction,
proposal detection, etc..., have been gradually integrated into
a unified, end-to-end learning framework.

In 2017, Lin et al. proposed Feature Pyramid Networks
(FPN) [19] a two-stage detector on basis of Faster R-CNN.
CNN naturally forms a feature pyramid through its forward
propagation. FPN shows great advances to detect objects
with a wide variety of scales. Using FPN in a basic Faster
R-CNN system, it achieves state-of-the-art single model
detection results.

“You Only Look Once” (YOLO) proposed by Redmon et
al. [20] in 2015 was the first one-stage detector in the deep
learning era. This network divides the image into regions and
predicts bounding boxes and probabilities for each region
simultaneously. Later, Redmon et al. has made a series

of improvements on basis of YOLO and has proposed its
second and third versions [21][22], which further improve
the detection accuracy while keeping a very high detection
speed.

Single Shot MultiBox Detector (SSD) [23] was proposed
by Liu et al. in 2015. It was the second one-stage detector
in the deep learning era. The main contribution of SSD is
the presentation of the multi-reference and multi-resolution
detection techniques. Multi-reference and multi-resolution
significantly improves the detection accuracy of a one-stage
detector, especially for small objects.

In 2017, RetinaNet has been proposed by Lin et al. [24].
A new loss function named “focal loss” has been introduced
in RetinaNet by reshaping the standard cross entropy loss so
that the detector will put more focus on hard, misclassified
examples during training. Focal Loss makes possible for the
one-stage detectors to achieve comparable accuracy of two-
stage detectors while maintaining very high detection speed.

Nowadays, semantic segmentation is one of the key prob-
lems in the field of computer vision. Semantic segmentation
is the process of dividing an image into multiple segments,
all objects of the same type are marked using one class
label. As semantic segmentation is able to provide the class
information at the pixel level, many real-world applications
benefit from this task, such as defect detection [25], computer
aided diagnosis [26], therapy planning [27], self-driving
vehicles [28] and pedestrian detection [29]. Fine-grained
inference is achieved by semantic segmentation by making
dense predictions inferring labels for every pixel, so that each
pixel is labeled with the class of its enclosing object. Certain
deep networks have made such significant contributions to
the field that they have become widely known standards, it is
the case of GoogLeNet, DeepLab, AlexNet, ResNet, VGG-
16, U-Net, Fast Fully Convolutional Network and Gated-
SCNN.

AlexNet was the pioneering Deep Convolutional Neural
Network (DCNN) that won the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC- 2012) with a TOP-5
test accuracy of 84.6%. This architecture was presented by
Krizhevsky et al. [30]. It consists of Rectified Linear Units
(ReLUs) as non-linearities, five convolutional layers, max-
pooling ones, three fully-connected layers, and dropout.

Visual Geometry Group (VGG) from the University of
Oxford introduced the Visual Geometry Group (VGG) CNN
model [31]. They proposed various models and configura-
tions of deep CNN’s [31], one of them was submitted to the
ILSVRC-2013. That model, also known as VGG-16 because
it is composed by 16 weight layers, became popular thanks
to its achievement of 92.7% TOP-5 test accuracy in the
ILSVRC-2013. The main difference between VGG-16 and
CNN models is the use of a stack of convolution layers with
small receptive fields in the first layers instead of few layers
with big receptive fields. This leads to less parameters and
more non-linearities, thus making the model easier to train
and the decision function more discriminative.

Szegedy et al. introduced GoogLeNet [32] which won
the ILSVRC-2014 challenge with a TOP-5 test accuracy of



93.3%. This CNN architecture is composed by 22 layers and
a newly introduced building block called inception module.
This approach proved that CNN layers could be stacked in
more ways than a typical sequential manner. In fact, those
modules consist of a Network in Network (NiN) layer, small-
sized convolution layer, a large-sized convolution layer and
a pooling operation. All of them are computed in parallel
and followed by 1 × 1 convolu- tion operations to reduce
dimensionality. Thanks to those modules, this network puts
special consideration on memory and computational cost
by significantly reducing the number of parameters and
operations.

Microsoft’s ResNet [33] is known thanks to winning
ILSVRC-2016 with 96.4% accuracy. The network is well-
known due to its depth (152 layers) and the introduction
of residual blocks. The residual blocks address the problem
of training a really deep architecture by introducing identity
skip connections so that the layers can copy their inputs to
the next layer. The intuitive idea behind this approach is
that it ensures that the next layer learns something new and
different from what the input has already encoded (since it
is provided with both the output of the previous layer and its
unchanged input). In addition, this kind of connections help
overcoming the vanishing gradient problem.

In order to extend Recurrent Neural Networks (RNNs)
architectures to multi-dimensional tasks, Graves et al. [34]
proposed a Multi-dimensional Recurrent Neural Network
(MDRNN) architecture which replaces each single recurrent
connection from standard RNNs with d connections, where
d is the number of spatio-temporal data dimensions. Based
on this initial approach, Visin el al. proposed ReNet [35]
architecture in which instead of multidimensional RNNs,
they have been using usual sequence RNNs. In this way, the
number of RNNs is scaled linearly at each layer regarding to
the number of dimensions d of the input image (2D). In this
approach, each convolutional layer (convolution + pooling)
is replaced with four RNNs sweeping the image vertically
and horizontally in both directions.

U-Net [36] is a CNN originally developed for segmenting
biomedical images. Its architecture looks like the letter U
when visualized and hence the name U-Net. Its architecture
is made up of two parts, the left part the “contracting path”
and the right part the “expansive path”. The purpose of
the contracting path is to capture context while the role
of the expansive path is to aid in precise localization. The
contracting path is made up of two 3× 3 convolutions. The
convolutions are followed by a rectified linear unit and a
2× 2 max-pooling computation for downsampling.

In Fast Fully Convolutional Network (FFCN) [37] archi-
tecture, a Joint Pyramid Upsampling (JPU) module is used
to replace dilated convolutions since they consume a lot of
memory and time. It uses a fully-connected network at its
core while applying JPU for upsampling. JPU upsamples the
low-resolution feature maps to high-resolution feature maps.

Gated shape CNN’s (Gated-SCNN) [38] architecture con-
sists of a two-stream CNN architecture. In this model, a
separate branch is used to process image shape information.

The shape stream is used to process boundary information.
Indoor RGBD pixel-wise semantic segmentation has also

gained popularity since the release of the NYU dataset
[39]. This dataset shows the usefulness of depth data to
improve segmentation. Their approach used features such
as RGB-SIFT [40], depth-SIFT [41] and pixel location as
input to a neural network classifier to predict pixel unaries.
The noisy unaries are then smoothed using a Conditional
Random Fields (CRF). In a more recent work [39], both
class segmentation and support relationships are inferred
together using a combination of RGB and depth based cues.
Another approach focuses on real-time joint reconstruction
and semantic segmentation, where Random Forests (RF) are
used as the classifier [42].

In Mask R-CNN [43] objects are classified and localized
using a bounding box and semantic segmentation that clas-
sifies each pixel into a set of categories. Every region of
interest gets a segmentation mask. Class labels and bounding
boxes are produced as the final output. The architecture is an
extension of the Faster R-CNN. The Faster R-CNN is made
up of a Deep Convolutional Neural Network (DCNN) that
proposes the regions and a detector that utilizes the regions.

DeepLab architecture [44], convolutions with upsampled
filters are used for tasks that involve dense prediction.
Segmentation of objects at multiple scales is done via
atrous spatial pyramid pooling. Finally, DCNN’s are used
to improve the localization of object boundaries. Atrous
convolution is achieved by upsampling the filters through the
insertion of zeros or sparse sampling of input feature maps.
DeepLabv3+ [45] employs the encoder-decoder structure
where DeepLabv3 is used to encode the rich contextual
information and a simple yet effective decoder module is
adopted to recover the object boundaries. It is also explored
the Xception model and atrous separable convolution to make
the proposed model faster and stronger.

Finally, experimental results show that DeepLabv3+ se-
mantic segmentation sets a new state-of-the-art performance
on PASCAL VOC 2012 [46] and Cityscapes [47] datasets.
YOLO is the fastest general-purpose object detector in the
literature and YOLO pushes the state of the art in real-
time object detection. YOLO also generalizes well to new
domains making it ideal for applications that rely on fast,
robust object detection.

III. DEEPLABV3+

The Deeplab series network was proposed by Chen et al.
[48]. It is a model specifically used to deal with semantic
segmentation. Currently, four versions have been launched.

Deeplabv1 [48] was developed based on the VGG16
network, first removing the last fully connected layer to
achieve end-to-end output. Because convolution itsef has
translation invariance and pooling can enhance this feature
of the network, the last two pooling layers are removed.
In order to solve the ability for multiscale segmentation of
objects, since DeepLabv1 have poor ability for multiscale
segmentation, in Deeplabv2 [49], Chen et al. concluded
that VGG16 have limited expressive power, and replaced it



with the ResNet-101 backbone, which is more complex and
expressive. Also an Atrous Spatial Pyramid Pooling (ASPP)
structure is proposed. Deeplabv3 [50] improves ASPP, uses
hole convolution to deepen the network and discards the
Conditional Random Field (CRF). CRF is no longer needed
because the accuracy of the classification results has been
improved. DeepLabv3+ is a state of the art deep learning
model for semantic image segmentation, where the goal is
to assign semantic labels (such as a road, a dog, a rider or
a person) for every pixel in the input image. Open sourced
by Google in 2016, multiple improvements have been made
to the model with the latest being DeepLabv3+ [51].

Deeplabv3+ boost Deeplabv3 by adding a simple yet
effective decoder module to refine the segmentation results,
especially along the object boundaries. It includes the en-
coder and the decoder parts. The encoder is mainly used
for reducing the dimensionality of the feature map and for
extracting features. The decoder is mainly used to restore
resolution of the feature map and the edge information to
obtain the final semantic segmentation results. To maintain
the resolution of the feature map and to increase the receptive
field, the convolution operation of the last few convolutional
layers of the encoder is replaced with hole convolution.
To obtain multi-scale semantic contextual information the
atrous spatial pyramid pooling (ASPP) module introduced
in Deeplabv3+ uses dilation convolution at various rates. By
using these novel structures, Deeplabv3+ produces accurate
semantic segmentation results among different datasets.

IV. YOLOV5

Object detection is a computer vision technique that al-
lows us to locate and identify objects in an image. With
this kind of identification and localization, object detection
can be used to detect various types of objects in a scene
and determine and track their precise locations, all while
accurately labeling them. Image classification involves the
designation of a class label to an image, whereas object
localization comprise drawing a bounding box around one or
more objects in an image. Object detection is challenging and
combines the two tasks and draws a bounding box around
each object of interest in the image and assigns them a class
label.

The YOLO model was first described by Joseph Redmon
et al. [20]. The method involves a single neural network
trained end to end with an image input and predicts bounding
boxes and class labels. The technique offers lower predictive
accuracy (e.g. more localization errors), although it operates
at 45 frames per second and can operate up to 155 frames
per second for a speed-optimized version of the model. The
model works by splitting the input image into a grid of cells,
each cell is responsible for predicting a bounding box if the
center of a bounding box falls within the cell. Each grid
cell predicts a bounding box involving the x, y coordinates,
the width and height and the confidence. A class prediction
is based on each cell. The class probability map and the
bounding boxes with confidences are after combined into a
final set of bounding boxes and class labels.

The model was updated by Joseph Redmon and Ali
Farhadi in an effort to further improve the model perfor-
mance [21]. Various training and architectural changes were
made to the model, such as the use of high-resolution input
images and batch normalization. YOLOv2 model makes use
of anchor boxes like Faster R-CNN, pre-defined bounding
boxes with useful shapes and sizes that are tailored during
training. The choice of bounding boxes for the image are pre-
processed using a k-means analysis on the training dataset.
Importantly, the predicted representation of the bounding
boxes is changed to allow small changes to have a less
impressive effect on the predictions, resulting in a stronger
model. Rather than predicting size and position directly, for
moving and reshaping the pre-defined anchor boxes offsets
are predicted relative to a grid cell and dampened by a
logistic function.

Further improvements to the model were proposed by
Joseph Redmon and Ali Farhadi in YOLOv3 [22]. The
improvements were reasonably minor, including minor rep-
resentational changes and a deeper feature detector network.

Bochkovskiy et al. have propelled the YOLOv4 [52]
model forward by efficiently scaling the network design and
scale, surpassing the previous state of the art EfficientDet
[53]. Bochkovskiy et al. scale the YOLO model up and
down, beating prior benchmarks from previous small and
large object detection models on both ends of the speed ver-
sus accuracy frontier. In general, the authors of the Scaled-
YOLOv4 are holding a few scaling concepts in balance
as they are working on the construction of their models -
number of layers, number of channels and image size, while
optimizing for inference speed and model performance.
The YOLOv4-tiny model had different applications than
the Scaled-YOLOv4 model because different constraints are
used, memory bandwidth and memory access are two of
them. To detect large objects in large images, the authors
concluded that it is important to increase the depth and
number of stages in the Convolutional Neural Network
(CNN) backbone and neck. This allows them to first scale
up the input size and number of stages, and dynamically
adjust width and depth according to real time inference speed
requirements. In addition to these scaling factors, the authors
also adjust the configuration of the model architecture in the
paper.

YOLOv51 was released very shortly after YOLOv4. De-
spite its name, the authors are not related neither from
the same instituition, and there have been controversy on
whether it is fair to call YOLOv5 a successor of YOLOv4.
This implementation shares the same design and provides
similar performance to YOLOv4. The main point of attention
is the fact that it is fully written in the PyTorch framework,
as opposed to using any form of the Darknet framework, and
it is significantly smaller, faster to train and more acessible
to use in a wider range of development environments. Ad-
ditionally, the models in YOLOv5 prove to be significantly

1Ultralytics YOLOv5 github repository (last seen 21/02/2022): https:
//github.com/ultralytics/yolov5
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smaller, faster to train and more accessible to be used in
real-world applications.

V. METHODOLOGY AND RESULTS

A. Vegetation semantic segmentation with DeepLabv3+
In this section are presented the results of semantic vege-

tation segmentation using DeepLabv3+s.
It was used an already trained DeepLabv3+ model, trained

with the CityScapes dataset with pre-trained MobileNet
backbone, for vegetation segmentation in wildland-urban in-
terfaces areas. Figure 1 show the source images (on the left),
the resulting vegetation segmentation of those source images
using DeepLabv3+ (on the right) and also the color used in
the output of the DeepLabv3+ semantic segmentation method
(bottom). Figure 1 RGB source images were obtained in
a forest near the Department of Electrical and Computer
Engineering of the University of Coimbra.

Fig. 1. Segmentation using DeepLabv3+. Source RGB images at left and
DeepLabv3+ segmentation results at right. At the bottom is presented the
color used for each class.

B. Vegetation detection with YOLOv5
In this section are presented the results of the vegetation

detection using YOLOv5.

A YOLOv5 network was trained for vegetation detection
in a forest environment for a thousand epochs using Google
Colab2. It were used two hundred images for training (one
hundred and fifty for training, thirty for validation and twenty
for testing) and this training images were labeled with five
classes (using RoboFlow label tool3): “Live Vegetation”,
“Grass”, “Cutted-Vegetation”, “Tree-trunk” and “Dead Veg-
etation”. The training dataset was acquired in the same forest
near the Department of Electrical and Computer Engineering
of the University of Coimbra.

In Figures 2, 3, 4 and 5 it is presented the mean average
precision at 0.5 and 0.95 Intersection Over Union (IOU),
precision, recall, bounding box loss, class loss and object
loss that resulted from the YOLOv5 training for a thousand
epochs. These metrics are obtained using the validation set
from the training dataset.

Fig. 2. YOLOv5 model training metrics mean average precision at 0.5
IOU (left) and at 0.95 IOU (right) during the 1000 epochs.

Fig. 3. YOLOv5 model training metrics precision (left) and recall (right)
during the 1000 epochs.

Fig. 4. YOLOv5 model training metrics bounding box loss (left) and the
class loss (right) during the 1000 epochs.

Figures 6 show the RGB test images (at left) and the
resulting object detection using the trained YOLOv5 model

2Google Colab website (last seen 22/02/2022): https://colab.
research.google.com/

3RoboFlow website (last seen 22/02/2022): https://roboflow.
com/
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Fig. 5. YOLOv5 metric object loss evolution during the 1000 epochs
training.

(at right). In the first row of Figure 6 the maximum confi-
dence of the detection of live vegetation is 95 percent, the
maximum confidence of the detection of grass is 92 percent
and the maximum confidence of the detection of tree trunk
is 88 percent. In the third row of Figure 6 the maximum
confidence of the detection of cut vegetation is 40 percent,
the maximum confidence of the detection of live vegetation
is 92 percent and the maximum confidence of the detection
of grass is 89 percent.

Fig. 6. Segmentation using the trained YOLOv5 model. Source RGB
images at left and obtained results at right.

TABLE I
PROCESSING TIME OF DEEPLABV3+ AND YOLOV5 MODELS FOR

IMAGES WITH 1440× 1080 PIXELS.

image 1 image 2 image 3 image 4
DLV3+ (s) 4.860 4.720 4.730 4.710

YOLOv5 (s) 0.215 0.230 0.225 0.251

C. Computation times

In table I is presented the computation times of the
YOLOv5 and DeepLabv3+ models for vegetation detection.
The four source images shown, in Figures 1 and 6, have
a 1440 × 1080 pixels size. The computation times were
obtained with a laptop with a Intel Core i7 6th Gen 6500U
processor and 8 GB of RAM. The processing was made using
the CPU.

VI. CONCLUSIONS

Semantic segmentation and object detection was devel-
oped for the end of vegetation detection and classification
for an Unmanned Ground Vehicle (UGV) to clean for-
est fuel to prevent fires. DeepLabv3+ pre-trained with the
dataset CityScapes was used for semantic segmentation of
vegetation in RGB images acquired in a forest environ-
ment. It results in effective detection of green vegetation,
however, the dead/dry vegetation segmentation results in
misclassifications. A YOLOv5 model for object detection
was also used for vegetation detection and classification
in forest images and it results in an effective detection
and classification of vegetation. Unlike the deepLabv3+ pre-
trained model, the YOLOv5 model was effective in detecting
live and dead/dry vegetation. Since the detection of dead/dry
vegetation is effective using the YOLOv5 method, this deep
learning approach will be used by the UGV to perform
the detection, classification and localization of vegetation in
forest environments. YOLOv5 also has clear advantages in
terms of training speed and the size of the weight file. These
advantages made YOLOv5 more suitable for the detection
of vegetation. The resulting processing times show real-time
processing capabilities for YOLOv5 object detection, what is
a step forward to the task of forest fuel cleansing for cluttered
forest environments using autonomous robots.
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